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Abstract. 1. It is shown that the failure of ♦S , for a set S ⊆ ℵω+1 that
reflects stationarily often, is consistent with GCH and APℵω

, relatively
to the existence of a supercompact cardinal. By a theorem of Shelah,
GCH and �∗λ entails ♦S for any S ⊆ λ+ that reflects stationarily often.

2. We establish the consistency of existence of a stationary subset
of [ℵω+1]ω that cannot be thinned out to a stationary set on which the
sup-function is injective. This answers a question of König, Larson and
Yoshinobu, in the negative.

3. We prove that the failure of a diamond-like principle introduced
by Džamonja-Shelah is equivalent to the failure of Shelah’s strong hy-
pothesis.

0. Introduction

0.1. Background. Recall Jensen’s diamond principle [10]: for an infinite
cardinal λ and a stationary set S ⊆ λ+, ♦S asserts the existence of a
collection {Aδ | δ ∈ S} such that the set {δ ∈ S | A ∩ δ = Aδ} is stationary
for all A ⊆ λ+.

It is easy to see that ♦λ+ implies 2λ = λ+, and hence it is natural to
ask whether the converse holds. Jensen proved that for λ = ℵ0, the inverse
implication fails (see [10]), however, for λ > ℵ0, a recent theorem of Shelah
[19] indeed establishes the inverse implication, and moreover, it is proved
that 2λ = λ+ entails ♦S for every stationary S which is a subset of Eλ+

6=cf(λ) :=

{α < λ+ | cf(α) 6= cf(λ)}.
The result of [19] is optimal: by a theorem of Shelah from [20], GCH is

consistent with the failure of ♦
Eλ

+
λ

for a regular uncountable cardinal λ. By

another theorem of Shelah, from [17, §2], GCH is consistent with the failure
of ♦S for a singular cardinal λ and a stationary set S ⊆ Eλ+

cf(λ). However,

the latter happens to be a proper subset of Eλ+

cf(λ); more specifically, it is a
non-reflecting stationary subset. This leads to the following question:
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Question. Suppose λ is a singular cardinal and 2λ = λ+.
Must ♦S hold for every S ⊆ Eλ+

cf(λ) that reflects stationarily often?1

In [17, §3], Shelah answered the above question in the affirmative, pro-
vided that �∗λ holds and that λ is a strong limit. Later, Zeman [21] applied
ideas from [19] and eliminated the “strong limit” hypothesis. Then, in [15],
the second author introduced the Stationary Approachability Property at
λ, abbreviated SAPλ, proved that SAPλ is strictly weaker than �∗λ, and
answered the above question positively in the presence of SAPλ. It was
unknown whether the hypothesis SAPλ can be eliminated, or even whether
it is possible to replace it with the usual Approachability Property, APλ.

In the present paper we answer the discussed question in the negative, and
moreover, do so in the presence of APλ. Let Refl(T ) denote the assertion
that every stationary subset of T reflects stationarily often; then the main
result of this paper reads as follows.

Theorem A. It is relatively consistent with the existence of a supercompact
cardinal that all of the following holds simultaneously:

(1) GCH;
(2) APℵω ;
(3) Refl(Eℵω+1

ω );
(4) ♦S fails for some stationary S ⊆ Eℵω+1

ω .

Combining the preceding theorem with the results from [15], we now ob-
tain a complete picture of the effect of weak square principles on diamond.2

Corollary (first three items are from [15]). For a singular cardinal, λ:

(1) GCH + Refl(Eλ+

cf(λ)) + �∗λ ⇒ ♦∗λ+;

(2) GCH + Refl(Eλ+

cf(λ)) + SAPλ 6⇒ ♦∗λ+;

(3) GCH + Refl(Eλ+

cf(λ)) + SAPλ ⇒ ♦S for every stationary S ⊆ λ+;

(4) GCH + Refl(Eλ+

cf(λ)) + APλ 6⇒ ♦S for every stationary S ⊆ λ+.

Once that the effect of weak square principles to diamond is well-understood,
it is natural to study which of the other combinatorial principles from [3, §4]
is strong enough to impose an affirmative answer to Question 1. It turns
out that even the strongest among these principles does not suffice. We
prove:

Theorem B. It is relatively consistent with the existence of a supercompact
cardinal that there exists a singular cardinal λ for which all of following holds
simultaneously:

1We say that S reflects stationarily often iff there are stationarily many α < λ+ with
cf(α) > ω such that S ∩ α is stationary.

2For the definition of ♦∗λ+ , as well as Kunen’s theorem that ♦∗λ+ ⇒ ♦S for every
stationary S ⊆ λ+, see [12].
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(1) λ is a strong limit and 2λ = λ+;
(2) there exists a very good scale for λ;
(3) ♦S fails for some S ⊆ Eλ+

cf(λ) that reflects stationarily often.

To conclude the introduction, let us say a few words about the structure
of the proof of Theorem A. We start with a supercompact κ, and a singular
cardinal λ above it, namely λ := κ+ω. We add a generic stationary subset
S ⊆ Eλ+

cf(λ), and then kill ♦S by iteration, while preserving the stationar-
ity of S and the supercompactness of κ. Since κ remains supercompact,
Refl(Eλ+

cf(λ)) holds, so this already gives an example of a model of GCH on

which ♦S fails for some stationary S ⊆ Eλ+

cf(λ) that reflects stationarily often.

Nevertheless, by cf(λ) < κ < λ, and a theorem Shelah from [16], APλ fails
in our model. For this, at the final stage of the proof, we move everything
down to ℵω, and use a method of Foreman and Magidor from [7] to insure
APℵω .

The main problem that we address here is an iteration over the successor
of a singular. More specifically, the main body of our proof is the argu-
ment that S remains stationary after the iteration for killing all diamond
sequences over it.

0.2. Organization of this paper. In Section 1, we present a λ+-directed-
closed, λ++-c.c., notion of forcing for introducing a stationary subset of λ+

on which diamond fails. Then, in the presence of a supercompact cardinal,
we appeal to this notion of forcing, and construct three models in which
diamond fails on a set that reflects stationarily often. In particular, Theorem
A and Theorem B are proved in this section.

In Section 2, we revisit a theorem by Džamonja and Shelah from [4]
in which, starting with a supercompact cardinal, they construct a model
satisfying the failure of one of the consequences of diamond. Here, we
establish that this particular consequence of diamond is quite weak. We
do so by reducing its consistency strength to the level of existence of a
measurable cardinal κ of Mitchell order κ++. In particular, its strength is
lower than the one of weak square.

In Section 3, we answer a question by König, Larson and Yoshinobu from
[11], concerning stationary subsets of [λ+]ω. We do so by linking between
the diamond principle and the behavior of the sup-function on generalized
stationary sets.

0.3. Notation. Generally speaking, we follow the notation and presenta-
tion of [12] and [3]. Let us quickly review our less standard conventions.
For cardinals κ < λ, denote Eλ

κ := {α < λ | cf(α) = κ}, and [λ]κ := {X ⊆
λ | |X| = κ}. Eλ

>κ and [λ]<κ are defined analogously. We let Ord denote
the class of ordinals. For sets of ordinals a, b, we write a v b or b w a iff
a is an initial segment of b, that is, iff a ⊆ b and b ∩ sup(a) = a. Given
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a set of ordinals, a, we let cl(a) := {sup(a ∩ α) | α ∈ Ord} denote its
topological closure. For Z ⊆ Ord and distinct functions g, h ∈ Z2, we let
∆(g, h) := min{α ∈ Z | g(α) 6= h(α)}.

Our forcing conventions are as follows. We denote by p ≥ q the fact that
p is stronger than q. For a ground model set, x, we denote its canonical
name by x̌. For arbitrary sets of the generic extension, we designate names
such as ȧ and a∼. If 〈p1, q̇1〉, 〈p2, q̇2〉 are conditions of a two-step iteration

P ∗ Q, and p2 ≥ p1 
P q̇1 = q̇2, then we slightly abuse notation by writing
〈p1, q̇1〉 = 〈p2, q̇2〉.

1. Negation of diamond

1.1. Forcing the failure of diamond. In this subsection, we present a
λ+-directed-closed, λ++-c.c., notion of forcing for introducing a stationary
subset S ⊆ λ+ on which diamond fails. For simplicity, we shall be focusing
on the case S ⊆ Eλ+

ω . The general case is discussed in subsection 1.3.

Definition 1.1. For a cardinal λ, we define the forcing notion S(λ+).
A condition s is in S(λ+) iff s is a bounded subset of λ+, and cf(δ) = ω

for all δ ∈ s. A condition s′ is stronger than s, denoted s′ ≥ s, iff s′ w s.

Thus, S(λ+) is simply the restricted-to-countable-cofinality version of λ+-
Cohen forcing. In particular, we have:

Lemma 1.2. For every infinite cardinal, λ:

(1) S(λ+) has the (2λ)+-c.c.;
(2) every increasing sequence of conditions in S(λ+) of length < λ+ has

a least upper bound.

For future needs, it is useful to introduce the following set-name:

Ṡ(λ+) := {〈δ̌, s〉 | δ ∈ s ∈ S(λ+)}.

Clearly, if G is S(λ+)-generic, then Ṡ(λ+) is a name for
⋃
G. We now

consider a natural forcing notion for Killing a given Diamond sequence.

Definition 1.3. For a set S ⊆ Ord and a sequence of sets ~A, we define the
forcing notion KD(S, ~A).

A condition p is in KD(S, ~A) iff p = (x, c), where c is a closed set of

ordinals, x ⊆ max(c) < sup(S), and for all δ ∈ c∩S∩dom( ~A), x∩δ 6= ~A(δ).
A condition (x, c) is stronger than (x′, c′), denoted (x, c) ≥ (x′, c′), iff

x w x′ and c w c′.

Notice that indeed if ~A = 〈Aδ | δ ∈ S〉 is a ♦S sequence in V , then ~A will

cease to be so in V KD(S, ~A).
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For a strong limit singular cardinal λ with 2λ = λ+ and a subset S ⊆ λ+,
let KAD(S) denote the forcing notion for Killing All Diamond sequences
over S. That is, KAD(S) is a (≤ λ)-support iteration

(〈Pα | α ≤ λ++〉, 〈Ṙα | α < λ++〉),
such that P0 is a trivial forcing, and for all α < λ++, Pα forces that Ṙα is

a name for the forcing KD(Š, ~Aα∼
), whereas

−→
Aα∼

is a Pα-name for a sequence

chosen by a book-keeping function in such a way that all potential diamond
sequences are handled at some stage. The existence of such a function
follows from cardinal arithmetic hypothesis and the λ++-c.c. of KD(S, ~A).

Definition 1.4. Let Q(λ+) := S(λ+) ∗KAD(Ṡ(λ+)).
We also define Q′(λ+). A condition 〈s, k〉 is in Q′(λ+) iff all of the fol-

lowing holds.

(1) 〈s, k〉 ∈ Q(λ+);
(2) s decides the support of k to be, say, supp(k);
(3) for all α ∈ supp(k), k(α) is an S(λ+) ∗ Pα-canonical name for a pair

(xkα, c
k
α);

(4) for all α ∈ supp(k) and δ ∈ s∩ ckα, 〈s, k〉 � S(λ+) ∗Pα decides ~Aα(δ);
(5) sup(xkα) = max(ckα) ≥ sup(s) for all α ∈ supp(k).

Lemma 1.5. every increasing sequence of conditions in Q′(λ+) of length
< λ+ has a least upper bound.

Proof. Suppose 〈〈sβ, kβ〉 | β < θ〉 is an increasing sequence of conditions in
Q′(λ+), with θ < λ+. Define 〈s, k〉 by letting:

• s :=
⋃
β<θ sβ;

• supp(k) :=
⋃
β<θ supp(kβ);

• for all α ∈ supp(k):

xkα :=
⋃
{xkβα | β < θ ∧ α ∈ supp(kβ)},

ckα := cl(
⋃
{ckβα | β < θ ∧ α ∈ supp(kβ)}).

Note that, by definition, sup(s) is not necessarily a member of s.
To establish that 〈s, k〉 ∈ Q′(λ+), let us show that 〈s, k〉 ∈ Q(λ+). So,

suppose α ∈ supp(k), and δ ∈ s ∩ ckα. Pick β < θ such that δ ∈ sβ and

α ∈ supp(kβ). By property (5), we have max(c
kβ
α ) ≥ sup(sβ) ≥ δ, and hence

δ ∈ c
kβ
α . By property (4), 〈sβ, kβ〉 � S(λ+) ∗ Pα decides ~Aα(δ), and hence

x
kβ
α ∩δ 6= ~Aα(δ). Finally, by property (5), we have sup(x

kβ
α ) = max(c

kβ
α ) ≥ δ,

and hence x
kβ
α ∩ δ = xkα ∩ δ, so xkα ∩ δ 6= ~Aα(δ). �

Lemma 1.6. Q′(λ+) is λ+-directed closed.

Proof. Virtually the same proof as the preceding. �
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Lemma 1.7. Assume λ is a strong limit singular cardinal, and 2λ = λ+.
Then:

(1) |Q(λ+)| = λ++;
(2) Q(λ+) has the λ++-c.c.;
(3) Q′(λ+) is dense in Q(λ+).

Proof. (1) is obvious, and (2) follows from a standard ∆-system argument.
(3) To simplify the notation, for all β ≤ λ++, let Q′β := Q′(λ+) � S(λ+) ∗

Pβ. Note that the proof of Lemma 1.5 shows that every increasing sequence
of conditions in Q′β of length < λ+ has a least upper bound. We now prove
by induction on β ≤ λ++ that Q′β is dense in Qβ := S(λ+) ∗ Pβ.

Induction base: For β = 0, we have Q′β = S(λ+) ∗ P0 = Qβ.
Induction step: Suppose the claim holds for α, and 〈s, k〉 is a given ele-

ment of Qβ, for β = α + 1. We would like to find a condition in Q′β which
is stronger than 〈s, k〉.

Since S(λ+) is λ+-closed, and Pβ is a (≤ λ)-support iteration, we may
assume that s already decides the support of k. To avoid trivialities, we
may also assume that α ∈ supp(k).

Since Q′α is a λ+-closed, dense subset of Qα, and k(α) is a Qα-name for a
pair of bounded subsets of λ+, let us pick a condition 〈s0, k0〉 ≥ 〈s, k〉 and
a pair (x0, c0) such that 〈s0, k0〉 � Qα ∈ Q′α, k0(α) is the Qα-canonical name
for (x0, c0), and:

〈s0, k0〉 � Qα 
 k(α) = k0(σ).

Evidently, 〈s0, k0〉 ≥ 〈s, k〉. Next, suppose n < ω and 〈sn, kn〉, (cn, kn)
are defined. For all δ < λ+, let Dn

δ denote the collection of all conditions
〈s′, k′〉 ∈ Qβ such that all of the following holds:

• 〈s′, k′〉 ≥ 〈sn, kn〉;
• k′(α) = kn(α);
• 〈s′, k′〉 � Qα ∈ Q′α;

• 〈s′, k′〉 � Qα decides ~Aα(δ).

Since Q′α is a λ+-closed, dense subset of Qα, we get that Dn
δ is dense in Qβ

above 〈sn, kn〉, so let us pick a condition 〈s′n, k′n〉 ∈
⋂
δ∈cn D

n
δ .

Pick a limit γn+1 ∈ Eλ+

6=ω such that γn+1 > sup(xn ∪ cn ∪ ck
′
n
i ) for all

i ∈ supp(k′n). Let 〈sn+1, kn+1〉 be the condition in Qβ satisfying:

• 〈sn+1, kn+1〉 � Qα = 〈s′n ∪ {γn+1 + ω}, k′n〉;
• kn+1(α) is the Qα-canonical name for the following pair:

(xn+1, cn+1) := (xn ∪ {α | max(cn) < α < γn+1}, cn ∪ {γn+1}).

Note that supp(kn+1) = supp(k′n), that sn+1∩ckn+1

i = s′n∩c
k′1
i and x

kn+1

i =

x
k′n
i for all i ∈ supp(kn+1) ∩ α, and that xn+1 ∩ δ = xn ∩ δ for all δ ∈
sn+1 ∩ cn+1 = s′n ∩ cn. Since, for all i ∈ supp(k′n) ∩ α and all δ ∈ s′n ∩ c

k′n
i ,
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〈s′n, k′n〉 � Qi decides ~Ai(δ), and since 〈s′n, k′n〉 decides ~Aα(δ) for all δ ∈ cn,
we conclude that 〈sn+1, kn+1〉 is indeed well-defined.

Now, suppose 〈〈(sn, kn), (xn, cn)〉 | n < ω〉 has already been defined. Let
〈s∗, k∗〉 be the condition satisfying:

• s∗ :=
⋃
n<ω sn;

• supp(k∗) :=
⋃
n<ω supp(kn);

• k∗(α) is the canonical name for the pair
(⋃

n<ω xn, cl(
⋃
n<ω cn)

)
;

• for all i ∈ supp(k∗) ∩ α, k∗(i) is the canonical name for the pair
(xk

∗
i , x

k∗
i ), where:

xk
∗
i :=

⋃
{xkni | n < ω ∧ i ∈ supp(kn)},

ck
∗
i := cl(

⋃
{ckni | n < ω ∧ i ∈ supp(kn)}).

Assume indirectly that 〈s∗, k∗〉 is not a legitimate condition. Since 〈s∗, k∗〉 �
Qα is just the least upper bound of 〈〈s′n, k′n〉 � Qα | n < ω〉, then it must
be the case that the “problem” is with the αth-coordinate, that is, there
exists some δ ∈ s∗ ∩ cl(

⋃
n<ω cn) for which (

⋃
n<ω xn)∩ δ = ~Aα(δ). Fix such

δ. Put γ := sup(s∗). Then γ = supn<ω(γn+1 + ω) = supn<ω max(cn+1),
and hence cl(

⋃
n<ω cn) = (

⋃
n<ω cn) ∪ {γ}. As γ 6∈ sup(s∗), let us pick

some n < ω such that δ ∈ cn ∩ sn. Then, by the choice of 〈s′n, k′n〉, we

know that s′n decides ~Aα(δ), and that k′n(α) is the canonical name for the

pair (xn, cn). In particular, xn ∩ δ 6= ~Aα(δ). As δ ∈ cn, the definition of
xn+1 yields that xn ∩ δ v xn+1 with sup(xn+1) = γn+1 > δ. Consequently,

(
⋃
n<ω xn) ∩ δ 6= ~Aα(δ). A contradiction.
Thus, 〈s∗, k∗〉 ∈ Qβ. Recalling that 〈s∗, k∗〉 � Qα ∈ Q′α, and the definition

of 〈(xn, cn, sn) | n < ω〉, we now conclude that 〈s∗, k∗〉 ∈ Q′β.
Limit step: Suppose β is a limit ordinal, and 〈s, k〉 ∈ Qβ.
Clearly, we may assume that s decides the support of k. To avoid trivial-

ities, we may also assume that sup(supp(k)) = β. In particular, cf(β) < λ.
Let 〈βα | α < cf(β)〉 be an increasing sequence of ordinals converging

to β. Evidently, this sequence may be chosen in such a way that cf(βα) <
cf(β) < λ for all α < cf(β).

Denote βcf(β) := β. Recursively define an increasing sequence of condi-
tions in Q, 〈〈sα, kα〉 | α ≤ cf(β)〉, in such a way that:

• 〈s0, k0〉 = 〈s, k〉;
• sα decides the support of kα for all α ≤ cf(β);
• 〈sα, kα〉 � Qβα ∈ Q′βα for all α ≤ cf(β);
• kα � (λ++ \ βα) = k � (λ++ \ βα) for all α ≤ cf(β).

The successor stage simply utilizes the induction hypothesis, so let us
show how to handle the limit stage of the recursion. Suppose α ≤ cf(β) is
a limit ordinal, and 〈〈sη, kη〉 | η < α〉 is defined.
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Fix γ < α. Since 〈〈sη, kη〉 � Qβγ | γ ≤ η < α〉 is an increasing sequence
of conditions in Q′βγ of length < λ+, we may define qγ = 〈sγ, kγ〉 as its

least upper bound. Note that 〈qγ | γ < α〉 is in
∏

γ<α Q′βγ , and that

qγ1 � Qβγ = qγ2 � Qβγ whenever γ1 ≤ γ2 ≤ γ < α. We now define 〈sα, kα〉,
and then argue that it is indeed a legitimate condition. Thus, let 〈sα, kα〉
be the condition satisfying:

• sα := s0;
• sα decides the support of kα to be

⋃
γ<α supp(kγ) ∪ supp(k);

• for all i ∈ supp(kα) ∩ βα:

kα(i) = kγ(i), where γ := min{γ′ | i ∈ supp(kγ
′
)};

• for all i ∈ supp(kα) \ βα:

kα(i) = k(i).

Evidently, for all γ < α, we have 〈sα, kα〉 � Qβγ = qγ � Qβγ . Since
cf(βα) < λ, the forcing Pβα is the inverse limit of 〈Pτ | τ < βα〉, and hence
〈sα, kα〉 � Qβα ∈ Qβα . By arguments which, by now, are standard, we
moreover have 〈sα, kα〉 � Qβα ∈ Q′βα .

Finally, as 〈sα, kα〉 � Qβα ≥ 〈s, k〉 � Qβα , kα � (λ++ \ βα) = k � (λ++ \ βα)
and:

〈s, k〉 � Qβα 
 k � (λ++ \ βα) ∈ KAD(Ṡ(λ+)) � (λ++ \ βα),

we get that

〈sα, kα〉 � Qβα 
 kα � (λ++ \ βα) ∈ KAD(Ṡ(λ+)) � (λ++ \ βα),

and hence 〈sα, kα〉 is a legitimate condition of Q(λ+). Thus, the recursion
may indeed be carried out, and we end up with a condition 〈scf(β), kcf(β)〉 ∈
Q′β which is stronger than 〈s, k〉, as requested. �

The next theorem is the core of our proof. We encourage the reader to
notice the role of the fact that S concentrates on the critical cofinality, i.e.,
that S ⊆ Eλ+

cf(λ).
3

Theorem 1.8. Suppose λ > cf(λ) = ω is a strong limit, and 2λ = λ+.
If G ∗H is Q(λ+)-generic, then letting S :=

⋃
G, we have:

V [G][H] |= S is stationary.

Proof. Fix a name Ė and condition 〈s∗, k∗〉 ∈ Q′(λ+) forcing that Ė is a
club subset of λ+. Clearly, we may assume that 0 ∈ supp(k∗) and that
| supp(k∗)| = λ. Fix a large enough regular cardinal χ and an elementary
submodel M ≺ 〈H(χ), <χ) satisfying:

• |M | = λ;

3Recall that by [19], 2λ = λ+ entails ♦S for every S which does not concentrate on
the critical cofinality.
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• M ∩ λ+ ∈ Eλ+

ω ;
• 〈Q(λ+),Q′(λ+), 〈s∗, k∗〉, Ė〉 ∈M .

Notice that since λ is a strong limit, we have Z2 ⊆ M for all Z ∈ M with
|Z| < λ. For a set Z ∈ [λ++]λ, let ψZ : λ → Z be the <χ-least surjection.
Fix {λn | n < ω} ∈ M which is a cofinal subset of λ. Evidently, for every
Z ∈ [λ++]λ ∩M and n < ω, we have ψZ“λn ∈M .

Definition 1.8.1 (Deciding the club). For α < λ+ and a condition 〈s, k〉 ≥
〈s∗, k∗〉, let 〈s, k〉α denote the <χ-least extension of 〈s, k〉 such that:

• 〈s, k〉α ∈ Q′(λ+);
• 〈s, k〉α decides a value for min(E \ α);
• if 〈s, k〉α = 〈s′, k′〉, then sup(s′) ≥ α.

Notice that if 〈s, k〉 ∈M and α ∈M ∩ λ+, then 〈s, k〉α ∈M , as well.
To slightly simplify the next definition, for α ∈ Ord and m < ω, we

designate the open interval Int(α,m) = {β | α +m < β < α + ω1}.

Definition 1.8.2 (Branching extensions). For a condition 〈s, k〉 ∈ Q′(λ+),
a set Z ∈ [λ++]≤λ, a function g : Z → 2, and an ordinal γ < λ+, we shall
define 〈s, k〉gγ.

If γ < sup{max(cki ) | i ∈ supp(k)∩Z}, we just let 〈s, k〉gγ := ∅. Otherwise,
〈s, k〉gγ = 〈s′, k′〉 is the ≤χ-least extension of 〈s, k〉 such that:

• 〈s′, k′〉 ∈ Q′(λ+);
• s′ = s;
• supp(k′) = supp(k) ∪ Z;
• for all i ∈ supp(k′):

(xk
′

i , c
k′

i ) =


(xki , c

k
i ), i 6∈ Z

(Int(γ, g(i)), {γ + ω1}) , i ∈ Z \ supp(k)(
xki ∪ Int(γ, g(i)), cki ∪ {γ + ω1}

)
, i ∈ Z ∩ supp(k).

To see that the definition is good, just notice that for all i ∈ supp(k′), if
s′∩ck′i 6= ∅, then i ∈ supp(k), and xk

′
i ∩δ = xki ∩δ for all δ ∈ s′∩ck′i = s∩cki .

Evidently, if {g, γ, 〈s, k〉} ⊆M , then 〈s, k〉gγ ∈M .

Definition 1.8.3 (Mixing two conditions). Given q0 = 〈s0, k0〉, q1 = 〈s1, k1〉
in Q′(λ+), and β < λ++ such that 〈s0, k0〉 � S(λ+)∗Pβ ≤ 〈s1, k1〉 � S(λ+)∗Pβ,
let mix(q1, β, q0) be the <χ-least condition 〈s′, k′〉 such that:

• 〈s′, k′〉 ∈ Q′(λ+);
• s′ = s1;
• supp(k′) = supp(k0) ∪ (supp(k1) ∩ β);
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• for all i ∈ supp(k′):

(xk
′

i , c
k′

i ) =


(xk1

i , c
k1
i ), i < β

(xk0
i , c

k0
i ), i ≥ β ∧max(ck0

i ) ≥ sup(s′)(
xk0
i ∪ Int(sup(s′), 0), ck0

i ∪ {sup(s′) + ω1}
)
, otherwise

It is not hard to see that the definition is good, and that mix(q1, β, q0) ∈
M whenever {q1, β, q0} ⊆ M . Notice that mix(q1, β, q0) makes sense, also
in the case β = 0.

Claim 1.8.4. Suppose g1, g0 ∈ Z2 for a given set Z ∈ [λ++]≤λ, and that
q ∈ Q′(λ+).

If β ≤ ∆(g1, g1) and α, γ < λ+, then mix(qg1
γ , β, q

g0
γ ) = qg1

γ , and mix((qg1
γ )α, β, qg0

γ )
is a well-defined extension of qg0

γ .

Proof. This follows immediately from the above definitions, and we encour-
age the reader to digest these definitions by verifying this claim. �

Put τ := M ∩ λ+ and pick {τn | n < ω} ⊆ M ∩ λ+ with supn<ω τn = τ .
Denote Z−1 := ∅. We now recursively define a sequence 〈(γn, Yn, Zn,Fn) |
n < ω〉 in such a way that for all n < ω:

(1) γn < λ+;
(2) {Yn | n < ω} ⊆ [λ++]λ and {Zn | n < ω} ⊆ [λ++]<λ are increasing

chains that converges to the same set;
(3) for every g ∈ Zn2, we define a condition qg ∈ Q′(λ+) in such a way

that m < n implies qg�Zm ≤ qg, and we let Fn := {qg | g ∈ Zn2};
(4) for every g ∈ Zn2, there exists some r ∈ Q′(λ+) such that

qg ≥ rg�(Zn\Zn−1)
γn ≥ r ≥ 〈s∗, k∗〉;

(5) for every g0, g1 ∈ Zn2 and β < λ++, if g0 � β = g1 � β, then

qg0 � S(λ+) ∗ Pβ = qg1 � S(λ+) ∗ Pβ;

(6) if 〈s, k〉 ∈ Fn, then 〈s, k〉 decides a value for min(E \ τn), and
sup(s) ≥ τn.

We commence with letting γ0 := sup{max(ck
∗
i ) | i ∈ supp(k∗)}, Y0 :=

supp(k∗), and Z0 := ψY0“λ0. Next, we would like to define qg for all g ∈ Z02.
Let {gj | j < 2λ0} be the <χ-least injective enumeration of Z02. We shall
define an upper triangular matrix of conditions, {qjl | j ≤ l < 2λ0}, in such
a way that for all j ≤ j′ ≤ l ≤ l′ < 2λ0 , we would have:

(a) r
gj
γ0 ≤ qjj ≤ qjl ≤ qjl′ , where r := 〈s∗, k∗〉;

(b) pτ0 ≤ qjj for some condition p ∈ Q′(λ+);
(c) qjl′ � S(λ+) ∗ Pβ = qj′l′ � S(λ+) ∗ Pβ whenever gj � β = gj′ � β.

Once we have that, for each g ∈ Z02, we pick the unique j such that gj = g,
and let qg be the least upper bound of the increasing sequence 〈qjl | j ≤
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l < 2λ0〉. Then item (a) takes care of requirement (4), item (b) establishes
requirement (6), and item (c) yields requirement (5).

Thus, the jth row of the matrix is responsible for the condition qgj . The
actual definition of the matrix, however, is obtained along the columns.
Namely, we define {qjl | j ≤ l < 2λ0} by induction on l < 2λ0 .

Induction base: Let q00 := (rg0
γ0

)τ0 .

Successor step: Suppose l < 2λ0 and {qjl | j ≤ l} has already been defined.
We would like to define {qjl′ | j ≤ l′}, for l′ := l + 1.

Put α := sup{∆(gj, gl′) + 1 | j < l′}. For all β < α, let jβ be the least
such that jβ < l′ and gjβ � β = gl′ � β.

Fix β < α. By Definition 1.8.2, we have r
gjβ
γ0 � S(λ+) ∗ Pβ = r

gl′
γ0 �

S(λ+) ∗ Pβ, and by property (a), we have r
gjβ
γ0 ≤ qjβ l. It follows that r

gl′
γ0 �

S(λ+) ∗ Pβ ≤ qjβ l � S(λ+) ∗ Pβ, and hence mix(qjβ l, β, r
gl′
γ0 ) is a well-defined

extension of r
gl′
γ0 .

By property (c), we get that β < γ < α implies qjβ l � S(λ+) ∗ Pβ = qjγ l �
S(λ+) ∗ Pβ and mix(qjβ l, β, r

gl′
γ0 ) = mix(qjγ l, β, r

gl′
γ0 ) ≤ mix(qjγ l, γ, r

gl′
γ0 ).

For all β < α, let pβ := mix(qjβ l, β, r
gl′
γ0 ). Then, we have just established

that 〈pβ | β < α〉 is an increasing sequence of conditions, with p0 ≥ r
gl′
γ0 ,

and pβ � S(λ+) ∗ Pβ = pγ � S(λ+) ∗ Pβ for all β < γ < α.
By cf(α) ≤ l′ < λ, let pα be the least upper bound of the sequence,

〈pβ | β < α〉. Then, for all j < l′:

(?)
pα � S(λ+) ∗ P∆(gj ,gl′ )

= p∆(gj ,gl′ )
� S(λ+) ∗ P∆(gj ,gl′ )

=
qj∆(gj ,gl′ )

l � S(λ+) ∗ P∆(gj ,gl′ )
= qjl � S(λ+) ∗ P∆(gj ,gl′ )

.

Put ql′l′ := (pα)τ0 . Then (b) is clearly satisfied. By ql′l′ ≥ pα ≥ p0 ≥ r
gl′
γ0 ,

we also have (a). By (?), we now get that for all j < l′:

ql′l′ � S(λ+) ∗ P∆(gj ,gl′ )
≥ pα � S(λ+) ∗ P∆(gj ,gl′ )

= qjl � S(λ+) ∗ P∆(gj ,gl′ )
,

thus, to establish property (c), we just assign qjl′ := mix(ql′l′ ,∆(gj, gl′), qjl)
for all j < l′.

Limit step: Suppose l′ < 2λ0 is some ordinal and {qjl | j ≤ l < l′} has
already been defined. For all j < l′, let qj be the least upper bound of the
increasing sequence, 〈qjl′ | j ≤ l′ < l〉. To compare with the successor step,
we now work against {qj | j < l′}, instead of {qjl | j < l′}, where l was the
immediate predecessor of l′.

Put α := sup{∆(gj, gl′) + 1 | j < l′}, and for all β < α, let jβ be the least
such that jβ < l′ and gjβ � β = gl′ � β. Then (a) and (c) implies:

(a’) r
gjβ
γ0 ≤ qjβjβ ≤ qjβ for all β < α;

(c’) qjβ � S(λ+) ∗ Pβ = qjγ � S(λ+) ∗ Pβ for all β < γ < α.
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For all β < α, let pβ := mix(qgjβ , β, r
gl′
γ0 ), and let pα be the least upper

bound of the increasing sequence 〈pβ | β < α〉. Then for all j < l′:

(?′)
pα � S(λ+) ∗ P∆(gj ,gl′ )

= p∆(gj ,gl′ )
� S(λ+) ∗ P∆(gj ,gl′ )

=
qj∆(gj ,gl′ )

� S(λ+) ∗ P∆(gj ,gl′ )
= qj � S(λ+) ∗ P∆(gj ,gl′ )

.

Thus, put ql′l′ := (pα)τ0 , and for all j < l′, let qjl′ := mix(ql′l′ ,∆(gj, gl′), qj).
This completes the construction of F0 = {qg | g ∈ Z02}.
Next, suppose 〈(γm, Ym, Zm,Fm) | m ≤ n〉 has already been defined for

some n < ω. Let:

• γn+1 := sup{max(cki ) | 〈s, k〉 ∈ Fn for some s, i ∈ supp(k)};
• Yn+1 :=

⋃
{supp(k) | 〈s, k〉 ∈ Fn for some s};

• Zn+1 :=
⋃
{ψYk“λn+1 | k ≤ n+ 1};

• Fn+1 := {qg | g ∈ Zn+12}.
Clearly, our main task is defining qg for all g ∈ Zn+12. Let {gj | j < 2λn+1}
be the <χ-least bijective enumeration of Zn+12. We shall now define an
upper triangular matrix {qjl | j ≤ l < 2λn+1} in such a way that for all
j ≤ j′ ≤ l ≤ l′ < 2λn+1 , we would have:

(a) (qgj�Zn)
gj�(Zn+1\Zn)
γn+1 ≤ qjj ≤ qjl ≤ qjl′ ;

(b) pτn+1 ≤ qjj for some condition p ∈ Q′(λ+);
(c) qjl′ � S(λ+) ∗ Pβ = qj′l′ � S(λ+) ∗ Pβ whenever gj � β = gj′ � β.

As in the base case, once the matrix is defined, for each g ∈ Zn+12, we pick
the unique j such that gj = g, and let qg be the least upper bound of the
increasing sequence 〈qjl | j ≤ l < 2λn+1〉.

Induction base: Let q00 := ((qg0�Zn)
g0�(Zn+1\Zn)
γn+1 )τn+1 .

Successor step: Suppose l < 2λn+1 and {qjl | j ≤ l} has already been
defined. We would like to define {qjl′ | j ≤ l′}, for l′ := l + 1.

Put α := sup{∆(gj, gl′) + 1 | j < l′}, and for all β < α, let jβ be the
least such that jβ < l′ and gjβ � β = gl′ � β. Fix β < α. By (5), we have
qgl′�Zn � S(λ+) ∗ Pβ = qgjβ �Zn � S(λ+) ∗ Pβ, and hence:

(qgl′�Zn)gl′�(Zn+1\Zn)
γn+1

� S(λ+) ∗ Pβ = (qgjβ �Zn)
gjβ �(Zn+1\Zn)
γn+1 � S(λ+) ∗ Pβ.

In addition, by property (a), we have (qgjβ �Zn)
gjβ �(Zn+1\Zn)
γn+1 ≤ qjβ l. Denote

rl′ := (qgl′�Zn)
gl′�(Zn+1\Zn)
γn+1 . It follows that rl′ � S(λ+) ∗Pβ ≤ qjβ l � S(λ+) ∗Pβ,

and hence mix(qjβ l, β, rl′) is a well-defined extension of rl′ .
By property (c), we get that β < γ < α implies qjβ l � S(λ+) ∗ Pβ = qjγ l �

S(λ+) ∗ Pβ and mix(qjβ l, β, rl′) = mix(qjγ l, β, rl′) ≤ mix(qjγ l, γ, rl′).
For all β < α, let pβ := mix(qjβ l, β, rl′). Then, we have just estab-

lished that 〈pβ | β < α〉 is an increasing sequence of conditions, with

p0 ≥ (qgl′�Zn)
gl′�(Zn+1\Zn)
γn+1 , and pβ � S(λ+) ∗ Pβ = pγ � S(λ+) ∗ Pβ for all
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β < γ < α. By cf(α) < λ, let pα be the least upper bound of the se-
quence, 〈pβ | β < α〉. Then, for all j < l′, we have (?) as above, so let
ql′l′ := (pα)τn+1 , and assign qjl′ := mix(ql′l′ ,∆(gj, gl′), qjl) for all j < l′.

Limit step: Suppose l′ < 2λn+1 is some ordinal and {qjl | j ≤ l < l′} has
already been defined. For all j < l′, let qj be the least upper bound of the
increasing sequence, 〈qjl′ | j ≤ l′ < l〉. Put α := sup{∆(gj, gl′) + 1 | j < l′},
and for all β < α, let jβ be the least such that jβ < l′ and gjβ � β = gl′ � β.
Then, the following holds:

(a’) (qgjβ �Zn)
gjβ �(Zn+1\Zn)
γn+1 ≤ qjβjβ ≤ qjβ for all β < α;

(c’) qjβ � S(λ+) ∗ Pβ = qjγ � S(λ+) ∗ Pβ for all β < γ < α.
Fix β < α. By (5), we have qgl′�Zn � S(λ+) ∗ Pβ = qgjβ �Zn � S(λ+) ∗ Pβ,

and hence:

(qgl′�Zn )gl′�(Zn+1\Zn)
γn+1

� S(λ+) ∗ Pβ = (qgjβ �Zn)
gjβ �(Zn+1\Zn)
γn+1 � S(λ+) ∗ Pβ.

Denote rl′ := (qgl′�Zn)
gl′�(Zn+1\Zn)
γn+1 . By item (a’) and the above equation, we

get that rl′ � S(λ+)∗Pβ ≤ qjβ � S(λ+)∗Pβ, and hence mix(qjβ , β, rl′) is a well-
defined extension of rl′ . By (c’), if we write pβ := mix(qjβ , β, rl′), then 〈pβ |
β < α〉 is an increasing sequence of conditions, with p0 ≥ (qgl′�Zn )

gl′�(Zn+1\Zn)
γn+1 ,

and pβ � S(λ+) ∗ Pβ = pγ � S(λ+) ∗ Pβ for all β < γ < α.
Let pα be the least upper bound of the sequence, 〈pβ | β < α〉. Then,

for all j < l′, we have (?′) as above, so let ql′l′ := (pα)τn+1 and qjl′ :=
mix(ql′l′ ,∆(gj, gl′), qj) for all j < l′.

This completes the construction of Fn+1 = {qg | g ∈ Zn+12}.

Claim 1.8.5. {γn, Zn, Yn,Fn} ⊆M for all n < ω.

Proof. Easy. �

Let Z :=
⋃
n<ω Zn, and for every function g : Z → 2, let qg denote the

least upper bound of the increasing sequence 〈qg�Zn | n < ω〉. We now state
and prove several claims that should gradually clarify the role of the above
construction.

Claim 1.8.6. For every g ∈ Z2, if qg = 〈s, k〉, then supp(k) = Z.

Proof. Fix n < ω and 〈sn, kn〉 ∈ Fn. By property (4) and Definition
1.8.2, we have Zn \ Zn−1 ⊆ supp(kn). By definition of Yn+1, we also have
supp(kn) ⊆ Yn+1. It follows that if g ∈ Z2 and qg = 〈s, k〉, then

Z =
⋃
n<ω

(Zn \ Zn−1) ⊆ supp(k) ⊆
⋃
n<ω

Yn+1 = Z. �

Claim 1.8.7. For every g0, g1 ∈ Z2 and β < λ++, if g0 � β = g1 � β, then
qg0 � S(λ+) ∗ Pβ = qg1 � S(λ+) ∗ Pβ.
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Proof. For each i < 2, qgi is the least upper bound of 〈qgi�Zn | n < ω〉. Now
appeal to property (5) of the construction. �

By the previous claim, the next definition is good.

Definition 1.8.8. Given β < λ++, h : Z ∩ β → 2, and i ∈ Z ∩ β, pick a
function g : Z → 2 that extends h, and define (xhi , c

h
i ) := (xki , c

k
i ), where k

is such that qg = 〈s, k〉.
Claim 1.8.9. For all β < λ++, h : Z ∩ β → 2, and i ∈ Z ∩ β, we have:

sup(xhi ) = max(chi ) = τ.

Proof. Pick g : Z → 2 extending h. Fix n < ω, and denote 〈sn, kn〉 = qg�Zn .
By property (6), we have sup(s) ≥ τn. By 〈sn, kn〉 ∈ Q′(λ+) ∩M , we have

τ = λ+ ∩M > sup(xkni ) = sup(ckni ) ≥ sup(s) ≥ τn.

The conclusion now follows. �

Claim 1.8.10. There exists s̄ ⊆ τ such that for all g ∈ Z2, if 〈s, k〉 = qg,
then s = s̄.

Proof. The existence of s̄ follows from Claim 1.8.7, but let us argue that s̄ ⊆
τ . Pick an arbitrary function g ∈ Z2. Fix n < ω. Denote 〈sn, kn〉 = qg�Zn .
Then sn ∈M and hence sn ⊆ τ . As s̄ is equal to

⋃
n<ω sn, we conclude that

s̄ ⊆ τ . �

Claim 1.8.11. For every g ∈ Z2, qg 
 τ̌ ∈ Ė.

Proof. For all n < ω, by property (6) and Fn ⊆ M , there exists αn with
τn ≤ αn < λ+ ∩M = τ such that qg�Zn 
 α̌n ∈ Ė. Since sup{τn | n <
ω} = τ , we get that sup{αn | n < ω} = τ , and hence qg forces that τ is an
accumulation point of the club E. �

Thus, our main task is to argue the existence of some g ∈ Z2 such that qg
is compatible with 〈s̄ ∪ {τ}, ∅〉. Evidently, such a condition will force that
S meets E. A key fact for insuring the existence of such function, is the
next claim.

Claim 1.8.12. Suppose A ⊆ τ .
For every i ∈ Z, there exists some m < 2 such that xki 6= A whenever
〈s, k〉 = qg and {(i,m)} ⊆ g ∈ Z2.

Proof. Suppose i ∈ Z. Let n < ω be the unique ordinal such that i ∈
Zn \ Zn−1. Since Int(γn, 0) 6= Int(γn, 1) and γn + ω1 < τ = M ∩ λ+, let us
pick some m < 2 such that A ∩ Int(γn, 0) 6= Int(γn,m). Now, if 〈s, k〉 = qg
for some g ∈ Z2 with g(i) = m, then by property (4), qg ≥ r

g�(Zn\Zn−1)
γn ≥ r

for some condition r, and by Definition 1.8.2, this means that i ∈ supp(k),
and:

xki ∩ Int(γn, 0) = Int(γn, g(i))) = Int(γn,m) 6= A ∩ Int(γn, 0).
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In particular xki 6= A. �

Let D denote the set of all 〈s, k〉 such that all items of Definition 1.4, ex-
cept to (5), are satisfied, where instead, we require that for all α ∈ supp(k):

(5a) either sup(xkα) = max(ckα) ≥ sup(s), or
(5b) α ∈ supp(k∗) and (xkα, c

k
α) = (xk

∗
α , c

k∗
α ).

Then D ⊇ Q′(λ+) is a dense set, and by a proof similar to the one of Lemma
1.5, every increasing sequence of length < λ+ of elements of D has a least
upper bound (within D).

Definition 1.8.13. Given α ∈ Z and a function h : Z ∩ (α + 1) → 2, we
define the condition qh = 〈s′, k′〉 as follows. Fix g : Z → 2 extending h.

If qg = 〈s, k〉, then:

• s′ = s;
• 〈s′, k′〉 ∈ D;
• supp(k′) = (supp(k) ∩ (α + 1)) ∪ supp(k∗);
• for all i ∈ supp(k′):

(xk
′

i , c
k′

i ) =

{
(xki , c

k
i ), i ≤ α

(xk
∗
i , c

k∗
i ), otherwise

.

Then qh is well-defined, by Claim 1.8.7.
For each α < λ++, let Dα denote the dense-open subset of S(λ+) ∗ Pα

that decides
−→
Aα(τ), and let D→α := {p ∈ D | p � S(λ+) ∗ Pα ∈ Dα} denote

its cylindric extension.
Put θ := otp(Z) and let {εα | α < θ} be the increasing enumeration of

Z. We now define by induction an increasing sequence of conditions, 〈pα =
〈sα, kα〉 | α < θ〉 and a chain of functions {hα : Z ∩ (εα + 1) → 2 | α < θ}
in such a way that for all α < θ:

(a) qhα ≤ pα ∈ D→εα ;
(b) s̄ ∪ {τ} v sα;
(c) supp(kα) ⊆ supp(k∗) ∪ (εα + 1);
(d) (xkαi , c

kα
i ) = (xk

∗
i , c

k∗
i ) for all i ∈ supp(kα) \ (εα + 1).

Induction base: Since 0 ∈ supp(k∗) ⊆ Z, we have ε0 = 0. Pick 〈s0, ∅〉 ∈
D0 with s̄ ∪ {τ} v s0.4 In particular, 〈s0, ∅〉 decides

−→
A0(τ) to be, say, Aτ0.

By Claim 1.8.12, pick a function h0 : {ε0} → 2 such that Aτ0 6= xh0
ε0

, and let
p0 := 〈s0, k0〉 be the condition in D such that supp(k0) = supp(k∗) and for
all i ∈ supp(k0):

(xk0
i , c

k0
i ) :=

{
(xh0

i , c
h0
i ), i = ε0

(xk
∗
i , c

k∗
i ), else

.

4Recall that D0 ⊆ S(λ+) ∗ P0, and that P0 is the trivial forcing 〈{∅}, {(∅, ∅)}〉.
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Let us show that p0 is well-defined. Suppose not. Fix i ∈ supp(k0) and δ ∈
s0∩ck0

i such that
−→
Ai(δ) = xk0

i ∩δ. Clearly, if i > ε0, then δ ∈ s0∩ck
∗
i implies

that δ ∈ s∗, contradicting the fact that 〈s∗, k∗〉 is a legitimate condition. So
i = ε0 = 0. Since δ ∈ ch0

0 , we get from Claim 1.8.9, that either δ = τ or
δ ∈ s̄. It is impossible that δ = τ , because the choice of h0 insured that

xk0
0 ∩ δ 6=

−→
A0(δ). So, δ ∈ s̄.

Pick a function g : Z → 2 extending h0, and let 〈sn, kn〉 := qg�Zn for

all n < ω. Then s̄ =
⋃
n<ω s

n, xh0
0 =

⋃
n<ω x

kn

0 and ch0
0 =

⋃
n<ω c

kn

0 ∪ {τ}.
Pick n < ω such that δ ∈ sn. By 〈sn, kn〉 ∈ Q′(λ+), we have sup(xk

n

0 ) =

max(xk
n

0 ) ≥ sup(sn) ≥ δ, and then
−→
A0(δ) = xh0

0 ∩ δ = xk
n

0 ∩ δ while δ ∈
sn ∩ ckn0 , contradicting the basic fact that 〈sn, kn〉 is a legitimate condition.

Thus, p0 is well-defined and satisfies requirements (a)–(d).
Successor step: Suppose that for some α < θ, pα has already been defined.

Pick p′ = 〈s′, k′〉 ≥ pα in D→εα+1
. Then p′ � S(λ+) ∗ Pεα+1 decides

−−−→
Aεα+1(τ) to

be, say, Aτεα+1
. By Claim 1.8.12, pick a function hα+1 : Z ∩ (εα+1 + 1)→ 2

extending hα such that Aτεα+1
6= xhα+1

εα+1
. Finally, let pα+1 = 〈sα+1, kα+1〉 be

the condition in D such that:

• sα+1 = s′;
• supp(kα+1) = (supp(k′) ∩ εα+1) ∪ {εα+1} ∪ supp(k∗);
• for all i ∈ supp(kα), we have:

(x
kα+1

i , c
kα+1

i ) :=


(xk

′
i , c

k′
i ), i < εα+1

(x
hα+1

i , c
hα+1

i ), i = εα+1

(xk
∗
i , c

k∗
i ), else

.

Assume indirectly that pα+1 is not well-defined. Fix i ∈ supp(kα+1) and

δ ∈ sα+1 ∩ ckα+1

i such that
−→
Ai(δ) = x

kα+1

i ∩ δ. If i 6= εα+1, then we get a
contradiction to the fact that 〈s∗, k∗〉 and 〈s′, k′〉 are legitimate conditions.
If i = εα+1, then Claim 1.8.9 and the choice of the function hα+1 insures
that δ ∈ sα+1 ∩ τ = s̄. But then, by δ ∈ s̄ and the exact same argument of

the successor step, we have
−−−→
Aεα+1(δ) 6= xkα+1

εα+1
∩ δ.

Clearly, pα+1 satisfies requirements (a)–(d).
Limit step: Suppose 〈pβ | β < α〉 has already been defined for some

limit ordinal α < θ, and let {hβ : Z ∩ (εβ + 1) → 2 | β < α} be the
witnessing functions to property (a). Since α < θ < λ+, let p be the least
upper bound of 〈pβ | β < α〉, and let h :=

⋃
β<α hβ. Clearly, p ≥ qh. Fix

p′ = 〈s′, k′〉 ≥ p in D→εα . Then p′ � S(λ+) ∗ Pεα decides
−→
Aεα(τ) to be, say,

Aτεα . Pick hα : Z ∩ (εα + 1) → 2 extending h such that Aτεα 6= xhαεα , and let
pα = 〈sα, kα〉 be the condition in D such that:

• sα = s′;
• supp(kα) = (supp(k′) ∩ εα) ∪ {εα} ∪ supp(k∗);
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• for all i ∈ supp(kα), we have:

(xkαi , c
kα
i ) :=


(xk

′
i , c

k′
i ), i < εα

(xhαi , c
hα
i ), i = εα

(xk
∗
i , c

k∗
i ), else

.

Then pα is well-defined and satisfies all requirements.
This completes the construction. Put g :=

⋃
α<θ hα, and let p be an

upper bound for the increasing sequence, 〈pα | α < θ〉. Then p ≥ qg and

p ≥ 〈s̄ ∪ {τ}, ∅〉, and hence p 
 τ̌ ∈ Ė ∩ Ṡ. �

1.2. Applications. Utilizing the poset from the previous subsection, and
the existence of a supercompact cardinal, we now consider three models in
which diamond fails on a set that reflects stationarily often.

Theorem 1.9. It is relatively consistent with the existence of a supercom-
pact cardinal that all of the following holds simultaneously:

(1) GCH;
(2) APℵω ;
(3) Refl(Eℵω+1

ω );
(4) ♦S fails for some stationary S ⊆ Eℵω+1

ω .

Proof. We take as our ground model, the model from [7, §5]. That is, GCH
holds, κ is a supercompact cardinal, there exists 〈Cα | α < κ+ω+1〉 which is

a very weak square sequence, and there exists 〈Dα | α ∈ Eκ+ω+1

≥κ 〉 which is
a partial square sequence. We shall not define these concepts here, instead,
we just mention two important facts. The first is that the properties of
these sequences are indestructible under cofinality-preserving forcing; the
second is that in the generic extension by the Lévy collapse, Col(ω1, < κ),
these two sequences are combined to witness APℵω .

Let P denote the iteration of length κ+1 with backward Easton support,
where for every inaccessible α ≤ κ, we force with Q(α+ω+1) from Definition
1.4, and for accessible α < κ, we use trivial forcing.

Let G be P-generic over V . Then by Lemmas 1.6, 1.7, and a well-known
argument of Silver (see [1, §11]), κ remains supercompact in V [G]. Also,
the very weak square sequence and the partial square sequence remains as
such.

By Theorem 1.8, there exists in V [G], a stationary subset S ⊆ Eκ+ω+1

ω

such that ♦S fails. Finally, let H be Col(ω1, < κ)-generic over V [G]. Work
in V [G][H]. Then ℵ2 = κ, ℵω = κ+ω, ℵω+1 = κ+ω+1, and GCH + APℵω
holds. Since Col(ω1, < κ) satisfies the κ-c.c., S remains stationary, and ♦S
still fails (for if {Ȧδ | δ ∈ S} is a name for a ♦S-sequence in V [G][H], then
{Aδ := {A ⊆ δ | ∃p ∈ Col(ω1, < κ)(p 
 Ǎ = Ȧδ)} | δ ∈ S} would be a
♦−S -sequence in V [G]. See [12].)
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Finally, since κ is κ+ω+1-supercompact in V [G], an argument of Shelah
yields that Refl(Eℵω+1

ω ) holds (see [1, §10]). �

The next theorem shows that it possible to have the failure of ♦S for a
set S which reflects in an even stronger sense.

Theorem 1.10. It is relatively consistent with the existence of a supercom-
pact cardinal that there exists a singular cardinal λ for which all of following
holds simultaneously:

(1) λ is a strong limit of countable cofinality and 2λ = λ+;
(2) there exists a stationary S ⊆ Eλ+

cf(λ) such that:

(a) {α ∈ Eλ+

>ω | S ∩ α contains a club in α} is stationary;
(b) ♦S fails.

Proof. Start with a model of MM. Put λ := iω. Since λ is a singular strong
limit, we get from [5] that 2λ = λ+, and hence Q(λ+) is well-defined, so let
us work in the generic extension, V Q(λ+).

Since Q(λ+) is ℵ2-directed closed, we get from Larson’s theorem [13] that
MM is preserved, and by the additional “good properties” of Q(λ+), the
cardinals structure is preserved, as well. Then λ = iω, 2λ = λ+, and there
exists a stationary S ⊆ Eλ+

cf(λ), such that ♦S fails. Finally, clause (a) is
an immediate consequence of the fact that MM implies Friedman’s problem
(see [5]). �

Analysis of the models from Theorems 1.9 and 1.10 yields that these
models satisfies a certain strong form of reflection, namely, Refl∗([λ+]ω),
and hence there exists no very good scale (or even a better scale) for λ in
these models. We now consider a third model, establishing that a very good
scale has no effect on the validity of diamond for reflecting stationary sets.

Theorem 1.11. It is relatively consistent with the existence of a supercom-
pact cardinal that there exists a singular cardinal κ for which all of following
holds simultaneously:

(1) κ is a strong limit of countable cofinality and 2κ = κ+;
(2) there exists a very good scale for κ;
(3) ♦S fails for some S ⊆ Eκ+

cf(κ) that reflects stationarily often.

Proof. Start with a model of GCH, in which there exists a supercompact
cardinal, κ. Let λ := κ+ω.

Step 1. Let P1 denote the iteration of length κ+ 1 with backward Easton

support, where for every inaccessible α ≤ κ, we force with Q(α+ω+1), and
for accessible α < κ, we use trivial forcing. Let V1 denote the generic
extension by P1. Then, in V1, GCH holds, κ is supercompact, and there
exists a stationary S ⊆ Eλ+

cf(λ) on which ♦S fails.
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Step 2. Work in V1. Fix a normal ultrafilter U over Pκ(λ+), and the corre-
sponding embedding j : V1 → M ' Ult(V1,U). Let P2 denote the iteration
of length κ+ 1 with backward Easton support, where for every inaccessible
α ≤ κ, we force with Add(α, α+ω+1), adding α+ω+1-Cohen functions from
α to α, and for accessible α < κ, we use trivial forcing.

Let G be P2-generic over V1, and work in V2 := V1[G]. Then, by standard
arguments (see [1, §11]), we may find a set G∗ such that the embedding j
lifts to an embedding j∗ : V1[G] → M [G∗]. Let 〈Fα : κ → κ | α < λ+〉
denote the generic functions introduced by the κth-stage of P2. Clearly, we
may choose G∗ in such a way that Fj∗(α)(κ) = α for all α < λ+. Thus,
2κ = 2λ = λ+. As P2 has the κ+-c.c., S remains stationary, and ♦S still
fails (by the chain condition of P2, if ♦S holds in V2, then ♦−S holds in V1.

However, ♦−S entails ♦S, and the latter fails in V1.) Let T := {α ∈ Eλ+

<κ |
cf(α) > ω, S ∩ α is stationary}. Since S is a stationary subset of Eλ+

<κ, and
κ is λ+-supercompact (as witnessed by j∗), the set T is stationary.

Note that the cardinals structure in V2 is the same as in V .
Step 3. Work in V2. Let U∗ := {X ⊆ Pκ(κ+ω+1) | j∗“λ+ ∈ j∗(X)}. Then

U∗ is a normal ultrafilter extending U . For every n < ω, let Un denote
the projection of U∗ to Pκ(κ+n). Next, let 〈Q,≤,≤∗〉 denote the variation
of supercompact Prikry forcing from [8, Definition 2.9]. That is, instead
of working with a single measure, we work with the sequence of measures
〈Un | n < ω〉. By [8, §2], we have:

(a) 〈Q,≤〉 satisfies the λ+-c.c.;
(b) 〈Q,≤〉 does not add new bounded subsets to κ;
(c) in the generic extension by 〈Q,≤〉, (κ+n)V changes its cofinality to

ω for every n < ω.

Let V3 denote the generic extension by 〈Q,≤〉. Work in V3. Then κ is a
strong limit cardinal of countable cofinality, and 2κ = (λ+)V2 = κ+. Since
〈Q,≤〉 has the λ+-c.c., the sets S and T remains stationary subset of κ+,
and ♦S still fails.

Claim 1.11.1. S reflects stationarily often.

Proof. Recall that we work in V3. Put T ∗ := {α < κ+ | cf(α) > ω, S ∩
α is stationary}. Since T is stationary, to show that S reflects stationarily
often, it suffices to establish that T ⊆ T ∗. For this, it suffices to prove
that if α ∈ Eκ+

>ω ∩Eκ+

<κ and C is a club subset of α, then there exists a club
C ′ ⊆ C lying in V2. But this is obvious: fix, in V2, a continuous function
π : cfV2(α)→ α whose image is cofinal in α. Put C ′ := C ∩ Im(π). Then C ′

is a club subset of C, and π−1[C ′] is a club subset of cfV2(α). By property
(c) and α ∈ Eκ+

>ω ∩ Eκ+

<κ, we have cfV2(α) = cfV3(α), so property (b) entails
that π−1[C ′] is in V2, and hence C ′ is in V2, as requested. �

Claim 1.11.2. There exists a very good scale for κ.
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Proof. Let 〈Pn | n < ω〉 denote the supercompact Prikry sequence intro-
duced by 〈Q,≤〉 over V2. For each n < ω, consider the inaccessible cardinal
κn = Pn ∩ κ. For each α < κ+ = (λ+)V2 , define a function tα ∈

∏
n<ω κ

+ω+1
n

as follows:

tα(n) :=

{
Fα(κn), Fα(κn) < κ+ω+1

n

0, otherwise
, (n < ω).

Then, by Proposition 2.21 of [8], 〈tα | α < κ+〉 is a very good scale. �

�

1.3. Uncountable cofinality. It is worth mentioning that via straight-
forward modifications to the proofs of subsection 1.1, it is possible to handle
singular cardinals of uncountable cofinality, as well. More specifically, we
have:

Theorem 1.12. Suppose λ is a strong limit singular cardinal, and 2λ = λ+

Then there exists a notion of forcing Q′(λ+), satisfying:

(1) Q′(λ+) is λ+-directed closed;
(2) Q′(λ+) has the λ++-c.c.;
(3) |Q′(λ+)| = λ++;
(4) in V Q′(λ+), ♦S fails for some stationary S ⊆ Eλ+

cf(λ).

In particular, it is possible to obtain the failure of diamond on a stationary
subset of λ+, in the presence of a supercompact cardinal in the interval
(cf(λ), λ).

Remark. It follows from the proof in [15, §4], that the above Q′(λ+) is not
isomorphic to Cohen’s notion of forcing, Add(λ+, λ++).

2. Negation of guessing

In [4], Džamonja and Shelah considered a particular consequence of dia-
mond and established the consistency of its negation. To state their result,
we need the following two definitions.

Definition 2.1. For a function f : λ+ → cf(λ), let κf denote the minimal
cardinality of a family P ⊆ [λ+]cf(λ) with the property that whenever Z ⊆
λ+ is such that

∧
β<cf(λ) |Z ∩ f−1{β}| = λ+, then there exist some a ∈ P

with sup(f [a ∩ Z]) = cf(λ).

It is obvious that the function f : λ+ → {0} satisfies κf = 0. Also notice
that any partition of λ+ into cf(λ) many sets of cardinality λ+ induces a
non-trivial function, that is, a function f ∈ λ+

cf(λ) with κf > 0.

Definition 2.2. For a singular cardinal λ, we say that λ+-guessing holds
iff κf ≤ λ+ for all f ∈ λ+

cf(λ).
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We refer the reader to [4] for background and motivation for this defini-
tion, but let us just mention the obvious fact that ♦λ+ implies λ+-guessing.
In [4, §2], the consistency of the negation of λ+-guessing has been estab-
lished:

Theorem 2.3 (Džamonja-Shelah). It is relatively consistent with the ex-
istence of a supercompact cardinal that there exist a strong limit singular
cardinal λ and a function f : λ+ → cf(λ) such that κf = 2λ > λ+.

Here, we reduce the large cardinal hypothesis significantly by establishing
that any model with a strong limit singular cardinal λ with 2λ > λ+ will do.
Moreover, in such a model, any non-trivial function is a counterexample.

Theorem 2.4. If λ is a strong limit singular cardinal, then

{κf | f ∈ λ+

cf(λ)} = {0, 2λ}.
Proof. Since λ is a strong limit, the next lemma tells us that any non-trivial
function, f , satisfies κf = λcf(λ) = 2λ. �

Lemma 2.5. Suppose λ is an infinite cardinal, and 2cf(λ) + λ<cf(λ) ≤ λ+.
Then κf = λcf(λ) for every non-trivial function f ∈ λ+

cf(λ).

Proof. Suppose f : λ+ → cf(λ) is a function with κf > 0. Fix β < cf(λ),
and let Aβ := {δ < λ+ | f(δ) = β}. Since κf > 0, we have |Aβ| = λ+ ≥
λ<cf(λ), so let us fix a surjection ψβ : Aβ → <cf(λ)λ such that (ψβ)−1{η} has
cardinality λ+ for all η ∈ <cf(λ)λ. Clearly, if P ⊆ [λ+]cf(λ) is a family of
size < λ+, then there exists a set Z ⊆ λ+ such that |Z ∩ Aβ| = λ+ for all
β < λ+, while Z ∩ a = ∅ for all a ∈ P . This shows that κf ≥ λ+.

For all δ < λ+, put bδ := (f(δ), ψf(δ)(δ)). For every function g ∈ cf(λ)λ,

denote by g∗ : cf(λ) → <cf(λ)λ the function satisfying g∗(β) := g � β for all
β < cf(λ). Also denote Zg := {δ < λ+ | bδ ∈ g∗}.

Claim 2.5.1.
∧
β<cf(λ) |Zg ∩ f−1{β}| = λ+ for every g ∈ cf(λ)λ.

Proof. For every β < cf(λ), letting η := g∗(β), we get that Zg ∩ f−1{β} =
{δ ∈ Aβ | bδ ∈ g∗} = (ψβ)−1{η}. �

Let {gi | i < λcf(λ)} be an injective enumeration of cf(λ)λ. By λ+ ≤ κf ≤
λcf(λ), we avoid trivialities and assume that λcf(λ) > λ+. Thus, it suffices to
establish the following.

Claim 2.5.2. For all a ∈ [λ+]cf(λ), Ia := {i < λcf(λ) | sup(f“a ∩ Zgi) =
cf(λ)} has cardinality ≤ λ+.

Proof. Assume indirectly that a ∈ [λ]cf(λ) is such that |Ia| > λ+. By |Ia| ≥
(2cf(λ))+ and the Erdös-Rado theorem, let us pick a set I ′ ⊆ Ia with |I ′| >
cf(λ) and an ordinal γ < cf(λ) such that gi0(γ) 6= gi1(γ) for all distinct
i0, i1 ∈ I ′. Shrinking further, pick I ′′ ⊆ I ′ with |I ′′| > cf(λ) and an ordinal
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β > γ such that β ∈ (f [a ∩ Zgi ]) for all i ∈ I ′′. Finally, for all i ∈ I ′′,
pick δi ∈ a ∩ Zgi such that f(δi) = β. Since |a| = cf(λ) < |I ′′|, there exist
i0, i1 ∈ I ′′ with i0 6= i1 and δi0 = δi1 . For n < 2, by δin ∈ Zgin , we have
(β, ψβ(δin)) ∈ g∗in , and hence:

gi0 � β = g∗i0(β) = ψβ(δi0) = ψβ(δi1) = g∗i1(β) = gi1 � β,

which contradicts the existence of γ < β with gi0(γ) 6= gi1(γ). �

�

By combining the arguments of the above proof with the ones from [14], it
is possible to obtain a lower bound on κf even without assuming 2cf(λ) ≤ λ+.
Namely, if λ is a singular cardinal and λ<cf(λ) ≤ λ+, then κf ≥ pp(λ) for

every non-trivial function f ∈ λ+
cf(λ). In particular, if λ > cf(λ) = ω, then

κf ≥ pp(λ) for every non-trivial f . It follows:

Corollary 2.6. The following are equivalent:

(1) Shelah’s strong hypothesis;
(2) λ+-guessing holds for all singular cardinal λ.

3. The sup-function on stationary subsets of [λ+]ω

In this section, we shall supply a negative answer to a following question.

Question (König-Larson-Yoshinobu, [11]). Let λ > ω1 be a successor car-
dinal. Is it possible to prove in ZFC that every stationary B ⊆ [λ]ℵ0 can be
thinned out to a stationary A ⊆ B on which the sup-function is 1-1?

We refer the reader to [11] for motivation and background concerning
this question. Recall that a set A ⊆ P(λ) is said to be stationary (in the
generalized sense) iff for every function f : [λ]<ω → λ, there exists some
A ∈ A such that f“[A]<ω ⊆ A. Now, it is obvious that if cf([λ]ω,⊆) > λ,
then B := [λ]ω is a counterexample to the above question. In particular,
any model on which the singular cardinals hypothesis fails, gives a negative
answer. Thus, in this section, we shall focus on answering the above question
in the context of GCH.

Definition 3.1. Given a set X ⊆ P(λ), denote S(X ) := {sup(X) | X ∈ X}.

Definition 3.2. For an infinite cardinal λ and a stationary set S ⊆ Eλ+

<λ,
consider the following three principles.

(a) (1)S asserts that there exists a stationary X ⊆ [λ+]<λ such that:
• the sup-function on X is 1-to-1;
• S(X ) ⊆ S.

(b) (λ)S asserts that there exists a stationary X ⊆ [λ+]<λ such that:
• the sup-function on X is (≤ λ)-to-1;
• S(X ) ⊆ S.
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(c) ♣−S asserts that there exists a sequence 〈Aδ | δ ∈ S〉 such that:
• for all δ ∈ S, Aδ ⊆ [δ]<λ and |Aδ| ≤ λ;
• if Z is a cofinal subset of λ+, then the following set is stationary:

{δ ∈ S | ∃A ∈ Aδ(sup(A ∩ Z) = δ)} .

The principle ♣−S has been considered in [15], and was found to be the
GCH-free version of ♦S. From this, we easily get the following.

Lemma 3.3. Suppose λ is an infinite cardinal, and S ⊆ Eλ+

<λ is stationary.
Then (1)⇒ (2)⇒ (3)⇒ (4), and if 2λ = λ+, then moreover, (4)⇒ (1),

where:

(1) ♦S;
(2) (1)S;
(3) (λ)S;
(4) ♣−S .

Proof. (1)⇒ (2) By ♦S, pick a collection {fδ : [δ]<ω → δ | δ ∈ S} such that
for every f : [λ+]<ω → λ+ there exists some δ ∈ S with f � [δ]<ω = fδ. For
each δ ∈ S, pick a cofinal Yδ ⊆ δ of minimal order-type, and find Xδ ⊇ Yδ
with |Xδ| = |Yδ| such that fδ“[Xδ]

<ω ⊆ Xδ. It is now easy to see that
X := {Xδ | δ ∈ S} is as requested.

(2)⇒ (3) is obvious.
(3) ⇒ (4) Let X exemplify (λ)S. For each δ ∈ S, let Aδ := {X ∈ X |

sup(X) = δ}. To see that 〈Aδ | δ ∈ S〉 witness ♣−S , we fix a cofinal subset
Z ⊆ λ+ and a club C ⊆ λ+, and argue that there exists δ ∈ C ∩ S and
A ∈ Aδ such that sup(Z ∩ A) = δ. Define a function f : [λ+]<ω → λ+ as
follows:

f(σ) :=

{
min(Z \ sup(σ)), |σ| is odd

min(C \ sup(σ)), |σ| is even
.

Since X is stationary, we may pick some X ∈ X such that f“[X]<ω ⊆ X.
Put δ := sup(X). Then X ∈ Aδ, f“[X]7 is a cofinal subset of Z ∩ δ, and
f“[X]4 is a cofinal subset of C∩δ. In particular, sup(X∩Z) = sup(X∩C) =
δ, so δ ∈ C and we are done.

Finally, if 2λ = λ+, then a theorem from [15] stating that ♦S ⇔ 2λ =
λ+ +♣−S , yields (4)⇒ (1). �

Remark. The preceding lemma improves an unpublished result by Matsub-
ara and Sakai, who established the implication (3) ⇒ (1) under stronger
cardinal arithmetic assumptions.

Since, under mild cardinal arithmetic hypothesis, the above principles
coincide, it is interesting to study whether these principles can be separated.
The reader who is only interested in the promised solution to the above-
mentioned question, may now skip to Theorem 3.6 below.
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Proposition 3.4. If the singular cardinals hypothesis fails, then for some
singular cardinal λ, ♣−

Eλ
+

6=cf(λ)

holds, while (λ)
Eλ

+

6=cf(λ)
fails.

Proof. By [15], ♣−
Eλ

+

6=cf(λ)

holds for every infinite cardinal λ, so let us focus on

the second component. Suppose that the singular cardinal hypothesis fails.
By a theorem of Shelah [18], in this case, there exists a singular cardinal
λ such that cf(λ) = ω, and cov(λ, λ, cf(λ)+, 2) > λ+. This means, that for
every X ⊆ [λ]<λ of size λ+, there exists some x ∈ [λ]ω, such that x 6⊆ X for
all X ∈ X . Now assume indirectly that X witnesses (λ)

Eλ
+

6=cf(λ)
. In particular,

X ⊆ [λ+]<λ, and |X | = λ+. Pick a function x : ω → λ with Im(x) 6⊆ X for
all X ∈ X . Define f : [λ+]<ω → λ+ by f(σ) := x(|σ|) for all σ ∈ [λ+]<ω.
Since X is stationary, there exists some X ∈ X such that f“[X]<ω ⊆ X. In
particular, Im(x) ⊆ X, contradicting the choice of x. �

Proposition 3.5. (1)S 6⇒ ♦S for any uncountable cardinal λ and any sta-
tionary S ⊆ Eλ+

ω .

Proof. Suppose λ is an uncountable cardinal, S ⊆ Eλ+

ω and (1)S holds,
as witnessed by a stationary set X . Use Cohen forcing to blow up the
continuum above λ+, then ♦S fails. Finally, since Cohen forcing is proper,
X remains stationary, so it still witnesses (1)S. �

Answering the above-mentioned question in the negative, we now prove:

Theorem 3.6. It is relatively consistent with ZFC that the GCH holds and
there exists a stationary subset B ⊆ [ℵω+1]ω that cannot be thinned out to a
stationary A ⊆ B on which the sup-function is injective.

Proof. Start with a model of GCH in which ♦S fails for some stationary
S ⊆ Eℵω+1

ω (by appealing to the forcing from [17, §2], or by forcing with
Q(ℵω+1) from section 1.)

Claim 3.6.1. B := {X ∈ [ℵω+1]ω | sup(X) ∈ S} is stationary.

Proof. Suppose f : [ℵω+1]<ω → ℵω+1 is a given function. Since {δ ∈ ℵω+1 |
f“[δ]<ω ⊆ δ} is a club, and S is stationary, we may fix some δ ∈ S such that
f“[δ]<ω ⊆ δ. Pick Y ∈ [δ]ω with sup(Y ) = δ. Then there exists X ⊇ Y such
that |X| = |Y | and f“[X]<ω ⊆ X. Such an X is in B, so we are done. �

Now, suppose A ⊆ B is stationary on which the sup-function is injective.
Then (1)S(A) holds, and as S(A) ⊆ S, also (1)S holds, contradicting Lemma
3.3 and the fact that ♦S fails. �

Let us emphasize that the above theorem does not require large cardinals.
Assuming large cardinals, one can obtain a stronger counterexample:
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Theorem 3.7. It is relatively consistent with the existence of a super-
compact cardinal that the GCH holds and there exists a stationary subset
B ⊆ [ℵω+1]ω which is large in the following two senses:

(1) if X ∈ [ℵω+1]ω and sup(X) ∈ S(B), then X ∈ B;
(2) for every stationary A ⊆ B, there exists some X ∈ [ℵω+1]ω1 with

ω1 ⊆ X and cf(otp(X)) = ω1 such that A ∩ [X]ω is stationary.

still, the sup-function is not injective on any stationary subset of B.

Proof. Consider the model from Theorem 1.9; GCH holds, and there exists
a stationary subset S ⊆ Eℵω+1

ω such that ♦S fails. Put B := {X ∈ [ℵω+1]ω |
sup(X) ∈ S}. Then (1) is obvious, and by Lemma 3.3, the sup-function is
not injective on any stationary subset of B.

Finally, clause (2) follows from the general fact from [5] that if κ is a
supercompact cardinal, then V Col(ω1,<κ) |= Refl∗([κ+ω+1]ω). �

Note that SAPℵω (and hence �∗ℵω) necessarily fails in a model consisting
of such B, hence, the high consistency strength.

Discussion. To get a finer understanding of Theorem 3.6, we now dis-
cuss a more direct argument which allows to point our finger at the role of
the injectivity of the sup-function.

We start with a model of GCH, and let λ := ℵω. We consider the forcing
notion X(λ+), as an alternative to S(λ+) from section 1. A condition X is in
X(λ+) iff X ⊆ [λ+]ω and S(X ) is a bounded subset of λ+. A condition X ′ is
stronger than X iff X ′ ⊇ X and S(X ′) w S(X ). To study the injectivity of
the sup-function, we also consider X1(λ+), where X ∈ X1(λ+) iff X ∈ X(λ+)
and for all τ ∈ S(X ), there exists a unique X ∈ X with sup(X) = τ .

Let Ṡ(λ+) := {〈 ˇsup(X),X〉 | X ∈ X ∈ X(λ+)} be the canonical name
for the generic subset of Eλ+

ω introduced by X(λ+) and by X1(λ+). Now,
instead of forcing with Q(λ+) = S(λ+) ∗ KAD(Ṡ(λ+)), we shall force with
P(λ+) := X(λ+) ∗ KAD(Ṡ(λ+)). To compare, we also define P1(λ+) :=
X1(λ+) ∗KAD(Ṡ(λ+)).

The same arguments as in section 1 shows that P(λ+) and P1(λ+) satis-
fies the λ++-c.c., and that it has a dense subset in which every increasing
sequence of conditions of length < λ+ has a least upper bound.

We now sketch the changes to be made to the proof of Theorem 1.8, to
show that if G∗H if P(λ+)-generic, letting X :=

⋃
G, then V [G][H] |= X is

stationary. Instead of fixing a name for a club E ⊆ λ+, we fix a name for a
function e : [λ+]<ω → λ+. Instead of deciding the value for min(E \ α), we
decide e � [α]<ω, utilizing the fact that P(λ+) does not add bounded subsets
of λ+. Then the analogue of Claim 1.8.11 is that for all g ∈ Z2, qg forces
that τ is a closure point of e, and moreover, qg decides e � [τ ]<ω to be, say,
eg : [τ ]<ω → τ .
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While in the previous section, we didn’t care about E ∩ τ , and only
focused on the fact that τ is a (closure) point of E, here we really need to
know e � [τ ]<ω. Notice, however, that if g0 6= g1, then it is possible that
eg0 6= eg1 . This is a subtle point, and we shall get back to it at the end of
our discussion.

From here, we continue smoothly until we reach to the construction of the
sequence of conditions 〈pα = 〈Xα, kα〉 | α < θ〉 and the chain of functions
{hα : Z ∩ (εα + 1)→ 2 | α < θ}. At the induction base, instead of choosing
〈s0, ∅〉 ∈ D0 with s̄ ∪ {τ} v s0, we first pick an arbitrary cofinal subset
X ∈ [τ ]ω and then choose 〈X0, ∅〉 ∈ D0 which is stronger than 〈X̄ ∪{X}, ∅〉.
Once the construction is completed, we let g :=

⋃
α<θ hα, and let 〈X ′, k′〉

be an upper bound for the increasing sequence, 〈pα | α < θ〉.
Then 〈X ′, k′〉 ≥ qg, and qg decides e � [τ ]<ω to be eg : [τ ]<ω → τ . Pick

a cofinal X ′ ⊆ [τ ]ω which is closed under eg. Then 〈X ′ ∪ {X ′}, k′〉 is a
legitimate condition (because sup(X ′) = τ ∈ S(X0) v S(X ′)), and it forces
that there exists some X ∈ X with eg“[X]<ω ⊆ X, as requested.

So, in V [G][H], X is stationary subset of [ℵω+1]ω, GCH holds, and ♦S(X )

fails.
Now, what would have gone wrong had we force with P1(λ+), instead

of P(λ+)? We know that for all g ∈ Z2, there exists some kg such that
qg = 〈X̄ , kg〉, and that S(X̄ ) ⊆ τ . Clearly, there is no way of insuring that
for some g, there already exists an X ∈ X̄ which is closed under eg, but this
is a density argument, so we may consider extensions of qg.

Now, for all g, since τ is a closure point of eg, there indeed exists a cofinal
subset Xg ∈ [τ ]ω, which is closed under eg, and it is tempting to just take
〈X̄ ∪ {Xg}, kg〉. So, here is the problem — how do we know that the latter

is a legitimate condition? As τ ∈ ckgi for all i ∈ Z, we need, in particular,

to establish that x
kg
i ∩ τ 6=

−→
A i(τ) for all i ∈ Z. In the above construction,

we done so by throwing a countable cofinal subset of τ to X0, thus, insuring
that τ ∈ S(X0) v S(X ′). This time, we are allowed to throw only a single
cofinal subset of τ to X0, so we need to throw cofinal subset of τ which is
closed under eg for all g ∈ Z2, at once. But, this turns out to be impossible.

4. Open problems

Let λ denote a singular cardinal. Probably the most interesting open
question in this area is the following question of Shelah:

Question 1. Does 2λ = λ+ imply ♦
Eλ

+

cf(λ)
? Does GCH imply ♦

Eλ
+

cf(λ)
?

By [21] and the fact that Eλ+

cf(λ) reflects stationarily often, a negative
answer to the above question witnesses the failure of �∗λ, so large cardinals
are necessary.
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Question 2. Suppose S ⊆ Eλ+

cf(λ) reflects stationarily often, must NSλ+ � S
be non-saturated?

By [15], a negative answer to the above question witnesses the failure
of �∗λ (actually, of SAPλ). Note that by [9], NSλ+ � Eλ+

cf(λ) is indeed non-
saturated. Also note that if one does not require reflection, then by results of
Woodin and Foreman (see [6, §8]), NSℵω+1 � S can consistently be saturated
for some stationary (non-reflecting) S ⊆ Eℵω+1

ω .
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