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I. Prikry-type Forcings

Moti Gitik

One of the central topics of set theory since Cantor has been the study
of the power function κ → 2κ. The basic problem is to determine all the
possible values of 2κ for a cardinal κ. Paul Cohen [7] proved the indepen-
dence of CH and invented the method of forcing. Easton [11] building on
Cohen’s results showed that the function κ → 2κ for regular κ can behave
in any prescribed way consistent with the Zermelo-König inequality, which
entails cf(2κ) > κ. This reduces the study to singular cardinals.

It turned out that the situation with powers of singular cardinals is much
more involved. Thus, for example, a remarkable theorem of Silver states
that a singular cardinal of uncountable cofinality cannot be the first to
violate GCH. The Singular Cardinal Problem is the problem of finding a
complete set of rules describing the behavior of the function κ → 2κ for
singular κ’s.

There are three main tools for dealing with the problem: pcf theory,
inner model theory and forcing involving large cardinals. The purpose of
this chapter is to present the main forcing tools for dealing with powers of
singular cardinals. We refer to [19] or to [24] for detailed discussion on the
Singular Cardinal Problem.

The chapter should be accessible to a reader with knowledge of forcing
(say, chapters VII, VIII of Kunen’s book [31]) and familiarity with ultra-
powers and elementary embeddings. Thus §§5,26 of Kanamori’s book [26]
will be more than enough. Only Section 6 requires in addition a familiarity
with iterated forcing (for example Baumgartner’s paper [5], §§0-2 of Section
II of Shelah’s book [54], or Cummings’ chapter [8] in this handbook). The
following sections can be read independently: 1 and 2; 1.1, 3 and 4; 1.1 and
5.1, 5.2; 6.
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Andreas Liu and Carmi Merimovich for their remarks and corrections. We
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would like to thank to Assaf Rinot for his corrections and for his help with
TEX . We owe a special debt to Bill Mitchell for his critical reading of a
previous version, culminating in a long list of improvements.
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1. Prikry Forcings

We describe here the classical Prikry forcing and some variations of it. They
were all introduced implicitly or explicitly by K. Prikry in [47].

1.1. Basic Prikry Forcing

Let κ be a measurable cardinal and U a normal ultrafilter over κ.

1.1 Definition. Let P be the set of all pairs 〈p, A〉 such that

(1) p is a finite subset of κ,

(2) A ∈ U , and

(3) min(A) > max(p).

It is convenient sometimes to view p as an increasing finite sequence of
ordinals.

We define two partial orderings on P , the first one conspicuously lacking
any useful closure property and the second closed enough to compensate
the lack of closure of the first.

1.2 Definition. Let 〈p, A〉, 〈q, B〉 ∈ P . We say that 〈p, A〉 is stronger than
〈q, B〉 and denote this by 〈p, A〉 ≥ 〈q, B〉 iff

(1) p is an end extension of q, i.e. p ∩ (max(q) + 1) = q,

(2) A ⊆ B, and

(3) p \ q ⊆ B.

We shall use ≤ with the corresponding meaning, and proceed analogously
for similar definitions without further comment.

1.3 Definition. Let 〈p, A〉, 〈q, B〉 ∈ P . We say that 〈p, A〉 is a direct (or
Prikry) extension of 〈q, B〉 and denote this by 〈p, A〉 ≥∗ 〈q, B〉 iff

(1) p = q, and

(2) A ⊆ B.

We will force with 〈P ,≤〉, and 〈P ,≤∗〉 will be used to show that no new
bounded subsets are added to κ after the forcing with 〈P ,≤〉.

Let us prove a few basic lemmas.

1.4 Lemma. Let G ⊆ P be generic for 〈P ,≤〉. Then
⋃
{p | ∃A(〈p, A〉 ∈

G)}) is an ω-sequence cofinal in κ.
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Proof. Just note that for every α < κ and 〈q, B〉 ∈ P the set

Dα = {〈p, A〉 ∈ P | 〈p, A〉 ≥ 〈q, B〉 and max(p) > α}

is dense in 〈P ,≤〉 above 〈q, B〉. a

1.5 Lemma. 〈P ,≤〉 satisfies the κ+-c.c.

Proof. Note that any two conditions having the same first coordinate are
compatible: If 〈p, A〉, 〈p, B〉 ∈ P , then 〈p, A ∩ B〉 is stronger than both of
them. a

Let us now state three lemmas about ≤∗ and its relation to ≤. The third
one contains the crucial idea of Prikry that makes everything work.

1.6 Lemma. ≤∗ ⊆ ≤ .

This is obvious from the definitions 1.2 and 1.3.

1.7 Lemma. 〈P ,≤∗〉 is κ-closed.

Proof. Let 〈〈 pα, Aα〉 | α < λ〉 be a ≤∗-increasing sequence of length λ for
some λ < κ. Then all the pα’s are the same. Set p = p0 and A =

⋂
α<κ Aα.

Then A ∈ U by κ-completeness of U . So 〈p, A〉 ∈ P , and it is stronger than
each 〈pα, Aα〉 according to ≤∗. a

1.8 Lemma (The Prikry condition). Let 〈q, B〉 ∈ P and σ be a statement
of the forcing language of 〈P ,≤〉. Then there is a 〈p, A〉 ≥∗ 〈q, B〉 such
that 〈p, A〉 ‖ σ (i.e. 〈p, A〉  σ or 〈p, A〉  ¬σ), where, again, we force with
〈P ,≤〉 and not with 〈P ,≤∗〉.

Proof. We identify finite subsets of κ and finite increasing sequences of
ordinals below κ, i.e. [κ]<ω. Define a partition h : [B]<ω → 2 as follows:

h(s) =

{
1, if there is a C such that 〈q ∪ s, C〉  σ ,

0, otherwise.

U is a normal ultrafilter, so by the Rowbottom theorem (see [26], 7.17 or
[25], 70) there is an A ∈ U , A ⊆ B homogeneous for h, i.e. for every n < ω
and every s1, s2 ∈ [A]n, h(s1) = h(s2). Now 〈q, A〉 will decide σ. Otherwise,
there would be

〈q ∪ s1, B1〉, 〈q ∪ s2, B2〉 ≥ 〈q, A〉

such that 〈q ∪ s1, B1〉  σ and 〈q ∪ s2, B2〉  ¬σ. By extending one of
these conditions if necessary, we can assume that |s1| = |s2|. But then
s1, s2 ∈ [A]|s1| and h(s1) 6= h(s2), which contradicts the homogeneity of
A. a
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The above lemma allows us to implement the κ-closure of 〈P ,≤∗〉 in the
actual forcing 〈P ,≤〉. Thus we can conclude the following:

1.9 Lemma. 〈P ,≤〉 does not add new bounded subsets of κ.

Proof. Let t ∈ P , a∼ is a name, λ < κ and

t  a∼ ⊆ λ̌ .

For every α < λ denote by σα the statement “α̌ ∈ a∼”. We define by
recursion a ≤∗-increasing sequence of conditions 〈tα | α < λ〉 such that
tα ‖σα for each α < λ. Let t0 be a direct extension of t deciding σ0; one
exists by 1.8. Suppose that 〈tβ | β < α〉 is defined. Define tα. First, using
1.7 we find a direct extension t′α of 〈tβ | β < α〉. Then by 1.8 choose a direct
extension tα of t′α deciding σα. This completes the definition of 〈tα | α < λ〉.
Now let t∗ be a direct extension of 〈tα | α < λ〉 (again 1.7 is used). Then
t∗ ≥ t (in fact t∗ ≥∗ t) and t∗  a∼ = b̌ where b = {α < λ | t∗  α ∈ a∼}. a

Let us summarize the situation.

1.10 Theorem. The following holds in V [G]:

(a) κ has cofinality ℵ0.

(b) All the cardinals are preserved.

(c) No new bounded subsets are added to κ.

Proof. (a) is established by 1.4, (c) by 1.9. Finally, (b) follows from (c) and
1.5. a

If 2κ > κ+ in V , then in V [G] the Singular Cardinal Hypothesis will fail
at κ.

Let C =
⋃
{p | ∃A(〈p, A〉 ∈ G)}. By 1.4, C is an ω-sequence cofinal in

κ. It is called a Prikry sequence for U . The generic set G can be easily
reconstructed from C:

G = {〈p, A〉 ∈ P | p is an initial segment of C and C \ (max(p) + 1) ⊆ A} .

So, V [G] = V [C].

1.11 Lemma. C is almost contained in every set in U , i.e.

(∗) for every A ∈ U the set C \ A is finite.

Proof. Let A ∈ U . Then the set

D = {〈p, B〉 ∈ P | B ⊆ A}

is dense in P . So, there is a 〈q, S〉 ∈ G ∩ D. But then, for every 〈q′, S′〉 ≥
〈q, S〉, q′ \ q ⊆ S ⊆ A. Hence, also, C \ q ⊆ A. a
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The above implies that C generates U , i.e. X ∈ U iff X ∈ V and C \ X
is finite.

Mathias [38] pointed out that (∗) of 1.11 actually characterizes Prikry
sequences:

1.12 Theorem. Suppose that M is an inner model of ZFC, U a normal
ultrafilter over κ in M . Assume that C is an ω-sequence satisfying (∗).
Then C is a Prikry sequence for U over M .

Proof. We need to show that the set

G(C) = {〈p, A〉 ∈ P |

p is an initial segment of C and C \ (max(p) + 1) ⊆ A}

is a generic subset of P over M . The only nontrivial property to check is
that G(C) ∩ D 6= ∅ for every dense open subset D ∈ M of P . Let us first
point out that the following holds in M :

1.13 Lemma. Let 〈q, B〉 ∈ P and D ⊆ P be dense open. Then there are
〈q, A〉 ≥∗ 〈q, B〉 and m < ω such that for every n with m ≤ n < ω and
every s ∈ [A]n, we have 〈q ∪ s, A \ (max(s) + 1)〉 ∈ D.

Proof. We define a partition h : [B]<ω → 2 as in 1.8 only replacing “ σ”
by “∈ D”. Let A′ ∈ U , A′ ⊆ B be homogeneous for h. Then, starting with
some m, for every n ≥ m and s ∈ [A′]n we have h(s) = 1. Hence there
will be a set As ∈ U such that 〈q ∪ s, As〉 ∈ D. Set A = A′ ∩ ∆{As | s ∈
[A′]n, m ≤ n < ω}, where

∆{As | s ∈ [A′]n, m ≤ n < ω}

= {α < κ | ∀n ≥ m∀s ∈ [A′]n(max(s) < α → α ∈ As)} .

Then, clearly A ∈ U . The condition 〈q, A〉 is as desired, since for each
n ≥ m and s ∈ [A]n we have A \ (max(s) + 1) ⊆ As and, so 〈q ∪ s,
A \ (max(s) + 1)〉 ∈ D. a

Now, let D ∈ M be a dense open subset of P . For every finite q ⊆ κ, using
1.13, we pick m(q) < ω and A(q) ∈ U such that 〈q, A(q)〉 ≥∗ 〈q, κ\(max(q)+
1)〉 and for every n ≥ m(q) and s ∈ [A(q)]n, 〈q∪s, A(q)\ (max(s)+1)〉 ∈ D.
Set

A = ∆{A(q) | q ∈ [κ]<ω} = {α < κ | ∀q ∈ [κ]<ω(max q < α → α ∈ A(q))} .

There is a τ < κ such that C \ τ ⊆ A. Consider 〈C ∩ τ, A\ τ〉. Since C ∩ τ is
finite, 〈C ∩ τ, A \ τ〉 ∈ P . Then, for every n ≥ max(C ∩ τ) and s ∈ [C \ τ ]n

we have
〈(C ∩ τ) ∪ s, A \ (max(s) + 1)〉 ∈ D ,

since A\τ ⊆ A\(C∩τ). But C \τ ⊆ A, so we can pick s ∈ [C \τ ]n for some
n ≥ max(C∩τ). Then (C∩τ)∪s ⊆ C and C\(max(s)+1) ⊆ A\(max(s)+1).
Hence, 〈(C ∩ τ) ∪ s, A \ (max(s) + 1)〉 ∈ G(C) ∩ D. a
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1.2. Tree Prikry Forcing

We would now like to eliminate the use of the normality of the ultrafilter U
in the previous construction. Note that it was used only once in the proof
of the Prikry condition 1.8.

Let us now assume only that U is a κ-complete ultrafilter over κ.

1.14 Definition. A set T is called a U -tree with a trunk t iff

(1) T consists of finite increasing sequences of ordinals below κ.

(2) 〈T, E〉 is a tree, where E is the order of end extension of finite se-
quences, i.e. η E ν iff ν�dom(η) = η.

(3) t is a trunk of T , i.e. t ∈ T and for every η ∈ T , η D t or t D η.

(4) For every η D t the set SucT (η) = {α < κ | η_〈α〉 ∈ T} is in U .

Define Levn(T ) = {η ∈ T | length(η) = n} for every n < ω.

We now define the tree Prikry forcing.

1.15 Definition. The set P consists of all pairs 〈t, T 〉 such that T is a
U -tree with trunk t.

1.16 Definition. Let 〈t, T 〉, 〈s, S〉 ∈ P . We say that 〈t, T 〉 is stronger than
〈s, S〉 and denote this by 〈t, T 〉 ≥ 〈s, S〉 iff S ⊇ T .

Note that S ⊇ T implies that t D s and t ∈ S.

1.17 Definition. Let 〈t, T 〉, 〈s, S〉 ∈ P . We say that 〈t, T 〉 is a direct (or
Prikry) extension of 〈s, S〉 and denote this by 〈t, T 〉 ≥∗ 〈s, S〉 iff

(1) S ⊇ T , and

(2) s = t.

As in the previous section we will force with 〈P ,≤〉 and the role of ≤∗

will be to provide closure.

1.18 Lemma. Let 〈Tα | α < λ〉 be a sequence of U -trees with the same
trunk and λ < κ. Then T =

⋂
α<λ Tα is a U -tree having that same trunk.

Proof. Let t be the trunk of T0 (and so of every Tα). Suppose that η ∈ T
and η D t. Then

SucT (η) =
⋂

α<λSucTα
(η) .

By κ-completeness of U , SucT (η) ∈ U . Hence T is a U -tree with trunk
t. a

Using 1.18 it is easy to prove lemmas analogous to 1.4-1.7.
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1.19 Lemma. Let G ⊆ P be generic for 〈P ,≤〉. Then

⋃
{t | ∃T (〈t, T 〉 ∈ G)}

is an ω-sequence cofinal in κ.

1.20 Lemma. 〈P ,≤〉 satisfies the κ+-c.c.

1.21 Lemma. ≤∗ ⊆ ≤ .

1.22 Lemma. 〈P ,≤∗〉 is κ-closed.

Let us show that 〈P ,≤,≤∗〉 satisfies the Prikry condition. The proof is
based on the following Ramsey property:

If T is a U -tree and f : T → λ < κ, then there is an U -tree S ⊆ T such
that f�Levn(S) is constant for each n < ω.

We prefer here and later to give a direct proof instead of deducing first
a relevant Ramsey property and then proving it.

1.23 Lemma (The Prikry condition). Let 〈t, T 〉 ∈ P and σ be a statement
of the forcing language. Then there is a 〈s, S〉 ≥∗ 〈t, T 〉 such that 〈s, S〉 ‖σ.

Proof. Suppose otherwise. Consider the set SucT (t). We split it into three
sets as follows:

X0 = {α ∈ SucT (t) | ∃Sα ⊆ T a U -tree with trunk t_〈α〉 such that

〈t_〈α〉, Sα〉  σ}

X1 = {α ∈ SucT (t) | ∃Sα ⊆ T a U -tree with trunk t_〈α〉 such that

〈t_〈α〉, Sα〉  ¬σ}

X2 = SucT (t) \ (X0 ∪ X1) .

Clearly, X0 ∩X1 = ∅, since by 1.18 any two conditions with the same trunk
are compatible. Now U is an ultrafilter and SucT (t) ∈ U , so for some
i < 3, Xi ∈ U . We shrink T to a tree T1 with the same trunk t, having
SucT1(t) = Xi and: If i < 2, then let T1 be Sα above t_〈α〉 for every α ∈ Xi;
if i = 2, then let T1 be the same as T above t_〈α〉 for every α ∈ X2. We
continue by recursion to shrink the initial tree T level by level. Thus define
a decreasing sequence 〈Tn | n < ω〉 of U -trees with trunk t so that

(1) T0 = T .

(2) For every n > 0 and m > n, Tm�(n + |t|) = Tn�(n + |t|), i.e. after
stage n the n-th level above the trunk remains unchanged in all Tm’s
for m ≥ n.

(3) For every n > 0, if i < 2, η ∈ Levn+|t|(Tn) and for some U -tree S with
trunk η we have 〈η, S〉  iσ, then
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(3a) 〈η, (Tn)η〉  iσ , and

(3b) For every ν ∈ Levn+|t|(Tn) having the same
immediate predecessor as η,

〈ν, (Tn)ν〉  iσ .

Here, 0σ denotes σ, 1σ denotes ¬σ and for a tree R with r ∈ R

(R)r = {r′ ∈ R | r′ D r} .

Now, we set T ∗ =
⋂

n<ω Tn. Clearly, T ∗ is a U -tree with a trunk t by
(2) or by 1.18. Consider 〈t, T ∗〉 ∈ P . By the assumption, 〈t, T ∗〉 \ σ. Pick
a condition 〈s, S〉 ≥ 〈t, T ∗〉 forcing σ with n = |s − t| as small as possible.
Then s ∈ Levn+|t|(T

∗) = Levn+|t|(Tn). By (3) of the recursive construction,

〈s, (Tn)s〉  σ

and for every s′ ∈ Levn+|t|(Tn) with the same predecessor as s, 〈s′, (Tn)s′〉 

σ. But T ∗ ⊆ Tn, so

〈s, (T ∗)s〉  σ and 〈s′, (T ∗)s′ 〉  σ

for every s′ as above.

Let s∗ denote the immediate predecessor of s, i.e. s without its last ele-
ment. Then 〈s∗, (T ∗)s∗〉  σ since for every 〈r, R〉 ≥ 〈s∗, (T ∗)s∗〉, r = s′_r′

for some s′ ∈ Levn+|t|(T
∗) and s′ . s∗. Hence, 〈r, R〉 ≥ 〈s′, (T ∗)s′〉  σ.

But we chose s to be of minimal length such that for some S 〈s, S〉  σ,
yet |s∗| = |s| − 1. Contradiction. a

Now, as in 1.9 the κ-closure of 〈P ,≤∗〉 can be used to derive the following:

1.24 Lemma. 〈P ,≤〉 does not add new bounded subsets of κ.

The conclusions are the same as those of the previous section.

1.25 Theorem. The following holds in V [G]:

(a) κ has cofinality ℵ0.

(b) All the cardinals are preserved.

(c) No new bounded subsets are added to κ.
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1.3. One-Element Prikry Forcing and Adding a Prikry

Sequence to a Singular Cardinal

Suppose that κ is a limit of an increasing sequence 〈κn | n < ω〉 of measur-
able cardinals. We want to add an ω-sequence dominating every sequence
in

∏
n<ω κn, i.e. a sequence 〈τm | m < ω〉 ∈

∏
n<ω κn such that for every

〈ρm | m < ω〉 ∈ (
∏

n<ω κn)∩ V and for all but finitely many m’s, τm > ρm.
Fix a κn-complete ultrafilter Un over κn for every n < ω. One can assume

normality but it is not necessary.
Let n < ω. We describe first a very simple forcing for adding a one-

element Prikry sequence.

1.26 Definition. Let Qn = Un∪κn. If p, q ∈ Qn we define p ≥n q iff either

(1) p, q ∈ Un and p ⊆ q,

(2) q ∈ Un and p ∈ q, or

(3) p = q ∈ κn.

Thus we can pick a set in Un, and then shrink it still in Un or pick an
element of this set. In particular, above every condition there is an atomic
one. So, the forcing 〈Qn,≤n〉 is trivial.

Nevertheless we also define a direct extension ordering:

1.27 Definition. Let p, q ∈ Qn. Set p ≥∗
n q iff p = q, or p, q ∈ Un and

p ⊆ q.

The forcing 〈Qn,≤n,≤∗
n〉 is called the one-element Prikry forcing . The

following lemma follows from the κn-completeness of Un.

1.28 Lemma. 〈Qn,≤∗
n〉 is κn-closed.

1.29 Lemma. 〈Qn,≤n,≤∗
n〉 satisfies the Prikry condition, i.e. for every

p ∈ Qn and every statement σ of the forcing language there is a q ≥∗
n p

such that q ‖σ.

The proof repeats the first stage of the proof of 1.23.
We now combine Qn’s together.

1.30 Definition. Let P be the set of all sequences p = 〈pn | n < ω〉 so that

(1) For every n < ω, pn ∈ Qn.

(2) There is an `(p) < ω so that for every n < `(p), pn is an ordinal below
κn and for every n ≥ `(p), pn ∈ Un.

The orderings ≤ and ≤∗ are defined on P in obvious fashion:
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1.31 Definition. Let p = 〈pn | n < ω〉, q = 〈qn | n < ω〉 ∈ P . We say that
p ≥ q (resp. p ≥∗ q) iff for every n < ω, pn ≥n qn (resp. pn ≥∗

n qn).
For p = 〈pn | n < ω〉 ∈ P we denote 〈pm | m < n〉 by p�n and 〈pm | m ≥

n〉 by p \ n. Let P�n = {p�n | p ∈ P} and P \ n = {p \ n | p ∈ P}.

The following splitting lemma is obvious:

1.32 Lemma. P ' P�n ×P \ n for every n < ω.

1.33 Lemma. For every n < ω, 〈P \ n,≤∗〉 is κn-closed.

The above follows from the fact that each Um with m ≥ n is κn-complete.

1.34 Lemma. 〈P ,≤,≤∗〉 satisfies the Prikry condition.

Proof. Let p = 〈pn | n < ω〉 be an element of P and σ be a statement
of the forcing language. Suppose for simplicity that `(p) = 0. Then let
pn = An ∈ Un for every n < ω. We want to find a direct extension of p
deciding σ. Assume that there is no such extension. Define by recursion on
n < ω a ≤∗-increasing sequence 〈q(n) | n < ω〉 of ≤∗-extensions of p such
that for every n < ω the following holds:

(1) If m ≥ n, then q(m)�n = q(n)�n.

(2) If q = 〈qn | n < ω〉 ≥ q(n) decides σ and `(q) = n + 1 then already
〈qm | m ≤ n〉_〈q(n)m | m > n〉 decides σ and in the same way as q;
moreover for every τn ∈ q(n)n also 〈qm | m < n〉_〈τn〉_〈q(n)m | m >
n〉 makes the same decision.

The recursive construction is straightforward. At stage n, the κn-com-
pleteness of the Um’s for m ≥ n is used in order to take care of the possi-
bilities for initial sequences of length n − 1 below κn. The number of such
possibilities is |

∏
i≤n−1 κi| = κn−1 < κn. Now define s = 〈sn | n < ω〉 to

be 〈q(n)n | n < ω〉. Clearly, s ∈ P and s ≥∗ p. The conclusion is now as in
1.23. Thus let q = 〈qn | n < ω〉 be an extension of s forcing σ and with `(q)
as small as possible. By the assumption, `(q) > 0. Let n = `(q) − 1. Now,
using (2) of the construction, we conclude that

〈qm | m < n〉_〈τn〉
_〈sm | m > n〉  σ

for every τn ∈ q(n)n = sn. But then also 〈qm | m < n〉_〈sm | m ≥ n〉  σ,
contradicting the minimality of `(q). a

Combining 1.32, 1.33 and 1.34 we obtain the following:

1.35 Lemma. 〈P ,≤〉 does not add new bounded subsets to κ.

Note that for each n < ω, P�n is just a trivial forcing “adding” a sequence
of length n of ordinals in

∏
m≤n−1 κm.
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1.36 Lemma. 〈P ,≤〉 satisfies the κ+-c.c.

Proof. Note that any two conditions p = 〈pn | n < ω〉 and q = 〈qn | n < ω〉
are compatible provided `(p) = `(q) and 〈pn | n < `(p)〉 = 〈qn | n <
`(q)〉. a

Now let G ⊆ P be generic for 〈P ,≤〉. Define an ω-sequence 〈tn | n <
ω〉 ∈

∏
n<ω κn as follows: tn = τ if for some p = 〈pm | m < ω〉 ∈ G with

`(p) > n pn = τ .
Using density arguments it is easy to show the following:

1.37 Lemma. For every 〈sn | n < ω〉 ∈ (
∏

n<ω κn) ∩ V there is an n0 < ω
such that for every n ≥ n0, tn > sn.

Combining lemmas together we now obtain the following:

1.38 Theorem. The following holds in V [G]:

(a) All cardinals and cofinalities are preserved.

(b) No new bounded subsets are added to κ.

(c) There is a sequence in
∏

n<ω κn dominating every sequence in
(
∏

n<ω κn) ∩ V .

1.4. Supercompact and Strongly Compact

Prikry Forcings

In this section, we present Prikry forcings for supercompact and strongly
compact cardinals. The main feature of these forcings is that not only κ
changes its cofinality to ω, but also every regular cardinal in the interval
[κ, λ] does so, if we use a λ-supercompact (or strongly compact) cardinal κ.
The presentation will follow that of M. Magidor who was the first to use
these forcings in his celebrated papers [35, 36].

Fix cardinals κ ≤ λ. Let Pκ(λ) = {P ⊆ λ | |P | < κ}. Let us recall few
basic definitions.

1.39 Definition. An ultrafilter U over Pκ(λ) is called normal iff

(1) U is κ-complete.

(2) U is fine, i.e. for every α < λ, {P ∈ Pκ(λ) | α ∈ P} ∈ U .

(3) For every A ∈ U and every f : A → λ satisfying f(P ) ∈ P for P ∈ A
there are A′ ∈ U and α′ < λ such that for every P ∈ A′ we have
f(P ) = α′.
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1.40 Definition. (1) κ is called λ-strongly compact iff there exists a κ-
complete fine ultrafilter over Pκ(λ).

(2) κ is called λ-supercompact iff there exists a normal ultrafilter over
Pκ(λ).

(3) If P, Q ∈ Pκ(λ), then P is strongly included in Q iff P ⊆ Q and
otp(P ) < otp(Q ∩ κ). We denote this by P ⊂∼ Q.

Suppose now that κ is λ-supercompact cardinal, and U is a normal ul-
trafilter over Pκ(λ). The normality of U easily implies the following:

(a) If F is function from a set in U into Pκ(λ) such that for all P 6= ∅
F (P ) ⊂∼ P , then F is constant on a set in U .

(b) If for every Q ∈ Pκ(λ), AQ ∈ U , then {P | ∀Q ⊂∼ P (P ∈ AQ)} ∈ U .
(This last set is called the diagonal intersection of the system {AQ |
Q ∈ Pκ(λ)}).

For B ⊆ Pκ(λ), denote by [B][n] the set of all n element subsets of B
totally ordered by ⊂∼ ; denote

⋃
n<ω[B][n] by [B][<ω]. The following is a

straightforward analog of the Rowbottom theorem:

If F : [Pκ(λ)][<ω] → 2, then there is an A ∈ U such that for every n < ω,
F is constant on [A][n].

We are now ready to define the supercompact Prikry forcing with a nor-
mal ultrafilter U over Pκ(λ).

The definitions will be the same as in 1.1 with only κ replaced by Pκ(λ)
and the order on ordinals replaced by ⊂∼ .

1.41 Definition. Let P be the set of all pairs 〈〈P1, . . . , Pn〉, A〉 such that

(1) 〈P1, . . . , Pn〉 is a finite ⊂∼ -increasing sequence of elements of Pκ(λ),

(2) A ∈ U , and

(3) for every Q ∈ A, Pn ⊂∼ Q.

1.42 Definition. Let 〈〈P1, . . . , Pn〉, A〉, 〈〈Q1, . . . , Qm〉, B〉 ∈ P . Then de-
fine 〈〈P1, . . . , Pn〉, A〉 ≥ 〈〈Q1, . . . , Qm〉, B〉 iff

(1) n ≥ m,

(2) for every k ≤ m Pk = Qk,

(3) A ⊆ B, and

(4) {Pm+1, . . . , Pn} ⊆ B.

1.43 Definition. Let 〈〈P1, . . . , Pn〉, A〉, 〈〈Q1, . . . , Qm〉, B〉 ∈ P . Then
〈〈P1, . . . , Pn〉, A〉 ≥∗ 〈〈Q, . . . , Qm〉, B〉 iff
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(1) 〈P1, . . . , Pn〉 = 〈Q1, . . . , Qm〉, and

(2) A ⊆ B.

The next lemmas are proved as in 1.1 with obvious changes from κ to
Pκ(λ).

1.44 Lemma. ≤∗ ⊆ ≤ .

1.45 Lemma. 〈P ,≤∗〉 is κ-closed.

1.46 Lemma (The Prikry condition). Let 〈q, B〉 ∈ P and σ be a statement
of the forcing language (i.e. of 〈P ,≤〉). Then there is a 〈p, A〉 ≥∗ 〈q, B〉
such that 〈p, A〉 ‖σ.

1.47 Lemma. 〈P ,≤〉 does not add new bounded subsets to κ.

1.48 Lemma. 〈P ,≤〉 satisfies the (λ<κ)+-c.c.

Proof. As in 1.5, any two conditions with the same finite sequence, i.e. of
the form 〈p, A〉 and 〈p, B〉 are compatible. The number of possibilities for
p’s now is λ<κ. So we are done. a

By the theorem of Solovay (see [55] or [27]), λ<κ = λ if λ is regular
or of cofinality ≥ κ and λ<κ = λ+ in case of cf(λ) < κ. Note that λ-
supercompactness of κ implies actually its λ<κ–supercompactness. We can
restate 1.48 using Solovay’s theorem as follows:

1.49 Lemma. 〈P ,≤〉 satisfies the µ+–c.c., where

µ =

{
λ, if cf(λ) ≥ κ

λ+, if cf(λ) < κ .

Our next lemma presents the main property of the supercompact Prikry
forcing. Also, it shows that 1.49 is sharp.

Let G be a generic subset of 〈P ,≤〉 and let 〈Pn | 1 ≤ n < ω〉 be the
Prikry sequence produced by G, i.e. the sequence such that for every n < ω,
there is an A ∈ U with 〈〈P1, . . . , Pn〉, A〉 ∈ G.

1.50 Lemma. Every δ ∈ [κ, µ] of cofinality ≥ κ (in V ) changes its cofinality
to ω in V [G], where

µ =

{
λ, if cf(λ) ≥ κ

λ+, if cf(λ) < κ .

Moreover, for each δ ≤ λ, δ =
⋃

n<ω(Pn ∩ δ), i.e. it is a countable union of
old sets each of cardinality less than κ.
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Proof. Let α < λ. The fineness of U implies that {P ∈ Pκ(λ) | α ∈ P} ∈ U .
Then, by a density argument, α ∈ Pn for all but finitely many n’s. Hence,
for each δ ≤ λ

δ =
⋃

n<ω(Pn ∩ δ) .

This implies that each δ ≤ λ of cofinality ≥ κ in V changes cofinality to
ω in V [G], as witnessed by 〈sup(Pn ∩ δ) | n < ω〉. In order to finish the
proof, we need to deal with λ of cofinality below κ and to show that in this
case λ+ also changes its cofinality to ω. Fix in V a sequence cofinal in λ of
regular cardinals 〈λi | i < cf(λ)〉, a sequence of functions 〈fα | α < λ+〉 in∏

i<cf(λ) λi and an ultrafilter D over cf(λ) including all cobounded subsets

of cf(λ), so that

(a) α < β < λ+ =⇒ fα < fβ (mod D), and

(b) for every g ∈
∏

i<cf(λ) λi there is an i < λ+ such that fi > g(mod D).

Using λ<κ = λ+, it is not hard directly by induction to construct such
sequence of fi’s. One can also appeal to general pcf considerations; see
[1]. Now, by fineness and density again, for every α < λ+ and for all
but finitely many n < ω we will have Pn ⊇ ran(fα). Hence, for such n’s,
〈
⋃

(Pn ∩ λi) | i < cf(λ)〉 > fα. So, {〈
⋃

(Pn ∩ λi) | i < cf(λ)〉 | n < ω}
will be an ω-sequence of functions from (

∏
i<cf(λ) λi) ∩ V unbounded in

(
∏

i<cf(λ) λi)∩V . This implies that λ+ should have cofinality ω in V [G]. a

Let us now turn to the strongly compact Prikry forcing. So, we give
up normality and assume only that U is a κ-complete fine ultrafilter over
Pκ(λ). The construction here is completely parallel to the construction of
the tree Prikry forcing in 1.2.

1.51 Definition. A set T is called a U -tree with trunk t iff

(1) T consists of finite sequences 〈P1, . . . , Pn〉 of elements of Pκ(λ) so that
P1 ⊂∼ P2 ⊂∼ · · · ⊂∼ Pn.

(2) 〈T, E〉 is a tree, where E is the order of the end extension of finite
sequences.

(3) t is a trunk of T , i.e. t ∈ T and for every η ∈ T , η D t or t D η.

(4) For every η D t,

SucT (η) = {Q ∈ Pκ(λ) | η_〈Q〉 ∈ T} ∈ U .

The definitions of the forcing notion P and the orders ≤ and ≤∗ are now
exactly the same as those in 1.15, 1.16 and 1.17. 〈P ,≤,≤∗〉 here shares all
the properties of the tree Prikry forcing of §1.2 except the κ+-c.c. Thus the
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Lemmas 1.18, 1.21–1.24 are valid in the present context with basically the
same proofs. Instead of the κ+–c.c. we will have here the (λ<κ)+–c.c. Also
1.48–1.50 holds with the same proofs.

Let us summarize the properties of both supercompact and strongly com-
pact Prikry forcings.

1.52 Theorem. Let G be a generic set for 〈P ,≤,≤∗〉, where 〈P ,≤,≤∗〉
is either supercompact or strongly compact Prikry forcing over Pκ(λ). The
following holds in V [G]:

(a) No new bounded subsets are added to κ.

(b) Every cardinal in the interval [κ, µ] of cofinality ≥ κ (as computed in
V ) changes its cofinality to ω.

(c) All the cardinals above µ are preserved, where

µ =

{
λ, if cf(λ) ≥ κ

λ+, if cf(λ) < κ .
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2. Adding Many Prikry Sequences

to a Singular Cardinal

In this section we present the extender-based Prikry forcing over a singular
cardinal. It is probably the simplest direct way for violating the Singular
Cardinal Hypothesis using minimal large cardinal hypotheses. This type of
forcing first appeared in [20] in a more complicated form. The presentation
here follows [17], Sec.3.

Let, as in 1.3, κ =
⋃

n<ω κn with 〈κn | n < ω〉 increasing and each
κn measurable. The Prikry forcing described in 1.3 produces basically one
Prikry sequence. More precisely, if GCH holds in the ground model, then
κ+-many new ω-sequences are introduced but all of them are coded by the
generic Prikry sequence. Here we present a way for adding any number of
Prikry sequences into

∏
n<ω κn. In particular this will increase the power of

κ as large as one likes without adding new bounded subsets and preserving
all the cofinalities.

The basic idea is to use many ultrafilters over each of κn’s instead of a
single one used in 1.3. This leads naturally to extenders over the κn’s. For
the basics about extenders and corresponding large cardinal hypotheses,
which are significantly weaker than λ-supercompactness of 1.4, see the fine
structure and inner model chapters of this handbook.

Assume GCH and let λ ≥ κ+ be a regular cardinal. Suppose that we
want to add to κ or into

∏
n<ω κn at least λ many Prikry sequences. Our

basic assumption will now be that each κn is a (λ + 1)-strong cardinal.
This means that for every n < ω there is a (κn, λ + 1)-extender En over
κn whose ultrapower contains Vλ+1 and which moves κn above λ. We fix
such En and let jn : V → Mn ' Ult(V, En). For every α < λ we define
a κn–complete ultrafilter Unα over κn by setting X ∈ Unα iff α ∈ jn(X).
Actually only Unα’s with α ≥ κn will be important. Note that a lot of Unα’s
are comparable in the Rudin-Keisler order ≤RK , recalling that

U ≤RK W iff ∃f :
⋃

W →
⋃

U ∀X ⊆
⋃

U (X ∈ U ↔ f−1(X) ∈ W ) .

Thus for example, if α is a cardinal and β ≤ α, then Un(α+β) ≥RK Un,α

and Un(α+β) ≥RK Un,β.
We will need a strengthening of the Rudin-Keisler order. For α, β < λ

define

α ≤En
β iff α ≤ β and for some f ∈ κnκn, jn(f)(β) = α .

Clearly, then α ≤En
β implies Unα ≤RK Unβ , as witnessed by any f ∈ κnκn

with jn(f)(β) = α: If A ∈ Unβ, then β ∈ jn(A). So α = jn(f)(β) ∈
jn(f)“jn(A) = jn(f“A). Hence f“A ∈ Un,α. Note that, in general, α <
β < λ and Unα <RK Unβ does not imply α <En

β.
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The partial order 〈λ,≤En
〉 is κn-directed, as we see in Lemma 2.1 below.

Actually, it is κ++
n -directed, but for our purposes κn-directness will suffice.

Thus, using GCH, find some enumeration 〈aα | α < κn〉 of [κn]<κn so that
for every regular cardinal δ < κn 〈aα | α < δ〉 enumerates [δ]<δ and every
element of [δ]<δ appears δ many times in the enumeration. Let jn(〈aα | α <
κn〉) = 〈aα | α < jn(κn)〉. Then, 〈aα | α < λ〉 will enumerate [λ]<λ ⊇ [λ]<κn

in both Mn and V ; this coding will be applied below.

The next lemma is a basic application of commutativity of diagrams
corresponding to extenders and their ultrafilters.

2.1 Lemma. Let n < ω and τ < κn. Suppose that 〈αν | ν < τ〉 is a
sequence of ordinals below λ and α ∈ λ \ (

⋃
ν<τ αν + 1) codes this sequence,

i.e. aα = {αν | ν < τ}. Then α >En
αν for every ν < τ .

Proof. Fix ν < τ . Consider the following diagram

......................................

...............
............
...........
..........
..........
.........
........
........
........
........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........
........
........
........
.........
.........

..........
..........

...........
.............

.........................
.......................... ................................................................................................................................................................................................................................................................................................................................................

..........................
............

..............................
........
...................

...................
...................

...................
...................

...................
..................

...................
...................

...................
..................

...................
...................

...................
..................

...................
...................

................

.......
.......
........................

V

jn

iα

iαν

Mn

kα

Nα

Nαν

kαν

where Nα ' Ult(V, Un,α), kα([f ]Un,α
) = jn(f)(α) and the same with αν

replacing α. Then jn(〈aβ | β < κn〉) = kα(iα(〈aβ | β < κn〉)) and
kα(iα(〈aβ | β < κn〉)([id])Un,α

)) = jn(〈aβ | β < κn〉)(α) = aα = {αµ |
µ < τ}. But τ < κn, so it is fixed by kα, since crit(kα) ≥ κn. Hence
iα(〈aβ | β < κn〉)([id]Un,α

) is a sequence of ordinals of length τ . Let α∗
ν

denote its ν-th element. Then, by elementarity, kα(α∗
ν) = αν . We can

hence define kανα : Nαν
−→ Nα by setting kανα([f ]Uαν

) = iα(f)(α∗
ν). It is

easy to see that kανα is elementary embedding and the following diagram
is commutative
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......................................
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.......
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........
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..........
..........

............
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..................
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...................
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..................

...................
...................

...................
...........................
...........................

..........................
............

..............................................................................................................................................................................................................................................................................................................................................................................
........

.......
.......
........................

.......
.......
........................

V

jn

iα

iαν

Mn

Nα

Nαν

kα

kανα

kαν

Finally, we can define the desired projection πααν
of Un,α onto Un,αν

.
Thus let πααν

: κn → κn be a function such that [πααν
]Un,α

= α∗
ν . Then,

jn(πααν
)(α) = kα ([πα,αν

]Un,α
) = kα(α∗

ν) = αν . So, α >En
αν . a

Hence we obtain the following:

2.2 Lemma. For every set a ⊆ λ of cardinality less than κn, there are λ
many α’s below λ so that α >En

β for every β ∈ a.

For every α, β < λ such that α >En
β we fix the projection παβ : κn → κn

defined as in 2.1 witnessing this. Let παα = id, the identity map: κn → κn.
The following two lemmas are standard.

2.3 Lemma. Let γ < β ≤ α < λ. If α ≥En
β and α ≥En

γ, then {ν < κn |
παβ(ν) > παγ(ν)} ∈ Unα.

Proof. We consider the following commutative diagram

.............
.........................
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........
........
........
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........
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.......
.......
.......
.......
.......
.......
.......
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.......
.......
.......
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........
........
........
........
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.........
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...........................................................................................................................................................................................................................................................................................................................................................................................................
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....................
....................
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....................
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....................
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....................
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....................

....................
...................

....................
...........

...........
...........................

.............................................................................................................................................................................................................................................................................................................................................................................................................................
........

.......
.......
........................

.......
.......
........................

jn

iα

iγ

iβ

Mn

Nα

Nβ

Nγ

kα

kβα

kβ

kγα

kγV

where for δ′, δ ∈ {α, β, γ}

iδ : V −→ Nδ ' Ult(V, Unδ)
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kδ([f ]Unδ
) = jn(f)(δ)

and kδ′δ([f ]Unδ′
) = iδ(f)([πδδ′ ]Unδ

).
Then kα([παβ ]Unα

) = kα(kβα([id]Unβ
)) = kβ([id]Unβ

) = jn(id)(β) = β.
The same is true for γ, i.e.

kα([παγ ]Unα
) = γ .

But Mn � γ < β and kα is elementary, so Nα � [παγ ]Unα
< [παβ ]Unα

. Hence

{ν < κn | παβ(ν) > παγ(ν)} ∈ Unα .

a

2.4 Lemma. Let {αi | i < τ} ⊆ α < λ for some τ < κn. Assume that
α ≥En

αi for every i < τ . Then there is a set A ∈ Unα so that for every
i, j < τ : αi ≥En

αj implies πααj(ν) = παiαj
(πααi

(ν)) for every ν ∈ A.

Proof. It is enough to prove the lemma for τ = 2 and then to use the κn-
completeness of Unα. So, let β, γ < α and assume that γ ≤En

β ≤En
α.

Consider the following commutative diagram:
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........................

jn

iα

iγ

iβ

Mn

Nα

Nβ

Nγ

kα

kβα

kβ

kγα

kγV

kγβ

where k’s and i’s are defined as in 2.3.
We need to show that

[παγ ]Unα
= [πβγ ◦ παβ ]Unα

.

As in 2.3, kα([παγ ]Unα
) = γ. On the other hand, again as 2.3,

kα([πβγ ◦ παβ ]Unα
) = jn(πβγ ◦ παβ)(α)

= jn(πβγ)(jn(παβ)(α)) = jn(πβγ)(β) = γ .

Since kα is elementary, we have in Nα the desired equality. a
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We are now ready to define our first forcing notion. It will resemble
the one-element Prikry forcing considered in 1.3 and will be built from two
pieces. Fix n < ω.

2.5 Definition. Let Qn1 = {f | f is a partial function from λ to κn of
cardinality at most κ}. We order Qn1 by inclusion, which here is denoted
by ≤1.

Thus Qn1 is basically the usual Cohen forcing for blowing up the power
of κ+ to λ. The only minor change is that the functions take values inside
κn rather than 2 or κ+.

2.6 Definition. Let Qn0 be the set of triples 〈a, A, f〉 so that

(1) f ∈ Qn1.

(2) a ⊆ λ with

(2a) |a| < κn,

(2b) a ∩ dom(f) = ∅, and

(2c) a has a ≤En
-maximal element, i.e. an element

α ∈ a such that α ≥En
β for every β ∈ a .

(3) A ∈ Un max(a).

(4) For every α, β, γ ∈ a, if α ≥En
β ≥En

γ, then παγ(ρ) = πβγ(παβ(ρ))
for every ρ ∈ πmax(a),α“A.

(5) For every α > β in a and every ν ∈ A,

πmax(a),α(ν) > πmax(a),β(ν) .

The last two conditions can be met by Lemmas 2.3, 2.4.

2.7 Definition. Let 〈a, A, f〉, 〈b, B, g〉 ∈ Qn0. We say that 〈a, A, f〉 is
stronger than 〈b, B, g〉 and denote this by 〈a, A, f〉 ≥0 〈b, B, g〉 iff

(1) f ⊇ g,

(2) a ⊇ b, and

(3) πmax(a),max(b)“A ⊆ B.

We now define a forcing notion Qn which is an extender analog of the
one-element Prikry forcing of 1.3.

2.8 Definition. Qn = Qn0 ∪ Qn1.

2.9 Definition. The direct extension ordering ≤∗ on Qn is defined to be
≤0 ∪ ≤1.
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2.10 Definition. Let p, q ∈ Qn. Then p ≤ q iff either

(1) p ≤∗ q, or

(2) p = 〈a, A, f〉 ∈ Qn0, q ∈ Qn1 and the following holds:

(2a) q ⊇ f ,

(2b) dom(q) ⊇ a,

(2c) q(max(a)) ∈ A, and

(2d) for every β ∈ a, q(β) = πmax(a),β(q(max(a))).

Clearly, the forcing 〈Qn,≤〉 is equivalent to 〈Qn1,≤1〉, i.e. Cohen forcing.
However, the following basic facts relate it to the Prikry-type forcing notion.

2.11 Lemma. 〈Qn,≤∗〉 is κn-closed.

2.12 Lemma. 〈Qn,≤,≤∗〉 satisfies the Prikry condition, i.e. for every p ∈
Qn and every statement σ of the forcing language there is a q ≥∗ p deciding
σ.

Proof. Let p = 〈a, A, f〉. Suppose otherwise. By recursion on ν ∈ A define
an increasing sequence 〈pν | ν ∈ A〉 of elements of Qn1 with dom(pν)∩a = ∅
as follows. Suppose 〈pρ | ρ ∈ A ∩ ν〉 is defined and ν ∈ A. Define pν as
follows: Let u =

⋃
ρ<ν pρ. Then u ∈ Qn1. Consider q = 〈a, A, u〉. Let

q_〈ν〉 = u ∪ {〈β, πmax(a),β(ν)〉 | β ∈ a}. If there is a p ≥1 q_〈ν〉 deciding
σ, then let pν be some such p restricted to λ \ a. Otherwise, set pν = u.
Note that there will always be a condition deciding σ.

Finally, let g =
⋃

ν∈A pν . Shrink A to a set B ∈ Un max(a) so that
pν

_〈ν〉 = pν∪{〈β, πmax(a),β(ν)〉 | β ∈ a} decides σ the same way or does not
decide σ at all, for every ν ∈ B. By our assumption 〈a, B, g〉 6 ‖σ. However,
pick some h ≥ 〈a, B, g〉, h ∈ Qn1 deciding on σ. Let h(max(a)) = ν. Then,
pν

_〈ν〉 decides σ. But this holds then for every ν ∈ B. Hence, already
〈a, B, g〉 decides σ. Contradiction. a

Let us now define the main forcing of this section by putting the blocks
of Qn’s together. This forcing is called the extender-based Prikry forcing
over a singular cardinal.

2.13 Definition. The set P consists of sequences p = 〈pn | n < ω〉 so that

(1) For every n < ω, pn ∈ Qn.

(2) There is an `(p) < ω so that for every n < `(p), pn ∈ Qn1, and for
every n ≥ `(p), pn = 〈an, An, fn〉 ∈ Qn0 and an ⊆ an+1.

2.14 Definition. Let p = 〈pn | n < ω〉 and q = 〈qn | n < ω〉 ∈ P . We set
p ≥ q (resp. p ≥∗ q) iff for every n < ω, pn ≥Qn

qn (resp. pn ≥∗
Qn

qn)..
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The forcing 〈P ,≤〉 does not satisfy the κ+-c.c. . However:

2.15 Lemma. 〈P ,≤〉 satisfies the κ++-c.c.

Proof. Let {p(α) | α < κ++} be a set of elements of P , with p(α) = 〈p(α)n |
n < ω〉 and p(α)n = 〈a(α)n, A(α)n, f(α)n〉 for n ≥ `(p(α)). There is an
S ⊆ κ++ stationary such that for every α, β ∈ S the following holds:

(a) `(p(α)) = `(p(β)) = `.

(b) For every n < `, {dom(p(α)n) | α ∈ S} forms a ∆-system with p(α)n

and p(β)n having the same values on its kernel.

(c) For every n ≥ `, {(a(α)n ∪ dom(f(α)n) | α ∈ S} forms a ∆-system
with f(α)n, f(β)n having the same values on the kernel. Also, if
α, β ∈ S then a(α)n ∩ dom(f(β)n) = ∅.

Now let α < β be in S. We construct a condition q = 〈qn | n < ω〉
stronger than both p(α) and p(β).

For every n < ` let qn = p(α)n ∪ p(β)n. Now suppose that n ≥ `. qn will
be of the form 〈bn, Bn, gn〉. Set gn = f(α)n∪f(β)n. We would like to define
bn as the union of a(α)n and a(β)n. But 2.6(2(iii)) requires the existence of a
maximal element in the ≤En

order which need not be the case in the simple
union of a(α)n and a(β)n. It is easy to fix this. Just pick some ρ < λ
above a(α)n ∪ a(β)n in the ≤En

order. Also let ρ > sup(dom(f(α)n)) +
sup(dom (f(β))n). Lemma 2.2 insures that there are such ρ’s. Now we set
bn = a(α)n ∪ a(β)n ∪ {ρ}. Let B′

n = π−1
ρα∗(A(α)n) ∩ π−1

ρβ∗(A(β)n), where
α∗ = max(a(α)n) and β∗ = max(a(β)n). Finally we shrink B′

n to a a set
Bn ∈ Unρ satisfying 2.6((4), (5)). This is possible by Lemmas 2.3, 2.4. a

For p = 〈pn | n < ω〉 ∈ P set p�n = 〈pm | m < n〉 and p \ n = 〈pm |
m ≥ n〉. Let P�n = {p�n | p ∈ P} and P \ n = {p \ n | p ∈ P}. Then the
following lemmas are obvious:

2.16 Lemma. P ' P�n ×P \ n for every n < ω.

2.17 Lemma. 〈P \ n,≤∗〉 is κn-closed. Moreover, if 〈pα | α < δ < κ〉 is
a ≤∗ increasing sequence with κ`(p0) > δ, then there is a p ≥∗ pα for every
α < δ.

We will now turn to the Prikry condition and establish a more general
statement which will allow us to deduce in addition that κ+ is preserved
after forcing with 〈P ,≤〉.

Let us introduce first some notation. For p = 〈pn | n < ω〉 ∈ P and m
with `(p) ≤ m < ω, let pm = 〈am, Am, fm〉. Denote am by am(p), Am by
Am(p) and fm by fm(p). Let 〈ν`(p), . . . , νm〉 ∈

∏m
k=`(p) Ak(p). We denote

by
py〈ν`(p), . . . , νm〉
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the condition obtained from p by adding the sequence 〈ν`(p), . . . , νm〉, i.e. a
condition q = 〈qn | n < ω〉 such that qn = pn for every n, n < `(p) or n > m,
and if `(p) ≤ n ≤ m then qn = fn(p) ∪ {〈β, πmax(an(p))β(νn)〉 | β ∈ an(p)}.

We prove the following analog of 1.13:

2.18 Lemma. Let p ∈ P and D be a dense open subset of 〈P ,≤〉 above p.
Then there are p∗ ≥∗ p and n∗ < ω such that for every 〈ν0, . . . , νn∗−1〉 ∈∏`(p)+n∗−1

m=`(p) Am(p∗), p∗y〈ν0, . . . , νn∗−1〉 ∈ D.

Let us first deduce the Prikry condition from this lemma.

2.19 Lemma. Let p ∈ P and σ be a statement of the forcing language.
Then there is a p∗ ≥∗ p deciding σ.

Proof of 2.19 from 2.18. Consider D = {q ∈ P | q ≥ p and q ‖σ}. Clearly,
D is dense open above p. Apply 2.18 to this D and choose n∗ as small as
possible and p∗ ≥∗ p such that for every q ≥ p∗ with `(q) ≥ n∗, q ∈ D. If
n∗ = `(p), then we are done. Suppose otherwise. Assume for simplicity that
`(p) = 0 and n∗ = 2. Then let p∗ = 〈p∗n | n < ω〉 and for every n < ω let
p∗n = 〈a∗

n, A∗
n, f∗

n〉. Let α0 = max(a∗
0) and α1 = max(a∗

1). Then A∗
0 ∈ U0α0

and A∗
1 ∈ U1α1 . Let ν0 ∈ A∗

0 and ν1 ∈ A∗
1. Consider p∗y〈ν0, ν1〉 the

condition obtained from p∗ by adding ν0 and ν1. Clearly, `(p∗y〈ν0, ν1〉) = 2.
Hence it decides σ. Now we shrink A∗

1 to A∗
1ν0

so that for every ν ′
1, ν

′′
1 ∈ A∗

1ν0

p∗y〈ν0, ν
′
1〉 and p∗y〈ν0, ν

′′
1 〉 decide σ the same way. Let A∗∗

1 =
⋂
{A∗

1ν0
|

ν0 ∈ A∗
0}. We shrink now A∗

0 to A∗∗
0 so that for every ν ′

0, ν
′′
0 ∈ A∗∗

0 and for
every ν1 ∈ A∗∗

1 p∗y〈ν′
0, ν1〉 and p∗y〈ν′′

0 , ν1〉 decide σ in the same way. Let
p∗∗ be a condition obtained from p∗ by replacing in it A∗

0 by A∗∗
0 and A∗

1

by A∗∗
1 . Then p∗∗ ≥∗ p∗ and p∗∗ ‖σ. Contradiction.

Proof of 2.18. The main objective is to reduce the problem to the point
where we can use the argument of the corresponding fact in §1.3, as if we
were forcing using 〈Un max(an) | n < ω〉.

We first prove the following crucial claim:

Claim. There is a p′ ≥∗ p, p′ = 〈p′n | n < ω〉, such that for every q ≥ p′,
q = 〈qn | n < ω〉, if q ∈ D, then also

〈p′n | n < `(p)〉_〈qn�an(p′)∪fn(p′) | `(p′) ≤ n < `(q)〉_〈p′n | n ≥ `(q)〉 ∈ D ,

where p′n = 〈an(p′), An(p′), fn(p′)〉 for n ≥ `(p).

Proof of Claim. Choose a function h : κ ↔ [κ]<ω, such that for every
n < ω, h�κn : κn ↔ [κn]<ω. Now define by recursion a ≤∗-increasing
sequence 〈pα | α < κ〉 of direct extensions of p, where pα = 〈pα

n | n < ω〉
and, for n ≥ `(p), pα

n = 〈aα
n, Aα

n , fα
n 〉. Set p0 = p. Suppose that α < κ and
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〈pβ | β < α〉 has been defined. As a recursive assumption we assume the
following:

(∗) For every n < ω and for β, γ, κn ≤ β, γ < κ,

if `(p) ≤ m ≤ n + 1, then aβ
m = aγ

m and Aβ
m = Aγ

m.

Let p̃α be pα−1 if α is successor ordinal, and a direct extension of 〈pβ |
β < α〉 satisfying (*) if α is a limit ordinal. Note that if n < ω is the
maximal such that α ≥ κn then 2.17 applies, since the parts of pβ ’s be-
low κn+1 satisfy (*). Now we consider h(α). Let h(α) = 〈ν1, . . . , νk〉.

If 〈ν0, . . . , νk−1〉 6∈
∏`(p)+k−1

m=`(p) Am(p̃α), then we set pα = p̃α, where for

m ≥ `(p), p̃α
m = 〈am(p̃α), Am(p̃α), fm(p̃α)〉. Otherwise we consider q =

p̃αy〈ν0, . . . , νk−1〉. If there is no direct extension of q inside D, then let
pα = p̃α. Otherwise, let s = 〈sn | n < ω〉 ≥∗ q be in D. Define
pα = 〈pα

n | n < ω〉 then as follows:

(a) For each n with n ≥ `(p) + k or n < `(p), let pα
n = sn, and

(b) For each n with `(p) ≤ n ≤ `(p) + k − 1, an(pα) = an(p̃α),
An(pα) = An(p̃α), and fn(pα) = fn(s)�((dom(fn(s)) \ an(p̃α)) .

The meaning of this last part of the definition is that we extend for n with
`(p) ≤ n ≤ `(p) + k − 1 only fn(p̃α) and only outside of an(p̃α). Clearly
such defined pα satisfies (∗).

Finally, (∗) allows us to put all the 〈pα | α < κ〉 together. Thus we define
p′ = 〈p′n | n < ω〉 as follows:

(i) For n < `(p), let p′n =
⋃

α<κ pα
n.

(ii) For n ≥ `(p), let fn(p′) =
⋃

α<κ fn(pα), an(p′) = an(pκn), and
An(p′) = An(pκn) .

Obviously p′ ∈ P and p′ ≥∗ p. This p′ is as desired. Thus, if q ≥ p′ is in
D, then we consider α = h−1(〈qn(max(an(p′))) | `(p) ≤ n < `(q)〉). By the
construction of pα ≤∗ p′, pαy〈qn(max(an(p′))) | `(p) ≤ n < `(q)〉 will be in
D. Then also p′y〈qn(max(an(p′)) | `(p) ≤ n < `(q)〉 ∈ D, since D is open.

This concludes the proof of the Claim.

Now let p′ ≥∗ p be given by the claim. Assume for simplicity that
`(p) = 0. We would like to shrink the sets An(p′) in a certain way. Thus
define p(1) ≥∗ p′ such that:

(∗)1 For every m < ω and 〈ν0, . . . , νm−1〉 ∈
∏m−1

n=0 An(p(1)), if for
some ν ∈ Am(p(1)), p(1)y〈ν0, . . . , νm−1, ν〉 ∈ D, then for every
ν′ ∈ Am(p(1)) p(1)y〈ν0, . . . , νm−1, ν

′〉 ∈ D.
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Let m < ω and ~ν = 〈ν0, . . . , νm−1〉 ∈
∏m−1

n=0 An(p′), where in case of
m = 0, ~ν is the empty sequence. Consider the set

Xm,~ν = {ν ∈ Am(p′) | p′y〈ν0, . . . , νm−1, ν〉 ∈ D} .

Define Am~ν to be Xm,~ν , if Xm~ν ∈ Um,max(am(p′)) and Am(p′) \ Xm,~ν , oth-

erwise. Let Am =
⋂
{Am,~ν | ~ν ∈

∏m−1
n=0 An(p′)}. Define now p(1) = 〈p(1)n |

n < ω〉 as follows: for each n < ω let p(1)n = 〈an(p′), An, f(p′)〉. Clearly,
such defined p(1) satisfies (∗)1.

Then, in a similar fashion we chose p(2) ≥∗ p(1) satisfying:

(∗)2 For every m < ω and 〈ν0, . . . , νm−1〉 ∈
∏m−1

n=0 An(p(2)), if for
some 〈νm, νm+1〉 ∈ Am(p(2)) × Am+1(p(2)),

p(2)y〈ν0, . . . , νm−1〉
y〈νm, νm+1〉 ∈ D,

then for every 〈ν′
m, ν′

m+1〉 ∈ Am(p(2)) × Am+1(p(2)),

p(2)y〈ν0, . . . , νm−1〉
y〈ν′

m, ν′
m+1〉 ∈ D .

Continue and define for every k with 2 ≤ k < ω a p(k) ≥∗ p(k − 1)
satisfying (∗)k, where (∗)k is defined analogously for k-sequences. Finally,
let p∗ be a direct extension of 〈p(k) | 1 ≤ k < ω〉. Let s ≥ p∗ be in D. Set
n∗ = `(s). Consider 〈s0(max(a0(p

∗))), . . . , sn∗−1(max(an∗−1(p
∗)))〉. Then

the choice of p′, p′ ≤∗ p∗ and openness of D imply that

p∗y〈s0(max(a0(p
∗)), . . . , sn∗−1(max(an∗−1(p

∗)))〉 ∈ D

But p∗ ≥∗ p(n∗). So, p∗ satisfies (∗)n∗ . Hence, for 〈ν0, . . . , νn∗−1〉 ∈∏n∗−1
m=0 Am(p∗), p∗y〈ν0, . . . , νn∗−1〉 ∈ D. a
Combining these lemmas we obtain the following:

2.20 Proposition. The forcing 〈P ,≤〉 does not add new bounded subsets
to κ and preserves all the cardinals above κ+.

Actually, it is not hard now to show that κ+ is preserved as well.

2.21 Lemma. Forcing with 〈P ,≤〉 preserves κ+.

Proof. Suppose that (κ+)V is not a cardinal in a generic extension V [G].
Recall that cf(κ) = ℵ0 and by 2.20 it is preserved. So, cf((κ+)V ) < κ in
V [G]. Pick p ∈ G, δ < κ and a name g

∼
so that κ`(p) > δ and

p  (g
∼

: δ̌ → (κ+)V and ran(g
∼

) is unbounded in (κ+)V ) .

For every τ < δ let

Dτ = {q ∈ P | q ≥ p and for some α < κ+, q  g
∼

(τ̌ ) = α̌} .
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Define by recursion, using 2.17, a ≤∗-increasing sequence 〈pτ | τ < δ〉 of
≤∗-extensions of p so that pτ satisfies the conclusion 2.18 with D = Dτ . By
2.17, there is a pδ ≥∗ pτ for each τ < δ.

Now let τ < δ. By the choice of pτ there is an n(τ) < ω such that for

every 〈ν0, . . . , νn(τ)−1〉 ∈
∏`(p)+n(τ)−1

m=`(p) Am(pδ), pδy〈ν0, . . . , νn(τ)−1〉 ∈ Dτ .

This means that for some α(ν0, . . . , νn(τ)−1) < κ+

pδy〈ν0, . . . , νn(τ)−1〉  g
∼

(τ̌ ) = α̌(ν0, . . . , νn(τ)−1) .

Set

α(τ) = sup{α(ν0, . . . , νn(τ)−1) |

〈ν0, . . . , νn(τ)−1〉 ∈
∏`(p)+n(τ)−1

m=`(p) Am(pδ)} .

Then clearly α(τ) < κ+ and

pδ  g
∼

(τ̌ ) < α̌(τ) .

Now let α∗ =
⋃

τ<δ α(τ). Then again α∗ < κ+ and

pδ  ∀τ < δ̌(g
∼

(τ) < α̌∗) .

But this is impossible since p ≤∗ pδ forced that the range of g was unbounded
in κ+. Contradiction. a

Finally, let us show that this forcing adds λ ω-sequences to κ. Thus, let
G ⊆ P be generic. For every n < ω define a function Fn : λ → κn as follows:

Fn(α) = ν if for some p = 〈pm | m < ω〉 ∈ G with `(p) > n, pn(α) = ν.

Now for every α < λ set tα = 〈Fn(α) | n < ω〉. Let us show that the set
{tα | α < λ} has cardinality λ. Notice that we cannot claim that all such
sequences are new or even distinct due to the Cohen parts of conditions,
i.e. the fn’s.

2.22 Lemma. For every β < λ there is an α with β < α < λ such that tα

dominates every tγ with γ ≤ β.

Proof. Suppose otherwise. Then there is a p = 〈pn | n < ω〉 ∈ G and β < λ
such that

p  ∀α(β < α < λ → ∃γ ≤ β (tα∼
does not dominate tγ∼

))

For every n ≥ `(p) let pn = 〈an, An, fn〉. Pick some

α ∈ λ \ (
⋃

n<ωan ∪
⋃

dom(fn) ∪ (β + 1)) .
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We extend p to a condition q so that q ≥∗ p and for every n ≥ `(q) = `(p),
α ∈ bn, where qn = 〈bn, Bn, gn〉. Then q will force that tα dominates every
tγ with γ < α. This leads to the contradiction. Thus, let γ < α and assume
that q belongs to the generic subset of P . Then either tγ ∈ V or it is a
new ω-sequence. If tγ ∈ V then it is dominated by tα by the usual density
arguments. If tγ is new, then for some r ≥ q in the generic set γ ∈ cn for
every n ≥ `(r), where rn = 〈cn, Cn, hn〉. But also α ∈ cn since cn ⊇ bn.
This implies Fn(α) > Fn(γ) (by 2.6(5)) and we are done. a

We now have the following conclusion.

2.23 Theorem. The following holds in V [G]:

(a) All cardinals and cofinalities are preserved.

(b) No new bounded subsets are added to κ; in particular GCH holds below
κ.

(c) There are λ new ω-sequences in
∏

n<ω κn. In particular 2κ ≥ λ.

2.24 Remark. The initial large cardinal assumptions used here are not
optimal. We refer to Mitchell’s chapter [41] on the Covering Lemma for
matters of the consistency strength. In the next section another extender-
based Prikry forcing requiring much weaker extenders will be introduced.

It is tempting to extend 2.22 and claim that 〈tα | α < λ and tα 6∈ V 〉
is a scale in

∏
n<ω κn, i.e. for every t ∈

∏
n<ω κn there is an α < λ such

tα 6∈ V and tα dominates t. Unfortunately this is not true in general. We
need to replace

∏
n<ω κn by the product of a sequence 〈λn | n < ω〉 related

to λ (basically the Prikry sequence for Unλ whenever it is defined). Assaf
Sharon [50] made a full analysis of possible cofinalities structure for a similar
forcing (the one that will be discussed in the next section). Let us now deal
with a special case that cannot be covered by such forcing. Let us assume
that for every n < ω, jn(κn) = λ, where jn : V → Mn ' Ult(V, En) is the
canonical embedding. In particular each κn is a superstrong cardinal. Then
the following holds.

2.25 Lemma. Let t ∈
∏

n<ω κn in V [G]. Then there is an α < λ such that
tα 6∈ V and for all but finitely many n < ω, tα(n) > t(n).

Proof. Let t∼ be a name of t. Pick p ∈ G forcing “ t∼ ∈
∏

n<ω κ̌n”. Define
for every n < ω a set dense open above p:

Dn = {q ∈ P | q ≥ p and there is a νn < κn such that q  t∼(n) = ν̌n} .

Apply 2.18 to each of Dn’s and construct a ≤∗-sequence 〈p(k) | k < ω〉
of direct extensions of p such that p(k) and Dk satisfy the conclusion of
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2.18. Let p∗ be a common direct extension of p(k)’s. Then for every
k, 1 ≤ k < ω, there is an n(k) < ω such that for every 〈ν0, . . . , νn(k)−1〉 ∈∏`(p)+n(k)−1

m=`(p) Am(p∗),

p∗y〈ν0, . . . , νn(k)−1〉  t∼(k − 1) = ξ̌(ν0, . . . , νn(k)−1)

for some ξ(ν0, . . . , νn(k)−1) < κk−1. Assume for simplicity of notation that
`(p) = 0. Let 1 ≤ k < ω. We can assume that ξ(ν0, . . . , νn(k)−1), defined
above, depends really only on ν0, . . . , νk−1, since its values are below κk−1

and ultrafilters over κm’s are κk-complete for m ≥ k. Also assume that for
every m > 0 Am(p∗) ∩ κm−1 = ∅. Now, we replace ξ by a bigger function η
depending only on νk−1. Thus set

η(νk−1) =
⋃
{ξ(ν0, . . . , νk−2, νk−1) | 〈ν0, . . . , νk−2〉 ∈

∏k−2
m=0 Am(p∗)}+νk−1.

Clearly, η(νk−1) < κk−1. So,

p∗_〈ν0, . . . , νk−1〉  t∼(k − 1) < η̌(νk−1)

for every k, 1 ≤ k < ω and every 〈ν0, . . . , νk−1〉 ∈
∏k−1

m=0 Am(p∗). For
every n < ω let ηn : An(p∗) → κn be the restriction of η to κn. Let αn =
max(an(p∗)). Consider jn(ηn)(αn) where jn : V → Mn is the embedding of
the extender En. Then jn(ηn)(αn) < jn(κn) = λ. Choose some α below λ
and above

⋃
n<ω jn(ηn)(αn)∪ (dom(fn(p∗))). Now extend p∗ to a condition

p∗∗ such that p∗∗ ≥∗ p∗ and for every n < ω α ∈ an(p∗∗). Then,

p∗∗  ∀n(tα
∼

(n) > ηn((tαn
∼

(n)) > t∼(n))

So we are done. a

The extender-based forcing described in this section can also be used with
much stronger extenders than those used here. Thus with minor changes
we can deal with En’s such that jn(κn) < λ but requiring jn(κn+1) > λ.
Once jn(κn+1) ≤ λ for infinitely many n’s then the arguments like one in
the proof of the Prikry condition seem to break down completely.

Another probably more exciting direction is to use shorter extenders in-
stead of long ones. Thus it turned out that for λ’s below κ+ω1 an extender of
length κ+n

n over κn for n < ω suffices. The basic idea is to replace in p ∈ P
the subset an(p) of λ by an order preserving function from λ to κ+n

n . Such
defined forcing fails to satisfy κ++-c.c. and actually will collapse λ to κ+.
But using increasing with n similarity of ultrafilters involved in the exten-
ders, it turns out that there is a subforcing satisfying the κ++-c.c. and still
producing λ new sequences in

∏
n<ω κn. This approach was implemented

in [17] for calculating the consistency strength of various instances of the
failure of the Singular Cardinal Hypothesis and, as well, for constructing
more complicated cardinal arithmetic configurations.
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3. Extender-Based Prikry Forcing

with a Single Extender

In this section we present a simplified version of the original extender-based
Prikry forcing of [19], Sec 1. Our aim is simultaneously to change the
cofinality of a regular cardinal to ℵ0 and blow up its power. Recall that the
Prikry forcing of 1.1 and 1.2 does the first part, i.e. change cofinality. As
in the previous section, we would like to use an extender instead of a single
ultrafilter in order to blow up the power.

Let κ, λ be regular cardinals with λ ≥ κ++. Assume that κ is Vκ+δ-
strong for a δ so that κ+δ = λ. Let E be an extender over κ witnessing
this and j : V −→ M ' Ult(V, E) with M ⊇ Vκ+δ be the corresponding
elementary embedding. Suppose also that there is a function fλ : κ → κ
such that j(fλ)(κ) = λ. Notice that such a function always exists for small
λ’s like λ = κ++, λ = κ+116, λ = κ+κ+1 etc., just take mappings α → α++,
α → α+116, α → α+α+1. In general, assuming j(κ) > λ, it is not hard to
force such fλ. The idea is to force for every inaccessible α ≤ κ a generic
function from α to α and then to extend the embedding specifying to κ the
value λ under the generic function from j(κ) to j(κ) in M .

If κ is a strong cardinal then for every λ > κ there is a (κ, λ)-extender
E and a function f : κ → κ so that jE(f)(κ) = λ, where jE : V → M '
Ult(V, E). The Solovay argument [56], originally used for a supercompact
κ, works without change for a strong cardinal κ: Let κ be a strong cardinal
and suppose that for some λ > κ for every (κ, λ)-extender E and every
function f : κ → κ we have jE(f)(κ) 6= λ. Let λ be the least such ordinal.

Pick a (κ, 22λ

)-extender E∗. Let j : V → M ' Ult(V, E∗). Then, in M , λ
will be the least such that for every (κ, λ)-extender E and every function
f : κ → κ, jE(f)(κ) 6= λ, since M ⊇ V22λ . Now define a function g : κ → κ
as follows: g(α) = the least β > α such that for every (α, β)-extender E and
every function f : α → α, jE(f)(α) 6= β, if there is such a β and let g(α) = 0
otherwise. Then, clearly, j(g)(κ) = λ. But then E∗�λ and g provide the
contradiction.

Suppose for simplicity that V satisfies GCH. Then we will have κ+

Vκ+δ ⊆
M . For every α < λ define a κ-complete ultrafilter Uα over κ by setting
X ∈ Uα iff α ∈ j(X). Notice that Uκ will be normal and each Uα with
α < κ will be trivial; we shall ignore such Uα and refer to Uκ as the least
one. As in Section 2, we define a partial ordering ≤E on λ:

α ≤E β iff α ≤ β and for some f ∈κ κ, j(f)(β) = α .

Again, clearly, α ≤E β implies that Uα ≤RK Uβ as witnessed by any
f ∈ κκ with j(f)(β) = α. In the previous section only the κ directedness
(more precisely, κn directedness for every n < ω) of the ordering was used.
Here we will need more — κ++-directedness. Thus, as in Section 2, fix an
enumeration 〈aα | α < κ〉 of [κ]<κ so that for every regular cardinal µ < κ,
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〈aα | α < µ〉 enumerates [µ]<µ and every element of [µ]<µ appears µ many
times in the enumeration. Let j(〈aα | α < κ〉) = 〈aα | α < j(κ)〉. Then,

〈aα | α < λ〉 will enumerate [λ]<λ ⊇ [λ]<κ++

. For each α < λ we consider
the following basic commutative diagram:

..............................
.............................

..............................
.............................

..............................
.............................

..............................
.............................

..............................
.............................

.
..............

................

....................................................................................................................................................................................................................................................................................................................................
..

.......
.......
................

V

j

iα

M

Nα

kα

where iα : V −→ Nα ' Ult(V, Uα) and kα([f ]Uα
) = j(f)(α).

3.1 Lemma. crit(kα) = (κ++)Nα .

Proof. It is enough to show that kα(κ) = κ, since kα((κ+)Nα) = κ+ and
kα((κ++)Nα) = κ++ by elementarity. But κNα ⊆ Nα. Hence (κ+)Nα = κ+.
By 2κ = κ+, (κ++)Nα < κ++. So (κ++)Nα is the first ordinal moved by kα.

In order to show that κ is fixed let us use the function fλ : κ → κ
representing λ in M . Thus by commutativity, kα(iα(fλ)) = j(fλ). Clearly,
iα(fλ) : iα(κ) → iα(κ) and iα(fλ)�κ = fλ. Hence

Nα � ∀τ < κ (iα(fλ)(τ) < κ) .

Using kα we obtain that

M � ∀τ < kα(κ) (j(fλ)(τ) < kα(κ)) .

But kα(κ) ≤ kα([id]Uα
) = α < λ. Hence,

M � ∀τ < kα(κ) (j(fλ)(τ) < λ) .

But kα(κ) ≥ κ and j(fλ)(κ) = λ. So, kα(κ) must be equal to κ and we are
done. a

The following is a consequence of the previous lemma.

3.2 Lemma. For every α with κ ≤ α < λ, α ≥E κ.

Proof. By 3.1, kα(κ) = κ. So, kα([g]Uα
) = κ for g : κ → κ representing κ in

Nα. Then g projects Uα on Uκ and j(g)(α) = kα([g]Uα
) = κ. a

We can now improve 2.1 to κ++-directedness.

3.3 Lemma. Let 〈αν | ν < κ+〉 be a sequence of ordinals below λ. Suppose
that α ∈ λ \ (

⋃
ν<κ+ αν + 1) codes {αν | ν < κ+}, i.e. aα = {αν | ν < κ+}.

Then α >E αν for every ν < κ+.
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Proof. Let ν < κ+. Consider the following commutative diagram:
......................................

...............
.............
...........
..........
..........
.........
.........
........
........
........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........
........
........
.........
.........

..........
..........

............
.............

......................
........................... ................................................................................................................................................................................................................................................................................................................................................

..........................
............

..............................
........
..................

...................
...................

...................
...................

...................
...................

...................
..................

...................
...................

...................
..................

...................
...................

...................
..................

.................

.......
.......
........................

V

j

iα

iαν

M

kα

Nα

Nαν

kαν

Then j(〈aβ | β < κ〉) = kα(iα(〈aβ | β < κ〉)). Let α∗ = [id]Uα
. Then

kα(α∗) = α. So, aα = kα(a∗
α∗), where a∗

α∗ = iα(〈aβ | β < κ〉)(α∗). But
aα = {αν′ | ν′ < κ+} and, by 3.1, kα(κ+) = κ+. So, a∗

α∗ = {α∗
ν′ | ν′ < κ+},

where kα(α∗
ν′) = αν′ . Now we can define an elementary embedding kανα :

Nαν
−→ Nα. Set

kανα([f ]Uαν
) = iα(f)(α∗

ν) .

Finally every function representing α∗
ν in Nα will be a projection of Uα onto

Uαν
and witness αν <E α. a

For β ≤E α < λ we fix a projection παβ : κ → κ defined as in 3.3. Let
παα = id. The following two lemmas were actually proved in the previous
section (2.3 and 2.4).

3.4 Lemma. Let γ < β ≤ α < λ. If α ≥E β and α ≥E γ, then {ν < κ |
παβ(ν) > παγ(ν)} ∈ Uα.

3.5 Lemma. Let α, β, γ < λ be so that α ≥E β ≥E γ. Then there is an
A ∈ Uα so that for every ν ∈ A

παγ(ν) = πβγ(παβ(ν)) .

Consider the following set:

X = {ν < κ | ∃ν∗ ≤ ν(ν∗ is inaccessible,

fλ�ν∗ : ν∗ −→ ν∗, and fλ(ν∗) > ν)} .

Clearly X ∈ Uα for every α < λ (ignoring α’s below κ). Also the function
g : X → κ defined by g(ν) = the maximal inaccessible ν∗ ≤ ν closed under
fλ and with fλ(ν∗) > ν, projects each Uα onto Uκ. Let us change each πακ

to g on X and for ν ∈ κ \ X let πακ(ν) = 0. Also change παβ ’s a little for
α, β > κ. Thus for ν ∈ κ \ X let παβ(ν) = 0. If ν ∈ X and παβ(ν) is below
πακ(ν) then change παβ(ν) to ν or any ordinal between πακ(ν) and ν. Note
that these changes are on a small set since κ\X 6∈ Uα for any α < λ. Hence
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the changed παβ ’s are still projections. The following summarizes the main
properties of the Uα’s and παβ ’s:

(1) 〈λ,≤E〉 is a κ++-directed partial ordering.

(2) 〈Uα | α < λ〉 is a Rudin-Keisler commutative sequence of κ-complete
ultrafilters over κ with projections 〈παβ | β ≤ α < λ, α ≥E β〉.

(3) For every α < λ παα is the identity on a fixed set X which belongs to
every Uβ for β < λ.

(4) (Commutativity) For every α, β, γ < λ such that α ≥E β ≥E γ, there
is a Y ∈ Uα so that for every ν ∈ Y

παγ(ν) = πβγ(παβ(ν)).

(5) For every α < β, γ < λ, if γ ≥E α, β then

{ν < κ | πγα(ν) < πγβ(ν)} ∈ Uγ .

(6) Uκ is a normal ultrafilter.

(7) κ ≤E α when κ ≤ α < λ.

(8) (Full commutativity at κ) For every α, β < λ and ν < κ, if α ≥E β
then πακ(ν) = πβκ(παβ(ν)).

(9) (Independence of the choice of projection to κ) For every α, β, κ ≤ α,
β < λ, and ν < κ

πακ(ν) = πβκ(ν).

(10) Each Uα is a P -point ultrafilter, i.e. for every f ∈ κκ, if f is not
constant mod Uα, then there is a Y ∈ Uα such that for every ν < κ
|Y ∩ f−1{ν}| < κ.

The last property just follows using the set X defined above and the nor-
mality of Uκ.

A system of ultrafilters and projections satisfying (0)-(9) was called in [19]
a nice system. Its existence is a bit weaker than the strongness assumption
used here. In what follows we will use only such a system in order to define
extender based Prikry forcing over κ.

Let us denote πακ(ν) by ν0, where κ ≤ α < λ and ν < κ. By a ◦-
increasing sequence of ordinals we mean a sequence 〈ν1, . . . , νn〉 of ordinals
below κ so that

ν0
1 < ν0

2 < · · · < ν0
n .

For every α < λ by X ∈ Uα we shall always mean that X ⊆ X , in particular
it will imply that for ν1, ν2 ∈ X if ν0

1 < ν0
2 then |{α ∈ X | α0 = ν0

1}| < ν0
2 .
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The following weak version of normality holds, since Uα is a P -point: if
Xi ∈ Uα for i < κ then also X = ∆∗

i<κXi = {ν | ∀i < ν0 (ν ∈ Xi)} ∈ Uα.
Let ν < κ and 〈ν1, . . . , νn〉 be a finite sequence of ordinals below κ. Then

ν is called permitted for 〈ν1, . . . , νn〉 if ν0 > max{ν0
i | 1 ≤ i ≤ n}.

We shall ignore Uα’s with α < κ and denote Uκ by U0.
Let us now define a forcing notion for adding λ ω-sequences to κ.

3.6 Definition. The set of forcing conditions P consists of all the elements
p of the form {〈γ, pγ〉 | γ ∈ g \ {max(g)} ∪ {〈max(g), pmax(g), T 〉}, where

(1) g ⊆ λ of cardinality ≤ κ which has a maximal element in ≤E-ordering
and 0 ∈ g. Further let us denote g by supp(p), max(g) by mc(p), T
by T p, and pmax(g) by pmc (mc for the maximal coordinate).

(2) for γ ∈ g pγ is a finite ◦-increasing sequence of ordinals < κ.

(3) T is a tree with a trunk pmc consisting of ◦-increasing sequences. All
the splittings in T are required to be on sets in Umc(p), i.e. for every
η ∈ T , if η ≥T pmc then the set

SucT (η) = {ν < κ | η_〈ν〉 ∈ T} ∈ Umc(p) .

Also require that for η1 ≥T η2 ≥T pmc

SucT (η1) ⊆ SucT (η2) .

(4) For every γ ∈ g, πmc(p),γ(max(pmc)) is not permitted for pγ .

(5) For every ν ∈ SucT (pmc)

|{γ ∈ g | ν is permitted for pγ}| ≤ ν0 .

(6) πmc(p),0 projects pmc onto p0 (so pmc and p0 are of the same length).

Let us give some intuitive motivation for the definition of forcing condi-
tions. We want to add a Prikry sequence for every Uα(α < λ). The finite
sequences pγ(γ ∈ supp(p)) are initial segments of such sequences. The sup-
port of p has two distinguished coordinates. The first is the 0-coordinate
of p and the second is its maximal coordinate. The 0-coordinate or more
precisely the Prikry sequence for the normal ultrafilter will be used further
in order to push the present construction to ℵω. Also condition (6) will be
used for this purpose. The maximal coordinate of p is responsible for ex-
tending the Prikry sequences for γ’s in the support of p. The tree T p is a set
of possible candidates for extending pmc and by using the projections map
πmc(p),γ for γ ∈ supp(p), T p becomes also the set of candidates for extend-
ing the pγ ’s. Instead of working with a tree, it is possible to replace it by a
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single set. The proof of the Prikry condition will be then a bit more com-
plicated. Condition (4) means that the information carried by max(pmc) is
impossible to project down. The reasons for such a condition are technical.
Condition (5) is desired to allow the use of the diagonal intersections.

In contrast to the main forcing of the previous section, we deal with
κ coordinates simultaneously (i.e. the support of the condition may have
cardinality κ). This causes difficulties since we cannot hope to have full
commutativity between κ many ultrafilters.

3.7 Definition. Let p, q ∈ P . We say that p extends q and denote this by
p ≥ q iff

(1) supp(p) ⊇ supp(q).

(2) For every γ ∈ supp(q), pγ is an end-extension of qγ .

(3) pmc(q) ∈ T q.

(4) For every γ ∈ supp(q),

pγ \ qγ = πmc(q),γ“((pmc(q) \ qmc(q))�(length(pmc) \ (i + 1)) ,

where i ∈ dom(pmc(q)) is the largest such that pmc(q)(i) is not permit-
ted for qγ .

(5) πmc(p),mc(q) projects T p
pmc into T q

qmc .

(6) For every γ ∈ supp(q) and ν ∈ SucT p(pmc), if ν is permitted for pγ ,
then

πmc(p),γ(ν) = πmc(q),γ(πmc(p),mc(q)(ν)) .

In clause (5) above the following notation is used: let T be a tree and
η ∈ T , then Tη consists of all finite sequences µ such that η_µ is in T .

Intuitively, we are allowing almost everything to be added on the new
coordinates and restrict ourselves to choosing extensions from the sets of
measure one on the old coordinates. Actually here we are really extending
only the maximal old coordinate and then we are using the projection map.
This idea goes back to [13] and further to Mitchell [44].

3.8 Definition. Let p, q ∈ P . We say that p is a direct (or Prikry) extension
of q and denote this by p ≥∗ q iff

(1) p ≥ q, and

(2) for every γ ∈ supp(q), pγ = qγ .
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Our strategy is to show that 〈P ,≤,≤∗〉 satisfies the Prikry condition, that
〈P ,≤∗〉 is κ-closed, and that 〈P ,≤〉 satisfies the κ++-c.c.

The Prikry condition together with κ closedness of 〈P ,≤∗〉 insure that no
new bounded subsets of κ are added. The κ++-c.c. takes care of cardinals
≥ κ++. Since κ will change its cofinality to ℵ0, an argument similar to 2.21
will be used to show that κ+ is preserved. Clause 3.7(4) of the system of
ultrafilters and projections insures that at least λ-many ω-sequences will be
added to κ.

3.9 Lemma. The relation ≤ is a partial order.

Proof. Let us check the transitivity of ≤. Suppose that r ≤ q and q ≤ p. Let
us show that r ≤ p. Conditions (1) and (2) of Definition 3.7 are obviously
satisfied. Let us check (3), i.e. let us show that pmc(r) ∈ T r. Since p ≥ q ≥ r,
mc(r) ∈ supp(q), qmc(r) ∈ T r and

pmc(r) \ qmc(r) = πmc(q),mc(r)“(p
mc(q) \ qmc(q)) .

Also pmc(q) ∈ T q. By (5) of 3.7 (for q and r) πmc(q),mc(r) projects T q
qmc into

a subtree of T r
qmc(r) . Hence pmc(r) ∈ T r and, so condition (3) is satisfied.

Let us check condition (4). Suppose that γ ∈ supp(r). We need to show
that pγ \ rγ = πmc(r),γ“(pmc(r) \ rmc(r)). In order to simplify the notation,

we are assuming here that every element of pmc(r) \ rmc(r) is permitted for
rγ . Since q ≥ r, qγ \ rγ = πmc(r),γ“(qmc(r) \ rmc(r)). So, we need to show

only that pγ \ qγ = πmc(r),γ“(pmc(r) \ qmc(r)). Since p ≥ q, pmc(q) ∈ T q and

pγ \ qγ = πmc(q),γ“(pmc(q) \ qmc(q)). Using condition (6) of 3.7 for q ≥ r and

the elements of pmc(q) \ qmc(q), we obtain the following

pγ \ qγ = πmc(q),γ“(pmc(q) \ qmc(q))

= πmc(r),γ“(πmc(q),mc(r)“(pmc(q) \ qmc(q)))

= πmc(r),γ“(pmc(r) \ qmc(r)) .

The last equality holds by condition (4) of 3.7 used for p and q.

Let us check condition (5), i.e. πmc(p),mc(r) projects T p
pmc into T r

pmc(r) .

Since p ≥ q, T p
pmc is projected by πmc(p),mc(q) into T q

qmc . Since q ≥ r,
πmc(q),mc(r) projects T q

qmc into T r
qmc(r) . Now, using condition (6) for p and

q with γ = mc(r), we obtain condition (5) for p and r.

Finally, let us check condition (6). Let γ ∈ supp(r), ν ∈ SucT p(pmc)
and suppose that ν is permitted for pγ . Using condition (5) for p and q,
we obtain that πmc(p),mc(q)(ν) ∈ SucT q (qmc). Recall that it was required
in Clause 3.6(3) that each splitting has a splitting below it in the tree.
Denote πmc(p),mc(q)(ν) by δ. By condition (6) for q and r, πmc(q),γ(δ) =
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πmc(r),γ(πmc(q),mc(r)(δ)). Using (6) for p and q, we obtain

πmc(p),γ(ν) = πmc(q),γ(πmc(p),mc(q)(ν))

= πmc(q),γ(δ)

= πmc(r),γ(πmc(q),mc(r)(δ)) .

Once more using (6) for p and q,

πmc(q),mc(r)(πmc(p),mc(q)(ν)) = πmc(p),mc(r)(ν) .

This completes the checking of (6) and also the proof of the lemma. a

The main point of the proof appears in the next lemma.

3.10 Lemma. Let q ∈ P and α < λ. Then there is a p ≥∗ q so that
α ∈ supp(p).

Proof. If α ≤E mc(q), then it is obvious. Thus, if α ∈ supp(q), then we
can take p = q. Otherwise add to q a pair 〈α, t〉 where t is any ◦-increasing
sequence so that max(qmc) is not permitted for t.

Now suppose that α �E mc(q). Pick some β < λ so that β ≥E α and
β ≥E mc(q). Without loss of generality we can assume that β = α. We
shall define p to be of the form

q′ ∪ {〈α, t, T 〉}

where q′ is constructed from q by removing T q from the triple
〈mc(q), qmc, T q〉, t is an ◦-increasing sequence which projects onto q0 by πα0

and the tree T will be defined below.
First consider the tree T0 which is the inverse image of T q

qmc by πα,mc(q),
with t added as the trunk. Then p0 = q′ ∪ {〈α, t, T0〉} is a condition in P
which is “almost” an extension and even a direct extension of q. The only
concern is that condition (6) of Definition 3.7 may not be satisfied by p0

and q. In order to repair this, let us shrink the tree T0 a little.
Denote SucT0(t) by A. For ν ∈ A set

Bν = {γ ∈ supp(q) | γ 6= mc(q) and ν is permitted for qγ} .

Then |Bν | ≤ ν0, since πα,mc(q)(ν) ∈ SucT q (qmc), ν0 = πα0(ν) =
πmc(q),0(παmc(q)(ν)), and q being in P satisfies condition (5) of Definition
3.6. Clearly, for ν, δ ∈ A, if ν0 = δ0 then Bν = Bδ , and if ν0 > δ0

then Bν ⊇ Bδ. Also, if ν ∈ A and ν0 is a limit point of {δ0 | δ ∈ A},
then Bν =

⋃
{Bδ | δ ∈ A and δ0 < ν0}. So the sequence 〈Bν | ν ∈ A〉

is increasing and continuous (according to the ν0’s). Obviously,
⋃
{Bν |

ν ∈ A} = supp(q) \ {mc(q)}. Let 〈ξi | i < κ〉 be an enumeration of
supp(q) \ {mc(q)} such that for every ν ∈ A

Bν ⊆ {ξi | i < ν0} .
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Now pick for every i ∈ A a set Ci ⊆ A, with Ci ∈ Uα so that for every
ν ∈ Ci παξi

(ν) = πmc(q),ξi
(πα,mc(q)(ν)). Let C = A_∆∗

i<κCi = {ν ∈ A |
∀i < ν0(ν ∈ Ci)}. Then C ∈ Uα.

Now define T to be the tree obtained from T0 by intersecting every level of
T0 with C. Let us show that condition (6) of Definition 3.7 is now satisfied.
Suppose γ ∈ supp(q). If γ = mc(q), then everything is trivial. Assume that
γ ∈ supp(q) \ {mc(q)}. Then for some i0 < κ γ = ξi0 . Suppose that some
ν ∈ C is permitted for qγ . Then ξi0 = γ ∈ Bν . Since Bν ⊆ {ξi | i < ν0},
i0 < ν0. Then ν ∈ Ci0 . Hence

παξi0
(ν) = πmc(q),ξi0

(πα,mc(q)(ν)) .

So condition (6) is satisfied by p. Hence, p ≥∗ q. a

3.11 Lemma. (a) 〈P ,≥〉 satisfies the κ++-c.c.

(b) 〈P ,≥∗〉 is κ-closed.

Proof of (a). Let {pα | α < κ++} ⊆ P . Without loss of generality, we can
assume their supports form a ∆-system and are contained in κ++. Also, we
can assume that there are s and 〈t, T 〉 so that for every α < κ++, pα�α = s
and 〈pmc

α , T pα〉 = 〈t, T 〉. Let us then show that pα and pβ are compatible
for every α, β < κ++.

Let α, β < κ++ be fixed. We would like simply to take the union pα ∪ pβ

and to show that this is a condition stronger than both pα and pβ. The
first problem is that pα ∪ pβ may not be in P , since supp(pα ∪ pβ) =
supp(pα) ∪ supp(pβ) may not have a maximal element. In order to fix this,
let us add say to pα some new coordinate δ so that δ ≥E mc(pα), mc(pβ).
Let p∗α be the extension of pα defined in the previous lemma by adding δ
as a new coordinate to pα. Then p∗α ∪ pβ ∈ P . But we do need a condition
stronger than both pα and pβ . The condition p∗α ∪ pβ is a good candidate
for it. The only concerns here are (5) and (6) of Definition 3.6. Actually,

(5) can be easily satisfied by intersecting T
p∗

α

(p∗
α)mc with π−1

δ,mc(pβ)“(T
pβ

pmc
β

). In

order to satisfy (6), we need to shrink T p∗
α more. The argument of the

previous lemma can be used for this.

Proof of (b). Let δ < κ and let 〈pi | i < δ〉 be an ≤∗-increasing sequence
of elements of P . Pick α < λ above {mc(pi) | i < δ}. Let p be the union
of pi’s with T pi removed. Set T =

⋂
i<δ π−1

α,mc(pi)
“T pi . Also remove all

τ ’s with τ0 ≤ δ from this tree. Let t be a ◦-increasing sequence so that
πα0“t = p0

0. Consider p ∪ {〈α, t, T 〉}. Clearly, it belongs to P . Now, as in
Lemma 3.9, shrink T to a tree T i so that p∪{〈α, t, T i〉}∗ ≥ pi, where i < δ.
Let T ∗ =

⋂
i<δ T i and consider r = p ∪ {〈α, t, T ∗〉}. Then r ≥∗ pi for every

i < δ. a
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3.12 Lemma. 〈P ,≤,≤∗〉 satisfies the Prikry condition, i.e. for every state-
ment σ of the forcing language, for every q ∈ P there exists p ≥∗ q deciding
σ.

Proof. Let σ be a statement and q ∈ P . In order to simplify the notation
we assume that q = ∅. The object in this proof is to reduce the problem
to that of Prikry forcing on some Uα, so the arguments of §1.1 can be
applied. In order to find a suitable ordinal α, which will be pmc, pick an
elementary submodel N of Vµ for µ sufficiently large to contain all the
relevant information of cardinality κ+ and closed under κ-sequences of its
elements. Pick α < λ above (in ≤E-ordering) all the elements of N ∩ λ.
Let T be a tree so that {〈α, ∅, T 〉} ∈ P . More precisely, we should write
{〈0, ∅〉}∪{〈α, ∅, T 〉}. But let us omit the least coordinate when the meaning
is clear. If there is a p ∈ N so that p ∪ {〈α, ∅, T ′〉} ∈ P and decides σ, for
some T ′ ⊆ T , then we are done. Suppose otherwise. Denote SucT (〈〉) by A.
We shall define by recursion sequences 〈pν | ν ∈ A〉 and 〈T ν | ν ∈ A〉.

Let ν = min(A). Consider {〈α, 〈ν〉, T〈ν〉〉}. If there is no p ∈ N and T ′ ⊆
T〈ν〉 such that p ∪ {〈α, 〈ν〉, T ′〉} is in P and decides σ, then set pν = ∅ and
T ν = T〈ν〉. Otherwise, pick some p and T ′ ⊆ T〈ν〉 so that p ∪ {〈α, 〈ν〉, T ′〉}
is in P and decides σ. Set pν = p and T ν = T ′.

Suppose now that pξ and T ξ are defined for every ξ < ν in A. We shall
define pν and T ν . But let us first define p′ν and p′′ν . Define p′′ν to be the
union of all pξ’s with ξ ∈ A ∩ ν. Let p′ν = {〈γ, p′γν 〉 | γ ∈ supp(p′′ν)}, where
for γ ∈ supp(p′′ν), p′γν = p′′ν

γ unless ν is permitted for p′′ν
γ and then p′γν =

p′′ν
γ_〈παγ(ν)〉. If there is no p ∈ N and T ′ so that q = p ∪ {〈α, 〈ν〉, T ′〉} ∈

P , q ≥∗ p′ν ∪ {〈α, 〈ν〉, T〈ν〉〉} and q ‖σ, then set pν = p′′ν and T ν = T〈ν〉.
Suppose otherwise. Let p, T ′ be witnessing this. Then set T ν = T ′ and
pν = p′′ν ∪ (p \ p′ν).

This completes the recursive definition. Set p =
⋃

ν∈A pν . For i < κ let

Ci =

{
A, if there is no δ ∈ A such that δ0 = i,⋂
{SucT δ (〈δ〉) | δ ∈ A and δ0 = i}, otherwise.

Note that Ci ∈ Uα since A ∈ Uα and this means by our agreement that for
ν1, ν2 ∈ A, if ν0

1 < ν0
2 then |{γ ∈ A | γ0 = ν0

1}| < ν0
2 . Set A∗ = A∩∆∗

i<κCi.
Then for every ν ∈ A∗ for every δ ∈ A if δ0 < ν0 then ν ∈ SucT δ (〈δ〉). Let
S be the tree obtained from T by first replacing T〈ν〉 by T ν for every ν ∈ A∗

and then intersecting all levels of it with A∗. a

Claim 3.12.1. p ∪ {〈α, ∅, S〉} belongs to P.

Proof. The only nontrivial point here is to show that p∪{〈α, ∅, S〉} satisfies
condition (5) of the definition of P . So let ν ∈ SucS(〈〉). By the definition
of S, SucS(〈〉) = A∗. Consider the set

Bν = {γ ∈ supp(p) | ν is permitted for pγ

∼
} .
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For every δ ∈ A let Bν,δ = {γ ∈ supp(pδ) | ν is permitted for pγ}. Then
Bν =

⋃
δ∈A Bν,δ . But, actually the definition of the sequence 〈pδ | δ ∈ A〉

implies that Bν =
⋃
{Bν,δ | δ ∈ A and δ0 < ν0}. The number of δ’s in

A with δ0 < ν0 is ≤ ν0, since for δ, ν ∈ A δ0 < ν0 implies δ < ν0, and it
means in particular, that for every ξ < ν0, |{δ ∈ A | δ0 = ξ}| < ν0. So it is
enough to show that for every δ ∈ A, δ0 < ν0 implies |Bν,δ |≤ ν0. Fix some
δ ∈ A such that δ0 < ν0. Since ν ∈ A∗ and δ0 < ν0 ν ∈ SucT δ(〈δ〉). But
pδ ∪ {〈α, 〈δ〉, T δ〉} ∈ P . So, by the definition of P , |Bν,δ | ≤ ν0. a

Then, clearly p ∪ {〈α, ∅, S〉} ≥∗ 〈α, ∅, T 〉}.
For δ ∈ SucS(〈〉) = A∗ let us denote by (p ∪ {〈α, ∅, S〉})δ the sequence

{〈γ, (pγ)παγ(δ)〉 | γ ∈ supp(p)} ∪ {〈α, 〈δ〉, S〈δ〉〉}, where

(pγ)παγ(δ) =

{
pγ_παγ(δ), if δ is permitted for pγ ,

pγ , otherwise.

Note that (p ∪ {〈α, ∅, S〉})δ is a condition and παγ(δ) is added only for γ’s
which appear in the support of some pξ with ξ0 < δ0 and hence, with ξ < δ.
Also (p ∪ {〈α, ∅, S〉})δ

∗≥ pδ ∪ {〈α, 〈δ〉, T δ〉}.

Claim 3.12.2. For every δ ∈ SucS(〈〉) if for some q, R ∈ N ,

(p ∪ {〈α, ∅, S〉})δ ≤∗ q ∪ {〈α, 〈δ〉, R〉} and q ∪ {〈α, 〈δ〉, R〉}  σ(resp. ¬σ),

then (p ∪ {〈α, ∅, S〉})δ  σ (resp. ¬σ).

Proof. Note that such a q ∪ {〈α, 〈δ〉, R〉} is a direct extension of
pδ ∪ {〈α, 〈δ〉, T δ〉}. By the choice of pδ and T δ, pδ ∪ {〈α, 〈δ〉, T δ〉} decides
σ. But (p ∪ {〈α, ∅, S〉})δ

∗≥ pδ ∪ {〈α, 〈δ〉, T δ〉}. a

Let us now shrink the first level of S in order to insure that for every δ1

and δ2 in the new first level

(p ∪ {〈α, ∅, S〉})δ1  σ (resp. ¬σ) iff (p ∪ {〈α, ∅, S〉})δ2  σ (resp. ¬σ)

Let us denote the shrunken tree again by S.

Claim 3.12.3. For every δ ∈ SucS(〈〉), (p ∪ {〈α, ∅〉})δ 6 ‖σ.

Proof. Suppose otherwise. Then every δ in SucS(〈〉) will force the same
truth value of σ. Suppose, for example, that σ is forced. Then p∪{〈α, ∅, S〉}
will force σ. Since every q ≥ p ∪ {〈α, ∅, S〉} is compatible with one of (p ∪
{〈α, ∅, S〉})δ for δ ∈ SucS(〈〉). This contradicts the initial assumption. a

Now, climbing up level by level in the fashion described above for the
first level, construct a direct extension p∗ ∪ {〈α, ∅, S∗〉} of p ∪ {〈α, ∅, S〉} so
that:
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(a) For every η ∈ S∗, if for some q, R ∈ N ,
(p∗ ∪ {α, ∅, S∗〉})η ≤∗ q ∪ {〈α, 〈η〉, R〉} and
q ∪ {〈α, 〈η〉, R〉}  σ (resp. ¬σ), then
(p∗ ∪ {〈α, ∅, S∗〉})η  σ (resp. ¬σ)

(b) If η1, η2 ∈ S∗ are of the same length, then

(p∗ ∪ {〈α, ∅, S∗〉})η1  σ (resp. ¬σ) iff

(p∗ ∪ {〈α, ∅, S∗〉})η2  σ (resp. ¬σ)

As in Claim 3.12.3, it is impossible to have any η ∈ S∗ so that (p∗ ∪
{〈α, ∅, S∗〉})η decides σ. Combining this with (a) we obtain the following.

Claim 3.12.4. For every q, R, t ∈ N , if q ∪ {〈α, t, R〉} ≥ p∗ ∪ {〈α, ∅, S∗〉}
then q ∪ {〈α, t, R〉} does not decide σ.

Proof. Just note that q ∪ {〈α, t, R〉} ≥∗ (p∗ ∪ {〈α, ∅, S〉})t and use (a). a

Pick some β ∈ N ∩λ which is ≤E above every element of supp(p∗). This
is possible since supp(p∗) ∈ N . Shrink S∗ to a tree S∗∗, as in Lemma 3.10
in order to insure the following:

For every ν ∈ SucS∗∗(〈〉) and γ ∈ supp(p∗),
if ν is permitted for (p∗)γ , then παγ(ν) = πβγ(παβ(ν)).

Let S∗∗∗ be the projection of S∗∗ to β via πα,β . Denote p∗ ∪ {〈β, ∅, S∗∗∗〉}
by p∗∗. Then p∗∗ ∈ N and p∗∗ ∪ {〈α, ∅, S∗∗〉} ≥∗ p∗ ∪ {〈α, ∅, S∗〉}. Since
N is an elementary submodel there is some q ∈ N with q ≥ p∗∗ deciding
σ. Let, for example, q  σ. Pick some t ∈ S∗∗ so that παβ“t = qβ . Such t
exists, since by Definition 3.7 qβ belongs to S∗∗∗ which is the image of S∗∗

under παβ . Note also that mc(q) <E α by the choice of N . Let R be a
from S∗∗

t by intersecting S∗∗
t with π−1

α,mc(q)(T
q) and shrinking, if necessary,

as in Lemma 3.10 in order to insure the equality of projections παγ and
πmc(q),γ ◦ πα,mc(q) for permitted γ’s in supp(q). Then q ∪ {〈α, t, R〉} will be
a condition stronger than q. Hence, it forces σ. But this contradicts Claim
3.12.4, since q ∪ {〈α, t, R〉} ≥ p∗ ∪ {〈α, ∅, S∗〉}. This contradiction finishes
the proof of Lemma 3.12. a

Let G be a generic subset of P . By Lemma 3.10, for every α < λ there
is a p ∈ G with α ∈ supp(p). Let us denote

⋃
{pα | p ∈ G} by Gα.

3.13 Lemma.

(a) For every α < λ, Gα is a Prikry sequence for Uα, i.e. an ω-sequence
such that for every X ∈ Uα it is almost contained in X.

(b) G0 is an ω-sequence unbounded in κ.
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(c) If α 6= β then Gα 6= Gβ, moreover α < β implies that Gβ dominates
Gα.

Proof. (a) follows from the definition of P . (b) is a trivial consequence of
(a). For (c) note that there is a γ < λ such that γ ≥E α, β. By Lemma 3.4
then {ν < κ | πγα(ν) < πγβ(ν)} ∈ Uγ . This together with the definition of
P implies that Gα is dominated by Gβ . a

3.14 Lemma. κ+ remains a cardinal in V [G].

Proof. Suppose otherwise. Then it changes its cofinality to some µ < κ.
Let g : µ → (κ+)V be unbounded in (κ+)V . Pick p ∈ G forcing this.
Suppose for simplicity that ∅  g

∼
: µ̌ → κ̌+ unbounded. Pick an elementary

submodel N as in Lemma 3.12. Let α < λ be above every element of
N \ λ. Pick a tree T so that {〈α, ∅, T 〉} ∈ P . As in Lemma 3.12, define
by induction an ≤∗ increasing sequence of direct extensions of {〈α, ∅, T 〉}
〈qi ∪ {〈α, ∅, Si〉} | i < µ〉 so that

(a) qi ∈ N .

(b) If for some q, R, t ∈ N and j < κ+, q ∪ {〈α, t, R〉} ≥ qi ∪ {〈α, ∅, Si〉}
and q ∪ {〈α, t, R〉}  g

∼
(̌i) = ǰ, then

(qi ∪ {〈α, ∅, Si〉})t  g
∼

(̌i) = ǰ .

Using Lemma 3.11, find S so that
⋃

i<µ qi∪{〈α, ∅, S〉} ≥∗ qi∪{〈α, ∅, Si〉}
for every i < µ. Denote

⋃
i<µ qi by p. As in Lemma 3.12, choose β ∈ N \ λ

above supp(p) and project S into β using παβ . Denote the projection by S∗.
Let p∗ = p∪{〈β, ∅, S∗〉}. Then p∗ ∈ N and p∗∪{〈α, ∅, S〉} ≥∗ p∪{〈α, ∅, S〉}.
Since N is an elementary submodel, for every i < µ there will be q ∈ N ,
q ≥ p∗ forcing a value for g

∼
(i). Then, using (b), as in Lemma 3.12 for some

t ∈ S (p ∪ {〈β, ∅, S〉})t will force the same value for g
∼

(i). But |S| = κ. So,
all such values are bounded in κ+ by some ordinal δ which is impossible,
since N ⊇ κ+ and N � (φ  (g

∼
: µ̌ → κ̌+ unbounded)). Contradiction. a

Now combining the lemmas together, we obtain the following.

3.15 Theorem. The following holds in V [G]:

(a) κ has cofinality ℵ0 and κℵ0 ≥ λ.

(b) All the cardinals are preserved.

(c) No new bounded subsets are added to κ.

If κ is a strong cardinal and λ > κ, then by the Solovay argument,
described in the beginning of the section, there is a function f : κ → κ and
a λ-strong embedding j : V → M so that j(f)(κ) = λ. Now, having f and
j we can use the extender-based Prikry forcing over κ, as it was defined
above. So, the following holds.
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3.16 Theorem. Let V be a model of GCH and let κ be a strong cardinal.
Then for every λ there exists a cardinal preserving set generic extension
V [G] of V so that

(a) No new bounded subsets are added to κ.

(b) κ changes its cofinality to ℵ0.

(c) 2κ ≥ λ.
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4. Down to ℵω

The forcings of Sections 2 and 3 produce models with κ of cofinality ℵ0,
GCH below κ, and 2κ arbitrarily large. But such κ are quite large. Thus, in
Section 2, it is a limit of measurables. In Section 3, it is a former measurable
and no cardinals below it were collapsed. We should now like to collapse
cardinals below κ and to move it to ℵω. Note that it is impossible to keep
2κ arbitrarily large once κ is ℵω, since by the celebrated results of S. Shelah
[53] 2ℵω < min(ℵ(2ℵ0 )+ ,ℵω4) provided that ℵω is a strong limit. Our goal
will be only to produce a finite gap between κ = ℵω and 2κ. It is possible to
generalize this to countable gaps and we refer for this matter to [19], Sec. 3.
The possibility of getting uncountable gaps between ℵω and 2ℵω is a major
open problem of cardinal arithmetic.

Let 2 ≤ m < ω. We construct a model satisfying “2ℵn = ℵn+1 for every
n < ω and 2ℵω = ℵω+m” based on the forcing of the previous section.

The basic ideas for moving down to a small cardinal like ℵω are due to M.
Magidor [35, 36]. H. Woodin, see [9] or [15] was able to replace the use of
supercompacts and huge cardinals by Magidor in [15] by strong cardinals.
We present here a simplified version of [20, Sec. 2]. The main simplifica-
tion is an elimination of M -generic sets used there. Another simplification,
suggested by Assaf Sharon, allows the removal of bounds b(p, γ) of [20],
Sec.2.

Fix a (κ, κ + m)-extender E over κ. Let j : V → M ' Ult(V, E),
crit(j) = κ, M ⊇ Vκ+m, be the canonical embedding. Assume GCH. Let
〈Uα | α < λ〉, 〈παβ | α, β < λ, β ≤E α〉 be as in the previous section with
λ = κ+m and fλ : κ → κ defined by fλ(ν) = ν+m.

We now define the set of forcing conditions.

4.1 Definition. The set of forcing conditions P consists of all elements p
of the form

{〈0, 〈τ1, . . . , τn〉, 〈f0, . . . , fn〉, F 〉} ∪

{〈γ, pγ〉 | γ ∈ g \ {max(g), 0}} ∪ {〈max(g), pmax(g), T 〉} ,

where

(1) {〈0, 〈τ1, . . . , τn〉〉}∪{〈γ, pγ〉 | γ ∈ g \{max(g), 0}}∪{〈max(g), pmax(g),
T 〉} is as in Definition 3.6. Let us use the notations introduced there.
So, we denote g by supp(p), max(g) by mc(p), T by T p and pmax(g)

by pmc. Also, let us denote further 〈τ1, . . . , τn〉 by p0, 〈f0, . . . , fn〉 by
fp, for i < n fi by fp

i , n by np and F by F p.

(2) f0 ∈ Col(ω, τ1), fi ∈ Col(τ+m+1
i , τi+1) for 0 < i < n, and fn ∈

Col(τ+m+1
n , κ).
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(3) F is a function on the projection of Tpmc by πmc(p),0 so that

F (〈ν0, . . . , νi−1〉) ∈ Col(ν+m+1
i−1 , κ) .

Let us denote by T p,0 the projection of T by πmc0. For every η ∈ T p,0
p0 let

Fη be defined by Fη(ν) = F (η_〈ν〉).
Intuitively, the forcing P is intended to turn κ to ℵω and simultaneously

blowing up its power to κ+m+1. The part of P , which is responsible for
blowing up the power of κ is the forcing used in Section 3. The function
f0, . . . , fn−1 provides partial information about collapsing already known
elements of the Prikry sequence for U0. F is a set of possible candidates for
collapsing between further, still unknown elements of this sequence. Note,
that for i < n we are starting the collapse with τ+m+1

i , i.e. we intend to pre-
serve all τi, τ

+
i , . . . , τ+m+1

i . The reason for this appears in the proof of the
κ++-c.c. and of the Prikry condition. It looks technical but what is hidden
behind is that collapsing indiscernibles (i.e. members of Prikry’s sequences
for Uα’s (α < λ)) causes collapsing generators, i.e. cardinals between κ and
λ. Shelah’s bounds on the power of ℵω, [53] suggest that there is no freedom
in using collapses below κ without effecting the structure of cardinals above
κ as well.

4.2 Definition. Let p, q ∈ P . We say that p extends q and denote this by
p ≥ q iff

(1) {〈0, p0〉} ∪ {〈γ, pγ〉 | γ ∈ supp(p) \ {mc(p), 0}} ∪ {〈mc(p), pmc, T p〉}
extends
{〈0, q0〉} ∪ {〈γ, qγ〉 | γ ∈ supp(q) \ {mc(q), 0}} ∪ {〈mc(q), qmc, T q〉}
in the sense of Definition 3.7.

(2) For every i < length(q0) = nq , fp
i ≥ f q

i .

(3) For every η ∈ T p,0
p0 , F p(η) ⊇ F q(η).

(4) For every i with nq ≤ i < np,

fp
i ⊇ F q((p0 \ q0)�i + 1) .

(5) min(p0 \ q0) > sup(ran(fnq )).

4.3 Definition. Let p, q ∈ P . We say that p is a direct extension of q and
denote this by p ≥∗ q iff

(1) p ≥ q, and

(2) for every γ ∈ supp(q), pγ = qγ .
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The following lemmas are analogous to the corresponding lemmas of the
previous section and they have analogous proofs.

4.4 Lemma. The relation ≤ is a partial order.

4.5 Lemma. Let q ∈ P and α < κ+m. Then there is a p ≥∗ q so that
α ∈ supp(p).

4.6 Lemma. 〈P ,≤〉 satisfies the κ++-c.c.

For the proof of the last lemma, note only that the number of possibilities
for the collapsing part 〈f0, , . . . , fn〉, F of a condition (in the form of 4.1)
is κ+. It is important that F depends only on the normal ultrafilter of
the extender. This way F can be viewed as an element of Col(κ, iκ(κ))
of Nκ ' Ult(V, Uκ), which (in V ) has cardinality κ+. Once allowing F to
depend on the extender itself, say on the maximal coordinate of a condition,
we will have the correspondence to Col(κ, j(κ)) of M ' Ult(V, E). This
set is of cardinality > κ+ (in V ) and using it, it is easy to produce κ++

incompatible conditions.
If p ∈ P and τ ∈ p0, then the set P/p of all extensions of p in P can be

split in the obvious fashion into two parts: one everything above τ and the
second everything below τ . Denote them by (P/p)≥τ and (P/p)<τ . Then
P/p can be viewed as (P/p)≥τ × (P/p)<τ . The part (P/p)<τ consists of
finitely many Levy collapses and the part (P/p)≥τ is similar to P but has
a slight advantage, namely the Levy collapses used in it are τ+m+1-closed.
Using this observation, one can show the following analog of Lemma 3.11(b):

4.7 Lemma. If p ∈ P and τ ∈ p0, then 〈(P/p)≥τ ,≤∗〉 is τ+m+1-closed.

Let us now turn to the Prikry condition.

4.8 Lemma. 〈P ,≤,≤∗〉 satisfies the Prikry condition.

Proof. Let σ be a statement of the forcing language and q ∈ P . We shall
find p ≥∗ q deciding σ. In order to simplify notation, assume that q = ∅.

Pick an elementary submodel N , α < κ+m and T as in Lemma 3.12.
Consider condition {〈α, ∅, T 〉}. More precisely, we should write {〈0, ∅, ∅, ∅〉∪
{〈α, ∅, T 〉}. But when the meaning is clear we shall omit {〈0, ∅, ∅, ∅〉}. If
for some p ∈ N {〈0, ∅, f, F 〉} ∪ p ∪ {〈α, ∅, T ′〉} ∈ P and decides σ, for some
T ′ ⊆ T, f and F , then we are done. Suppose otherwise.

As in the proof of 3.12 we first show that it is possible to deal with condi-
tions having fixed support. Once the support is fixed the proof will be more
or less like that of 1.20, with small complications due to the involvement of
collapses.

Claim 4.8.1. There are p, F and S in N so that

(a) {〈0, ∅, ∅, F 〉} ∪ p ∪ {〈α, ∅, S〉} ≥∗ {〈α, ∅, T 〉} .
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(b) If for some q ∈ N, q0, qα, F ′, T ′ and ~f ,

{〈0, q0, ~f, F ′〉} ∪ q ∪ {〈α, qα, T ′〉}

is a an extension of {〈0, ∅, ∅, F 〉} ∪ p ∪ {〈α, ∅, T ∗〉} and forces σ (or
¬σ) then also

{〈0, q0, (~f�length(q0))_F (q0), F 〉} ∪ (p)qα ∪ {〈α, qα, Sqα〉}

forces the same, where (p)qα is the set {〈γ, pγ_tγ〉 | γ ∈ supp(p)} with
tγ the maximal final segment of παγ“qα permitted for pγ.

Proof. Let A denote SucT (〈〉). Assume that A ⊆ κ and for ν1, ν2 ∈ A,
ν1 < ν2 implies ν0

1 < ν0
2 . Also assume that only the elements of A appear in

T , i.e. T ⊆ [A]<ω. Let {〈q0
i , ~fi, q

α
i 〉 | i < κ} be an enumeration of all triples

〈q0, ~f , qα〉 such that

(i) qα ∈ T .

(ii) q0 = πα0“qα.

(iii) If q0 = 〈τ0, . . . , τn−1〉 then dom(~f) = n and ~f(0) ∈ Col(ω, τ0), ~f(1) ∈

Col(τ+m+1
0 , τ1), . . . , ~f(n − 1) ∈ Col(τ+m+1

n−2 , τn−1). (Note that we do

not enumerate the “last” function from Col(τ+m+1
n−1 , κ).)

For every ν ∈ A, |{ρ ∈ A | ρ0 = ν0}| ≤ (ν0)+m. So, the number of such
triples satisfying q0(i) ≤ ν0 for every i ≤ length(q0) is at most (ν0)+m. We

can assume that {〈q0
i , ~fi, q

α
i 〉 | i < (ν0)+m} = {〈q0, ~f , qα〉 | 〈q0, ~f , qα〉 satisfy

the conditions (i), (ii), (iii) above and q0(i) ≤ ν0 for every i ≤ length(q0)}.
Define by recursion sequences 〈pi | i < κ〉, 〈T i | i < κ〉, 〈f i | i < κ〉 and

〈F i | i < κ〉. Set p0 = ∅, T 0 = T, f0 = ∅ and F 0 = ∅.
Suppose that pj , T j and F j are defined for every j < i. Define pi, T

i, f i

and F i.
Set first p′′i =

⋃
j<i pj . Let p′i = {〈γ, p′γ〉 | γ ∈ supp(p′′i )}, where for

γ ∈ supp(p′′i ), p′γi = p′′γi unless there is a ν ∈ qα
i permitted for p′′γi and then

p′γi = p′′γi
_ the maximal final segment of παγ“qα

i permitted for p′′γi .
We now wish to define a function F ′ on the set q0

i
_(Tqα

i
)0 =df {q0

i
_〈η〉 |

〈η〉 ∈ (Tqα
i
)0}. Let 〈η〉 ∈ (Tqα

i a)0 (it may be just the empty sequence).
Consider the set

C = {j < i | q0
i

_〈η〉 extends q0
j and q0

i
_〈η〉 ∈ q0

j
_(T j)0} .

For every j ∈ C we have

q0
j (length(q0

j ) − 1) ≤ q0
i

_〈η〉(length(q0
i

_〈η〉) − 1) .
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Then, by the properties of the enumeration {〈q0
ν , ~fν , qα

ν 〉 | ν < κ} we have
j < (q0

i
_〈η〉(length(q0

i
_〈η〉) − 1))+m. So

C ⊆ (q0
i

_〈η〉(length(q0
i

_〈η〉) − 1))+m .

Now define
F ′(q0

i
_〈η〉) =

⋃
j∈CF j(q0

i
_〈η〉) .

Then

F ′(q0
i

_〈η〉) ∈ Col(q0
i

_〈η〉(length(q0
i

_〈η〉) − 1)+m+1, κ) ,

since |C| ≤ q0
i

_〈η〉(length(q0
i

_〈η〉) − 1)+m. Define

ri = {〈q0
i , ~fi

_F ′(q0
i ), F ′〉} ∪ p′i ∪ {〈α, qα

i , Tqα
i
〉} .

If ri /∈ P or it belongs to P and there is no p ∈ N, T ′, g and F so that
{〈0, q0

i ,
~fi

_g, F 〉} ∪ p ∪ {〈α, qα
i , T ′〉} ∈ P extends ri and decides σ, then set

pi = p′′i , T i = Tqα
i
, f i = F ′(q0

i ) and F i = F ′. Otherwise, pick some p, T ′, g

and F witnessing this. Then define T i = T ′, F i = F, f i = g, F i(q0
i ) = f i.

Set pi = p′′i ∪ p∗, where p∗ = p \ p′i.
This completes the recursive definition. Set p =

⋃
i<κ pi. Now define a

subtree S of T by putting together all the T i’s for i < κ. The definition is
level by level. Thus, if S is defined up to level n and t sits in S on this level,
then set

SucS(t) = {ν ∈ A | ν0 > max(t), and for every i < ν0,

ν ∈ SucT i(〈〉) and ν ∈ SucT i(t) when t ∈ T i} .

So SucS(t) ∈ Uα.
Let us now put together all the F i’s. Define a function F on a tree (S)0.
Thus let η ∈ S0. Consider the set C = {j < κ | q0

j ⊆ η ∈ q0
j

_(T j)0}. Let

` = length(η)−1. Then for each j ∈ C q0
j (length(q0

j )−1) ≤ η(`). So, by the

choice of the enumeration {〈q0
ν , ~fν , qα

ν 〉 | ν < κ} we have j < η(`)+m. Hence
C ⊆ η(`)+m. Define F (η) =

⋃
j∈C F j(η). Then F (η) ∈ Col(η(`)+m+1, κ).

Subclaim 4.8.2. {〈0, ∅, ∅, F 〉} ∪ p ∪ {〈α, ∅, S〉} ∈ P.

Proof. The only problem is to show that for every ν ∈ SucS(〈〉),

|{γ ∈ supp(p) | ν is permitted for pγ}| ≤ ν0 .

Thus let ν ∈ SucS(〈〉) and i < κ. If 〈q0
i , ~fi, q

α
i 〉 satisfies max(q0

i ) < ν0,
then i < max(q0

i )+m < ν0. Hence for every i ≥ ν0, ν is not permitted
for q0

i . So after the stage ν0 we did not add any new coordinate γ with
ν permitted for (pi)

γ . This means that {γ ∈ supp(p) | ν is permitted for
pγ} =

⋃
i<ν0{γ ∈ supp(pi) | ν is permitted for pγ} and we are done. a
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Denote {〈0, ∅, ∅, F 〉} ∪ p ∪ {〈α, ∅, S〉} by p∗. We now show that p∗ is as
desired. Clearly, p∗ ≥∗ {〈α, ∅, T 〉}. Suppose that for some q ∈ N , q0, qα, G

R and ~f

{〈0, q0, ~f, G〉} ∪ q ∪ {〈α, qα, R〉} ≥ p∗

and

{〈0, q0, ~f , G〉} ∪ q ∪ {〈α, qα, R〉}  σ (or ¬σ)

Let q0 = 〈τ1, . . . , τn〉 and ~f = 〈f0, . . . , fn〉. Obviously, n > 0 since
otherwise we will have a direct extension of p∗ (and hence of {〈α, ∅, T 〉})
deciding σ contrary to the initial assumption. Find i < τ+m

n such that

〈q0, 〈f0, . . . , fn−1〉, qα〉 = 〈q0
i , ~fi, q

α
i 〉. Consider the condition

ri = {〈q0
i , ~fi

_F ′(q0
i ), F ′〉} ∪ p′i ∪ {〈α, qα

i , Tqα
i
〉} ,

defined at stage i of the construction. We have

{〈0, q0, ~f, G〉} ∪ q ∪ {〈α, qα, R〉} ≥∗ ri ,

since R ⊆ Sqα ⊆ Tqα , F ′(η) ⊆ F (η) for η’s from the common domain, so
that in particular F ′(q0

i ) ⊆ F (q0
i ) ⊆ fn. But then

{〈0, q0
i ,

~fi
_f i, F i〉} ∪ (pi)qα

i
∪ {〈α, qα

i , T i
qα

i
〉}  σ (or ¬σ)

by the choice of f i, F i, T i and pi at the stage i of the construction. Hence
also

{〈0, q0, 〈f0, . . . , fn−1, F (q0)〉, F 〉} ∪ (p)qα ∪ {〈α, qα, Sqα〉}

forces the same. This completes the proof Claim 4.8.1. a

Fix p∗ = {〈0, ∅, ∅, F 〉} ∪ p ∪ {〈α, ∅, S〉} satisfying the conclusion of 4.8.1.

As in Lemma 3.12, it is possible to show that the assumption “q ∈ N” is
not really restrictive. Briefly, if there is some q outside of N which is used
to decide σ, then there exists one also inside N . So the following claim will
provide the desired contradiction.

Claim 4.8.3. There is a

p∗∗ = {〈0, ∅, ∅, F �T ∗〉} ∪ p ∪ {〈α, ∅, T ∗〉} ≥∗ p∗

such that the following holds:

(∗) There are no q ∈ N, q0, qα, ~f , F ′ and T ′ such that

p∗∗ ≤ {〈0, q0, ~f , F ′〉} ∪ q ∪ {〈α, qα, T ′〉} ‖σ .
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Proof. We shall construct by recursion a ≤∗-increasing sequence 〈p(`) |
` ≤ ω〉 of direct extensions of p∗ satisfying for every ` ≤ ω the following
condition:

(∗)` There are no q ∈ N, q0, qα, ~f, F ′ and T ′ such that length(q0) ≤ ` and

p(`) ≤ {〈0, q0, ~f, F ′〉} ∪ q ∪ {〈α, qα, T ′〉} ‖σ .

Clearly, then p(ω) will be as desired.
Set p(0) = p∗. Define p(1) to be a condition of the form {〈0, ∅, ∅, F �T1〉}∪

p ∪ {〈α, ∅, T1〉} with T1 defined below. Consider the three sets

Xi = {ν ∈ SucS(〈〉) | ∃fν
0 ∈ Col(ω, ν0)

({〈0, 〈ν0〉, fν
0

_F (〈ν0〉), F 〉} ∪ p〈ν〉 ∪ {〈α, 〈ν〉, S〈ν〉〉} i σ}) ,

where i < 2, 0σ = σ and 1σ = ¬σ, and

X2 = SucS(〈〉) \ (X0 ∪ X1) .

There is an i < 3 such that Xi ∈ Uα. Let T ′
1 be the tree obtained from S by

intersecting all its levels with Xi. Let r = {〈0, ∅, ∅, F �T ′
1〉}∪p∪{〈α, ∅, T ′

1〉}.

If there is no q ∈ N, ~f, ν, F ′ and T ′ such that

r ≤ {〈0, 〈ν0〉, ~f, F ′〉} ∪ q ∪ {〈α, 〈ν〉, T ′〉} ‖σ ,

then set T1 = T ′
1 and p(1) = r. We claim that this is the only possible case.

Otherwise, pick q, ~f = 〈f0, f1〉, ν, F ′ and T ′ witnessing this and, say, forcing
σ. By the previous claim, then

{〈0, 〈ν0〉, f0
_F (ν0), F 〉} ∪ p〈ν〉 ∪ {〈α, 〈ν〉, (T ′

1)〈ν〉〉}  σ .

By the choice of T ′
1, then X0 ∈ Uα. Hence, for every ν ∈ SucT1(〈〉) there

is an fν
0 ∈ Col(ω, ν0) such that

{〈0, 〈ν0〉, fν
0

_F (〈ν0〉), F 〉 ∪ p〈ν〉 ∪ {〈α, 〈ν〉, (T ′
1)〈ν〉〉}  σ .

Note that the function taking ν0 to fν
0 is actually a regressive function

on (X0)
0. Find Y ∈ Uα and f∗ ∈ Col(ω, κ) such that for every ν ∈ Y ,

fν
0 = f∗. Let T1 be a tree obtained from T ′

1 by shrinking all its levels to Y .
Set F1 = F �T1. Finally, let

p(1) = {〈0, ∅, f∗, F1〉} ∪ p ∪ {〈α, ∅, T1〉} .

By the construction, p∗ ≤∗ p(1)  σ, which contradicts the assumption that
it is impossible to decide σ by direct extensions of p∗.

Let us define p(2) = 〈0, ∅, ∅, F �T2〉 ∪ p ∪ {〈α, ∅, T2〉} now. Fix ν ∈
SucT 1(〈〉). Let {〈fi, νi〉 | 1 ≤ i < (ν0)+m} be the enumeration of all
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pairs 〈f, ρ〉 such that ρ ∈ SucT1(〈〉), ρ
0 = ν0 and f ∈ Col(ω, ν0). We

would first like to define T2〈ρ〉 for every ρ ∈ SucT1(〈〉) with ρ0 = ν0. In
order to do this define by recursion on i < (ν0)+m sets Si as follows: for
i = 0 let S0 = (T1)〈ν〉. Suppose that Sj is defined for every j < i. Set
S = (

⋂
j<i Sj) ∩ (T1)〈νi〉. Consider a condition

r = {〈0, 〈ν0〉, fi, F (〈ν0〉), F �S〉} ∪ (p)〈νi〉 ∪ {〈α, 〈νi〉, S〉} .

Clearly, r ≥ p(1). By the choice of p(1), neither r or its direct extensions
decide σ. Then, the construction of p(1) from p(0) applied to r (instead of
p(0)) will produce

ri = {〈0, 〈ν0〉, fi, F (〈ν0〉), F �Si〉} ∪ (p)νi
∪ {〈α, 〈νi〉, Si〉} ≥∗ r

satisfying the following: There are no q ∈ N, ρ, g1, g2, F
′, S′ such that

ri ≤ {〈0, 〈ν0, ρ0〉, 〈fi, g1, g2〉, F
′〉} ∪ (p)〈νi,ρ〉 ∪ {〈α, 〈νi, ρ〉, S

′〉} ‖σ .

Now let (T2)〈ν0〉 =
⋂

j<(ν0)+m Sj . Define T2 to be the tree obtained from

T1 by replacing (T1)〈ν〉 by (T2)〈ν0〉 for each ν ∈ SucT1(〈〉). Set p(2) =
{〈0, ∅, ∅, F �T2〉} ∪ p ∪ {〈α, ∅, T2〉}. It is easy to see that p(2) satisfies (∗)2.

We continue in the same fashion and define p(n) = {〈0, ∅, ∅, F �Tn〉} ∪
p ∪ {〈α, ∅, Tn〉} satisfying (∗)n for every n, 2 ≤ n < ω. Finally let Tω =⋂

n<ω Tn. Set p(ω) = {〈0, ∅, ∅, F �Tω〉∪p∪{〈α, ∅, Tω}. Then p(ω) will satisfy
(∗)n for every n < ω and hence (*). a

This completes the proof of 4.8. a

Using 4.8 as a replacement for 3.12, the arguments of 3.14 show the
following:

4.9 Lemma. κ+ remains a cardinal in V P .

Lemma 3.13 transfers directly to the present forcing notion. Thus for G a
generic subset of P , α < κ+m define as in Section 3, Gα to be

⋃
{pα | p ∈ G}.

Let G0 = 〈κ0, κ1, . . . , κn, . . .〉.

4.10 Lemma. (a) For every α < κ+m, Gα is a Prikry sequence for Uα.

(b) G0 is an ω-sequence unbounded in κ.

(c) If α 6= β are then Gα 6= Gβ.

Let α < κ+m and Gα = 〈ν0, ν1, . . . , νn, . . .〉. An easy density argument
provides n(α) < ω such that either

(i) for all but finitely many n’s, ν0
n+n(α) = κn, or
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(ii) for all but finitely many n’s, ν0
n = κn+n(α).

Transform Gα into a sequence G′α = 〈ν′
0, ν

′
1, . . . , ν

′
n, . . .〉 defined as fol-

lows:

ν′
n =





νn+n(α), if (a) holds,

νn−n(α), if (b) holds and n ≥ n(α), and

κn, if (b) holds and n < n(α) .

Then, for every n < ω, (ν ′
n)0 = κn.

Assaf Sharon [50] has shown that 〈G′α | α < κ+m〉 is a scale in∏
n<ω κ+m

n , i.e. every member of
∏

n<ω κ+m
n is dominated by one of G′α’s

and α < β implies that G′β dominates G′α.

The next lemma is obvious.

4.11 Lemma. If ℵ0 < τ < κ and τ remains a cardinal in V [G], then for
some n and for some m′ ≤ m τ = κ+m′+1

n .

Implementing Col(ν, ν+)’s also, Sharon [50] was able to collapse each κ+
n

as well. Thus in his model κ+m′+1
n for 1 ≤ m′ ≤ m are the only uncountable

cardinals below κ. Notice that 〈κ+
n | n < ω〉 and 〈κ+m+1

n | n < ω〉 are Prikry
sequences for Uκ+ and Uκ+m+1 and so correspond to κ+ and κ+m+1 of the
ultrapower M by (κ, κ+m)-extender E. So, in V , cf((κ+m+1)M ) = κ+. Also
〈κn+1 | n < ω〉 may be viewed as a sequence corresponding to j(κ) which
again has cofinality κ+. Hence, the collapses involved collapse between
members of the same cofinality.

Now combining all the lemmas, we obtain the following.

4.12 Theorem. In a generic extension V [G], 2ℵn = ℵn+1 for every n < ω
and 2ℵω = ℵω+m.
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5. Forcing Uncountable Cofinalities

In the previous sections we dealt with a singular κ of cofinality ℵ0 or changed
the cofinality of a regular κ to ℵ0. Here we would like to deal with forc-
ings changing cofinality to an uncountable value. The first such forcing
was introduced by M. Magidor [37]. It changed the cofinality of a regular
κ to any prescribed regular value δ below κ. The Magidor forcing adds a
closed unbounded in κ sequence of order type δ instead of an ω-sequence
added by the Prikry forcing in 1.1. The initial assumption used for this was
stronger than just measurability. A measurable cardinal κ of the Mitchell
order δ, i.e. o(κ) = δ, was used. Later W. Mitchell [45] showed that this
assumption is optimal. L. Radin [48] defined a forcing of the same flavor
which not only could change the cofinality of κ to δ < κ by shooting a closed
unbounded δ-sequence, but also adding a closed unbounded κ-sequence pre-
serving regularity and even measurability of κ. It is not a big deal to add
a closed unbounded subset to a regular κ preserving its regularity and also
measurability. But what is special about the Radin club is that it consists
of cardinals which were regular in the ground model and this way combines
together a variety of ways of changing cofinalities. This feature allows re-
sults of global character in the cardinal arithmetic. Thus, shortly after the
discovery of the Radin forcing, M. Foreman and H. Woodin [12] constructed
a model satisfying 2τ > τ+ for every τ and Woodin produced a model with
2τ = τ++ for every τ . Later J. Cummings [9] constructed a model with
2τ = τ+ for every regular τ and 2τ = τ++ for every singular cardinal τ .
Recently, C. Merimovich [40], [39] obtained additional results of this type
introducing extender based Radin forcing.

5.1. Radin Forcing

Here we will give the basics of Radin forcing. A comprehensive account
on the matter containing various beautiful results of Woodin using Radin
forcing should appear in the book by J. Cummings and H. Woodin [10].
Originally Radin [48] and then Mitchell [42] defined this forcing axiomati-
cally. We will follow a more concrete approach due to Woodin.

Let j : V → M be an elementary embedding of V into transitive inner
model M , with critical point κ. Define a normal ultrafilter U(0) over κ:

X ∈ U(0) iff κ ∈ j(X) .

If U(0) ∈ M , then we define a κ-complete ultrafilter U(1), only not over κ
but over Vκ:

X ∈ U(1) iff 〈κ, U(0)〉 ∈ j(X) .

Such defined U(1) concentrates on pairs 〈ν, F 〉 so that ν is a measurable
cardinal below κ and F is a normal ultrafilter over ν.
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If U(1) ∈ M , then we can continue and define a κ-complete ultrafilter
U(2) over Vκ:

X ∈ U(2) iff 〈κ, U(0), U(1)〉 ∈ j(X) .

Continue by recursion and define a sequence

~U = 〈κ, U(0), U(1), . . . , U(α), . . . | α < length(~U)〉 ,

where each U(α) will be a κ-complete ultrafilter over Vκ:

X ∈ U(α) iff ~U�α = 〈κ, U(0), U(1), . . . , U(β) · · · | β < α〉 ∈ j(X) ,

and length(~U) will be the least α with ~U�α 6∈ M . For example, if M ⊇

P(P(κ)), then length(~U) will be at least (2κ)+, as we will see below. Let

us call ~U and ~U�α (0 < α < length(~U)) j-sequences of ultrafilters.

Fix some α∗ with 0 < α∗ ≤ length(~U). Let ~V = ~U�α∗. We want to

define Radin forcing with the ultrafilter sequence ~V . Denote it by R~V
. As

usual, it will have two orders ≤ and ≤∗.
Let us deal first with α∗ = 1 and α∗ = 2. Thus, for α∗ = 1, ~V = 〈κ, U(0)〉.

Let 〈R~V
,≤,≤∗〉 be the usual Prikry forcing with U(0) of 1.1, only instead

of writing 〈t, A〉 (where t is an increasing finite sequence and A ∈ U(0)) we
shall write 〈t, 〈κ, U(0)〉, A〉.

Now let α∗ = 2. Then ~V = 〈κ, U(0), U(1)〉. We would like to incorporate
both U(0) and U(1) in the process generating the generic cofinal sequence.
Thus instead of A ∈ U(0) in the previous case we allow two sets A0 ∈ U(0)
and A1 ∈ U(1), or equivalently, a set in U(0) ∩ U(1). Notice, that we can
separate U(0) and U(1) since U(0) concentrates on ordinals and U(1) on
pairs 〈ν, F 〉 with F a normal ultrafilter over ν. An initial condition in R~V

will have a form
p = 〈〈κ, U(0), U(1)〉, A〉

with A ∈ U(0) ∩ U(1) and require also that each a ∈ A is either an ordinal
or a pair consisting of a measurable cardinal and a normal ultrafilter over
it. In order to extend p pick a ∈ A and B ⊆ A, with B ∈ U(0) ∩ U(1) such
that the rank of each member of B is above rank(a) + 1. If a is an ordinal
then just add it. We will obtain a one-step extension of p

〈a, 〈〈κ, U(0), U(1)〉, B〉〉 .

If a = 〈ν, F 〉, then consider A ∩ ν. a can be added to p only if this set is in
F . Notice that the set XA = {〈ν′, F ′〉 | A∩ν′ ∈ F ′} ∈ U(1) since A∩κ ∈ U0

and so in M , 〈κ, U0〉 ∈ j(XA). If A∩ ν ∈ F , then let Bν ∈ F be a subset of
A ∩ ν. The following will be one-step extension of p:

〈〈〈ν, F 〉, Bν〉, 〈〈κ, U(0), U(1)〉, B〉〉
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Consider a one-step extension 〈d, 〈〈κ, U(0), U(1)〉, B〉〉. If d is an ordinal
then repeat the recipe of one-step extension described above. Suppose that
d = 〈〈ν, F 〉, Bν〉. We now have two alternatives. The first, just as at step
one, is to add an ordinal or a pair but between ν and κ. The second is
to add an element of Bν . Thus 〈ν, F 〉 will be responsible for producing a
Prikry sequence for F . This way, generically a sequence of the type ω2 will
be produced.

We now turn to the general case and give a formal definition of R~V
the

Radin forcing with the sequence of ultrafilters ~V . First let us introduce some
notation. Thus, for a sequence ~F = 〈F (0), . . . , F (τ), . . . | τ < length( ~F )〉 let⋂ ~F =

⋂
{F (τ) | τ < length( ~F )}. For an ordinal d = ν or pair d = 〈ν, ~F 〉 or

a triple d = 〈ν, ~F , B〉 let us denote ν by κ(d). For a triple d = 〈ν, ~F , B〉 by

d ∈ A we shall mean that the two first coordinates of d, i.e. 〈ν, ~F 〉 belong
to A.

The main idea behind this forcing is to use members of finite sequences
(that it produces) to give rise to separate blocks that are themselves Radin
forcings. In order to realize this idea let us first shrink a bit possibilities of
choosing these finite sequences. Let ~F be a sequence of ultrafilters over ν.
We would like to use only ~F ’s which are j-sequences of ultrafilters for some
j : V → M . Also, we like to have a set B ∈ ∩ ~F such that each member d
of it is a j-sequence for some j with critical point κ(d).

To achieve this let us define by recursion classes of sequences:

A(0) = {~F | ~F is a j-sequence of ultrafilters for some j : V → M}

A(n+1) = {~F ∈ A(n) | ∀α 0 < α < length(~F ) (A(n) ∩ V
κ(~F ) ∈ F (α))}

A =
⋂

n<ωA(n) .

The main feature of A is that if ~F ∈ A then, for 0 < α < length( ~F ), F (α)
concentrates on A ∩ V

κ(~F ), since then A(n) ∩ V
κ(~F ) ∈ F (α) for every n and

hence by countable completeness of F (α), also A ∩ V
κ(~F ) ∈ F (α).

Note that each measurable cardinal is in A. But in the presence of
stronger large cardinals, A turns to be much wider. We will need the fol-
lowing statement proved by Cummings and Woodin [10]:

5.1 Lemma. Suppose that E be a (κ, λ)-extender and j : V → M '
Ult(V, E) the corresponding elementary embedding, so that M ⊇ Vκ+2 and
κM ⊆ M . Let ~U be the j-sequence of ultrafilters of the maximal length.
Then

(a) length(~U) ≥ (2κ)+.

(b) For every α < (2κ)+, ~U�α ∈ A.
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Proof. Note that αVκ+2 ⊆ M for every α < (2κ)+. Hence ~U�α ∈ M for
every such α.

Let us first show that for every α < (2κ)+, ~U�α ∈ A(1). Equivalently, for
every β, 0 < β < (2κ)+, we need to show that A(0) ∩ Vκ ∈ U(β). By the

definition ~U , this means that in M , ~U�β ∈ j(A0). So we need to find in M

an embedding constructing ~U�β. Let E′ be the extender E�[β]<ω. Then
E′ ∈ M , since βVκ+2 ⊆ M . Consider the following commutative diagram:

V M

M ′ ' Ult(V, E ′)

j ′

i
N ' Ult(M, E ′)

j

k

Now, it is not hard to see that i = j ′�M , since κM ⊆ M and E′ is an
extender over κ. In particular, i(κ) = j ′(κ). Since κVκ+2 ∩M = κVκ+2 ∩ V ,
we have Vj′(κ)+2 ∩N = Vj′(κ)+2 ∩M ′. In addition, β ⊆ ran(k), so crit(k) ≥

max(β, κ+). Let ~U∗ be the i-sequence of ultrafilters constructed in M .
We show by induction that U∗(γ) = U(γ) for every γ < β. First note
that k(U) = U for every ultrafilter U over κ. Thus crit(k) > κ implies
that U = k“U . Also, clearly, k“U ⊆ k(U). Finally, using Vκ+1 ∩ M ′ =
Vκ+1 ∩ M = Vκ+1 and maximality of U as a filter we have U = k(U).

Suppose now that γ < β and we have already shown ~U∗�γ = ~U�γ. Let
X ⊆ Vκ. Then X ∈ U∗(γ) iff ~U∗�γ ∈ i(X) iff ~U�γ ∈ i(X) iff ~U�γ ∈ j′(X) iff

k(~U�γ) ∈ j(X) (by elementarity of k and since ~U�γ ∈ M ′) iff ~U�γ ∈ j(X)
iff X ∈ U(γ) (since k(γ) = γ and k(U(δ)) = U(δ) for every δ < γ).

This concludes the proof of ~U�α ∈ A(1), for α < (2κ)+. Let us show that
~U�α ∈ A(n) for every n, 2 ≤ n < ω and α < (2κ)+. First, for n = 2 we have

~U�α ∈ A(2) iff ∀β < α A(1) ∩ Vκ ∈ ~U�β

iff ∀β < α ~U�β ∈ j(A(1))

iff ∀β < α∀γ < β j(A(0)) ∩ Vκ ∈ U(γ) .

It is enough to show that j(A(0))∩ Vκ = A(0) ∩ Vκ, since we already proved

that A(0) ∩ Vκ ∈ U(γ) for every γ < (2κ)+. Let ~F ∈ Vκ be an i-sequence
of ultrafilters for an embedding of either V or M with critical point ν =
κ(~F ) < κ. The length of ~F is below κ, and κ is an inaccessible, so it is
easy to find an extender inside Vκ such that the elementary embedding i′ of
it agrees with i long enough and constructs ~F . Hence i′ will witness both
~F ∈ j(A(0)) and ~F ∈ A(0). The same argument works for any n ≥ 2. Thus
we will have

~U�α ∈ A(n) iff ∀γ(γ + n ≤ α → jn−1(A(0)) ∩ Vκ ∈ U(γ)) ,



5. Forcing Uncountable Cofinalities 59

where jn−1 is an application of j n − 1 many times, or equivalently the
embedding j0n−1 : V → Mn−1 of V into the n−1 times iterated ultrapower
Mn−1 of V by E. Again, as above jn−1(A(0)) ∩ Vκ = A(0) ∩ Vκ. a

Note that using stronger j’s it is possible to show that longer ultrafilter
sequences are in A.

We are now ready to define Radin forcing. Let ~V = 〈U(α) | α <

length(~V )〉 be a j-sequence of ultrafilters in A for some j : V → M with
crit(j) = κ.

5.2 Definition. Let R~V
be the set of finite sequences 〈d1, . . . , dn, 〈κ, ~V 〉, A〉

such that

(1) A ∈
⋂

~V and A ⊆ A.

(2) A ∩ Vκ(dn)+1 = ∅.

(3) For every m with 1 ≤ m ≤ n, either

(3a) dm is an ordinal, or

(3b) dm = 〈ν, ~Fν , Aν〉 for some ~Fν ∈ A, Aν ⊆ A and Aν ∈
⋂ ~Fν .

(4) For every 1 ≤ i < j ≤ n,

(4a) κ(di) < κ(dj), and

(4b) if dj is of the form 〈ν, Fν , Aν〉 then Aν ∩ Vκ(di)+1 = ∅.

Each dm of the form 〈ν, ~Fν , Aν〉 will give rise to Radin forcing R~Fν
with ~Fν

playing the same role as ~V in R~V
.

We define two orders ≤ and ≤∗ on R~V
, where, as usual, ≤ will be used

to force and ≤∗ will provide the closure.

5.3 Definition. Let p = 〈d1, . . . , dn, 〈κ, ~V 〉, A〉, q = 〈e1, . . . , em, 〈κ, ~V 〉, B〉
∈ R~V

. We say that p is stronger than q and denote this by p ≥ q iff

(1) A ⊆ B.

(2) n ≥ m.

(3) There are 1 ≤ i1 < i2 < · · · < im ≤ n such that for 1 ≤ k ≤ m, either

(3a) ek = dik
, or

(3b) ek = 〈ν, ~Fν , Bν〉 and then dik
= 〈ν, ~Fν , Cν〉 with Cν ⊆ Bν .

(4) Let i1, . . . , im be as in (3). Then the following holds for every j, 1 ≤
j ≤ n:
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(4a) if j > im, then dj ∈ B or dj is of the form 〈ν, ~Fν , Cν〉 with

〈ν, ~Fν〉 ∈ B and Cν ⊆ B ∩ ν.

(4b) if j < im, then for the least k with j < ik, ek is of the form

〈ν, ~Fν , Bν〉 so that

(i) if dj is an ordinal then dj ∈ Bν , and

(ii) if dj = 〈ρ, ~T , S〉 then 〈ρ, ~T 〉 ∈ Bν and S ⊆ Bν .

5.4 Definition. Let p = 〈d1, . . . , dn, 〈κ, ~V 〉, A〉, q = 〈e1, . . . , em, 〈κ, ~V 〉, B〉
∈ R~V

. We say that p is a direct extension of q and denote this by p ≥∗ q iff

(1) p ≥ q, and

(2) n = m.

Intuitively, 〈R~V
,≤,≤∗〉 is like the Prikry forcing only once some point

of the form 〈ν, ~Fν〉 was produced, it starts to act completely autonomously
and eventually adds its own sequence.

As in the case of the Prikry forcing, any two conditions in R~V
having the

same finite sequences are compatible. So we obtain the following analogue
of 1.5:

5.5 Lemma. 〈R~V
,≤〉 satisfies the κ+-c.c.

Suppose that p = 〈d1, . . . , dn, 〈κ, ~V 〉, A〉 ∈ R~V
. Let, for some m with

1 ≤ m ≤ n, dm = 〈νm, ~Vm, Am〉. Set p≤m = 〈d1, . . . , dm〉 and

p>m = 〈dm+1, . . . , dn, 〈κ, ~V 〉, A〉 .

Then p≤m ∈ R~Vm
and p>m ∈ R~V

. Let for ~W ∈ A and q ∈ R ~W

R ~W
/q = {r ∈ R ~W

| r ≥ q} .

5.6 Lemma. R~V
/p ' R~Vm

/p≤m × R~V
/p>m.

5.7 Lemma. 〈R~V
/p>m,≤∗〉 is νm-closed.

This together with the Prikry condition (the next lemma) will suffice to

prove the preservation of cardinals. Thus let p = 〈d1, . . . , dn, 〈κ, ~V 〉, A〉 ∈
R~V

and ξ be a cardinal. If ξ > κ, then we use 5.5. Let ξ ≤ κ. Then we pick

the last m, 1 ≤ m ≤ n with dm of the form 〈νm, ~Vm, Am〉 such that νm < ξ,
if it exists. Work with R~V

/p>m in this case. Otherwise we continue to deal
with R~V

. Suppose for simplicity that such m does not exist, i.e. ξ ≤ νm for

every m, 1 ≤ m ≤ n with dm = 〈νm, ~Vm, Am〉.
Let

ρ = min({κ, κ(dm) | 1 ≤ m ≤ n and dm is of form 〈νm, ~Vm, Am〉} \ ξ) .
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Assume for simplicity that ρ = κ. If length(~V ) = 1, then R~V
is just the

Prikry forcing and it preserves cardinals. Suppose that length(~V ) > 1. Let
δ < κ. Extend p to p∗ by shrinking A to A \ Vδ+1. Then 〈R~V

/p∗,≤∗〉 will
be δ-closed. Using the Prikry condition, one can see that 〈R~V

/p∗,≤〉 does
not add new subsets to δ. But δ was any cardinal below κ. So ξ is not
collapsed even if ξ = κ and we are done.

Let us now turn to the Prikry condition. The main new point here is
that we are allowed to extend a given condition by picking elements from
different ultrafilters of the sequence ~V . So maybe different choices will
decide some statement σ differently. The heart of the matter will be to
show that this really does not happen. Actually, we can pass from one
choice of an ultrafilter to another, remaining with compatible conditions.

5.8 Lemma. 〈R~V
,≤,≤∗〉 satisfies the Prikry condition.

Proof. Let p ∈ R~V
and σ be a statement of the forcing language. We need

to find p∗ ≥∗ p that decides σ. Suppose there is no such p∗. Assume for
simplicity that p = 〈〈κ, ~V 〉, A〉.

For every ~d = 〈d1, . . . , dn〉 ∈ [Vκ]n consider

〈d1, . . . , dn〉
_p =df 〈d1, . . . , dn, 〈κ, ~V 〉, A \ Vκ(dn)+1〉 .

Suppose that it is a condition in R~V
. Let

Ã(~d) = {d ∈ A | either d is an ordinal and then ~d_d_p ∈ R~V

or d is of the form 〈ν, ~Fν〉 and then ~d_〈ν, ~Fν , A ∩ Vν〉
_p ∈ R~V

}.

Clearly, Ã(~d) ∈
⋂ ~V . We split Ã into three sets: First, set

A0(~d) = {d ∈ Ã(~d) | either (i) or (ii)}

where

(i) d is an ordinal and there is a Bd such that

~d_d_p ≤∗ 〈~d_d, 〈κ, ~V 〉, Bd〉  σ , or

(ii) d is of the form 〈ν, ~Fν〉 and there are Bd and bd such that

~d_〈ν, ~Fν , A ∩ Vν〉
_p ≤∗ 〈~d_〈ν, ~Fν , bd〉, 〈κ, ~V 〉, Bd〉  σ .

Then, let A1(~d) be the same as A0(~d) but with σ replaced by ¬σ. Finally,
set

A2(~d) = Ã(~d) \ (A0(~d) ∪ A1(~d)) .
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For every α < length(~V ) choose iα ≤ 2 such that Aiα
(~d) ∈ U(α). Set

A(α, ~d) = Aiα
(~d). If ~d_p /∈ R~V

then let A(α, ~d) = A. Set

A(α) = {d ∈ A | ∀~d = 〈d1, . . . , dn〉 ∈ [Vκ]n

(if max{κ(dk) | 1 ≤ k ≤ n} < κ(d), then d ∈ A(α, ~d))} .

This is the kind of diagonal intersection which is appropriate for our set-
ting. We claim that A(α) ∈ U(α). Thus, for every ~d ∈ [Vκ]n we have

A(α, ~d) ∈ U(α). So, in M , 〈κ, V �α〉 ∈ j(A(α, ~d)) for every ~d ∈ [Vκ]n. Clearly
κ(〈κ, U�α〉) = κ. Hence, by the definition of A(α), 〈κ, V �α〉 ∈ j(A(α)).

Define now A∗ =
⋃

α<length(~V ) A(α). Obviously A∗ ∈
⋂

α<length(~V ) U(α).

Consider p∗ = 〈〈κ, ~V 〉, A∗〉. By our initial assumption there is no direct ex-

tension of p∗ deciding σ. Pick 〈〈d1, . . . , dn+1〉, 〈κ, ~V 〉, B〉 to be an extension
of p∗ deciding σ with n as small as possible. Suppose, for example, that it
forces σ. Pick α < length(~V ) such that dn+1 ∈ A(α). Let ~d = 〈d1, . . . , dn〉.

Then ~d_p ∈ R~V
. By the definition of A(α), dn+1 ∈ A(α, ~d). By the choice of

A(α, ~d), then A(α, ~d) = A0(~d). This means that for every d ∈ A(α)\Vκ(dn)+1

there are d̃ and B such that

~d_d_p ≤∗ 〈~d_d̃, 〈κ, ~V 〉, B〉〉  σ .

Obviously we can replace p by p∗ here. In what follows we show that for
some C

p∗ ≤ 〈〈d1, . . . , dn〉, 〈κ, ~V 〉, C〉  σ .

This will contradict the minimality of n and, in turn, our initial assumption.
We shrink first the sets in U(β) for every β < α (if there are any).

Suppose that α > 0. The case α = 0 is similar and slightly easier. For
every d ∈ A(α) \ Vκ(dn)+1 of the form 〈ν, ~Fν〉 pick some bd and Bd so that
~d_d_p∗ ≤∗ 〈~d, 〈〈ν, ~Fν〉, bd〉, 〈κ, ~V 〉, Bd〉  σ. We take a diagonal intersec-
tion of the Bd’s. Thus, let

B∗ = {e ∈ A∗ | ∀d ∈ Vκ(e) (if Bd is defined then e ∈ Bd)}

For every β < length(~V ), B∗ ∈ U(β), since clearly for every d ∈ Vκ with Bd

defined 〈κ, ~V �β〉 ∈ j(Bd) due to Bd ∈
⋂

~V , so 〈κ, ~V �β〉 ∈ j(B∗),
Note that by the choice of A and 5.1.(3(b)) bd ∈

⋂
W∈~Fν

W , where each

W ∈ ~Fν is a ν-complete ultrafilter over Vν . Consider A<α = j(〈bd | d ∈

A(α)〉)(~V �α) (recall that A(α) ∈ U(α) implies that ~V �α ∈ j(A(α))). Then,
by elementarity, A<α ∈ U(β) for every β < α. Also, note that the set
A′(α) = {d ∈ A(α) | A<α ∩ Vκ(d) = bd} ∈ U(α), since j(A<α) ∩ V

κ(~V �α) =

j(A<α) ∩ Vκ = A<α = j(〈bd | d ∈ A(α)〉)(~V �α) and hence ~V �α ∈ j(A′(α)).
Set A≤α = (A<α ∪ A′(α)) ∩ A∗. Then A≤α ∈ U(β) for every β ≤ α.
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Now let us shrink the sets in U(β) for all β > α (if there are any).
Actually, we need to care for only β’s with A≤α /∈ U(β). Consider the set

A>α = {〈ν, ~F 〉 ∈ A∗ | ∃ξ < length(~F )(A′(α) ∩ Vν ∈ F (ξ))} .

Then A>α ∈ U(β) for every β with α < β < length(~V ). Set

A∗∗ = (A≤α ∪ A>α) ∩ B∗

Clearly, A∗∗ ∈
⋂ ~V . Consider a condition p∗∗ = 〈〈κ, ~V 〉, A∗∗〉 and q =

〈d1, . . . , dn〉_p∗∗. By the choice of n, neither q nor its direct extensions

can decide σ. Pick some r ≥ q forcing ¬σ. Let r = 〈e1, . . . , em, 〈κ, ~V 〉, C〉.
There is a k ≤ m such that κ(dn) = κ(ek), by Definition 5.2(3). Consider
three cases.

Case 1. k = m.
Then choose some d ∈ A(α)∩C such that C∩ν ∈ ∩ ~Fν where d = 〈ν, ~Fν〉.

By the choice of A(α) and B∗ there is a bd such that

〈d1, . . . , dn, 〈〈ν, ~Fν〉, bd〉, 〈κ, ~V 〉, A∗∗ \ Vκ(d)+1〉  σ .

Clearly we can shrink A∗∗ \ Vκ(d)+1 to C. Then,

〈e1, . . . , em, 〈〈ν, ~Fν〉, bd ∩ C〉, 〈κ, ~V 〉, A∗∗ ∩ C \ Vκ(d)〉

will be a common extension of r and 〈d1, . . . , dn, 〈〈ν, ~Fν〉, bd〉〈κ, ~V 〉, A∗∗ ∩
C \ Vκ(d)〉, which is clearly impossible since they disagree about σ.

Case 2. k < m and for k < j ≤ m, ej ∈ A<α.

Pick d ∈ A′(α) ∩ C, d = 〈ν, ~Fν〉 such that C ∩ A<α ∩ Vν ∈ ∩~Fν . Then,
by the choice of A′(α), bd = A<α ∩ Vν . So,

〈d1, . . . , dn, 〈〈ν, ~Fν〉, A
<α ∩ Vν〉, 〈κ, ~V 〉, A∗∗ \ Vκ(d)+1〉〉  σ .

But

〈〈e1, . . . , em〉, 〈〈ν, ~Fν〉, C ∩ A<α ∩ Vν〉, 〈κ, ~V 〉, A∗∗ ∩ C \ Vκ(d)+1〉

≥ 〈d1, . . . , dn, 〈〈ν, ~Fν〉, A<α ∩ ν〉, 〈κ, ~V 〉, A∗∗ ∩ C \ Vκ(d)+1〉 ,

since ej ∈ A<α for every k < j ≤ m, κ(dn) = κ(ek) and r ≥ q. Also, clearly,

〈〈e1, . . . , em〉, 〈〈ν, ~Fν〉, C ∩ A<α ∩ ν〉, 〈κ, ~V 〉, A∗∗ ∩ C \ Vκ(d)+1〉〉 ≥ r .

But this is impossible, since r  ¬σ.

Case 3. k < m and there is a j with k < j ≤ m such that ej /∈ A<α.
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Let j∗ be the minimal j with k < j ≤ m and ej /∈ A<α. Then ej∗ ∈
A′(α) ∪ A>α. If ej∗ ∈ A′(α), then

〈e1, . . . , ej∗−1, 〈〈ν, ~Fν〉, E ∩ A<α〉, 〈κ, ~V 〉, A∗∗ \ Vκ(ej∗ )+1〉

≥ 〈d1, . . . , dn, 〈〈ν, ~Fν〉, A
<α ∩ Vν〉 〈κ, ~V 〉, A∗∗ \ Vν+1〉  σ ,

by minimality of j∗, where ej∗ = 〈〈ν, ~Fν〉, E〉. But, 〈e1, . . . , ej∗−1, 〈〈ν, ~Fν〉,

E ∩A<α〉, 〈κ, ~V 〉, A∗∗ \Vκ(ej∗ )+1〉 and r are compatible, which is impossible
since r  ¬σ.

So, assume that 〈ν, ~Fν〉 ∈ A>α\A≤(α), where ej∗ = 〈〈ν, ~Fν〉, E〉. We have

E ∈ ∩~Fν . By the choice of A>α, for some ξ < length( ~Fν) A′(α)∩Vν ∈ Fν(ξ).

Hence A′(α) ∩ E ∈ Fν(ξ). Pick some 〈τ, ~Gτ 〉 ∈ (A′(α) ∩ E) \ Vκ(ej∗−1)+1

such that E ∩ τ ∈ ∩~Gτ . This can be done since ~Fν is a j′-sequence for
some j′ and E ∈ ∩~Fν . Now we can extend r by adding to it 〈τ, ~Gτ 〉. This
will reduce the situation to the one considered above, i.e. ej∗ ∈ A′(α). This
completes the proof of the lemma. a

Now let G be a generic subset of R~V
. Combining the previous lemmas

together, we obtain the following:

5.9 Theorem. V [G] is a cardinal preserving extension of V .

Consider the following crucial set:

CG = {κ(d) < κ | ∃p ∈ G

(d is one of the elements of the finite sequence of p)} .

5.10 Lemma. CG is a closed unbounded subset of κ.

Proof. CG is unbounded since for every condition p = 〈d1, . . . , dn, 〈κ, ~V 〉, A〉
and every ordinal τ < κ we can find some ν ∈ A ∩ (κ \ τ) and extend p by
adding ν to its finite sequence 〈d1, . . . , dn〉.

Let us show that CG is closed. Thus, let for some τ < κ some

p = 〈d1, . . . , dn, 〈κ, ~V 〉, A〉  τ̌ /∈ CG∼
.

Clearly, τ 6= κ(di) for any i, 1 ≤ i ≤ n. If τ > κ(dn), then we shrink A
to A \ (τ + 1). By the definition of the forcing ordering ≤,

〈d1, . . . , dn, 〈κ, ~V 〉, A \ (τ + 1)〉  sup(CG∼
∩ τ̌ ) = κ̌(dn) .

Suppose now that τ < κ(dn). Let i∗ < n be the least such that τ <
κ(di∗+1). If di∗+1 is an ordinal, then again by the definition of the forcing
ordering ≤, p forces that CG∼

will not have elements in the open interval
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(κ(di∗), di∗+1), where d0 = 0. So, let di∗+1 = 〈ν, ~Fν , Bν〉. Then Bν\(τ+1) ∈⋂
~Fν and the extension of p

〈d1, . . . , di∗ , 〈ν, ~Fν , Bν \ (τ + 1)〉, di∗+2, . . . , dn, 〈κ, ~V 〉, A〉

 sup(CG∼
∩ τ̌) = κ̌(di∗) .

Combining all the cases together we conclude that there is always an
extension of p forcing that τ is not a limit of elements of CG. a

The next question will be crucial for the issue of changing cofinalities:

What is the order type of CG?

For every τ with 0 < τ < κ, U(τ) concentrates on the set Xτ = {〈ν, ~Fν〉 |
~Fν is a sequence of ν-complete ultrafilters over Vν of lengthτ < ν}. Clearly,
{Xτ | 0 < τ < κ} are disjoint. We can add to them also X0 = κ and

Xκ = {〈ν, ~Fν〉 | ~Fν is a sequence of ν-complete ultrafilters over ν of lengthν}.
Using this partition and an easy induction it is not hard to see the following.

5.11 Lemma. Let δ, 0 < δ < κ, length~V ) = δ, and G ⊆ R~V
be generic.

Then, in V [G], a final segment of CG has order type ωδ, where ωδ is the

ordinal power. Moreover, 〈κ, ~V ,
⋃
{Xτ | 0 < τ < δ}〉 forces the order type

of CG to be ωδ. In particular, otp(CG) = δ if δ is an uncountable cardinal.

Combining this with 5.9 we obtain the following:

5.12 Theorem. Let length(~V ) = δ < κ be a cardinal, and let G ⊆ R~V

be generic. Then V [G] is a cardinal preserving extension of V in which κ
changes its cofinality to cf(δ)V .

Notice that if δ > 0 then R~V
changes cofinalities also below κ. Hence

new bounded subsets are added to κ. Mitchell [45] showed that once one
changes the cofinality of κ to some uncountable δ < κ preserving cardinals,
then new bounded subsets of κ must appear, provided the ground model
was the core model. On the other hand, it is possible to prepare a ground
model and then force in order to change cofinality of κ to an uncountable δ
without adding new bounded subsets. This was first done by Mitchell [44],
combining iterated ultrapowers and forcing. A pure forcing construction
was given in [13].

If we force with R~V
having length(~V ) = κ, then κ changes its cofinality

to ω again.

5.13 Lemma. Suppose that length(~V ) = κ and G ⊆ R~V
generic. Then, in

V [G], cf(κ) = ℵ0.
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Proof. Let 〈Xτ | τ < κ〉 be the partition defined before 5.11. Then,⋃
τ<κ Xτ ∈ ∩~V , since for every τ < κ Xτ ∈ U(τ) and ~V = 〈U(0), . . . ,

U(τ), . . . | τ < κ〉. Let X =
⋃

τ<κ Xτ . Consider

Y = {〈ν, ~Fν〉 ∈ X |
⋃
{Xτ | τ < length(~Fν)} ∩ Vν ∈ ∩~Fν} ∪ κ .

Clearly, Y ∈
⋂ ~V . Now pick some p = 〈d1, . . . , dn, 〈κ, ~V 〉, A〉 ∈ G with

A ⊆ Y . Let

C = {〈ν, ~Fν〉 ∈ Vκ | ∃E ∈
⋂ ~Fν(〈ν, ~Fν , E〉 appears in a condition in G)} .

Then, C \ (κ(dn)+1) ⊆ A. A simple density argument shows that for every
τ < κ, C will contain unboundedly many members of Xτ . Let

C ′ = {ν < κ | ∃~F (〈ν, ~F 〉 ∈ C)} .

Clearly, C ′ is just the set of all limit points of CG. Also, for every ν ∈ C ′

there is a unique ~Fν with 〈ν, ~Fν〉 ∈ C. We define an increasing sequence
〈νn | n < ω〉 of elements of C ′ as follows: ν0 = min(C ′), νn+1 = min{ν ∈

C ′ | ∃~Fν 〈ν, ~Fν〉 ∈ Xνn
} \ (νn + 1)).

Set νω =
⋃

n<ω νn. We claim that νω = κ. Otherwise there is a τ < κ

such that 〈νω , ~F 〉 ∈ C ∩ Xτ for some (unique) ~F , since C ′ is closed and

C ⊆ A ⊆ Y ⊆ X =
⋃

τ<κ Xτ . Then there is a q ≥ p in G with 〈〈νω , ~F 〉, B〉

appearing in q for some B ∈ ∩ ~F . We require also B ⊆
⋃
{Xτ ′ | τ ′ <

τ} ∩ Vνω
. This is possible since q ≥ p, A ⊆ Y , νω > κ(dn), and hence⋃

{Xτ ′ | τ ′ < τ} ∩ Vνω
∈

⋂
~F . Now, by the definition of Xτ , we have

τ < νω. So, there is an n < ω with νn > max(τ, min(B)). But νn ∈ C ′,

hence 〈νn, ~Fνn
〉 should be in B, for some (unique) ~Fνn

. The same holds

for each νm with n ≤ m < ω. In particular, 〈νn+1, ~Fνn+1〉 ∈
⋃

τ ′<τ Xτ ′ .
But it was picked to be in Xνn

which is disjoint to each Xτ ′ for τ ′ < νn.
Contradiction. a

Similar arguments show that for every δ < κ+, if length(~V ) = δ then the
forcing R~V

changes the cofinality of κ. If δ is a successor ordinal, then to
ℵ0; if δ is limit and cf(δ) 6= κ then to cfδ and, finally, if cf(δ) = κ then to
ℵ0.

Let us now show that if ~V is long enough then R~V
can preserve measur-

ability of κ. Later it will be shown that length(~V ) = κ+ suffices to keep
κ regular and so inaccessible. The ability of keeping κ regular turned out
to be very important in applications to the cardinal arithmetic. Thus a
basic common theme used there is to arrange some particular pattern of
the power function over CG, sometimes adding Cohen subsets or collapsing
cardinals in between and then to cut the universe at κ. This type of con-
structions were used by Foreman-Woodin [12], Cummings [9] and recently
by Merimovich [39].
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5.14 Definition. An ordinal γ < length(~V ) is called a repeat point for ~V

if for every δ with γ ≤ δ < length(~V ) and for every A ∈ U(δ), there is a

δ′ < γ such that A ∈ U(δ′). Equivalently,
⋃ ~V =

⋃ ~V �γ.

Note that if 2κ = κ+ and our sequence has length κ++, then there will be
κ++ repeat points between κ+ and κ++. This implies that also ~V = ~U�α
will have a repeat point for unboundedly many α’s below κ++.

5.15 Theorem. If γ is a repeat point for ~V and G ⊆ R~V
is generic, then

κ remains measurable in V [G].

Proof. Recall that ~V = 〈U(α) | α < length(~V )〉 is a j-sequence for some
elementary embedding j : V → M with crit(j) = κ. By the definition of
a repeat point, the forcing R~V

and R~V �γ
are basically the same (we need

only to replace 〈κ, ~V 〉 in each condition of R~V
by 〈κ, ~V �γ〉 in order to pass

to R~V �γ
). So we can view G as a generic subset of R~V �γ

. Define now an

ultrafilter F over κ in V [G]. Let X
∼

be a name of a subset of κ. Set X
∼

[G] ∈ F

iff for some 〈d1, . . . , dn, 〈κ, ~V 〉, A〉 ∈ G the following holds in M : For some

B ∈
⋂

j(~V ),

〈d1, . . . , dn, 〈〈κ, ~V �γ〉, A〉, 〈j(κ), j(~V )〉, B〉 ‖R
j(~V )

κ̌ ∈ j(X
∼

) .

First note that F is well defined. Thus, let some 〈d1, . . . , dn, 〈κ, ~V 〉, A〉 ∈ G
forces “X

∼
= Y

∼
”. Then, in M

〈d1, . . . , dn, 〈j(κ), j(~V ), j(A)〉〉  j(X
∼

) = j(Y
∼

) .

But A ∈
⋂ ~V . In particular, A ∈ U(γ). Hence, 〈κ, ~V �γ〉 ∈ j(A). Also,

j(A)∩Vκ = A. So, 〈〈κ, ~V �γ〉, A〉 is addible to 〈d1, . . . , dn, 〈j(κ), j(~V ), j(A)〉.

But if for some B ∈
⋂

j(~V ),

〈d1, . . . , dn, 〈〈κ, ~V �γ〉, A〉, 〈j(κ), j(~V )〉, B〉 ‖R
j(~V )

κ̌ ∈ j(X
∼

) ,

then

〈d1, . . . , dn, 〈〈κ, ~V �γ〉, A〉, 〈j(κ), j(~V )〉, B ∩ j(A)〉

‖R
j(~V )

κ̌ ∈ j(X
∼

) ∧ j(X
∼

) = j(Y
∼

) .

Let us establish normality for F . Suppose 〈d1, . . . , dn, 〈κ, ~V 〉, A〉〉 ∈ G

and 〈d1, . . . , dn, 〈κ, ~V 〉, A〉〉  ({ν < κ | f
∼

(ν) < ν} ∈ F
∼

). Then, in M , for

some B ∈
⋂

j(~V )

〈d1, . . . , dn, 〈〈κ, ~V �γ〉, A〉, 〈j(κ), j(~V )〉, B〉 ‖R
j(~V )

j(f
∼

)(κ̌) < κ̌ .
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Working in M , construct B′ ∈
⋂

j(~V ) such that: If for some ν < κ, we have

a condition 〈x1, . . . , x`, 〈〈κ, ~V �γ〉, C〉, 〈j(κ), j(~V )〉, E〉 forcing “j(f
∼

)(κ̌) =

ν̌”, then 〈x1, . . . , x`, 〈〈κ, ~V �γ〉, C〉, 〈j(κ), j(~V )〉, B′〉 forces the same.
Back in V , the set

D = {〈x1, . . . , x`, 〈〈κ, ~V �γ〉, C〉〉 | for some ν < κ,

〈x1, . . . , x`, 〈〈κ, ~V �γ〉, C〉, 〈j(κ), j(~V )〉, B′〉 ‖R
j(~V )

j(f
∼

)(κ̌) = ν̌}

will be dense in R~V �γ
above 〈d1, . . . , dn, 〈κ, ~V 〉, A〉. Thus, if some p ∈ R~V �γ

with p ≥ 〈d1, . . . , dn, 〈κ, ~V 〉, A〉 has no extension in D, then we consider the
statement

ϕ ≡ “There is a q ∈ R~V
stronger than p, a ν < κ, and

an r in G
∼

(R
j(~V )\κ+1) such that 〈q, r〉 ‖R

j(~V )
j(f
∼

)(κ̌) = ν̌}”,

where G
∼

(R
j(~V )\κ+1) denotes the canonical name of a generic subset of

R
j(~V )\k+1. Let, in M , s ≥∗ 〈〈j(κ), j(~V )〉, B′〉 deciding ϕ. Then s must

force ϕ. Find some s1 ≥∗ s deciding the values of ν and q in ϕ. This leads
to the contradiction.

So, pick some 〈e1, . . . , em, 〈κ, ~V 〉, A′〉 ≥ 〈d1, . . . , dn, 〈κ, ~V 〉, A〉 in G ∩ D.
There is a δ < κ such that

〈〈e1, . . . , em〉, 〈〈κ, ~V �γ〉, A′〉, 〈j(κ), j(~V )〉, B′〉  j(f
∼

)(κ̌) = δ̌ .

Then {ν < κ | f(ν) = δ} ∈ F , by the definition of F . a

Similar arguments show that it is possible to preserve the degree of strong-
ness and even of supercompactness of j. Notice also that F defined above
extends U(0), but the elementary embedding of F does not extend that of
U(0). Instead, it extends a certain iterated ultrapower embedding using
ultrafilters of Ult(V, U(0)) between κ and iU(0)(κ).

We now want to show that κ remains regular in V R~V when we have
cf(length(~V )) ≥ κ+. But first we need to extend a bit the Prikry condition
lemma (5.8) in the spirit of 2.18. This will allow us to deal with dense sets.
The situation here is more involved due to the possibility of extending a
given condition by adding to it elements from different ultrafilters U(α)’s.
We start with the following definition.

5.16 Definition. Let ~F be a sequence of ultrafilters over some ν ≤ κ. A
tree T ⊆ [Vν ]≤n with n < ω levels is called ~F -fat iff

(1) For every 〈ν1, . . . , νk〉 ∈ T , κ(ν1) < κ(ν2) < · · · < κ(νk).

(2) For every 〈ν1, . . . , νk〉 ∈ T with k < n, there is an α < length( ~F ) so
that SucT (〈ν1, . . . , νk〉) ∈ F (α) .
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Let T be as in 5.16 and η a maximal branch in T . A sequence ~A =
〈 ~A(1), . . . , ~A(n)〉 ∈ [Vν ]n will be called a sequence of η-measure one if, for

every i, 1 ≤ i ≤ n with η(i) of form 〈τi, ~Gτi
〉 we have ~A(i) ∈

⋂ ~Gτi
. Let

p = 〈d1, . . . , dn, 〈κ, ~V 〉, A〉 ∈ R~V
and di = 〈〈νi, ~Fi〉, Ai〉 or di = νi < κ for

each i, 1 ≤ i ≤ n. Here also denote 〈〈κ, ~V 〉, A〉 by 〈〈νn+1, ~Fn+1〉, An+1〉.
Let 1 ≤ i1 < · · · < im ≤ n + 1 be some elements of the set {i | 1 ≤ i ≤

n + 1, di = 〈〈νi, ~Fi〉, Ai〉}.
Let for each k with 1 ≤ k ≤ m and some nk < ω, Tk ⊆ [Vνik

]nk be a
~Fνik

-fat tree, ηk a maximal branch in Tk, and ~Ak ∈ [Vνik
]≤nk a sequence of

ηk-measure one. Let q = 〈t1, . . . , t`, t`+1〉 be obtained from p by adding to it
between dik−1 and dik

, for each k, 1 ≤ k ≤ m, the following nk-sequence 〈sj |

1 ≤ j ≤ nk〉, where sj = ηk(j), if ηk(j) is an ordinal, or sj = 〈τj , ~Gτj
, ~Ak(j)〉,

if ηk(j) = 〈τi, Gτi
〉. Denote by p_〈η1, ~A1〉_ · · ·_ 〈ηm, ~Am〉 the condition in

R~V
obtained from q by the obvious shrinking of sets of measure one needed

in order to satisfy 5.2, i.e. for every i with 1 < i ≤ ` + 1, if ti = 〈δi, ~Hi, Bi〉,
then we replace Bi by Bi \ Vκ(ti−1)+1.

5.17 Lemma. Let D be a dense open subset of R~V
and p = 〈d1, . . . , dn,

〈κ, ~V 〉, A〉 ∈ R~V
. Then there are p∗ = 〈d∗1, . . . , d

∗
n, 〈κ, ~V 〉, A∗〉 ≥∗ p; 1 ≤

i1 < · · · < im ≤ n + 1; and for 1 ≤ k ≤ m, Tk ⊆ [Vνik
]nk ~Fνik

–fat trees so
that the following holds:

For every sequence 〈ηk | 1 ≤ k ≤ m〉 such that ηk is a maximal branch in

Tk, there exists a sequence 〈 ~Ak | 1 ≤ k ≤ m〉 such that

(1) ~Ak ∈ [Vik
]nk is a sequence of ηk-measure one, and

(2) p∗_〈η1, ~A1〉_ · · ·_ 〈ηm, ~Am〉 ∈ D.

5.18 Remark. Roughly, the meaning of this is that in order to get into D
we need to specify certain U(α)’s (or F (α)’s, if below κ) and sets Aα’s in
these ultrafilters. Then any choice of elements in Aα’s will put us into D.

Proof. The proof is very similar to that of 5.8. Suppose for simplicity that
p = 〈〈κ, ~V 〉, A〉. We need to find a direct extension p∗ = 〈〈κ, ~V 〉, A∗〉 of p

and a ~V –fat tree T of some finite height m such that the following holds:
for every maximal branch η = 〈f1, . . . , fm〉 through T there are sets ~A =
〈a1, . . . , am〉 of η-measure one (i.e. for every i with 1 ≤ i ≤ m, if fi =

〈τi, ~Gτi
〉 then ai ∈

⋂ ~Gτi
) such that p∗_〈η, ~A〉 ∈ D, where

p∗_〈η, ~A〉 = 〈f ′
1, . . . , f

′
m, 〈κ, ~V 〉, A∗ \ Vκ(fm)〉

and for every i with 1 ≤ i ≤ m, either

(α) fi is an ordinal and then f ′
i = fi, or
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(β) fi = 〈τi, ~Gτi
〉 and then f ′

i = 〈τi, ~Gτi
, ai〉.

If p already has a direct extension in D, then we take such an extension
and set T = {〈〉}. Suppose that this is not the case. Define Ã(~d) as in 5.8.

Here we split it only into two sets A0(~d) = {d ∈ Ã(~d)| either (i) or (ii)} and

A1(d) = Ã(~d) \ A0(~d), where:

(i) d is an ordinal and then there is B~d
such that

~d_d_p ≤∗ 〈~d_d, 〈κ, ~V 〉, B~d
〉 ∈ D .

(ii) d is of form 〈ν, ~Fν〉 and then there are B~d
and b~d

such that

~d_〈ν, ~Fν , A ∩ Vν〉
_p ≤∗ 〈~d_〈ν, ~Fν , b~d

〉, 〈κ, ~V 〉, B~d
〉 ∈ D .

As in 5.8, define A(α, ~d)’s and A(α) ∈ U(α) for α < length(~V ). Set A1 =⋃
{A(α) | α < length(~V )} and p1 = 〈〈κ, ~V 〉, A1〉. Then p1 satisfies the

following:

(∗)1 If p1 ≤ q = 〈e0, . . . , em, 〈κ, ~V 〉, B〉 ∈ D, then there is an

α < length(~V ) such that for every e′m ∈ A(α) \ Vκ(em−1)+1,

〈e0, . . . , em−1, e
′
m, 〈κ, ~V 〉, A1〉 has a direct extension

of form 〈e0, . . . , em−1, e
′′
m, 〈κ, ~V 〉, A′′〉 in D .

Just pick α with em ∈ A(α) (more precisely, only 〈ν, ~Fν〉 if em = 〈ν, ~Fν , Bν〉).
Then em ∈ A(α, 〈e0, . . . , em−1〉) and so by the choice of A(α, 〈e0, . . . , em−1〉)
for every e′m ∈ A(α, 〈e0, . . . , em−1〉) a direct extension of 〈e0, . . . , em−1, e

′
m,

〈κ, ~V 〉, A1〉 will be in D. But if e ∈ A(α) \ Vκ(em−1)+1 then
e ∈ A(α, 〈e0, . . . , em−1〉), by the definition of the diagonal intersection.

If for some d ∈ A1, d_p1 has a direct extension in D, then we are done.
Thus choose α < length(~V ) with d ∈ A(α). By the choice of A(α), then
for every d′ ∈ A(α) some direct extension of d′_p1 will be in D. Let

us fix for every d ∈ A(α) a direct extension 〈d̃, 〈κ, ~V 〉, Bd〉 of d_p1 in D,

where d̃ is either d, if d is an ordinal or 〈ν, ~Fν , bd〉 if d = 〈ν, ~Fν〉. Set

A∗ = {e ∈ A1 | ∀e′ ∈ Ve(e ∈ Be′ )}. Clearly, A∗ ∈
⋂ ~V and for every

d ∈ A∗, A∗ \ Vκ(d)+1 ⊆ Bd. So, for every d ∈ A(α) ∩ A∗, 〈d̃, 〈κ, ~V 〉, Bd〉 ≤∗

〈d̃, 〈κ, ~V 〉, A∗\Vκ(d)+1〉. Hence, also 〈d̃, 〈κ, ~V 〉, A∗\Vκ(d)+1〉 is in D. Then we

can take p∗ = 〈〈κ, ~V 〉, A∗〉 and T to be a one level tree which level consists
of A(α) ∩ A∗.

Suppose now that there is no d ∈ A1 with d_p1 having a direct extension
in D. We continue to two steps extensions. Replacing A by A1 we define
Ã(~d) as above. Let A0(~d) = {d ∈ Ã(~d) | there are α(~d) < length(~V ) and

C(~d) ⊆ Ã(d) \ κ(d), C(~d) ∈ U(α(~d)) such that for every c ∈ C(~d) there is
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in D a direct extension of the condition ~d_d_c_p1 (i.e. the one obtained

by adding ~d, d and c to p1)} and A1(~d) = A1 \ A0(~d). Define A(α, ~d)’s,
A(α)’s, A2 and p2 as was done above. Now, if for some d1, d2 ∈ A2 some

direct extension of d1
_d2

_p2 is in D, then by (∗)1 for some β < length(~V ),
for every d′

2 ∈ A1(β) \ Vκ(d1)+1, d1
_d′2

_p2 will have a direct extension

in D. But then for α < length(~V ) with d1 ∈ A(α) we will have that

d1 ∈ A0(〈 〉), i.e. for every d′
1 ∈ A(α) for some β′ < length(~V ) for every

d′2 ∈ A1(β′) \ Vκ(d′
1)+1, d′1

_d′2
_p′ will have a direct extension in D. In

this case we can define p∗ and two levels tree T . The definition is similar
to those given above. Otherwise we consider (∗)2 the two steps analogue
of (∗)1. Continue in a similar fashion. Thus at stage n we will have sets

An(α) ∈ U(α), An =
⋃
{An(α) | α < length(~V )} and pn = 〈〈κ, ~V 〉, An〉.

Also the following n-dimension version of (∗)1 will hold:

(∗)n If pn ≤ q = 〈e0, . . . , em−1, d1, . . . , dn, 〈κ, ~V 〉, B〉 ∈ D, then there

is an n-levels ~V -fat tree Tq such that for every maximal branch

η = 〈f1, . . . , fn〉 of Tq there are sets ~A = 〈a1, . . . , an〉 of η-

measure one and Bη ∈
⋂

~V such that

〈e0, . . . , em−1〉
_〈η, ~A〉_〈〈κ, ~V 〉, Bη〉 ∈ D .

Again, if for some d1, . . . , dn ∈ An, a direct extension q of 〈d1, . . . , dn〉_pn

is in D, then we can easily finish. Just use Tq given by (∗)n as T and let
A∗ = {e ∈ An | ∀η ∈ Vκ(e)(e ∈ Bη)}.

Suppose the process does not stop at any n < ω. Set

p∗ = 〈〈κ, ~V 〉,
⋂

n<ωAn〉 .

Then p∗ ≥∗ p. By our assumption, no direct extension of p (and so of p∗)

is in D. Pick some q, q = 〈d1, . . . , dn, 〈κ, ~V 〉, B〉 ≥ p∗ and q ∈ D. Then
q ≥∗ 〈d1, . . . , dn〉_pn. So, by the choice of pn, we were supposed to stop at
stage n. Contradiction. a

We are now ready to show the following:

5.19 Theorem. If cf(length(~V )) ≥ κ+ then κ remains regular (and hence
inaccessible) in V R~V .

5.20 Remark. In view of 5.15 the converse of 5.19 is false.

Proof. Suppose that δ < κ and f
∼

is a R~V
-name so that the weakest condition

forces

f
∼

: δ̌ −→ κ̌ .
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Let t = 〈µ1, . . . , µs, 〈κ, ~V 〉, E〉〉 ∈ R~V
. We find p ≥ t forcing “ranf

∼
is

bounded in κ”. Let ξ < δ. Consider the set

Dξ = {p ∈ R~V
|

for some d ∈ Vκ \ Vµ3+1 appearing in p, (p  f
∼

(ξ̌) < κ̌(d))}.

Clearly, Dξ is a dense subset of R~V
. For every ~d = 〈d1, . . . , dn〉 ∈ Vκ with

~d_〈〈κ, ~V 〉, Vκ\Vκ(dn)+1〉 ∈ R~V
apply 5.17 to ~d_〈〈κ, ~V 〉, Vκ\Vκ(dn)+1〉 and to

Dξ. We are interested only in the last Tm and only if im = n+1 there. Such

a Tm is a ~V –fat tree of the height nm < ω. Denote Tm further as T (ξ, ~d).

By 5.16, for every η ∈ Tm \ Levnm
(Tm) there is an α(η) < length(~V ) such

that SucTm
(η) ∈ U(α(η)). Define α(~d) =

⋃
{α(η) | η ∈ Tm \ Levnm

(Tm)}.

Then α(~d) < length(~V ), since cf(length(~V )) = κ+. Pick α(ξ) < length(~V )

to be larger than each α(~d) with ~d as above. Finally let α < length(~V ) be
above each α(ξ). Consider the following set:

B = {〈ν, ~Fν〉 ∈ Vκ | ∀ξ < δ∀~d ∈ Vν(T (ξ, ~d) ∩ Vν is ~Fν-fat)} .

By the choice of α, B ∈ U(α). For every ξ < δ, let A∗
ξ ∈

⋂
~V be the set

given by 5.17 applied to Dξ and t. Let A∗ =
⋂

ξ<δ A∗
ξ . Every condition of

R~V
can be extended to one containing elements of B \ Vµs+1. Hence the

following will conclude the proof:

Claim 5.1.19. Let p ≥ 〈µ1, . . . , µs, 〈κ, ~V 〉, A∗ \ Vµs+1〉 and some 〈ν, ~Fν〉 ∈
B \ Vµs+1 appears in p. Then

p  ∀ξ < δ̌ (f
∼

(ξ) < ν̌) .

Proof. Suppose otherwise. Let

p ≥ 〈µ1, . . . , µs, 〈κ, ~V 〉, A∗ \ Vµs+1〉 ,

some 〈ν, ~Fν〉 ∈ B \ Vµs+1 appears in p and for some ξ < δ p  f
∼

(ξ̌) ≥ ν̌.

Let p = 〈d1, . . . , d`, 〈〈ν, ~Fν〉, aν〉, d`+2, . . . , dn, 〈κ, ~V 〉, A〉. Consider

p′ = 〈d1, . . . , d`, 〈κ, ~V 〉, A∗ \ Vκ(d`)+1〉 .

We would like to apply 5.18. By the definition of B, T (ξ, 〈d1, . . . , d`〉)∩Vν is
~Fν -fat. Since aν ∈ ∩~Fν , we can find a maximal branch 〈f1, . . . , fm〉 through
T (ξ, 〈d1, . . . , d`〉) inside aν . By 5.17, there is q ≥ p′, q ∈ Dξ of form

〈e1, . . . , ei, f̃1, . . . , f̃m, A∗ \ Vκ(fm)+1〉

where κ(ei) = κ(d`) and for every j, 1 ≤ j ≤ m, f̃j is fj , if fj is an ordinal, or

f̃j = 〈fj , bj〉 for some bj , otherwise. q ∈ Dξ implies that q  f
∼

(ξ̌) < κ̌(fm).
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Obviously, κ(fm) < ν, since fm ∈ aν ⊆ Vν . On the other hand, q and p are

compatible, since p ≥ 〈µ1, . . . , µs, 〈κ, ~V 〉, A∗ \ Vµs+1〉,

p = 〈d1, . . . , d`, 〈〈ν, ~Fν〉, aν〉, d`+2, . . . , dn, 〈κ, ~V 〉, A〉

and, hence 〈ν, ~Fν〉, d`+2, . . . , dn come from A∗. So they are addible to q.
Hence

〈e1, . . . , ei, f̃1, . . . , f̃m , 〈〈ν, ~Fν〉, aν \ Vκ(fm)+1〉, d`+2, . . . , dn, 〈κ, ~V 〉, A〉

is a common extension of q and p. But this is impossible since p  f
∼

(ξ̌) ≥ ν̌
and q  f

∼
(ξ̌) < ν̌. Contradiction. a

5.2. Magidor Forcing and Coherent Sequences

of Measures

Magidor [37] invented a forcing for changing the cofinality of a cardinal κ
to an uncountable value δ < κ. As an initial assumption, his forcing uses a
coherent sequence of measures of length δ. Coherent sequences of measures
were introduced by Mitchell [43]. In [42] Mitchell showed that it is possible
to do the Radin forcing with coherent sequences of measures replacing an
elementary embedding j : V → M . The main advantage of this approach
is reducing initial assumptions to weaker ones that in turn also provide
equiconsistency results. This allows the simultaneous treatment of both the
Magidor and the Radin forcings.

5.21 Definition. A coherent sequence of measures (ultrafilters) ~U is a func-
tion with domain of form

{(α, β) | α < `
~U and β < o

~U (α)}

for an ordinal `
~U , the length of ~U , and a function o

~U (α), called the order of
~U at α. For each pair (α, β) ∈ dom(~U),

(1) U(α, β) is a normal ultrafilter over α, and

(2) if jα
β : V −→ Nα

β ' Ult(V, (α, β)) is the canonical embedding, then

jα
β (~U)�α + 1 = ~U�(α, β) ,

where
~U�α = ~U�{(α′, β′) | α′ < α and β′ < o

~U (α′)}

and

~U�(α, β) = ~U�{(α′, β′) |

(α′ < α and β′ < o
~U (α′)) or (α′ = α and β′ < β)} .
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Suppose that ~U is a coherent sequence of measures with `
~U = κ + 1

and o
~U (κ) = δ > 0. Now we will use ~U as a replacement for ~V of the

previous section. Thus, over κ, ~U(κ) = 〈~U(κ, α) | α < δ〉 is used. Let

A ∈
⋂

~U(κ) =
⋂

α<δ U(κ, α). Elements of A are ordinals only, no more

pairs of form 〈ν, ~Fν〉 with ν an ordinal and ~Fν a sequence of ultrafilters

over Vν . But actually, if ν ∈ A and o
~U (ν) > 0, then we have a sequence

of measures ~U(ν) = 〈~U(ν, α) | α < o
~U (ν)〉 over ν. And it can be used

exactly as ~Fν of the previous section. Note that here ~U(ν) is determined

uniquely from ν and ~U . Also, because of coherence, namely 5.21(2), there
is no need to define the set A as it was done in the previous section before
the definition of R~V

(5.1).
Let us denote for an ordinal d = ν or pair d = 〈ν, B〉, ν by κ(d). Using

the above observations we define P~U
a coherent sequences analogue of R~V

.

5.22 Definition. Let P~U
be the set of finite sequences 〈d1, . . . , dn, 〈κ, A〉〉

such that:

(1) A ∈
⋂ ~U(κ).

(2) min(A) > κ(dn).

(3) For every m with 1 ≤ m ≤ n, either

(3a) dm is an ordinal and then o
~U (dm) = 0, or

(3b) dm = 〈ν, Aν〉 for some ν with o
~U (ν) > 0 and

Aν ∈
⋂

α<0~U (ν) U(ν, α) .

(4) For every 1 ≤ i ≤ j ≤ m,

(4a) κ(di) < κ(dj), and

(4b) If dj is of form 〈ν, Aν〉 then min(Aν) > κ(di).

The definition of orders ≤,≤∗ on P~U
repeats those of R~V

(5.2), only

ultrafilter sequences ~Fν ’s and ~V are removed from the conditions there.

5.23 Definition. Let p = 〈d1, . . . , dn, 〈κ, A〉〉, q = 〈e1, . . . , em, 〈κ, B〉〉 ∈
P~U

. We say that p is stronger than q and denote this by p ≥ q iff

(1) A ⊆ B.

(2) n ≥ m.

(3) There are 1 ≤ i1 < i2 < · · · < im ≤ n such that for every k with
1 ≤ k ≤ m, either

(3a) ek = dik
, or
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(3b) ek = 〈ν, Bν〉 and then dik
= 〈ν, Cν〉 with Cν ⊆ Bν .

(4) Let i1, . . . , im be as in (3). Then the following holds for every jwith1 ≤
j ≤ n and j 6∈ {i1, . . . , ik}:

(4a) If j > im, then dj ∈ B or dj is of form 〈ν, Cν〉 with ν ∈ B and
Cν ⊆ B ∩ ν .

(4b) If j < im, then for the least k with j < ik, ek is of form 〈ν, Bν〉
so that

(i) if dj is an ordinal then dj ∈ Bν , and

(ii) if dj = 〈ρ, S〉 then ρ ∈ Bν and S ⊆ Bν .

5.24 Definition. Let p = 〈d1, . . . , dn, 〈κ, A〉〉, q = 〈e1, . . . , em, 〈κ, B〉〉 ∈
P~U

. We say that p is a direct extension of q and denote this by p ≥∗ g iff

(1) p ≥ q, and

(2) n = m.

Now all the results of the previous section are valid in the present context
with P~U

replacing R~V
. Also their proofs require only trivial changes.

If δ < κ, then 〈U(κ, α) | α < δ〉 can be split. Thus for every α < δ

U(κ, α) concentrates on the set Yα = {ν < κ | o
~U (ν) = α}. P~U

, above the
condition 〈〈κ,

⋃
α<δ Yα〉〉 is then the Magidor forcing for changing cofinality

of κ to cf(δ).

5.3. Extender-based Radin Forcing

In this section we give a brief description of the extender-based Radin forcing
developed by C. Merimovich [40]. Previously, the extender-based Magidor
forcing was introduced by M. Segal [49]. The basic idea will be to combine
the forcing of Section 3 with those of Section 5.1.

Assume GCH and let j : V −→ M ⊇ Vκ+4 be an elementary embedding
with crit(j) = κ. First, as in Section 3, but with λ = κ++, for every
α < κ++, we consider Uα an ultrafilter over κ defined by:

X ∈ Uα iff α ∈ j(X) .

Define a partial order ≤j on λ:

α ≤j β iff α ≤ β and for some f ∈ κκ, j(f)(β) = α .

Let 〈παβ | β ≤ α < κ++, α ≥j β〉 be the sequence of projections defined in
Section 3. The whole system (i.e. the extender)

〈〈Uα | α < κ++〉, 〈παβ | β ≤ α < κ++, α ≥j β〉〉
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is in M , as κ++

Vκ+3 ⊆ Vκ+3 ⊆ M . Denote this system by E(0) and Uα by
Eα(0) for every α < κ++. Now, as in 5.1, we use the fact that E(0) ∈ M
in order to define E(1). Thus for every α < κ++, we define over Vκ the
following ultrafilter:

A ∈ E〈α,E(0)〉(1) iff 〈α, E(0)〉 ∈ j(A) .

It is possible to use only α as an index instead of 〈α, E(0)〉, but it turns
out that the latter notation is more convenient. Note that E〈α,E(0)〉(1)
concentrates on elements of form 〈ξ, e(0)〉, where e(0) is an extender over
ξ0 (recall, that in the notation of Section 3, ξ0 denotes the projection of
ξ to the normal ultrafilter by πακ) of length (ξ0)++ including projections
between its measures. Also note that σα defined by σα(ξ, e(0)) = ξ projects
E〈α,E(0)〉(1) onto Eα(0) = Uα.

We define projections π〈α,E(0)〉,〈β,E(0)〉 for κ++ > α ≥ β with α ≥j β as
follows:

π〈α,E(0)〉,〈β,E(0)〉(〈ξ, e(0)〉) = 〈παβ(ξ), e(0)〉 .

Then, in M ,

j(π〈α,E(0)〉,〈β,E(0)〉)(〈α, E(0)〉) = 〈β, E(0)〉 .

This defines an extender

E(1) = 〈〈E〈α,E(0)〉(1) | α < κ++〉,

〈π〈α,E(0)〉,〈β,E(0)〉 | κ++ > α ≥ β, α ≥j β〉〉 .

Continue by recursion. Suppose that τ < κ+4 and a sequence of extenders
〈E(τ ′) | τ ′ < τ〉 is already defined. Again, as κ++

Vκ+4 ⊆ Vκ+4 ⊆ M ,
〈E(τ ′) | τ ′ < τ〉 ∈ M . So, for every α < κ++ we can define an ultrafilter
over Vκ as follows

A ∈ E〈α,E(0),...,E(τ ′),...|τ ′<τ〉(τ) iff

〈α, E(0), . . . , E(τ ′), . . . | τ ′ < τ〉 ∈ j(A) .

Define projections:

π〈α,E(0),...,E(τ),...|τ ′<τ〉,〈β,E(0),...,E(τ ′),...|τ ′<τ〉(〈ξ, d〉) = 〈παβ(ξ), d〉 ,

for every α, β, with κ+ > α ≥ β and α ≥j β. Further, let us suppress these
long indexes and use only α and β, i.e. the above projection will be denote
by παβ and E〈α,E(0),...,E(τ ′),...|τ ′<τ〉(τ) by Eα(τ). Define

E(τ) = 〈〈Eα(τ) | α < κ++〉, 〈παβ | κ++ > α ≥ β , α ≥j β〉 .

Fix some τ∗ ≤ κ+4. Let ~E = 〈E(τ) | τ < τ∗〉.
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In [24], [25], Merimovich used such ~E to define the extender-based Radin
forcing. The general definition is quite complicated and we will not repro-
duce it here. Instead let us concentrate on the case length( ~E) = 2. This

explains the idea of the Merimovich construction. So let ~E = 〈E(0), E(1)〉.
For each α < κ++ let α = 〈α, E(0), E(1)〉. Set E = {〈α, E(0), E(1)〉 | α <
κ++}.

5.25 Definition. A basic condition in P ~E
over κ is one of form

p = {〈γ, pγ〉 | γ ∈ s} ∪ {〈α, pα〉, T}

so that

(1) s ⊆ E, |s| ≤ κ and κ ∈ s.

This s is the support of the condition and here, instead of just ordinals
used as supports in the extender-based Prikry forcing of Section 3, its
elements are of form γ = 〈γ, E(0), E(1)〉.

(2) pγ ∈ Vκ is a finite sequence of elements of form an ordinal ν or a pair
〈ν, eν(0)〉 with eν(0) and extender of length (ν0)++ over ν0 (recall
that, as in Section 3, ν0 denotes the projection of ν by πγ,κ, i.e. to
the normal measure). We require that the ν0’s of elements of pγ are
increasing. Denote the ν of the last element of pγ by κ(pγ), if pγ is
nonempty and let κ(pγ) = 0 otherwise.

(3) α is above every γ ∈ s in the ≤j order (i.e. γ ≤j α).

(4) κ(pα) ≤ κ(pγ).

(5) T ∈ Eα(0) ∩ Eα(1) \ Vκ(pκ)+1.

(6) For every ν ∈ T ,

|{γ ∈ s | (κ(pγ))0 < (κ(ν))0}| ≤ (κ(ν))0 .

(7) For every ν ∈ T , β, γ ∈ s, if (κ(pβ))0, (κ(pγ))0 < (κ(ν))0 and β 6= γ
then

πα,β(ν) 6= πα,γ(ν) .

As in Section 3, we write T p, mc(p), supp(p) for T, α and s ∪ {α} respec-
tively.

5.26 Definition. For basic conditions p, q of P ~E
over κ, define p ≥∗ q iff

(1) supp(p) ⊇ supp(q).

(2) For every γ ∈ supp(q), pγ = qγ .
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(3) T p ⊆ π−1
mc(p),mc(q)“T q.

(4) For every γ ∈ supp(q) and ν ∈ T p, if (κ(pγ))0 < (κ(ν))0 then

πmc(p),γ(ν) = πmc(q),γ(πmc(p),mc(q)(ν)) .

Now let p0 be a basic condition over κ and ν ∈ T p0 . We define p0
_ν, a

one-element extension of p0 by ν.

5.27 Definition. p0
_〈ν〉 will be of form p′1

_p′0 where

(1) supp(p′0) = supp(p0).

(2) For every γ ∈ supp(p′0)

p′γ0 =






πmc(p0),γ(ν), if (κ(pγ
0))0 < (κ(ν))0 and

ν is of form 〈ν, eν(0)〉,

pγ
0

_πmc(p0),γ(ν), if (κ(pγ
0))0 < (κ(ν))0 and

ν is an ordinal,

pγ
0 , otherwise.

(3) T p′
0 = T p0 \ V(κ(ν))0+1.

If ν is an ordinal then p′1 is empty, otherwise the following holds:

(4) mc(p′1) = ν.

(5) supp(p′1) =

{πmc(p0),γ(ν) | γ ∈ supp(p0) and (κ(pγ
0))0 < (κ(ν))0} ∪ {ν}.

(6) p
′πmc(p0),γ(ν)

1 = pγ
0 .

(7) T p′
1 = T p0 ∩ V(κ(ν))0 .

5.27 is the crucial step of the definition of P ~E
. If ν was an ordinal then

p_〈ν〉 = p′0 is generated as in Section 3. But if ν is of form 〈ν, eν(0)〉
then after adding ν, p0 splits into two blocks p′0 and p′1. p′0 is still a basic
condition over κ generated in the fashion of Section 3. But p′

1 is a new

block. We just separate and move to the new block every pγ
0 to which ν can

be added. The actual addition, πmc(p0),γ(ν), is kept both in the support of

p′1 and on the new p′γ0 . T p0 is moved down to ν and p′1 is a basic condition
over ν0. We can extend it further using measures of the extender eν(0).
It acts from now autonomously and as a condition in the extender-based
Prikry forcing of Section 3. Note that we still keep some connection with
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the upper block p′0. Thus πmc(p0),γ(ν)’s appear in both supp(p′1) and p′0, as

p′γ0 . See the figure below which gives an example of such p0, p′0, p
′
1.

µ0

µ11

µ10

µ32

µ31

µ30 µ4 T ∩ Vκ(ν)

ν0 πα4α1(ν) πα4α3(ν) ν
p′1

ν0 πα4α1(ν)
µ21

µ20 πα4α3(ν) ν T \ Vκ(ν)+1

κ α1 α2 α3 α4 = mc
p′0

µ0

µ11

µ10

µ21

µ20

µ32

µ31

µ30 µ4 T
κ α1 α2 α3 α4 = mc

p0

Once we have a two block condition p1
_p0 we can extend it further in

the same way by adding either ν ∈ Tp0 or ν ∈ Tp1 . In the first case this will
generate a new block between p1 and p0 and the second below p1. We are
allowed to repeat this any finite number of times. Thus a general condition
in P~E

will be of form p = pn
_pn−1

_ · · ·_p0 where p0 is a basic condition
over κ, p1 over some ν0 < κ, . . . and, pn over some νn−1 < νn−2.

An example of a condition in P ~E
:

τ0

τ 12

τ 11

τ 10 τ 2 τ 3 τ 4 τ 5 R
µ0 µ1 µ2 µ3 µ4 µ5 = mc

p2

µ0 µ1

µ71

µ70 µ8 µ6 µ5 S
ν0 ν1 ν2 ν3 ν4 ν5 = mc

p1

ν0 ν1 ν6

ν71

ν70 ν4 T
κ α1 α2 α3 α4 = mc

p0

Each block may grow separately. Thus in the example the maximal
coordinate of p1 changed from ν4, corresponding to α4, to a new value ν5.
New coordinates ν2, ν3 were added in p1 and µ2, µ3, µ4 in p2.

The following is a straightforward generalization of 5.27.

5.28 Definition. Let p, q ∈ PE . We say that p is a one-point extension of
q and denote this by p ≥1 q iff p and q are of form

p = pn+1
_pn

_ · · ·_p0

q = qn
_ · · ·_q0
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and there is a k with 0 ≤ k ≤ n such that

(1) pi and qi are basic conditions over some νi with pi ≥∗ qi for i < k.

(2) pi+1 and qi are basic conditions over some νi with pi+1 ≥∗ qi for each
k < i ≤ n.

(3) There is an ν ∈ T qk such that pk+1
_pk ≥∗ qk

_〈ν〉.

We now define n-extension for every n < ω.

5.29 Definition. Let p, q ∈ P ~E
. We say that p is an n-point extension of

q and denote this by p ≥n q iff either n = 0 and p ≥∗ q, or else n > 0 and
there are pn, . . . , p0 such that

p = pn ≥1 · · · ≥1 p0 = q .

Finally, we can define the order ≤ on P ~E
.

5.30 Definition. Let p, q ∈ P ~E
. Define p ≥ q iff there is n < ω such that

p ≥n q.

Let G be a generic subset of 〈P ~E
,≤〉. For every α with κ ≤ α < κ++ we

want to collect together all the ordinals corresponding to α into a set which
we call Gα. Define

Gα = {κ(p
~Eα) | ∃p ∈ G (p is a basic condition

over κ with ~Eα ∈ supp(p) and p
~Eα 6= ∅)} .

It is not hard to see using the definition of the order on P ~E
that Gα will

be unbounded in κ sequence of order type ω2. Also α 6= β will imply
Gα 6= Gβ . In addition, the sequence Gκ (the one corresponding to the
normal ultrafilter) will be closed.

Now let length( ~E) be any ordinal ≤ κ+4. Merimovich [40] showed that
his forcing P ~E

shares all the properties of the Radin forcing of 5.1, only
κ+-c.c. should be replaced by κ++-c.c.. This causes a new problem to show
that κ+ is preserved in cases of regular κ. In order to preserve measurability
of κ the following variation of repeat point is used:

τ < length( ~E) is called a repeat point of ~E if for every ξ < length( ~E) and
α < κ++, A ∈ Eα(ξ) implies that for some ξ′ < τ A ∈ Eα(ξ′).

That is, τ acts simultaneously as a repeat point of the sequence of ultrafilters
〈Eα(ξ′) | ξ < length( ~E)〉 for each α < κ++. Clearly, there will be lots of
repeat points below κ+4. The κ++ sets Gα defined above for a generic
G ⊆ P~E

will witness 2κ = κ++; Gκ will be a club in κ.
In further work [39], Merimovich added collapses to the extender-based

Radin forcing. This allowed him to reprove results of Foreman-Woodin [12],
and Woodin and obtain new interesting patterns of global behaviour of the
power function.
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6. Iterations of Prikry-type Forcing Notions

In this section we present two basic techniques for iterating Prikry-type
forcing notions. The first one is called the Magidor or full support iteration
and the second, Easton support iteration.

A set with two partial orders 〈P ,≤,≤∗〉 is called a Prikry-type forcing
notion iff

(a) ≤ ⊇ ≤∗ .

(b) (The Prikry condition) For every p ∈ P and statement σ of the forcing
language of 〈P ,≤〉 there is a p∗ ≥∗ p deciding σ.

Notice that any forcing 〈P ,≤〉 can be turned into a Prikry-type by defin-
ing ≤∗=≤. In this case the iterations below coincide with the usual itera-
tions with full or Easton support.

6.1. Magidor Iteration

The presentation below follows [16] and is a bit different from Magidor’s
original version [34].

Let ρ be an ordinal. We define an iteration 〈Pα, Qα∼
| α < ρ〉. For every

α < ρ define by recursion Pα to be the set of all p of form 〈pγ∼
| γ < α〉 so

that for every γ < α

(a) p�γ = 〈pβ∼
| β < γ〉 ∈ Pγ , and

(b) p�γ ‖Pγ
“pγ∼

is a condition in the forcing 〈Qγ∼
,≤γ∼

,≤∗
γ∼
〉 of the Prikry

type”.

Define two orderings ≤Pα
and ≤∗

Pα
on Pα.

6.1 Definition. Let p = 〈 pγ∼
| γ < α〉, q = 〈qγ∼

| γ < α〉 ∈ Pα. Then
p ≥Pα

q iff

(1) For every γ < α, p�γ ‖Pγ
“pγ∼

≥γ qγ∼
in the forcing Qγ∼

”.

(2) There exists a finite b ⊆ α such that for every γ ∈ α \ b,
p�γ ‖Pγ

“pγ∼
≥∗

γ qγ∼
in the forcing Qγ∼

”.

If the set b in (2) is empty, then we call p a direct extension of q and denote
this by p ≥∗

Pα
q.

Thus here we use full support iteration, but in order to pass from a con-
dition q ∈ Pα to a stronger one, we are allowed to take nondirect extensions
only at finitely many places. A typical example and the one originally used
by Magidor in [34], is iteration of Prikry forcings at each measurable below
α. Here in order to extend a condition we may shrink sets of measure one
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at each measurable β < α but only for finitely many β’s is it allowed to add
new elements of the Prikry sequence. We further discuss this important
example in detail. Let us now show that 〈Pα,≤,≤∗〉 is itself of the Prikry
type.

6.2 Lemma. Let p = 〈pγ∼
| γ < α〉 ∈ Pα and σ be a statement of the forcing

language of 〈Pα,≤〉. Then there is a direct extension of p deciding σ.

Proof. We deal first with the successor case. Let α = α′ + 1. Assume
that Pα′ has the Prikry property, Pα = Pα′ ∗Qα′

∼
, and ‖Pα′

(〈Qα′

∼
,≤α′

∼
,≤∗

α′
∼

〉

has the Prikry property). Let Gα′ ⊆ Pα′ be generic for 〈Pα′ ,≤〉 with
p�α′ = 〈pγ∼

| γ < α′〉 ∈ Gα′ . Find p∗α′ ≥∗
α′ pα′ in Qα′ which decides σ[Gα′ ].

Back in V , let p∗α′
∼

be a name of such p∗α′ so that

p�α′ ‖Pα′
p∗α′
∼

decides σ .

Use the Prikry property of 〈Pα′ ,≤,≤∗〉 and find q ≥∗ p�α′ such that
q ‖Pα′

(p∗α′
∼

‖Q∼
∗
α′

iσ), for some i < 2, where oσ = σ and 1σ = ¬σ. Then,

with r = q_p∗α′
∼

, we have r ‖Pα

iσ.
Suppose now that α is a limit ordinal. Assume that there is no direct

extension of p deciding σ. We define by recursion on β < α

p(β) = 〈p∗γ∼
| γ < β〉_〈pγ∼

| β ≤ γ < α〉 ≥∗ p

so that p(β)�β = 〈p∗γ∼
| γ < β〉 Pβ

¬σβ where σβ ≡ (∃ q
∼

∈ Pα \β( q
∼

≥∗ p\β
and q

∼
‖σ)).

Suppose that 〈p(γ) | γ < β〉 are defined and ≤∗-increasing. Define p(β):

Case 1. β = β′ + 1.
Force with Pβ′ = Pα�β′, i.e. with 〈Pβ′ ,≤〉. Let Gβ′ ⊆ Pβ′ be generic

with p(β′)�β′ ∈ Gβ′ . At stage β′ we use 〈Qβ′ ,≤β′ ,≤∗
β′〉. It satisfies the

Prikry condition. So there is a p∗β′ ≥∗
β′ pβ′ deciding σβ .

Claim 6.2.1. p∗β′ ‖Qβ′
¬σβ .

Proof. Suppose otherwise. Then there is a p∗∗
β′ ≥∗ p∗β′ with

p∗∗β′ ‖Qβ′
(∃ q
∼

∈ Pα \ β( q
∼

≥∗ p \ β and q
∼

‖Pα\β
iσ))

for some i < 2, where oσ = σ and 1σ = ¬σ. Without loss of generality
assume i = 0. Then there are r = 〈rγ∼

| γ < β′〉 ∈ Gβ′ and q
∼

such that
p(β′)�β′ ≤ r and

r ‖Pβ′
(pβ′

∼
≤∗

β′ p∗∗β′
∼

‖Q∼β′
( q
∼

≥∗ p \ β and q
∼

‖Pα\βσ)) .

Hence, r ‖Pβ′
(p∗∗β′
∼

_ q
∼ ≥∗ p \ β′ and p∗∗β′

∼
_ q
∼ ‖Pα\β′σ). In particular,

p(β′)�β′ ≤ r ‖Pβ′
σβ′ which contradicts the choice of p(β′). a
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Now, since Gβ′ was arbitrary, we can take a name p∗β′
∼

of p∗β′ such that
p(β′)�β′  (p∗β′

∼
‖Q∼β′

¬σβ). Set p(β) = p(β′)�β′_p∗β′
∼

_〈pγ∼
| β ≤ γ < α〉.

Case 2. β is a limit ordinal.

Then we need to show that

p(β) = 〈p∗γ∼
| γ < β〉_〈pγ∼

| β ≤ γ < α〉

is as desired, i.e. p(β)�β  ¬σβ . Suppose otherwise; then there is an r =
〈rγ∼

| γ < β〉 ∈ Pβ such that r ≥ p(β)�β and r  σβ . Extend it, if necessary,
so that for some q

∼
and i < 2

r  ( q
∼

≥∗ p \ β and q
∼

‖Pα\β
iσ)

where 0σ = σ and 1σ = ¬σ. Let us assume that i = 0. By the definition
of order on Pβ (6.1(2)), there is a β∗ < β such that for every γ with β∗ ≤
γ < β, r�γ  rγ∼

≥∗
γ

p∗γ∼
. Consider a Pβ∗-name q′

∼
= 〈rγ∼

| β∗ ≤ γ < β〉_ q
∼

.
Then, r�β∗  (q′

∼
≥∗ p \ β∗ and q′

∼
‖Pα\β∗σ). But r�β∗ ≥p(β∗)�β∗  ¬σβ∗ .

Contradiction.

This completes the construction. Consider p(α) = 〈p∗γ∼
| γ < α〉. Pick

some r ≥ p(α) deciding σ. Now we obtain a contradiction as in Case 2.
This completes the proof of the lemma. a

Let us now use this type of iteration to prove the following result of
Magidor [34]:

6.3 Theorem. Let κ be a strongly compact cardinal. Then there is a car-
dinal preserving extension in which κ is the least strongly compact and also
the least measurable.

Proof. We use the Magidor iteration 〈Pα, Qβ∼
| α ≤ κ, β < κ〉 defined by

recursion on α as follows:

(a) If ‖Pα
(α is not measurable), then take 〈Qα∼

,≤α∼
,≤∗

α∼
〉 to be the trivial

forcing

(b) If ‖Pα
(α is a measurable cardinal), then let 〈Qα∼

,≤α∼
,≤∗

α∼
〉 be the Prikry

forcing over α with some normal ultrafilter.

(c) If ¬(a) and ¬(b), then we pick a maximal antichain 〈pi | i < τ〉 of
elements of Pα so that each pi decides measurability of α. Above each
pi forcing (α is not measurable) we take 〈Qα∼

,≤α∼
,≤∗

α∼
〉 to be the trivial

forcing. Above every pi forcing measurability of α let 〈Qα∼
,≤α∼

,≤∗
α∼
〉

be the Prikry forcing over α with some normal ultrafilter.
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This means that 〈Qα∼
,≤α∼

,≤∗
α∼
〉 is a Pα-name such that Pα forces: “if α

is a measurable then 〈Qα∼
,≤α∼

,≤∗
α∼
〉 is the Prikry forcing, and otherwise

〈Qα∼
,≤α∼

,≤∗
α∼
〉 is trivial.

Let us now force with 〈Pκ,≤〉. Let Gκ ⊆ Pκ be generic. Then, in V [Gκ],
all measurable cardinals below κ are destroyed. Note that for α < κ the
iteration past stage α + 1 does not add measurables below α, since it is
itself a Prikry-type iteration with ≤∗-order more than 2α-closed. So, no
new subsets are added to α. We need only show that κ remains strongly
compact. This will follow from the next more general statement. a

Note that the above proof is a simplification of Magidor’s proof, which
showed that the measures to be killed are exactly the unique normal exten-
sions of measures of order 0 in V .

6.4 Lemma. Suppose that 〈Pα, Qβ∼
| α ≤ κ, β < κ〉 is the Magidor iteration

of Prikry-type forcing notions such that Pα ⊆ αVα for unboundedly many
α’s. Then κ is strongly compact in V Pκ provided it was such in V and for
every α < κ, ‖Pα

((a) 〈Qα∼
, 6α∼

∗〉 is |α|-closed, and (b) for all p, q, r ∈ Qα∼
,

if p, q ≥∗ r there is a t ∈ Qα∼
such that t ≥∗ p, q).

6.5 Remark. The requirement (a) holds for most of the Prikry-type forcing
notions. But we may refer the reader to [16] and [46] doing without closure
but still preserving measurability. The requirement (b) is much more re-
strictive. For example extender-based Prikry forcings of Section 2,3 do not
satisfy it. Also the Easton support iteration that will be defined later fails
to satisfy (b). It will be shown in 6.8 in non trivial cases (a)+(b) imply
existence of a measurable cardinal ≥ |α|.

Proof. Let Gκ ⊆ Pκ be generic, i.e. generic for 〈Pκ,≤〉. Let λ ≥ κ. We
want to establish the λ-strong compactness of κ. In V pick a κ-complete
fine ultrafilter U over Pκ(λ) (recall that U is called fine, if for every α < λ
the set {P ∈ Pκ(λ) | α ∈ P} is in U). Let j : V −→ M ' Ult(V, U). Back
in V [Gκ], let us define U∗ ⊇ U over Pκ(λ) as follows:

X ∈ U∗ iff for some p ∈ Gκ, in M there is a q ∈ Pj(κ) \ κ with

q ≥∗ j(p) \ κ so that p_q ‖Pj(κ)
[iď]U ∈ j(X

∼
) for some name X

∼
of X .

Note that Pκ = j(Pκ)�κ, since, in M , j(Pκ)�κ ⊆ κVκ and j“Vκ = Vκ. So
Gκ is an M -generic subset of Pκ. Also j(p)�κ = p for every p ∈ Pκ. We
need to first check that U∗ is well defined. By (b) any two q’s as above
are compatible. Note also that if p, p′ ∈ Pκ are ≤-compatible, then, in M ,
j(p) \ κ and j(p′) \ κ are ≤∗-compatible. To see this, let r ∈ Pκ, r ≥ p, p′.
Then there is a β < κ such that for β ≤ α < κ, r�β ‖Pβ

rβ∼
≥∗

β
pβ∼

, p′β∼
, where

r = 〈rγ∼
| γ < κ〉, p = 〈pγ∼

| γ < κ〉, and p′ = 〈p′γ∼
| γ < κ〉. So, in M , the

same is true for j(r), j(p) and j(p′). Hence, r forces ≤∗-compatibility of
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j(p) \ κ and j(p′) \ κ witnessed by j(r) \ κ. In particular, this shows using
(b) that q ≥∗ j(p) \ κ is ≤∗-compatible with every j(p′) \ κ with p, p′ ∈ G.

Now applying above, if p ∈ G forces “X
∼

∈ U∗

∼
and X

∼
= Y

∼
”, then for

some q ∈ Pj(κ) \ κ, q ≥∗ j(p) \ κ we have

j(p)�κ_q Pj(κ)
[iď]U ∈ j(X

∼
) .

But by elementarity, j(p)  j(X
∼

) = j(Y
∼

). Also, j(p)�κ_q ≥∗ j(p). Hence

j(p)�κ_q Pj(κ)
[ǐd]U ∈ j(Y

∼
) .

Clearly, U∗ ⊇ U , and so it is fine. Let 〈Xν | ν < δ < κ〉 be a partition of
Pκ(λ). We need to show that then for some ν < δ, Xν ∈ U∗. Pick some
p ∈ Gκ and names 〈Xν∼

| ν < δ〉 such that p  〈Xν∼
| ν < δ〉 is a partition of

Pκ(λ).
Then in M , j(p)  (〈j(Xν∼

) | ν < δ〉 is a partition of Pj(κ)(j(λ)). Now we
use κ-completeness of 〈Pj(κ) \κ,≤∗〉 in order to find ν∗ < δ and q ∈ Pj(κ) \κ
with q ≥∗ j(p) \ κ such that for some r ∈ Gκ,

r_q ‖Pj(κ)
[ǐd] ∈ j(Xν∗

∼
) .

Hence Xν∗ ∈ U∗ and we are done. a

Note that once the ultrafilter U (in the proof above) is normal and the
forcing 〈Pj(κ) \ κ,≤∗〉 is λ+-closed, then the ultrafilter U∗ extending U will
be normal as well. Just use a regressive function instead of a partition in
the proof of 6.4.

In particular, if we change the cofinality of each measurable cardinal
below a measurable cardinal κ using the Magidor iteration of Prikry forcings,
then the normal measure U over κ in V extends to a normal measure in
the extension, provided 〈Pj(κ) \ κ,≤∗〉 is κ+-closed. In order to insure this
degree of closure, we may take U which concentrates on non-measurables,
i.e.

{α < κ | α is not a measurable } ∈ U.

It is still necessary to check that the iteration Pκ does not turn κ into a
measurable in M (the ultrapower by U). This will follow from the following
general statement. The proof of it is based on [34].

6.6 Lemma. Suppose that 〈Pα, Qβ∼
| α ≤ κ, β < κ〉 is the Magidor iteration

of Prikry-type forcing notions such that

(a) Pα ⊆ αVα for unboundedly many α’s.

(b) For every α < κ, ‖Pα
(〈Qα∼

, 6α∼
∗〉 is |α|-closed, and: for all p, q, r ∈ Qα∼

,
if p, q ≥∗ r there is a t ∈ Qα∼

such that t ≥∗ p, q).
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(c) The forcing in the interval [α, (2α)+] is trivial for stationary many
α’s.

If κ is measurable in V Pκ then it was measurable in V .

6.7 Remark. We do not know if there is a nontrivial Prikry-type forcing
〈Q,≤,≤∗〉 satisfying the clause 2 for a non-measurable cardinal α, assuming
that 〈Q,≤∗〉 is not α+- closed. So, the clause 3 may hold automatically.

Proof. Let G be a generic subset of Pκ and W a κ-complete ultrafilter over
κ in V [G]. Then, clearly, κ is at least a Mahlo cardinal in V . So, the
following set is stationary in V :

S = {α < κ | Pα ⊆ αVα, |Vα| = α,

the forcing is trivial in the interval [α, (2α)+]}.

Suppose for simplicity that 0Pκ
= 〈0Qγ∼

| γ < κ〉 ∈ G and it forces that
W is a κ-complete ultrafilter over κ in V [G]; otherwise, just work above
a condition forcing this. Note that in our setting 0Pκ

need not be weaker
than every other condition in Pκ: We may have a t = 〈tγ∼

| γ < κ〉 ∈ Pκ

such that for infinitely many γ’s tγ∼
is a non-direct extension of 0γ∼

in Qγ∼
;

such a t would be incompatible with 0Pκ
.

Let α ∈ S. Define an ultrafilter Uα over κ in V [G�α] as follows:

X ∈ Uα iff for some p ∈ G�α there is a q ∈ Pκ \ α
with q ≥∗ 0Pκ

\ α so that p_q ‖Pκ
X
∼

∈ W
∼

for some name X
∼

of X .

Trivially, Uα is well-defined. α ∈ S implies that Uα is at least a (2α)+-
complete ultrafilter over κ in V [G�α] (just use the ≤∗-completeness of the
forcing Pκ \ α to deal with partitions of κ into ≤ (2α)+ many pieces).

We use now the argument of Levy-Solovay [33] to find a condition t(α) ∈
Pα with t(α) ≥ 0Pα

so that for every set X ∈ V with X ⊆ κ, either

t(α) ‖Pα
X ∈ Uα∼

or t(α) ‖Pα
X 6∈ Uα∼

.

Thus, suppose that there is no such t(α). Work in V . For each q ∈ Pα

with q ≥ 0Pα
, we pick a set Aq ⊆ κ such that q does not decide whether

Aq ∈ Uα∼
. Define a function from κ into a set of cardinality at most 2α as

follows:

F (ν) = 〈〈q, i〉 | q ∈ Pα, i < 2, and: i = 0 if ν ∈ Aq , i = 1 otherwise 〉.

Now, in V [G�α], Uα is (2α)+-complete ultrafilter, hence there is X ∈ V ∩Uα

such that F (ν) = F (µ), for any ν, µ ∈ X . Pick some q ∈ G�α forcing this.
Finally, back in V , there is an i < 2 such that for each ν ∈ X the pair 〈q, i〉
appears in F (ν). Then, i = 0 implies X ⊆ Aq and i = 1 implies X ⊆ κ\Aq.
But q ‖Pα

X ∈ Uα∼
. Hence, either q ‖Pα

Aq ∈ Uα∼
or q ‖Pα

κ \Aq ∈ Uα∼
, which

contradicts the choice of Aq.
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Set now (in V )

U(α) = {X ⊆ κ | t(α) ‖Pα
X ∈ Uα∼

} .

Clearly, U(α) is a (2α)+-complete ultrafilter over κ.
We shall find a stationary subset S ′ of S such that for every α < β ∈

S′, U(α) = U(β). Then, α ∈ S′ will imply that U(α) is a κ-complete ultra-
filter over κ.

Thus, consider the sequence of conditions 〈t(α) | α ∈ S〉. For each α ∈ S
we have t(α) ≥ 0Pα

. Hence, by the definition of the order ≤, there is a
finite set b(α) ⊆ α such that for each γ ∈ α \ b(α),

t(α)�γ ‖Pγ
t(α)γ∼

≥∗ 0γ∼
in the forcing Qγ∼

.

Now, we shrink S to a stationary set S1 such that for each α, β ∈ S1,
b(α) = b(β). Denote b(α) for α ∈ S1 by b. Let δ = max(b) + 1. The
cardinality of the forcing Pδ is less than α, for each α ∈ S1, since α = |Vα|
and Pδ ∈ Vα. Hence, there are a stationary S ′ ⊆ S1 and t ∈ Pδ such that for
each α ∈ S′ we have t(α)�δ = t. It follows that t(α) and t(β) are compatible
in the order ≤∗, for any α, β ∈ S′. We claim that U(α) = U(β), for each
α, β ∈ S′.

Recall the definition of U(α). Thus,

X ∈ U(α) iff t(α) ‖Pα
X ∈ Uα∼

iff ∃q ∈ Pκ \ α with q ≥∗ 0Pκ
\ α such that t(α)_q ‖Pκ

X ∈ W
∼

.

Suppose for a moment that there is X ∈ U(α) \ U(β). Find qα ∈ Pκ \ α
with qα ≥∗ 0Pκ

\ α such that t(α)_qα ‖Pκ
X ∈ W

∼
and qβ ∈ Pκ \ α, qβ ≥∗

0Pκ
\α such that t(β)_qβ ‖Pκ

κ\X ∈ W
∼

. But t(α)_qα and t(β)_qβ are ≤∗-
compatible, which is impossible since they force contradictory information.

a

The next simple observation shows that the conditions (a) and (b) of 6.4
already imply some strength.

6.8 Lemma. Let 〈Q,≤,≤∗〉 be a non-trivial Prikry-type forcing notion and
κ be an uncountable cardinal such that

(1) 〈Q,≤∗〉 is κ-closed.

(2) For all p, q, r ∈ Q, if p, q ≥∗ r there is a t ∈ Q such that t ≥∗ p, q.

Then there is a measurable cardinal ≥ κ.

Proof. Let λ be a cardinal which contains a new subset. Fix a name a∼ of
such a subset of λ. We assume that 0Q already forces this.
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Set
A = {ρ < λ | ∃t ≥∗ 0Q t ‖ Qρ̌ ∈ a∼}.

Then
0Q ‖ Q a∼ 6= Ǎ

just since A is old but a is new. Define now U to be the set of all X ⊆ λ
such that

∃t ≥∗ 0Q t ‖ Q(ρ ∈ X̌ for the least ρ such that ρ ∈ a∼∆Ǎ).

Then, clearly, U is a κ-complete ultrafilter over λ. Let us show that it is a
non-principal one. Suppose otherwise. Then, for some ρ < λ we will have
{ρ} ∈ U . Hence there is a t ≥∗ 0Q such that t ‖ ρ̌ ∈ a∼∆Ǎ. Extend t to
some s ≥∗ t such that

s ‖ Q ρ̌ ∈ a∼ or s ‖ Q ρ̌ ∈ Ǎ.

The former possibility implies that ρ ∈ A, by the definition of A, which is
impossible. If the later possibility occurs, then, again by the definition of
A, we will have an r ≥∗ 0Q such that r ‖ Qρ̌ ∈ a∼. But r is compatible with
s, so we arrive to a contradiction. Hence, U is non-principal and we are
done. a

6.9 Example. Let us show how the Magidor iteration may destroy station-
arity. Fix a regular cardinal κ, and set Z = {α < κ | α is a measurable}.
Assume that Z is stationary. Change the cofinality of each measurable car-
dinal below κ to ω using the Magidor iteration 〈Pα, Qβ∼

| α ≤ κ, β < κ〉
of Prikry forcings. By 6.6, only the members of Z change their cofinality.
Let G be a generic subset of Pκ with 0Pκ

∈ G. Let Cα denote the Prikry
sequence for α deduced from G, where α ∈ Z . Define a function f : Z → κ
by setting f(α) = min(Cα).

6.10 Claim. There is a finite b ⊆ κ such that the elements of the sequence
〈Cα | α ∈ Z \b〉 are pairwise disjoint. In particular, f is one-to-one on Z \b
and, so Z is not stationary in V [G].

Proof. Work in V . Let t ∈ Pκ with t ≥ 0Pκ
. Suppose for simplicity that

t ≥∗ 0Pκ
; otherwise, we work only with the coordinates where the extension

is direct. Let t = 〈tγ∼
| γ < κ〉 and for each γ ∈ Z we have tγ∼

= 〈〈〉, , Aγ∼
〉,

where Aγ∼
is a Pγ-name of a set in the normal ultrafilter U∗

γ∼
over γ which

extends a normal ultrafilter Uγ , as in 6.4. Note that by 6.6, the forcing at
each γ ∈ κ \ Z is trivial.

Fix γ ∈ Z. Let Gγ be a generic subset of Pγ with r = t�γ ∈ Gγ . Turn to
V [Gγ ]. Let us show that the set

Bγ = {ν ∈ Aγ | ∀δ ∈ Z ∩ γ (ν 6∈ Cδ)}
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must be in U∗
γ . Consider j(r) \ κ in M , where j : V → M is the canonical

embedding into the ultrapower of V by Uγ . Let q ≥∗ j(r) \ κ be obtained
from j(r)\κ by replacing each set of measure one Aδ∼

(for δ ∈ j(Z)\ (κ+1))
of j(r) \ κ by Aδ∼

\ (κ + 1). Then

r_q ‖Pj(κ)
[γ̌] ∈ j(Bγ∼

) .

Hence, Bγ ∈ U∗
γ .

Finally, back in V , we define t∗ ≥∗ t by replacing each Aγ∼
by Bγ∼

. Then
t∗ will force that Cγ ’s are pairwise disjoint. a

Suppose now that κ above was a measurable and there was a measure U
on κ concentrating on measurables. Then Z ∈ U . But in V [G], Z is not
stationary any more. Hence U does not extend to a normal ultrafilter.

6.2. Leaning’s Forcing

J. Leaning [32] suggested a new and interesting way to put together Prikry
forcings over different cardinals avoiding iteration. Below, we will briefly
describe his forcing.

Fix a set Z of measurable cardinals, and set κ = sup(Z). For each δ ∈ Z

pick a normal ultrafilter Uδ over δ. Set ~U = 〈Uδ | δ ∈ Z〉.

6.11 Definition. Let the filter of long measure one sets be

L(~U) = {X ⊆ κ | X ∩ δ ∈ Uδ for all δ ∈ Z}.

6.12 Definition. Let D(~U) be the set of all the pairs 〈s, X〉 such that

(1) s ∈ [κ]<ω.

(2) X ∈ L(~U).

6.13 Definition. Let 〈s, X〉, 〈t, Y 〉 ∈ D(~U). Then 〈s, X〉 ≥ 〈t, Y 〉 iff

(1) s ⊆ t.

(2) X ⊆ Y .

(3) s \ t ⊆ Y .

If s = t then 〈s, X〉 ≥∗ 〈t, Y 〉.

In [32] Leaning showed that 〈D(~U),≤,≤∗〉 satisfies the Prikry condition,
and so it is a Prikry-type forcing notion. He found a very interesting ap-
plication of this forcing. Thus, starting from an assumption weaker than
o(κ) = 2, Leaning constructed a forcing extension in which the first mea-
surable cardinal κ may have any number λ ≤ κ normal measures.
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Note that if Z does not include its limit points (for example, if there is no
measurable which is a limit of measurables), then this forcing is equivalent
to the Magidor iteration of Prikry forcings for elements of Z. Crucially for
each δ ∈ Z, the forcing Pδ below δ has cardinality less than δ. Hence, it is
not hard to replace a name of a set of measure one by an actual set in Uδ;
see [33] or just apply the corresponding argument from 6.6. Also, for each
δ ∈ Z the set Aδ = δ \ sup(Z ∩δ) is in Uδ and these sets are disjoint. Hence,
we can link between finite sequences s and measurable cardinals in Z.

Leaning’s forcing is equivalent for a while to a kind of the Magidor “it-
eration” of Prikry forcings, where instead of names of sets of measure one
actual sets of measure one (i.e. those from Uδ’s) are used. But once the set
Z includes δ such that

for all X ∈ Uδ, there is a µ < κ such that X ∩ µ ∈ Uµ ,

the forcing 〈D(~U ),≤,≤∗〉 is different. Namely, at this stage the Magidor
“iteration” of Prikry forcings without names fails to satisfy the Prikry con-
dition. Thus, for example, there is no direct extension of the condition
〈〈〈〉, γ〉 | γ ∈ Z〉 which can decide the following statement: “The first ele-
ment of the Prikry sequence for δ belongs to the Prikry sequence of some
µ < δ.”

6.3. Easton-support Iteration

In many applications of iterated forcings it is important to have the κ-c.c.
at stage κ of an iteration. The Magidor iteration or full support iteration
fails to have this property, as well as usually does a full support iteration
in different contexts. The common approach is to replace a full support by
an Easton one. In the present section we show how to realize this dealing
with iterations of Prikry-type forcing notions. The method was introduced
in [13] and simplified in [16]. Shelah [51] found generalizations and applied
them to small cardinals.

Let us give one example that illuminates the difference between full and
Easton-support iteration.

6.14 Example. Suppose that κ is inaccessible and the limit of a set A of
measurable cardinals. Assume for simplicity that A does not contain any
of its limit points. Either iteration can be used to add a Prikry sequence
Cγ for each γ ∈ A. In case of the full support iteration this sequence is
uniform (below a certain condition) in the sense that if 〈Xγ | γ ∈ A〉 is
any sequence in V such that Xγ is in a normal ultrafilter Uγ over γ, then⋃

γ∈A(Cγ \Xγ) is finite. Just the definition of the Magidor iteration and an
easy density argument imply this. Thus let p = 〈pγ∼

| γ ∈ A〉 be a condition
in this iteration. A does not contain its limit points, so we can assume
that each pγ∼

is in V . Then pγ is just a condition in the Prikry forcing
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with Uγ . Hence pγ = 〈tγ , Aγ〉, where tγ ∈ [γ]<ω and Aγ ∈ Uγ . Suppose
now that we force only with extensions of the condition {〈∅, γ〉 | γ ∈ A}.
Then all but finitely many tγ ’s are empty. Let tγ1 , . . . , tγn

be the only
nonempty tγ ’s. Extend p to a condition q = {〈tγ , Xγ ∩ Aγ〉 | γ ∈ A}. Then
q  (

⋃
γ∈A

Cγ∼
\ X̌γ) ⊆

⋃n
i=1 tγi

.
In the case of Easton-support iteration this will not be true: for example

the set {min(Cγ) | γ ∈ A} will be essentially an Easton-support Cohen
subset of κ, and in fact V [〈Cγ | γ ∈ A〉] will not have uniform sequence of
Prikry sequences as in the full support iteration.

Let us now turn to the definition of the Easton iteration of Prikry-type
forcing notions.

Let ρ be an ordinal. We define an iteration 〈Pα, Qα∼
| α < ρ〉 with Easton

support. For every α < ρ define by recursion Pα to be the set of all elements
p of form 〈pγ∼

| γ ∈ g〉, where

(1) g ⊆ α.

(2) g has an Easton support, i.e. for every inaccessible β ≤ α,
β > |g ∩ β|, provided that for every γ < β, |Pγ | < β.

(3) For every γ ∈ dom(g),

p�γ = 〈pβ∼
| β ∈ g ∩ γ〉 ∈ Pγ

and p�γ ‖Pγ
“pγ∼

is a condition in the forcing 〈Qγ∼
,≤γ
∼

,≤∗
γ

∼
〉

of Prikry type”.

Let p = 〈pγ∼
| γ ∈ g〉 and q = 〈qγ∼

∈ f〉 be elements of Pα. Then p ≥ q iff

(1) g ⊇ f .

(2) For every γ ∈ f , p�γ ‖Pγ
“pγ∼

≥γ qγ∼
in the forcing Qγ∼

”.

(3) There exists a finite subset b of f so that for every γ ∈ f \ b,
p�γ ‖Pγ

“pγ∼
≥∗

γ qγ∼
in the forcing Qγ∼

”.

If the set b in (3) is empty, then we call p a direct extension of q, and denote
this by p ≥∗ q.

Notice that in contrast to 6.1, we are allowed to take nondirect extensions
in both ≤ and ≤∗ orderings for infinitely many coordinates γ < α provided
that they are outside of the support (i.e. outside of f for extensions of
q = 〈qγ∼

| γ ∈ f〉). Inside the support, as in 6.1, only for finitely many γ’s
can a nondirect extension be taken.

Let p = 〈pγ∼
| γ ∈ g〉 ∈ Pα and β < α. Consider p�β = 〈pγ∼

| γ ∈ g ∩ β〉.
Let Gβ ⊆ Pβ be generic with p�β ∈ Gβ . Then p \ β = 〈pγ∼

| γ ∈ g \ β〉 ∈
P \ β = Pα/Gβ . Let t = 〈tγ∼

| γ ∈ f〉 ∈ Pα/Gβ be an extension of p \ β.
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The support f of t need not be in V . But we can always find f ∗ ∈ V ,
f ⊆ f∗ ⊆ α \ β satisfying (2) of the definition of the conditions. Thus let
t∼, f

∼
be a Pβ-names of t, f so that

p�β  t∼ = 〈tγ∼
| γ ∈ f

∼
〉 ≥ p \ β .

Work in V . Define f∗ ⊆ α covering f
∼

and satisfying (2) of the definition of
the conditions. The construction of f∗ is recursive. Let f∗∩β = ∅. Suppose
that β < γ < α and f∗ ∩ δ is already defined for each δ < γ. If γ is a limit
ordinal then let f∗ ∩ γ =

⋃
δ<γ f∗ ∩ δ. If γ = γ′ + 1, then we include γ′ in

f∗ only in the case if some extension of p�β forces (in Pβ) “γ̌′ ∈ f
∼

”. This
completes the definition of f∗. It is easy to check that for every γ ≤ α,

p�β ‖Pβ
(f̌∗ ⊇ f

∼
and |f̌∗ ∩ γ̌| ≤ |f

∼
∩ γ̌| + |Pβ |) .

Now, if γ with β < γ ≤ α is inaccessible and for every δ < γ, |Pδ | < γ,
then |f∗ ∩ γ| < γ, since, back in V [Gβ ] we have |f ∩ γ| < γ and |Pβ | < γ.
So γ remains inaccessible and |f∗ ∩ γ| ≤ |f ∩ γ| + |Pβ | < γ. Clearly, in V ,
|f∗ ∩ γ| < γ holds then as well.

Using the observation above, we can establish the Prikry condition for
〈Pα,≤,≤∗〉 repeating the argument of 6.2.

6.15 Lemma. Suppose that 〈Pα, Qβ∼
| α ≤ κ, β < κ〉 is an Easton iteration

of Prikry-type forcing notions such that for unboundedly many α’s Pα ⊆
αVα. Then κ is measurable in V Pκ , provided:

(a) κ is measurable in V .

(b) V � 2κ = κ+.

(c) For every cardinal α < κ we have

(i) ‖Pα
(〈Qα∼

,≤∗
α∼
〉 is |α|-closed).

(ii) for every β with α < β < α+, ‖Pα
(〈Qα∼

,≤∗
α∼
〉 is α+-closed).

(d) For a closed unbounded set of α’s below κ,
‖Pα

either

(i) 〈Qα∼
,≤∗

α∼
〉 is |α|+-closed, or

(ii) for all p, q ∈ Q∗
α∼
, if p, q≥∗

α∼
0Qα∼

there is a t ∈ Qα∼
such that t≥

∼
∗
αp, q

where 0Qα∼
is the weakest element of Qα∼

.

6.16 Remark. (1) The requirement Pα ⊆ αVα for unboundedly many α <
κ easily implies here that Pα ⊆ Vα, for every inaccessible α in a closed
unbounded subset of κ, due to the Easton support of conditions.
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(2) If at each α < κ ≤α=≤∗
α then also ≤=≤∗ for Pκ and the lemma is

actually the Kunen-Paris [30] result on preservation of measurability. Also
our argument is very close to the Kunen-Paris one.

(3) If κ was a supercompact then as in [4] it is possible to show that κ
remains strongly compact. Clearly, the supercompactness may be lost by
iterating the Prikry forcing at each measurable below κ.

(4) Even if the alternative (ii) of the conclusion holds for each α < κ,
〈Pκ,≤∗〉 fails to satisfy it, i.e. in Pκ there are lots of incompatible direct
extensions of a fixed condition.

Proof. Let U be a κ-complete ultrafilter over κ. Consider its elementary
embedding

j : V → M ' Ult(V, U) .

Then κM ⊆ M .
Let Gκ ⊆ Pκ be generic. The set of α < κ such that Pα ⊆ Vα is a member

of U . Hence Pκ ⊆ Vκ, Pκ = Pj(κ)�κ and for every p ∈ Pκ we have j(p) = p.
Using 2κ = κ+, we chose an enumeration 〈Aα∼

| α < κ+〉 of all canonical
names of subsets of κ. In M , at κ either 〈Qκ,≤∗

κ〉 is κ+-closed, or for every
p, q ∈ Qκ, if p, q ≥∗

κ 0Qκ
then there is a t ∈ Qκ with t ≥∗

κ p, q. Suppose first
that 〈Qκ,≤∗

κ〉 is κ+-closed. Define by recursion a ≤∗-increasing sequence
〈rα | α < κ+〉 of conditions in Pj(κ) \ κ such that for every α < κ+ there is
a p ∈ Gκ satisfying

p_rα ‖ κ̌ ∈ j(Aα∼
) .

Let U∗ = {Aα | α < κ+, for some p ∈ Gκ p_rα  κ̌ ∈ j(Aα∼
)}. It is routine

to check that U∗ is well-defined and is a normal ultrafilter over κ extending
U .

We now turn to the second possibility, i.e. any two ≤∗
κ-extensions of 0Qκ∼

in Qκ are ≤∗
κ-compatible. Define by recursion an ≤∗-increasing sequence

〈rα∼
| α < κ+〉 of conditions in Pj(κ) \ (κ + 1) such that for every α < κ+

there are p ∈ Gκ and t∼ such that p ‖Pκ
t∼
≥∗

κ∼
0Qκ∼

and

p_ t∼
_rα∼

‖ κ ∈ j(Aα∼
) .

Let

U∗ = {Aα | α < κ+, and for some p ∈ Gκ and t∼,

p ‖Pκ
t∼
≥∗

κ∼
0Qκ∼

and p_ t∼
_rα∼

 κ̌ ∈ j(A∼)} .

Using the compatibility in 〈Qκ,≤∗〉 of any two extensions of 0Qκ
, it is rou-

tine to check that U∗ is well defined and is a κ-complete ultrafilter extending
U . Note that U∗ need not be normal anymore. a

Using a similar idea a bit more general result can be shown.
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6.17 Lemma. Suppose that 〈Pα, Qβ∼
| α ≤ κ, β < κ〉 is an Easton iteration

of Prikry-type forcing notions such that for unboundedly many α’s Pα ⊆
αVα. Let U1 be a κ-complete ultrafilter over κ and U0 a normal ultrafilter
over κ such that U0 E U1 in the Mitchell order (i.e. U0 = U1 or U0 ∈
Ult(V, U1)). Then U1 extends to a κ-complete ultrafilter in V Pκ provided:

(a) V � 2κ = κ+.

(b) For every cardinal α < κ we have

(i) ‖Pα
(〈Qα∼

,≤∗
α∼
〉 is |α|-closed)

(ii) For every β with α < β < α+, ‖Pα
(〈Qα∼

,≤∗
α∼
〉 is α+-closed)

(c) The set of α < κ satisfying the condition below is in U0:
‖Pα

either

(i) 〈Qα∼
,≤∗

α∼
〉 is |α|+-closed, or

(ii) for all p, q ∈ Q∗
α∼
, if p, q≥∗

α∼
0Qα∼

there is a t ∈ Qα∼
with t≥

∼
∗
αp, q .

Proof. If U1 = U0, then this was proved in 6.15. Suppose then that U0 ∈
Ult(V, U1). Let M1 = Ult(V, U1) and j1 : V → M1 be the corresponding
elementary embedding. Consider M = Ult(M1, U0) and j10 : M1 → M
the corresponding elementary embedding. Set j = j10 ◦ j1. Clearly, j :
V → M is an elementary embedding, U0 = {X ⊆ κ | κ ∈ j(X)} and
U1 = {X ⊆ κ | j10([id]U1) ∈ j(X)}. We use j, M as in the proof of 6.15 to
define a ≤∗-increasing sequence 〈rα∼

| α < κ+〉 but now deciding statements
“j10([id]U1) ∈ j(Aα∼

)” and not “κ̌ ∈ j(Aα∼
)” as it was in 6.15. The κ-complete

ultrafilter defined using this sequence as in 6.15 will then be as desired. a

The above lemma turned out to be useful for iterations of extender-based
Prikry and Radin forcings for which the ≤∗

α-compatibility condition (i.e. the
alternative (ii) of the conclusion of the lemma) fails.

The next lemma is a basic tool our Easton-support iteration and has the
same proof as that for the usual Easton-support iteration. See Baumgartner
[5], Jech [25] or Shelah [54] for the proof.

6.18 Lemma. Suppose that 〈Pα, Qβ∼
| α ≤ κ, β < κ〉 is an Easton iteration

of Prikry-type forcing notions such that for unboundedly many α’s Pα ⊆
αVα. If κ is a Mahlo cardinal, then Pκ satisfies the κ-c.c.

Let us show now an analog of 6.6 that Easton iterations of Prikry type
forcing notions do not create new measurable cardinals. The proof is based
on an argument of Kimchi and Magidor [28]; see also Apter [3].

6.19 Lemma. Suppose that 〈Pα, Qβ∼
| α ≤ κ, β < κ〉 is an Easton iteration

of Prikry-type forcing notions such that for unboundedly many α’s Pα ⊆
αVα. Let G be a generic subset of Pκ. If κ is a measurable cardinal in V [G],
then it was measurable already in V .
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Proof. Let W be a normal ultrafilter over κ in V [G]. Fix p ∈ G such that
p ‖Pκ

(W
∼

is a normal ultrafilter over κ). Work in V . Clearly, κ is a Mahlo
cardinal. It is enough to find q ≥ p such that for every X ⊆ κ, q decides
the statement “X̌ ∈ W

∼
”.

Suppose that there is no such q. We build a binary κ-tree T of height κ.
Star with 〈p, κ〉.

Successor levels

Let the pair 〈r, A〉 be on the level α of T . We assume that r ≥ p, A ⊆ κ
and r ‖Pκ

(Ǎ ∈ W
∼

). Pick some partition A0, A1 of A and incompatible

extensions r0, r1 of r such that r0 ‖Pκ
(Ǎ0 ∈ W

∼
) and r1 ‖Pκ

(Ǎ1 ∈ W
∼

). Place
both 〈r0, A0〉 and 〈r1, A1〉 in T at the level α + 1 to be the successors of
〈r, A〉.

Limit levels

Let α < κ be a limit ordinal. For each branch in T of the height α, we
take the intersection of all second coordinates of elements along the branch.
We thus obtain a partition of κ into at most 2α many sets. But κ is Mahlo,
hence 2α < κ. Also,

p ‖Pκ
(W
∼

is a normal ultrafilter over κ) .

Hence, there are an element A of this partition and r ≥ p such that

r ‖Pκ
Ǎ ∈ W

∼
.

For all such A, we place a pair of form 〈r, A〉 into T at level α as the successor
of each element of the branch generating A.

This completes the construction of T .

Turn now to V [G]. κ is measurable and so weakly compact. Hence T
must have a κ-branch. Let 〈〈rα, Aα〉 | α < κ〉 be such a branch. For each
α < κ set Bα = Aα \Aα+1. By the construction of T , then there is sα such
that 〈sα, Bα〉 is an immediate successor of 〈rα, Aα〉. In addition, sα ≥ rα

and the conditions rα+1, sα are incompatible. Also, for each β > α, we
have Aβ ⊆ Aα+1. So, Aβ ∩ Bα = ∅. But

rβ ‖Pκ
Ǎβ ∈ W

∼
and sα ‖Pκ

B̌α ∈ W
∼

,

hence rβ and sα are incompatible. This implies that sβ and sα are incom-
patible as well, since sβ ≥ rβ .

Hence, 〈sα | α < κ〉 forms an antichain of size κ in V [G]. But this is
impossible, since we can run the usual ∆-system argument for the Easton
support iteration (Pκ)V inside V [G] and this will give the κ-c.c. Contradic-
tion. a
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Let us conclude with two applications. The first one will be a construction
of a κ+-saturated ideal over an inaccessible κ concentrating on cardinals of
cofinality ℵ0. Such an ideal was first constructed by Woodin starting from
a supercompact and using a beautiful construction involving passing to a
model without AC and then restoring the choice by forcing. Mitchell in [44]
gave another construction from the optimal assumptions. The construction
below follows the lines of [13]. Let U0 / U1 be normal ultrafilters over κ
(i.e. U0 ∈ Ult(V, U1)). Suppose GCH for simplicity. Fix a sequence of
normal ultrafilters 〈U(β) | β < κ〉 representing U0 in the ultrapower by U1.
Pick some A ⊆ κ, A ∈ U1 \ U0 such that for every β ∈ A A ∩ β 6∈ U(β).
We define 〈Pκ,≤,≤∗〉 by taking the Easton iteration of Prikry forcings with
U(β) (or more precisely with the extension of U(β) defined in 6.7) for every
β ∈ A. Let j : V −→ M1 ' Ult(V, U1) and let Gκ ⊆ Pκ be generic. Fix
an enumeration 〈Aα∼

| α < κ+〉 of all canonical names of subsets of κ. As
in 6.15, we define a ≤∗-increasing sequence 〈rα∼

| α < κ+〉 of elements of
Pj(κ) \ κ + 1 such that for every α < κ+ there are p ∈ Gκ and t ∈ Qκ

p_t_rα∼
‖ κ̌ ∈ j(Aα∼

) .

Define

F1 = {B ⊆ κ | there are p ∈ Gκ and α < κ+

such that p_0Qκ∼
_rα∼

 κ̌ ∈ j(B
∼

)} .

It is not hard to see that F1 is a well defined normal filter over κ extending
U1.

Let us establish the normality. Suppose that 〈Bβ | β < κ〉 is a sequence
of elements of F1. We need to show that B = ∆{Bβ | β < κ} ∈ F1. By the
definition of F1, for each i < κ there are pβ ∈ Gκ and αβ < κ+ such that

pβ
_0Qκ∼

_rαβ∼
 κ̌ ∈ j(Bβ∼

) .

Let α ≥
⋃

β<κ αβ . We would like to show that for some p ∈ Gκ,

p_0Qκ∼
_rα∼

 κ̌ ∈ j(B
∼

) .

Suppose otherwise. Then for some p ∈ Gκ, t ∈ Qκ and r∼ ≥ rα∼
,

p_t_ r∼  κ̌ 6∈ j(B
∼

) .

Then, by the definition of the diagonal intersection, there would be β < κ,
p′ ∈ G, t′ ∈ Qκ, and r′∼ such that

p_t_ r∼ 6 p′_t′_r′∼  κ̌ 6∈ j(Bβ∼
) .

But this is impossible, since pβ
_0Qκ

_rαβ∼
 κ̌ ∈ j(Bβ∼

), there is a q ∈ Gκ

which is stronger than both p and pβ, and so q_t_ r
∼

≥ pβ
_0Qκ

_0Qκ

_rαβ∼
.

Contradiction.
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The forcing with F1-positive sets is equivalent to the forcing with
〈Qκ,≤κ〉. The last forcing is just Prikry forcing with an extension of U0.
Hence it satisfies the κ+-c.c. Clearly, F1 concentrates on cardinals of cofi-
nality ℵ0, since each member of A is such a cardinal in V [Gκ]. [13] contains
generalizations of the above construction for cofinalities different from ℵ0

and to the nonstationary ideal. Thus it was shown there that NSκ�S can
be κ+-saturated for a stationary set S ⊆ κ so that for every regular cardinal
δ < κ S ∩ {β < κ | cf(β) = δ} is stationary.

If we define a function f : A → κ by f(α) = min(Cα), where Cα is the
Prikry sequence for α, then for every γ < κ the set {α < κ | f(α) = γ}
will be F1–positive. This is in contrast to a similar construction 6.6 with
the Magidor iteration considered at the beginning of §6.2. There, f is one
to one. Below, we will see that this f may be a projection function from a
non-normal extension of U1 to a normal extension of U0.

Let us now turn to the second application. Consider U0 / U1 as above.
Perform the same iteration. Let j1 : V −→ M1 ' Ult(V, U1). In M1[Gκ], at
stage κ we are supposed to use the Prikry forcing with a normal ultrafilter
U∗

0 extending U0. Clearly, U∗
0 is such also in V [Gκ]. Obviously, any two

direct extensions of the weakest condition in Prikry forcing are compatible.
Hence, by 6.6 or 6.8, there is a κ-complete ultrafilter U ∗

1 extending U1. We
pick U∗

1 as it was defined in 6.17 using the embedding j1.

6.20 Lemma. U∗
1 >RK U∗

0 .

Proof. Define the projection map f : A −→ κ as follows: f(α) = the first
element of the Prikry sequence of α, where A ∈ U1 \ U0 is as in the first
application. In order to show that this f projects U ∗

1 onto U∗
0 , it is enough

to prove that for every B ∈ U∗
0 and C ∈ U∗

1

f−1(B) ∩ C 6= ∅ .

So let C ∈ U∗
1 and B ∈ U∗

0 . By the definition of U∗
1 there are p ∈ Gκ,

t = 〈∅, D〉 ∈ Qκ and α < κ+ so that p_t_rα∼
 κ̌ ∈ j1(C∼

). Then also,
p_〈∅, D ∩ B〉_rα∼

 κ̌ ∈ j1(C∼
) and in addition 〈∅, D ∩ B〉 ‖Qκ

(the first
element of the Prikry sequence of κ is in B). Hence,

p_〈∅, D ∩ B〉_rα∼
 κ̌ ∈ j1(C∼

) ∩ j1(f∼
−1)(j1(B∼

) = j1(C∼
∩ f
∼

−1(B
∼

)) .

So, C ∩ f−1(B) ∈ U∗
1 . In particular, C ∩ f−1(B) 6= ∅.

Notice now that U∗
1 cannot be isomorphic to U∗

0 or in other words, f
cannot be 1− 1 on a set in U∗

1 . Thus, by the κ-c.c. every closed unbounded
subset of κ in V [Gκ] contains a closed unbounded subset of κ which is in
V . U1 was normal in V , hence U∗

1 containing U1 contains as well all closed
unbounded subsets of κ. Clearly, f is regressive. So, if it is one to one on a
set E ∈ U∗

1 then E is nonstationary which is impossible. Hence U ∗
1 >RK U∗

0

and we are done. a
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The construction above turns the Mitchell order into the Rudin Keisler
order for two ultrafilters. Longer sequences were dealt in [13], and the
consistency correlation between these orderings was studied in [14]. In [15],
the construction above was extended further in order to turn a Mitchell
increasing sequence of length κ++ into a Rudin-Keisler increasing sequence
of the same length. Such a sequence (with minor changes) can be used in
the extender-based Prikry forcing of Section 3 for changing the cofinality of
κ to ℵ0 blowing simultaneously its power to κ++. This way, the consistency
strength of the negation of the Singular Cardinal Hypothesis is reduced to
the optimal value o(κ) = κ++, i.e. a measurable of the Mitchell order κ++.

6.4. An Application to Distributive Forcing Notions

We would like to apply the iteration techniques of §6.1 and §6.2 to distribu-
tive forcing notions.

Let 〈Q,≤〉 be (κ,∞)-distributive, i.e. it does not add new sequences of
ordinals of length less than κ or, equivalently, the intersection of any less
than κ dense open subsets of Q is dense open. If κ is 2|Q|-supercompact
(or 2|Q|-strongly compact) then it is possible to turn Q into a Prikry-type
forcing 〈Q,≤,≤∗〉 with 〈Q,≤∗〉 κ-closed.

Recall that a map π : P1 → P2 between forcing notions is called a
projection if

(a) q ≤ r implies π(q) ≤ π(r).

(b) π(0P1) = 0P2 .

(c) If p ≥ π(q), then there is a r ≥ q with π(r) ≥ p.

If G1 ⊆ P1 is generic then π“G1 generates a generic subset of P2. We
say that in this case P2 is a subforcing of P1.

6.21 Lemma. Assume that 〈Q,≤〉 is a (κ,∞)-distributive forcing notion
where κ is 2|Q|-supercompact. Let 〈P ,≤,≤∗〉 be the supercompact Prikry
forcing with a normal ultrafilter over Pκ(2|Q|). Then 〈Q,≤〉 is a subforcing
of 〈P ,≤〉.

Proof. Let λ = 2|Q|. Fix 〈Dα | α < λ〉 a list of all dense open subsets of
Q. Let G be a generic subset of P and 〈Pn | n < ω〉 its Prikry sequence.
Then, by 1.50, λ =

⋃
n<ω Pn. Each Pn ∈ V and has cardinality less than κ.

Hence, by distributivity, D(n) =
⋂
{Dα|α ∈ Pn} ∈ V is dense open subset

of Q. Also, D(n + 1) ⊆ D(n), since Pn+1 ⊇ Pn. Now, we pick an increasing
sequence 〈qn | n < ω〉 with qn ∈ D(n). It will generate a generic subset of
Q. a



6. Iterations of Prikry-type Forcing Notions 99

Let π : P → Q be a projection map, which exists by the previous lemma.
Define now a forcing ordering (quasiorder) ≤Q over P :

p ≤Q r iff π(p) ≤ π(r) .

Then 〈P ,≤Q〉 is a forcing equivalent to 〈Q,≤〉.

6.22 Lemma. 〈P ,≤Q,≤∗〉 is a Prikry-type forcing notion.

Proof. Clearly, ≤Q ⊇ ≤ ⊇ ≤∗. So we need to check that for every p ∈ P
and a statement σ of the forcing 〈P ,≤Q〉 there is p∗ ≥∗ p deciding σ in
〈P ,≤Q〉. Set

A0 = {q ∈ P | q ≥Q p and q 〈P,≤Q〉 σ}, and

A1 = {q ∈ P | q ≥Q p and q 〈P,≤Q〉 ¬σ} .

Note that any q0 ∈ A0 and q1 ∈ A1 are incompatible in 〈P ,≤〉, since
≤⊆≤Q. Also, each r ∈ P has ≤Q-extension in A0 or in A1. Thus, it must
have ≤-extension in one of these sets. Let, for example, r ≤Q s ∈ A0. So,
π(r) ≤ π(s) and by (3) of the definition of projection there is an r′ ≥ r
such that π(r′) ≥ π(s). Hence, r′ ≥Q s ∈ A0 and so r′ ∈ A0. The above
means that A0 ∪ A1 is dense 〈P ,≤〉. The Prikry condition for 〈P ,≤,≤∗〉
implies then that there is a p∗ ≥∗ p forcing in 〈P ,≤〉 “G

∼
∩Ai 6= ∅” for some

i ∈ 2, where G
∼

is the canonical name for a 〈P ,≤〉-generic set. Without loss
of generality suppose i = 0. Then, p∗ 〈P,≤Q〉 σ. Otherwise, there will
be q ∈ A1, q ≥Q p∗. But, then, using the property (3) of the projection,
there will be q′ ≥ p∗ such that q′ ≥Q q. Hence q′ ∈ A1 which means
q′ 〈P,≤〉 G

∼
∩ A1 6= ∅. This contradicts to the choice of p∗. a

Let us conclude with an example of iterating distributive forcing notions.
We refer to [16, 13, 46] and [29] for more sophisticated applications.

A subset E of a regular κ > ℵ0 is called fat if for every δ < κ and every
closed unbounded subset C of κ there is a closed subset s ⊆ E ∩C of order
type δ. It is not hard to obtain a fat subset with fat complement. For
example, just force a Cohen subset to κ. It will be as desired. Suppose now
that E ⊆ κ is fat. Consider the usual forcing for adding a club to E:
P [E] = {d | d is a closed bounded subset of E} ordered by the end exten-
sion, i.e. d1 ≥ d2 iff d1 ∩max(d2) + 1 = d2. By Abraham and Shelah [2], or
just directly, the forcing 〈P [E],≤〉 is (κ,∞)–distributive.

Suppose now that for every n < ω, κn is a κ+
n -supercompact cardinal,

2κn = κ+
n and En is a fat subset of κn. We would like to produce a cardinal

preserving extension in which every En will contain a club.
By 6.22, for every n < ω there is a Prikry-type forcing 〈Qn,≤n,≤∗

n〉 such
that 〈Qn,≤n〉 is equivalent to 〈P [En],≤〉 and 〈Qn,≤∗

n〉 is κn–closed. Let
〈Pn, Qn∼

| n < ω〉, 〈Pω,≤,≤∗〉 be the Magidor iteration (the Easton iteration
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is just the same in case of ω stages) of 〈Qn,≤n,≤∗
n〉’s. It certainly will add

clubs to each En. We need to show only that cardinals are preserved. Let
m < ω. We use an obvious splitting Pω = P≤m ∗P>m of Pω into the part of
the iteration up to m and those above m. Then, 〈P>m,≤∗〉 will be κm+1–
closed. So the Prikry condition will imply that it does not add new bounded
subsets to κm+1. P≤m is a finite iteration P [E0] ∗ P [E1] ∗ · · · ∗ P [Em]. For
every k ≤ m, |P≤k| = κk. So each Ek+1 remains fat in V P≤k . Hence, P≤m

preserves all the cardinals.
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7. Some Open Problems

We conclude this chapter with several open problems on cardinal arithmetic.
Some of them are well known; others are less so, but seem to us important
for the further understanding of the power function.

The first and probably the most well known:

Problem 1

Suppose that ℵω is strong limit or even 2ℵn = ℵn+1 for every n < ω. Is it
possible to have 2ℵω > ℵω1?

By Shelah [53], an upper bound is min(ℵω4 ,ℵ(2ℵ0 )+). It is shown in

[21] that “2ℵω > ℵω1” implies an inner model with overlapping extenders.
Recently this was improved in [22] to PD.

The next problem is probably a bit less well known, but according to
Shelah it is the crucial for cardinal arithmetic.

Problem 2

Let a be a set of regular cardinals with |a| < min(a). Can |pcf(a)| > |a|?

Recall that pcf(a) = {cf(
∏

a/D) | D an ultrafilter over a}. By the basics
of the pcf -theory, |pcf(a) |≤ 2|a| (see [53], [6] or [1]). It is unknown even
if for countable a’s “|pcf(a)| > |a|” implies an inner model with a strong
cardinal. But in [18], it was shown that if for a set a of regular cardinals

above 2|a|
++ℵ2 we have |pcf(a)| > |a| + ℵ1, then there is an inner model

with a strong cardinal.

Recall that pp(κ) = sup{cf(
∏

a/D) | a ⊆ κ is a set of at most cf(κ) of
regular cardinals, unbounded in κ and D an ultrafilter over a including all
cobounded subsets of a}. The next problem was proposed by Shelah in [52]
and deals with the following strengthening of “|pcf(a)| = |a|” called the
Shelah Weak Hypothesis :

For every cardinal λ the number of singular cardinals κ < λ with pp(κ) ≥
λ is at most countable.

Also, for uncountable cofinality an even stronger statement is claimed:

For every cardinal λ the number of singular cardinals κ < λ of uncount-
able cofinality with pp(κ) ≥ λ is finite.

Problem 3

Is the negation of the Shelah Weak Hypothesis consistent?
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In [23] was shown that much more complicated forcing notions than those
of Sections 2,3 seem to be needed in order to deal with the negation of the
Weak Hypothesis.

The general formulation of the Singular Cardinals Problem (SCP) is as
follows: Find a complete set of rules describing the behavior of the power
(or even more general – pseudo-power (pp)) function on singular cardinals.
In terms of core models (see the inner model chapters of this handbook) we
can reformulate SCP in a more concrete form: Given a core model K with
certain large cardinals, which functions in K can be realized as the power
set function in a set generic extension of K, i.e. if F : λ → λ ∈ K for some
ordinal λ, is there a generic extension of K satisfying 2ℵα = ℵF (α) for all
α < λ?

If we restrict ourselves to finite gaps between singular cardinals and its
power then, at present, the most general results on possible behavior of the
power function are due C. Merimovich [39]. They extend previous results by
Foreman-Woodin [12], Woodin, Cummings [9] and M. Segal [49]. However
lots of possibilities are still open. Let us state a few of the simplest:

Problem 4

Is it possible to have 2ℵω1 = ℵω1+2 and two stationary sets S1, S2 ⊆ ω1 with
S1 ∪ S2 = ω1 such that

α ∈ S1 implies 2ℵα = ℵα+2 and

α ∈ S2 implies 2ℵα = ℵα+3 ?

Problem 5

Is it possible to have two stationary sets S1, S2 ⊆ ω2 with S1 ∪S2 = ω2 and
S2 ∩ {α < ω2 | cf(α) = ω1} stationary such that

α ∈ S1 implies 2ℵα = ℵα+1 and

α ∈ S2 implies 2ℵα = ℵα+2 ?

The usual approach via Magidor or Radin forcing produce a club with
the same behavior and here we would like to have different ones on relatively
big sets. The first of these two problems may be an easier one, since we need
only GCH on S1 and, so starting with the GCH in the ground model nothing
special should be done on S1. Note also that in view of the Silver Theorem
(see [25], Sec. 1.8) we must have 2ℵω1 = ℵω1+1 in models of Problem 5 and
2ℵω1 ≤ ℵω1+2 in those of Problem 4. Methods of [21] can be used to show
that at least a strong cardinal is needed for constructing a model of Problem
4. By [22], the strength of at least PD is needed for constructing a model
of Problem 5.
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