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Assume GCH. Let κ =
⋃

n<ω κn, 〈κn | n < ω〉 increasing, each κn is

κ+n+3
n – strong witnessed by (κn, κ

+n+3
n ) – extender En. We would like to

force 2κ = κ+3 preserving all the cardinals and without adding new bounded

subsets to κ. It was done first in [2, Sec.3]. Here we present a different

method of doing this. The advantage of the present construction is that the

preparation forcing is split completely from the main one. This makes the

presentation much simpler and likely to allow a possibility of extensions to

arbitrary gaps preserving large cardinals (which was not the case in [2]).

1 The Preparation Forcing

Maymoto and Sharon pointed out that the forcing below reminds a simplified

morass. Indeed it implies Velleman’s simplified morass with linear limits [4]

in a generic extension. We do not know if the objects are equivalent and

think that it is not the case due to the intersection properties below. Also it

is unclear if such structure exists in L and bigger inner models.

Definition 1.1 The set P ′ consists of elements of the form

〈〈A0κ+

, A1κ+

, Cκ+〉, A1κ++〉
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so that the following hold:

(1) A1κ++
is a closed subset of κ+3 of cardinality at most κ++.

(2) A0κ+ ≺ H(κ+3) of cardinality κ+

(3) A1κ+
is a set of elementary submodels of A0κ+

of cardinality κ+ includ-

ing κ+ so that

(a) A0κ+ ∈ A1κ+

(b) each element of A1κ+\{A0κ+} belongs to A0κ+

(c) (well foundness of inclusion) if B, C ∈ A1κ+
and B $ C, then

B ∈ C.

In particular 〈A1κ+
,⊂ 〉 is well-founded. We set

otpκ+(A) = sup{otp(〈C,⊂ 〉) | C ⊆ P(A)∩A1κ+

is a chain under the inclusion}.

(4) Cκ+
: A1κ+ −→ P(A1κ+

) is so that

(a) for each A ∈ A1κ+
we require that Cκ+

(A) is a closed chain (under

inclusion) of elements of P∩A1κ+
of the length otpκ+(A) and there

is no chain in P(A) ∩ A1τ that properly includes Cτ (A).

In particular this means that there are chains of the maximal

length (i.e. otpκ+(A) which was defined as supremum is really a

maximum) and Cκ+
(A) is one of them. Also note that A is always

the largest element of Cκ+
(A). So otpκ+(A) is always a successor

ordinal.

(b) (Coherence)

if B ∈ Cκ+
(A) then Cκ+

(B) is the initial segment of Cκ+
(A)

starting with B

2



(c) if otpκ+(A)− 1 is a limit ordinal (in such cases we shall refer to A

as a limit model and otherwise like to a successor one) then each

element of A ∩ A1κ+\{A} is included (and hence also belongs) to

one of the members of Cκ+
(A).

(5) if α ∈ A then A1κ++ ∩ α ∈ A

(6) if δ ∈ A1κ++
and δ < sup A then min(A\δ) ∈ A1κ++

(7) if A, B ∈ A1κ+
then otp(A∩κ+3) = otp(B∩κ+3) iff otpκ+(A) = otpκ+(B)

Further we shall confuse A’s with A ∩ κ+3.

(8) (isomorphism condition)

Let A, B ∈ A1κ+
and otp(A) = otp(B) then the structures

〈A,∈,⊆, κ, Cκ+

(A), A1κ+ ∩ A , Cκ+

� (A1κ+ ∩ A), A1κ++ ∩ A, fA〉

and

〈B,∈,⊆, κ, Cκ+

(B), A1κ+ ∩B, Cκ+

� (A1κ+ ∩B), A1κ++ ∩B, fB〉

are isomorphic over A ∩ B, i.e. the isomorphism πAB between them is

the identity on A ∩ B, where fA : κ+ ←→ A, fB : κ+ ←→ B are some

fixed bijections.

Note that in particular we will have that A ∩ κ++ = B ∩ κ++. Also,

together with the next condition, we will have the opposite implication

as well, i.e. A ∩ κ++ = B ∩ κ++ implies otp(A) = otp(B).

(9) (first intersection condition) if A, B ∈ A1κ+
A 6= B and otp(A) =

otp(B) then there is α ∈ A ∩ A1κ++
s.t. A ∩B = A ∩ α

In particular this condition imply that A ∩ B = A ∩ sup(A ∩ B) and

α = min(A\A ∩B).

(10) (second intersection condition) if A, B ∈ A1κ+
, otp(A) ≥ otp(B) and

B 6∈ A, then there is B′ ∈ (A ∪ {A}) ∩ A1κ+
s.t.
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(a) otp(B′) = otp(B)

Note that otp(A) = otp(B) implies then that B′ is A itself.

(b) A ∩B = B′ ∩B.

(c) either

(i) min(B′\ sup(B ∩B′) + 1) > sup B

or

(ii) min(B\ sup(B∩B′)+1) > sup B′ and then also min(B\ sup(B∩
B′) + 1) > sup A.

(d) if α ∈ A ∩ sup B, then α < min(B\ sup(B ∩B′) + 1).

The meaning of (c) is that without the common part B and B′ are

basically one above another. If B is above B′ then it is also above A.

The condition (d) claims that A (that does not include B) cannot have

ordinals in the interval (min(B\ sup(B ∩ B′) + 1), sup B). Note that

by (9) above applied to B and B′ there will be α ∈ B ∩ A1κ++ such

that B ∩ B′ = B ∩ α. Then this α ≥ sup(B ∩ B′) and hence it is not

in A by (d). Now, if sup(A) > sup(B) then min(A\α) ∈ A1κ++
, by the

condition (6) above.

(11) (immediate predecessors condition)

Let B ∈ A1κ+
be a successor model. Then

(a) B has at most two immediate predecessors in A1κ+
(under the

inclusion relation). They are required to have the same otp. In

addition, if Z ∈ B∩A1κ+
then either Z = Bi or Z ∈ Bi for i = 0, 1,

where B0, B1 are the immediate predecessors of B in A1κ+
.

(b) if B′ is an immediate predecessor of B and it is limit, then B′ is

the unique immediate predecessor of B.

So its impossible to split over a limit model. This technical condition

will be useful further in 3.5.
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(12) (closure of models)

Let B ∈ A1κ+
be a successor model. Then κB ⊆ B.

(13) If α is a successor element of A1κ++
, then it has cofinality κ++.

(14) max A1κ++ ≥ sup(A0κ+ ∩ κ+3).

�

Now let p = 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 ∈ P ′ and B ∈ A1κ+
. Define

swt(p, B) to be

〈〈A0κ+

, A1κ+

, Dκ+〉, A1κ++〉 ,

where Dκ+
is obtained from Cκ+

as follows:

Dκ+
= Cκ+

unless B has exactly two immediate predecessors in A1κ+
. If

B0 6= B1 are such predecessors of B and, say B0 ∈ Cκ+
(B), then we set

Dκ+
(B) = Cκ+

(B1)
aB. Extend Dκ+

on the rest in the obvious fashion just

replacing Cκ+
(B0) by Cκ+

(B1) for models including B and then moving over

isomorphic models. Note that swt(swt(p, B), B) = p.

Define q = swt(p, B1, . . . , Bn) by applying the operation swt n-times:

pi+1 = swt(pi, Bi), for each 1 ≤ i ≤ n, where p1 = p and q = pn+1.

The following simple observation will be useful further (3.7).

Lemma 1.2 Let p = 〈〈A0κ+
(p), A1κ+

(p), Cκ+
(p)〉, A1κ++

(p)〉 ∈ P ′ and B ∈
A1κ+

(p). Then there are B1, B2, ...., Bn ∈ A1κ+
such that B ∈ Cκ+

(q)(A0κ+
(p)),

where

q = 〈〈A0κ+

(p), A1κ+

(p), Cκ+

(q)〉, A1κ++

(p)〉 = swt(p, B1, B2, ..., Bn).

Proof. If B ∈ Cκ+
(p)(A0κ+

(p), then let q = p. Otherwise, pick B1 to be the

smallest element of Cκ+
(p)(A0κ+

) including B. Let B11 be the immediate

predecessor of B1 not in Cκ+
(p)(B1). If B ∈ Cκ+

(p)(B11), then set q =

swt(p, B1). Otherwise pick B2 to be the the smallest element of Cκ+
(p)(B11)

including B. Note that B2 ∈ B1. So we go down on ranks. Hence after
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finitely many steps a model Bn with B ∈ Cκ+
(p)(Bn) will be reached. Then

q = swt(p, B1, B2, ..., Bn) will be as desired.

�

Definition 1.3 Let r, q ∈ P ′. Then r ≥ q (r is stronger than q) iff there

is p = swt(r, B1, . . . , Bn) for some B1, . . . , Bn appearing in r so that the

following hold, where

p = 〈〈A0κ+

, A1κ+

, Cκ+〉, A1κ++〉

q = 〈〈B0κ+

, B1κ+

, Dκ+〉, B1κ++〉

A1κ++ ∩ (max B1κ++

+ 1) = B1κ++

(1)

A1κ+ ⊇ B1κ+

(2)

Cκ+

� B1κ+

= Dκ+

(3)

B0κ+ ∈ Cκ+

(A0κ+

)(4)

(5) for each A ∈ A1κ+
, A ∩ B0κ+ ∈ B1κ+

or there are B ∈ B1κ+
and

α ∈ B1κ++
such that A ∩B0κ+

= B ∩ α.

Remarks (1) Note that if t = swt(p, B0, . . . , Bn) is defined, then t ≥ p

and p = swt(swt(p, B0, . . . , Bn), Bn, Bn−1, . . . , B0) = swt(t, Bn, . . . , B0) ≥ t.

Hence the switching produces equivalent conditions.

(2) We need to allow swt(p, B) for the ∆-system argument. Since in this

argument two conditions are combined into one and so C0 should pick one of

them only. Also it is needed for proving a strategical closure of the forcing.

(3) The use of finite sequences B0, . . . , Bn is needed in order to insure

transitivity of the order ≤ on P ′.
Let p = 〈〈A0κ+

, A1κ+
, Cκ+〉, A1κ++〉 ∈ P ′. Set p\κ++ = A1κ++

. Define

P ′≥κ++ to be the set of all p\κ++ for p ∈ P ′.
The next lemma is obvious.
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Lemma 1.4 〈P ′≥κ++ ,≤ 〉 is κ+3-closed.

Set p � κ++ = 〈〈A0κ+
, A1κ+

, Cκ+〉 where p = 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 ∈
P ′.

Let G(P ′≥κ++) be a generic subset of P ′≥κ++ . Define P ′<κ++ to be the set

of all p � κ++ for p ∈ P ′ with p\κ++ ∈ G(P ′≥κ++).

Let p ∈ P ′ and q ∈ P ′≥κ++ . Then qap denotes the set obtained from p by

adding q to the last component of p,i.e. to A11.

The following lemma is trivial.

Lemma 1.5 Let p ∈ P ′, q ∈ P ′≥κ++ and q ≥P ′
≥κ++

p\κ++. Then qap ∈ P ′

and qap ≥ p.

It follows now that P ′ projects to P ′<κ++ .

Let us turn to the chain condition.

Lemma 1.6 The forcing P ′<κ++ satisfies κ+3-c.c. in V
P ′
≥κ++ .

Proof. Suppose otherwise. Let us assume that

∅‖ P ′
≥κ++

(〈 p
∼α

= 〈A
∼

0κ+

α , A
∼

1κ+

α , C
∼

κ+

α 〉 | α < κ+3〉 is an antichain in P ′
∼<κ++)

Without loss of generality we can assume that each A0κ+

α is forced to be a

successor model, otherwise just extend conditions by adding one additional

model on the top. Define by induction, using 1.3, an increasing sequence

〈qα | α < κ+3〉 of elements of P ′≥κ++ and a sequence 〈pα | α < κ+3〉, pα =

〈A0κ+

α , A1κ+

α , Cκ+

α 〉 so that for every α < κ+3

qα‖ P ′
≥κ3
〈A
∼

0κ+

α , A
∼

1κ+

α , C
∼

κ+

α 〉 = p̌α .

For a limit α < κ+3 let

qα =
⋃
β<α

qβ ∪ {sup
⋃
β<α

qβ}
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and qα be its extension deciding p
∼

α
. Also assume that max qα ≥ sup(A00

α ∩

κ+3).

We form a ∆-system. By shrinking if necessary assume that for some

stationary S ⊆ κ+3 and δ < κ+3 we have the following for every α < β in S:

(a) A0κ+

α ∩ α = A0κ+

β ∩ β ⊆ δ

(b) A0κ+

α \α 6= ∅

(c) sup A0κ+

α < β

(d) sup qα = α + 1

(e)

〈A0κ+

α ,∈,≤,⊆, κ, Cκ+

α , fA0κ+
α

, A1κ+

α , qα ∩ A0κ+

α 〉

〈A0κ+

β ,∈,≤,⊆, κ, Cκ+

β , f
A0κ+

β
, A1κ+

β , qβ ∩ A0κ+

β 〉

are isomorphic over δ, i.e. by isomorphism fixing every ordinal below δ, where

fA0κ+
α

: κ+ ←→ A0κ+

α

and

f
A0κ+

β
: κ+ ←→ A0κ+

β

are the fixed enumerations. Denote the isomorphism by παβ

We claim that for α < β in S we can extend qβ to a condition forcing

compatibility of pα and pβ. Proceed as follows. Pick A to be an elementary

submodel of cardinality κ+ so that

(i) A1κ+

α , A1κ+

β ∈ A

(ii) Cκ+

α , Cκ+

β ∈ A

(iii) qβ ∈ A.
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Extend qβ to q = qβ ∪ sup(A ∩ κ+3). Set p = 〈A, A1κ+

α ∪ A1κ+

β ∪ {A}, Cκ+
α ∪

Cκ+

β ∪ 〈A, Cκ+

β (A0κ+

β )aA〉〉. Let us check that 〈p, q〉 ∈ P ′. The conditions

(1)-(6),(10),(11) of 1.1 hold trivially, (6) holds by (d) above. Let us check

(8) and (9).

Suppose X, Y ∈ A1κ+

α ∪A1κ+

β ∪ {A}, otp(X) = otp(Y ) and X 6= Y . Then

X, Y ∈ A1κ+

α ∪ A1κ+

β . If both X and Y belong to A1κ+

α or A1κ+

β then we are

done since 〈pα, qβ〉 and 〈pβ, qβ〉 satisfy 1.1(8). So, suppose X ∈ A1κ+

α and

Y ∈ A1κ+

β . Let X ′ ∈ A1κ+
α be the one corresponding to Y under (d), i.e.

παβ(X ′) = Y . Then by 1.1(8) for 〈pα, qα〉 we will have ξ ∈ X ∩ qα such that

X ∩X ′ = X ∩ ξ. By (a) and παβ(X ′) = Y we have X ′∩Y = X ′∩α = Y ∩β.

Then

X ∩ Y = X ∩ Y ∩ β = X ∩X ′ ∩ α = X ∩ ξ ∩ α = X ∩min(ξ, α).

If ξ ≤ α, then we are done since ξ ∈ X. If ξ > α, then α ∈ qα ∩ sup X.

Hence by 1.1(11), min(X\α) is in qα and, clearly then

X ∩ α = X ∩min(X\α) .

Let us check 1.1(9). Thus suppose that X, Y ∈ A1κ+

α ∪ A1κ+

β ∪ {A} and

otp(X) > otp(Y ). Again we need only to consider the case when X and Y

belong to different A1κ+’s. Assume for example that X ∈ A1κ+

α and Y ∈ A1κ+

β .

As above, we pick X ′ ∈ A10
α such that παβ(X ′) = Y . Now, by 1.1(9) for

〈pα, qα〉, find X ′′ ∈ X ∩ A1κ+

α such that otp(X ′′) = otp(X ′) and X ∩ X ′ =

X ′′∩X ′. Then X∩Y = X∩Y ∩β = X∩X ′∩α = X ′′∩X ′∩α = X ′′∩Y ∩β =

X ′′∩Y , since sup(X ′′) < sup(X) ≤ sup(A0κ+

α ) which is below β by (c) above.

The condition 9(c) holds since the models are part of the ∆-system.

Clearly, 〈p, q〉 ≥ 〈pβ, qβ〉. 〈p, q〉 ≥ 〈pα, qα〉 follows using switching of A0κ+

β

to A0κ+

α .

�

Lemma 1.7 P ′ is κ++-strategically closed.
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Proof. We define a winning strategy for the player playing at even stages.

Thus suppose 〈pj | j < i〉, pj = 〈〈A0κ+

j , A1κ+

j , Cκ+

j 〉, A1κ++

j 〉 is a play according

to this strategy upto an even stage i < κ++. Set first

B0κ+

i =
⋃
j<i

A0κ+

j , B1κ+

i =
⋃
j<i

A1κ+

j ∪ {B0κ+

i },

Dκ+

i =
⋃
j<i

Cκ+

j ∪ {〈B0κ+

i , {B0κ+

i } ∪ {Cκ+

j (A0κ+

j ) | jis even}〉}

and

B1κ++

i =
⋃
j<i

B1κ++

j ∪ {sup
⋃
j<i

B1κ++

j }.

Then pick A0κ+

i to be a model of cardinality κ+ such that

(a) κA0κ+

i ⊆ A0κ+

i

(b) B0κ+

i , B1κ+

i , Dκ+

i , B1κ++

i ∈ A0κ+

i .

Set A1κ+

i = B1κ+

i ∪{A0κ+

i }, Cκ+

i = Dκ+

i ∪{〈A0κ+

i , Dκ+

i (B0κ+

i )∪{A0κ+

i }〉} and

A1κ++

i = B1κ++

i ∪ {sup(A0κ+

i ∩ κ+3}. As an inductive assumption we assume

that at each even stage j < i, pj was defined in the same fashion. Then

pi = 〈〈A0κ+

i , A1κ+

i , Cκ+

i 〉, A1κ++

i 〉 will be a condition in P ′ stronger than each

pj for j < i. The switching may be required here once moving from an odd

stage to its immediate successor even stage.

�

2 Types of Models

The basic approach here is as in [1] but instead of dealing with types of

ordinals we shall consider elementary submodels of H(χ+k) for some χ big

enough and k ≤ ω types of such models.

Fix n < ω. Fix using GCH an enumeration 〈aα | α < κn〉 of [κn]<κn so

that for every successor cardinal δ < κn the initial segment 〈aα | α < δ〉
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enumerates [δ]<δ and every element of [δ]<δ appears stationary many times

in each cofinality < δ in the enumeration. Let jn(〈aα | α < κn〉) = 〈aα |
α < jn(κn)〉 where jn is the canonical embedding of the (κn, κ

+n+3
n )-extender

En. Then 〈aα | α < κ+n+3
n 〉 will enumerate [κ+n+3

n ]<κ+n+3
n and we fix this

enumeration. For each k ≤ ω consider a structure

An,k = 〈H(χ+k),∈,⊆,≤, En, κn, χ, 〈aα | α < κ+n+3
n 〉, 0, 1, . . . , α, . . . | α < κ+k

n 〉

in the appropriate language Ln,k with a large enough regular cardinal χ.

Remark.

It is possible to use κ++
n here (as well as in [1]) instead of κ+k

n . The point

is that there are only κ++
n many ultrafilters over κn and we would like that

equivalent conditions use the same ultrafilter. The only parameter that that

need to vary is k in H(χ+k).

Let L′n,k be the expansion of Ln,k by adding a new constant c′. For

a ∈ H(χ+k) of cardinality less than κ+n+3
n let An,k,a be the expansion of An,k

obtained by interpreting c′ as a.

Let a, b ∈ H(χ+k) be two sets of cardinality less than κ+n+3
n . Denote by

tpn,k(b) the Ln,k-type realized by b in An,k. Let tpn,k(a, b) be a the L′n,k-type

realized by b in An,k,a. Note that coding a, b by ordinals we can transform

this to the ordinal types of [1].

Lemma 2.1 (a) |{tpn,k(b) | b ∈ H(χ+k)}| = κ+k+1
n

(b) |{tpn,κ(a, b) | a, b ∈ H(χ+k)}| = κ+k+1
n

Proof. (a) The cardinality of the language Ln,k is κ+k
n so the number of

formulas is κ+k
n . Now the number of types is 2κ+k

n = κ+k+1
n .

(b) The same argument.

�

This lemma implies immediately the following:

Lemma 2.2 Let A ≺ An,k+1 and |A| ≥ κ+k+1
n . Then the following holds:
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(a) for every a, b ∈ H(χ+k) there c, d ∈ A ∩ H(χ+k) with tpn,k(a, b) =

tpn,k(c, d)

(b) for every a ∈ A and b ∈ H(χ+k) there is d ∈ A ∩ H(χ+k) so that

tpn,k(a ∩H(χ+k), b)=tpn,k(a ∩H(χ+k), d).

Proof. (a) Note that tpn,k(a, b) ∈ A, by 2.1 and since |A| ≥ κ+k+1
n , so A ⊇

κ+k+1
n . Now, H(χ+k+1) � (∃x, y ∈ H(χ+k)∀ϕ(v, u) ∈ tpn,k(a, b) (H(χ+k) �

ϕ(x, y))). But A ≺ H(χ+k+1). So

A � (∃x, y ∈ H(χ+k)∀ϕ(x, y) ∈ tpn,k(a, b)(H(χ+k) � ϕ(x, y))) .

Pick c, d ∈ A satisfying this formula. Then c, d ∈ H(χ+k) and tpn,k(c, d) =

tpn,k(a, b).

(b) Similar. �

The next lemma will be crucial further for the chain condition arguments.

Lemma 2.3 Suppose that A ≺ An,k+1, |A| ≥ κ+k+1
n , B ≺ An,k, and C ∈

P(B) ∩ A ∩H(χ+k). Then there is D so that

(a) D ∈ A

(b) C ⊆ D

(c) D ≺ A ∩H(χ+k) ≺ H(χ+k).

(d) tpn,k(C, B) = tpn,k(C, D).

Proof. As in 2.2., the following formula is true in H(χ+k+1) :

∃x ⊆ H(χ+k)((x ≺ H(χ+k))∧(x ⊇ C)∧(∀ϕ(y, z) ∈ tpn,k(C, B)H(χ+k) � ϕ(C, x))).

Then the same holds in A. Let D witness this. Hence D ∈ A, D ⊇ C,

D ≺ A ∩H(χ+k) ≺ H(χ+k) and tpn,k(C, B) = tpn,k(C, D). �
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Further we shall add models B ∩H(χ+k) with B ≺ H(χ+k+1) or models

realizing the same tpn,k(a,−) as those of elementary submodel of H(χ+k+1)

intersected with H(χ+k) for any a inside. We will require that for every

k < ω, each condition p has an equivalent condition q with every model in it

being an elementary submodel of H(χk).

3 The Main Forcing

Let G(P ′) be a generic subset of P ′.
Fix n < ω. Following [2, Sec.3]. We define first Qn0.

Definition 3.1 Let Qn0 be the set of the triples 〈a, A, f〉 so that:

(1) f is partial function from κ+3 to κn of cardinality at most κ

(2) a is a partial function of cardinality less than κn so that

(a) dom(a) consists of models and ordinals appearing in elements of G(P ′),
i.e. if X ∈ dom(a), then for some 〈〈A0κ+

, A1κ+
, Cκ+〉, A1κ++〉 ∈ G(P ′)

we have X = A0κ+
or X ∈ A1κ++

.

This means in particular that ordinals in dom(a) are taken from A1κ++

only

(b) for each X ∈ dom(a) there is k ≤ ω so that a(X) ⊆ H(χ+k).

Also the following holds

(i) |X| = κ+ implies |a(X)| = κ+n+1
n

(ii) |X| = κ++ implies |a(X)| = κ+n+2
n and a(X) ∩ κ+n+3

n ∈ ORD

Note that in (ii) X is an ordinal but a(X) is not. Actually our main

interest is in a(X) ∩ κ+n+3
n which is required to be an ordinal.

Further passing from Q0n to P we will require that for every k < ω

for all but finitely many n’s the n-th image of X will be an elementary

submodel of H(χ+k). But in general just subsets are allowed here.

13



(c) if A, B ∈ dom(a), A ∈ B (or A ⊆ B) and k is the minimal so that

a(A) ⊆ H(χ+k) or a(B) ⊆ H(χ+k), then a(A) ∩ H(χ+k) ∈ a(B) ∩
H(χ+k) (or a(A) ∩H(χ+k) ⊆ a(B) ∩H(χ+k)).

The intuitive meaning is that a is supposed to preserve membership

and inclusion. But we cannot literally require this since a(A) and a(B)

may be substructures of different structures. So we first go down to

the smallest of this structures and then put the requirement on the

intersections.

(d) dom(a) has a maximal model (under inclusion) it is a member of A1κ+

for some condition in G(P ′). Its image a(max a) intersected with κ+n+3
n

is above all the rest of rng(a) restricted to κ+n+3
n in the ordering of the

extender En (via some reasonable coding by ordinals).

Recall that the extender En acts on κ+n+3
n and our main interest is in

Prikry sequences it will produce. So, parts of rng(a) restricted to κ+n+3
n

will play the central role.

(e) if A, B ∈ dom(a) and otp(A) = otp(B) then

〈a(A) ∩H(χ+k),∈ 〉 ' 〈a(B) ∩H(χ+k),∈ 〉

where k is the minimal so that a(A) ⊆ H(χ+k) or a(B) ⊆ H(χ+k).

Note that it is possible to have for example a(A) ≺ H(χ+6) and a(B) ≺
H(χ+18). Then we take k = 6.

Let π be the isomorphism between

〈a(A) ∩H(χ+k),∈ 〉, 〈a(B) ∩H(χ+k),∈ 〉

and πA,B be the isomorphism between A and B given by 1.1(8). Require

that for each Z ∈ A ∩ dom(a) we have πA,B(Z) ∈ B ∩ dom(a) and

π(a(Z) ∩H(χ+k)) = a(πA,B(Z)) ∩H(χ+k).
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(f) if A, B ∈ dom(a), A 6⊆ B and B 6⊆ A then models and ordinals wit-

nessing 1.1(9,10) are in dom(a)

(g) if α ∈ dom(a) (i.e. a member of some A1κ++
for A1κ++

in G(P ′)) then

for each A ∈ dom(a) with α ∈ A the smallest model B of Cκ+
(A) such

that α ∈ B belongs to dom(a) as well as all its immediate predecessors.

Note that by 1.1(11) there are at most two such models.

(h) if A, B ∈ dom(a) and B ∈ A, then the walk via Cκ+
(A) from A to

B is in dom(a), i.e. the least model A0 ∈ Cκ+
(A) such that A0 = B

or B ∈ A0 is in dom(a). If B ∈ A0, then the immediate predecessor

A1 of A0 with B ∈ A1 or B = A1 is in dom(a). Now, the least model

A2 ∈ Cκ+
(A1) such A2 = B or B ∈ A2 is in dom(a). If B ∈ A2 then the

immediate predecessor A3 of A2 with B ∈ A2 or B = A2 is in dom(a)

and so on.

Note that only finitely many models are involved in such a walk.

(i) if A ∈ dom(a) then Cκ+
(A) ∩ dom(a) is a closed chain. Let 〈Ai|i < j〉

be its increasing continuous enumeration. For each l < j consider the

final segment 〈Ai|l ≤ i < j〉 and its image 〈a(Ai)|l ≤ i < j〉. Find the

minimal k so that

a(Ai) ⊆ H(χ+k) for each i, l ≤ i < j.

Then the sequence

〈a(Ai) ∩H(χ+k)|l ≤ i < j〉.

is increasing and continuous.

Note that k here may depend on l, i.e. on the final segment.

(j) if A, B ∈ dom(a), A 6⊆ B, B 6⊆ A and sup A < sup B, then min(B\ sup A) ∈
dom(a).
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Note in this case necessary min(B\ sup A) ∈ A1κ++. Thus, if otp(A) =

otp(B) then by 1.1(9) there is α ∈ B ∩ A1κ++
s.t. A ∩ B = B ∩ α. By

1.1(10), this α will be as desired.

If otp(A) > otp(B), then 1.1(10(c(ii))) applies and together with 1.1(9),

we will have α = min(B\ sup(B ∩B′) + 1) as desired.

If otp(A) < otp(B), then find A′ ∈ B ∩ A1κ+
witnessing 1.1(10) for

B and A. The assumption sup A < sup B implies then that (i) of

1.1(10(c)) should hold. Pick τ ∈ A∩A1κ++
such that A∩ τ = A∩A′ =

A ∩ B. Then τ ∈ A1κ++\B. By 1.1(6), min(B\τ) ∈ A1κ++. Hence,

α = min(B\τ) will be equal to min(B\ sup A), by 1.1(10(c(ii))) and we

are done.

(k) if A, α ∈ dom(a) and sup A > α, then min(A\α) ∈ dom(a).

(l) if A, B ∈ dom(a) and B is an immediate predecessor of A Then the

other immediate predecessor of A is in dom(a) as well.

(m) if 〈αi|i < j〉 is an increasing sequence of ordinals in dom(a), then

∪{αi|i < j} ∈ dom(a).

(n) if A ∈ dom(a) is a limit model and cof(otpκ+(A) − 1) < κn (i.e. the

cofinality of the sequence Cκ+
(A)\{A} under the inclusion relation is

less than κn) then a closed cofinal subsequence of Cκ+
(A)\{A} is in

dom(a). The images of its members under a form a closed cofinal in

a(A) sequence.

(o) if α ∈ dom(a) is a limit member of A1κ++
of cofinality less than κn, then

a closed cofinal in α sequence from A1κ++
is in dom(a) as well. The

images of its members under a form a closed cofinal in a(α) sequence.

(3) {α < κ+3 | α ∈ dom(a)} ∩ dom(f) = ∅.

(4) A ∈ En,a(max(a)).
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(5) for every ordinals α, β, γ which are elements of rnga or the ordinals

coding models of cardinality κ+n+1
n in rng(a) we have

α ≥En β ≥En γ implies

πEn
αγ (ρ) = πEn

βγ (πEn
αβ (ρ))

for every ρ ∈ π“max rng(a),α(A).

We define now Qn1 and 〈Qn,≤n,≤∗n 〉 as in [2, Sec.2].

Definition 3.2 The set P consists of all sequences p = 〈pn | n < ω〉 so that

(1) for every n < ω pn ∈ Qn

(2) there is `(p) < ω such that

(i) for every n < `(p) pn ∈ Qn1,

(ii) for every n ≥ `(p) we have pn = 〈an, An, fn〉 ∈ Qn0

(iii) for every n, m ≥ `(p) max(dom(an)) = max(dom(am)) is a model

of cardinality κ+

(3) for every n ≥ m ≥ `(p) dom(am) ⊆ dom(an)

(4) for every n, `(p) ≤ n < ω, and X ∈ dom(an) we have that for each

k < ω the set {m < ω | ¬(am(X) ∩H(χ+k) ≺ H(χ+k))} is finite.

Lemma 3.3 Suppose p = 〈pk | k < ω〉 ∈ P, pk = 〈ak, Ak, fk〉 for k ≥
`(p), X is model or an ordinal appearing in an element of G(P ′) and X 6∈⋃

`(p)≤k<ω dom(ak) ∪ dom(fk). Suppose that

(a) if X is model then it is a successor model or if it is a limit one then

cof(otpκ+(X)− 1) > κ

(b) if X is an ordinal then it is a successor member of some A1κ++ ∈ G(P ′)
or it is a limit of cofinality above κ.
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Then there is a direct extension q = 〈qk | k < ω〉, qk = 〈bk, Bk, gk〉 for

k ≥ `(q), of p so that starting with some n ≥ `(q) we have X ∈ dom(bk) for

each k ≥ n.

Remark We would like to avoid at this stage adding limit models (or ordi-

nals) of small cofinality since by 3.1(2(n,o) this will require additional adding

of sequences of models (or ordinals).

Proof. Note first that it is easy to add to p any A appearing in condition of

G(P ′) of cardinality κ+ so that the maximal model of p belongs to Cκ+
(A).

Just at each level n ≥ `(p) pick an elementary submodel of H(χ+ω) of cardi-

nality κ+n+1
n including rng(an) as an element. Map A to such a model.

Suppose now we like to add to p some X which does not include the

maximal model of p. Denote it by max(p). Without loss of generality we can

assume that X ∈ max(p). Just otherwise using genericity of G(P ′) find A as

above with X ∈ A. Pick a model A ∈ ∪{dom(an)|n < ω} with X ∈ A of the

smallest possible otpκ+ and among such models one of the least possible rank

(the usual one). Suppose for simplicity that A ∈ dom(an) for each n < ω.

Let 〈Ai | i < otpκ+((A))〉 be increasing continuous enumeration of Cκ+
(A)).

Case A. X = Ai for some i < otpκ+(A).

Let Ai∗ be the first model of Cκ+
(A) in

⋃
n≥`(p) dom(an) with X ∈ Ai∗ .

Let n < ω be big enough so that an(Ai∗) ≺ H(χ+n+3). Denote by Ai∗∗

the largest member of Cκ+
(Ai∗)\{Ai∗} inside dom(an), if Cκ+

(Ai∗) ∩ Ai∗ ∩
dom(an) 6= ∅. Notice that this set may vary once we change n.

Suppose that Ai∗∗ exists otherwise we may view it as empty and run the

same argument.

Now for each Y ∈ dom(an) with Y 6k Ai∗ and otpY ≤ otpAi∗ , we will

have that Y ∩ Ai∗ = Y ∩ Ai∗∗ , since either

(i) Y ∈ Ai∗ and then Y ∈ Ai∗∗ ∪ {Ai∗∗} (just use the walk from Ai∗ to Y .

It is supposed to be in the domain of an by 3.1(2(h))

or
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(ii) Y 6∈ Ai∗ and then by 1.1(8) there is Y ′ ∈ Ai∗ with Y ∩ Ai∗ = Y ′ ∩ Y .

But by 3.1(2(f)), some such Y ′ must be in dom(an). By the choice of

Ai∗∗ then Y ′ ∈ Ai∗∗ ∪ {Ai∗∗}. So, Y ∩ Ai∗ = Y ∩ Ai∗∗ .

If Y ∈ dom(an) with Y 6k Ai∗ and otpY > otpAi∗ , then by 3.1(2(f)), there

are Y ′ ∈ Y ∩A1κ+ ∩dom(an) so that Y ∩Ai∗ = Y ′∩Ai∗ . Again, by 3.1(2(f)),

there is α ∈ Ai∗ ∩ A1κ++ ∩ dom(an) such that Y ′ ∩ Ai∗ = α ∩ Ai∗ . Then, by

3.1(2(g)), we have α ∈ Ai∗∗ , unless Ai∗∗ is the immediate predecessor of Ai∗ .

But then X must be equal to Ai∗∗ .

Similar, if α ∈ dom(an) and α < sup Ai∗ then min(Ai∗\α) ∈ Ai∗∗ .

Now pick X∗ to be an element of an(Ai∗) such that X∗ ⊆ an(Ai∗),
κn>X∗ ⊆ X∗, X∗ ≺ H(χ+n+2) and an(Ai∗∗) ∩ H(χ+n+2) ∈ X∗. By the

above, all the relevant information (intersections with models, ordinals etc.)

is already inside an(Ai∗∗). Hence we can extend an by adding to it the pair

〈X, X∗〉. Map X∗ via all isomorphisms between an(Ai∗) and an(B)’s for each

B ∈ dom(an) with otp(B) = otp(Ai∗).

Note that here is the place where we may drop to subsets of H(χ) and

not elementary submodels of it. Just moving an(Ai∗) by isomorphisms may

decrease degree of elementarity by one.

Let bn be the result. Note that if X is an immediate predecessor of a model

having an other immediate predecessor X ′ or X is the immediate successor

(in Cκ+
(X)) of a model in dom(an) and some model X ′ is an other immediate

predecessor of X, then adding of X may requires by 3.1(2(l)) adding of X ′

also. Let us delay the adding of such X ′ to the next case. Instead we deal

with (or allow) an’s which satisfy all the conditions of 3.1(2) but (l).

Claim A1 bn satisfies all the conditions of 3.1(2) but (l). Moreover, if an

satisfies all the conditions of 3.1(2) and X is not an immediate predecessor

of a model having an other immediate predecessor then also bn satisfies all

the conditions of 3.1(2).

Proof. Let X ′ be an images of X which was added to dom(an) and X ′′ be

an other model or ordinal in dom(bn), which may be in dom(an) (and it
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is the case if it is an ordinal) or may be an other image of X which was

added to dom(an). We need to show that ordinals and models witnessing the

intersection conditions for X ′ ∩X ′′ are in the domain. Split into few cases.

Case A1.1 X ′ = X and X ′′ ∈ Ai∗

Then by (i) above X ′′ ∈ Ai∗∗ ∪ Ai∗∗ . Hence, X ′′ ∈ X = Ai−1 and we are

done.

Case A1.2 X ′ = X and X ′′ 6∈ Ai∗

Let us split this case into two.

Subcase A1.2.1 X ′′ ∈ dom(an)

If X ′′ is an ordinal, then either X ′′ > sup Ai∗ , then it is above sup X

as well and we are done. Or X ′′ < sup Ai∗ and then α = min Ai∗\X ′′ is in

dom(an). By the choice of Ai∗∗ , then α ∈ Ai∗∗ . But, clearly, then α ∈ X and

α = min X\X ′′. So we are done.

Assume now that X ′′ is a model.

Let us point out that the walk from X ′′ to X is already in dom(an). We

claim that the walk must terminate with Ai∗ . Suppose otherwise. Thus let

Y be the first model of the walk which does not contain A. Compare Y and

Ai∗ . By 1.1(9,10) and 3.1(2(f)), there is α ∈ Ai∗ ∩ dom(an) such that

Y ∩ Ai∗ = Ai∗ ∩ α.

By the choice of Ai∗∗ , we must have α ∈ Ai∗∗ . But on the other hand, X ⊆
Y ∩ Ai∗ = Ai∗ ∩ α. In particular, X ⊆ α. Which is clearly a contradiction,

since X ⊇ Ai∗∗ .

If X ′ ⊇ Ai∗ then the intersection properties are clear. Suppose that it

is not the case. Compare X ′ with Ai∗ . By 1.1(9,10) and 3.1(2(f)), there is

α ∈ Ai∗ ∩ dom(an) such that

X ′ ∩ Ai∗ = Ai∗ ∩ α.

By the choice of Ai∗∗ , we must have α ∈ Ai∗∗ . But

X ′ ∩X = X ′ ∩X ∩ Ai∗ = X ∩ Ai∗ ∩ α = X ∩ α.
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and, clearly α ∈ X. In order to deal with the intersection on the other side

compare otpX ′ and otpAi∗ . If otpX ′ < otpAi∗ , then, by 3.1(2(f)) there is

Y ∈ Ai∗ ∩ dom(an) such that otpY = otpX ′ and

X ′ ∩ Ai∗ = X ′ ∩ Y.

By the choice of Ai∗∗ , we must have Y ∈ Ai∗∗ ∪ {Ai∗∗}. But then Y ⊆ X.

Hence

X ′ ∩X = X ′ ∩ Ai∗ ∩X = X ′ ∩ Y ∩X = X ′ ∩ Y.

So we are done since both X ′ and Y are old.

If otpX ′ ≥ otpAi∗ , then, by 3.1(2(f)) there is Y ∈ X ′ ∪ {X ′} ∩ dom(an)

such that otpY = otpAi∗ and

X ′ ∩ Ai∗ = Y ∩ Ai∗ .

By 1.1(9,10), there are α ∈ Ai∗ ∩ dom(an) such that

Y ∩ Ai∗ = Ai∗ ∩ α.

and β ∈ Y ∩ dom(an) such that

Y ∩ Ai∗ = Y ∩ β.

In this situation Z = πAi∗Y [X] will be added as an isomorphic image of X.

Also, πAi∗Y [α] = β. Then

X ′ ∩X = X ′ ∩X ∩ Ai∗ = Y ∩ Ai∗ ∩X = Y ∩ β ∩X = Z ∩ β.

But as above, we must have α ∈ X. Hence β ∈ Z and we are done.

Subcase A1.2.2 X ′′ 6∈ dom(an)

Then X ′′ is an isomorphic image of X. There is B ∈ dom(an) isomorphic

to Ai∗ such that πAi∗B[X] = X ′′. We need to take care only of the inter-

sections properties of X and X ′′ one with an other. By 1.1(9,10), there are

α ∈ Ai∗ ∩ dom(an) such that

B ∩ Ai∗ = Ai∗ ∩ α.
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and β ∈ B ∩ dom(an) such that

Y ∩ Ai∗ = Y ∩ β.

Also, πAi∗B[α] = β. Then, as above, α ∈ X and so β ∈ X ′′. We have the

following:

X ′′ ∩X = X ′′ ∩B ∩X ∩ Ai∗ = X ∩ α = X ′′ ∩ β.

Case A1.3 X ′ 6= X.

Then X ′ is an isomorphic image of X. There is B ∈ dom(an) isomor-

phic to Ai∗ such that πAi∗B[X] = X ′. The arguments of the previous cases

work here completely the same after we replace Ai∗ with B and Ai∗∗ with

πAi∗B[Ai∗∗ ].

� of the claim.

Case B X 6∈ Cκ++
(A).

By the previous case it is possible to add each of Ai’s, for i < otpκ+(A).

Let us proof by induction on i that it is possible to add X ∈ Ai. Thus, if

i = 0, then add first A0. The only possibility for X ∈ A0 is to be an ordinal.

Also, A0 has no predecessors. Let X = α.

Subcase B1 Each β ∈ A0 ∩ (∪{dom(an)|n < ω}) (if any) is less than α.

Assume that n is big enouph such that an(A0) ≺ H(χ+k) for some k � 2.

Pick now some M ∈ an(A0) such that

(1) |M | = κ+n+2
n

(2) M ≺ H(χ+k−1)

(3) M ⊇ κ+n+2
n

(4) cof(M ∩ κ+n+3
n ) = κ+n+2

n
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(5) for each N ∈ rng(an) ∩ an(A0) we have N ∩H(χ+k−1) ∈M .

In particular, M ∩κ+n+3
n (the main part of M) is above each N ∩κ+n+3

n ,

for every N ∈ rng(an) ∩ an(A0).

Define the image of α to be M . Move this setting to all the elements in

dom(an) isomorphic to A0 (if any). Denote the result by bn.

Claim B1.1 bn satisfies all the conditions of 3.1(2) but (l). Moreover, if an

satisfies all the conditions of 3.1(2) then also bn satisfies all the conditions of

3.1(2).

Proof. Let us check first 3.1(2(k)). Let Y be a model in dom(an) and α′ be

an image of α under isomorphism which was added to dom(an). We need to

deal with the case when α′ < sup Y and show that min Y \α′ is in dom(an).

Thus let A′
0 be a model in dom(an) isomorphic to A0 such that α′ = πA0A′

0
(α).

Compare Y with A′
0.

Case B1.1.1 otp(Y ) = otp(A′
0).

We split into two subcases according to 1.1(10(c))(i) or (ii).

Subcase B1.1.1.1 min(A′
0\ sup(A′

0 ∩ Y ) + 1) > sup Y .

Then β′ = min(A′
0\ sup(A′

0 ∩ Y ) + 1) is in dom(an) by 3.1(2(f)). Recall

that α was above all the ordinals of A0 ∩ dom(an), hence α′ will be such in

A′
0 ∩ dom(an), by 3.1(2(e)). In particular, α′ > β′. But then α′ > sup Y ,

which contradicts our assumption on α′ and Y .

Subcase B1.1.1.2 min(Y \ sup(A′
0 ∩ Y ) + 1) > sup A′

0.

Again, β′ = min(A′
0\ sup(A′

0 ∩ Y ) + 1) is in dom(an) by 3.1(2(f)). Also,

α′ > β′. But α′ < sup A′
0. Hence, α′ < min Y \α′ = min(Y \ sup(A′

0∩Y )+1).

But min(Y \ sup(A′
0 ∩ Y ) + 1) ∈ dom(an), by 3.1(2(k)). So we are done.

Case B1.1.2 otp(Y ) < otp(A′
0).

Then B′ as in 1.1(10) must exists. But this is impossible since otpκ+(A′
0) =

otpκ+(A0) = 1.

Case B1.1.3 otp(Y ) > otp(A′
0).
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Then we have a set B′ as in 1.1(10) for Y and A0 inside dom(an). Again

we split into two cases according to (i) and (ii) of 1.1(10(c)).

Subcase B1.1.3.1 min(B′\ sup(A′
0 ∩B′) + 1) > sup A′

0.

As before, α′ should be above β′ = min(A′
0\ sup(A′

0 ∩ Y ) + 1). By

1.1(10(d)), Y has no elements inside the interval

(min(A′
0\ sup(A′

0 ∩B′) + 1), sup A0).

We will need now the following useful claim:

Subclaim B1.1.3.1.1 There is Z ∈ dom(an) such that Z ⊇ A′
0 and

otp(Z) = otp(Y ).

Proof. Consider the walks from max(an) to A′
0 and to Y . Let B0 be the

first point where the walks split. Then B0 must be a successor point with

two immediate predecessors B00 and B01. By 3.1(2(h)), then all this models

B0, B00, B01 are in dom(an). Assume without loss of generality that A′
0 ⊆ B00

and Y ⊆ B01. If Y = B01, then B00 will be as desired. Suppose that

Y ⊂ B01. Then just copy it to the B00 side by taking Y1 = πB01B00 [Y ].

Then Y1 ∈ dom(an), by 3.1(2(e)). If Y1 ⊇ A′
0, then we are done. Otherwise

consider the walks from B00 to A′
0 and Y1. After finitely many steps a model

as desired will be reached.

� of the subclaim.

Compare now Y and Z. There is ξ ∈ Y ∩dom(an) such that Y ∩Z = Y ∩ξ.

Actually, ξ = min(Y \ sup(Y ∩ Z)), by 1.1(9). Remember that α′ ∈ Z and

α′ < sup Y . Then, by 1.1(10), ξ = min(Y \ sup(Y ∩ Z)) > sup Z > α′. But

now clearly, ξ = min(Y \α′) and we are done.

Subcase B1.1.3.2 min(A′
0\ sup(A′

0 ∩B′) + 1) > sup B′.

Then, by 1.1(10(c(ii)), we have also

min(A′
0\ sup(A′

0 ∩B′) + 1) > sup Y.

Which implies that α′ > sup Y and contradicts our assumption.
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This completes the check of 3.1(2(k)).

Let us turn to 3.1(2(h)). Suppose that Y is a model in dom(an) and α′ is

an image of α added by the isomorphism between A0 and some A ∈ dom(an).

Assume that α′ ∈ Y . We would like to show that the walk from Y to α′ is

already in dom(an). We claim that the walk must terminate with A. Suppose

otherwise. Thus let Z be the first model of the walk which does not contain

A. Compare Z and A. By 1.1(9,10) and 3.1(2(f)), there is µ ∈ A ∩ dom(an)

such that

Z ∩ A = A ∩ µ.

Then α′ < µ, but recall that each β ∈ A0∩(∪{dom(an)|n < ω}) (if any) is less

than α. So, by isomorphism between A0 and A, each β ∈ A∩(∪{dom(an)|n <

ω}) (if any) is less than α′. In particular, µ < α′. Contradiction.

Let us check now 3.1(2(m). Thus let 〈αi|i < j〉 be a strictly increasing

sequence of isomorphic images of α. For each i < j there is a model Yi ∈
dom(an) isomorphic to A0 such that αi = πA0Yi

(α) = αi. Note if i, k < j are

different then αk 6∈ Yi. Just, by 1.1(8) the isomorphisms between models are

identity on common parts of the models. Now, we pick for each i < j the least

ordinal τi ∈ Yi+1\Yi. There is such, since αi+1 ∈ Yi+1\Yi, αi+1 > αi ∈ Yi and

so,by 1.1(10(c)) we must have then min(Yi+1\ sup(Yi+1 ∩ Yi) + 1) > sup Yi.

Also, we have αi < sup Yi < τi ≤ αi+1. By 3.1(2(f)), τi ∈ dom(an) for each

i < j. Hence, ⋃
i<j

αi =
⋃
i<j

τi ∈ dom(an).

The rest of the conditions hold trivialy.

� of the claim.

Subcase B2 κ+3 ∩ A0 ∩ (∪{dom(an)|n < ω})\α + 1 is not empty.

Let δ = min(κ+3∩A0∩ (∪{dom(an)|n < ω})\α+1. Pick n∗ large enough

so that for each m ≥ n∗ we have δ, A0 ∈ dom(am) and am(δ) ≺ H(χ+k)

and an(A0) ≺ H(χ+`) for k, ` � 2. Fix n ≥ n∗. Assume for simplicity that

an(δ) ≺ an(A0) ≺ H(χ+k). Otherwise we just cut one of an(δ), an(A0), i.e.
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we choose k to be the minimal so that an(δ) ⊆ H(χ+k) or an(A0) ⊆ H(χ+k)

and intersect the one that not contained with H(χ+k).

Now we proceed as in Case B1 with an(δ) replacing an(A0). Thus pick

some M ∈ an(δ) ∩ an(A0) such that

(1) |M | = κ+n+2
n

(2) M ≺ H(χ+k−1)

(3) M ⊇ κ+n+2
n

(4) cof(M ∩ κ+n+3
n ) = κ+n+2

n

(5) for each N ∈ rng(an) ∩ an(δ) we have N ∩H(χ+k−1) ∈M .

In particular, M ∩κ+n+3
n (the main part of M) is above each N ∩κ+n+3

n ,

for every N ∈ rng(an) ∩ an(δ).

Define the image of α to be M . Move this setting to all the elements in

dom(an) isomorphic to A0 (if any). Denote the result by bn.

Claim B2.1 bn satisfies all the conditions of 3.1(2) but (l). Moreover, if an

satisfies all the conditions of 3.1(2) then also bn satisfies all the conditions of

3.1(2).

Proof. Let us check first 3.1(2(k)). Let Y be a model in dom(an) and α′ be

an image of α under isomorphism which was added to dom(an). We need to

deal with the case when α′ < sup Y and show that min Y \α′ is in dom(an).

Thus let A′
0 be a model in dom(an) isomorphic to A0 such that α′ = πA0A′

0
(α).

Denote πA0A′
0
(δ) by δ′. Compare Y with A′

0.

Case B2.1.1 otp(Y ) = otp(A′
0).

We split into two subcases according to 1.1(10(c))(i) or (ii).

Subcase B2.1.1.1 min(A′
0\ sup(A′

0 ∩ Y ) + 1) > sup Y .

Then β′ = min(A′
0\ sup(A′

0 ∩ Y ) + 1) is in dom(an) by 3.1(2(f)). Recall

that α was above all the ordinals of δ ∩ dom(an), hence α′ will be such in
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δ′ ∩ dom(an), by 3.1(2(e)). In particular, if β′ < δ′ then α′ > sup Y , which

contradicts our assumption on α′ and Y . Hence, β′ ≥ δ′. By 1.1(9,10), we

have A′
0 ∩ Y = A′

0 ∩ β′. So, α′ ∈ Y and we are done.

Subcase B2.1.1.2 min(Y \ sup(A′
0 ∩ Y ) + 1) > sup A′

0.

Again, β′ = min(A′
0\ sup(A′

0 ∩ Y ) + 1) is in dom(an) by 3.1(2(f)). By

1.1(9,10), we have A′
0 ∩ Y = A′

0 ∩ β′. Hence, if δ′ ≤ β′ then α′ ∈ Y and

we are done. Suppose that δ′ > β′. Then also α′ > β′. It follows that

α′ < min Y \α′ = min(Y \ sup(A′
0 ∩ Y ) + 1). But min(Y \ sup(A′

0 ∩ Y ) + 1) ∈
dom(an), by 3.1(2(f)). So we are done.

Case B2.1.2 otp(Y ) < otp(A′
0).

Then B′ as in 1.1(10) must exists. But this is impossible since otpκ+A′
0 =

otpκ+A0 = 1.

Case B2.1.3 otp(Y ) > otp(A′
0).

Then we have a set B′ as in 1.1(10) for Y and A′
0 inside dom(an). Again

we split into two cases according to (i) and (ii) of 1.1(10(c)).

Subcase B2.1.3.1 min(B′\ sup(A′
0 ∩B′) + 1) > sup A′

0.

As before, α′ should be above β′ = min(A′
0\ sup(A′

0 ∩ Y ) + 1) unless it is

already in Y . By 1.1(10(d)), Y has no elements inside the interval

(min(A′
0\ sup(A′

0 ∩B′) + 1), sup A′
0).

Let Z be as in Subclaim B1.1.3.1.1. Compare now Y and Z. There is

ξ ∈ Y ∩dom(an) such that Y ∩Z = Y ∩ξ. Actually, ξ = min(Y \ sup(Y ∩Z)),

by 1.1(9). Remember that α′ ∈ Z and α′ < sup Y . Then, by 1.1(10),

ξ = min(Y \ sup(Y ∩Z)) > sup Z > α′. But now clearly, ξ = min(Y \α′) and

we are done.

Subcase B2.1.3.2 min(A′
0\ sup(A′

0 ∩B′) + 1) > sup B′.

Then, by 1.1(10(c(ii)), we have also

min(A′
0\ sup(A′

0 ∩B′) + 1) > sup Y.
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We assumed that α′ < sup Y , so α′ ∈ A′
0 ∩ B′. In particular, then α′ ∈ Y

and we are done.

This completes the checking of 3.1(2(k)).

Let us turn to 3.1(2(h)). Suppose that Y is a model in dom(an) and α′ is

an image of α added by the isomorphism between A0 and some A ∈ dom(an).

Assume that α′ ∈ Y . We would like to show that the walk from Y to α′ is

already in dom(an).

If the walk to α′ must terminate with A then we are done. Suppose

otherwise. Thus let Z be the first model of the walk which does not contain

A. Compare Z and A. By 1.1(9,10) and 3.1(2(f)), there is µ ∈ A ∩ dom(an)

such that

Z ∩ A = A ∩ µ.

Also there is S ∈ Z∪{Z}∩dom(an) such that otpS = otpA and Z∩A = S∩A

(remember that A is isomorphic to A0 which is minimal). If S is the final

model of the walk from Y to α′ then we are done. Suppose otherwise. Let

T 6= S be such model.

Note that then necessary otpT = otpA , since A is minimal the only other

possibility is otpT > otpA. But if this happens then there will be T ′ ∈ T

isomorphic to A and with α′ inside by 1.1(10). Which is impossible, since

then T ′ must be one of the immediate predecessors of T or a member of them

by 1.1(11). So it is possible to continue the walk contradicting to the choice

of T as the final model.

We claim that T ∈ dom(an). Let us argue as follows. Pick Y0 to be the

last member of the common part of the walks from Y to S and to T . Then

it should be a successor model. Let Y00, Y01 be its immediate predecessors

with Y00 ∈ Cκ+
(Y0). Then Y01 should include S, since otherwise the walk

to a common point α′ of both models S, T must go into direction of S,

which is not the case. Now, Y0 must be in dom(an). It follows from the

definition of the walk and 3.1(2(h)) applied to Y, S ∈ dom(an) . But then

both Y00, Y01 are in dom(an) by 3.1(2(h)) and (l). Hence also S0 = πY00,Y01 [S]
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is in dom(an), by 3.1(2(e)). We have still α′ ∈ S0. If S0 = T , then we are

done. Otherwise, pick Y1 to be the last member of the common part of the

walks from Y to S0 and to T . It should be a successor model below Y00. Let

Y10, Y11 be its immediate predecessors with Y10 ∈ Cκ+
(Y1). Then Y11 should

include S0, since otherwise the walk to a common point α′ of both models

S0, T must go into direction of S0, which is not the case. Now, Y1 must be

in dom(an). It follows from the definition of the walk and 3.1(2(h)) applied

to Y, S0 ∈ dom(an) . But then both Y10, Y11 are in dom(an) by 3.1(2(h)) and

(l). Hence also S1 = πY10,Y11 [S0] is in dom(an), by 3.1(2(e)). We have still

α′ ∈ S1. If S1 = T , then we are done. Otherwise, pick Y2 to be the last

member of the common part of the walks from Y to S1 and to T . It should

be a successor model below Y10. Continue as above and define S2 ∈ dom(an).

If S2 6= T , then we can continue to go down and to define Y3 etc. After finally

many stages T will be reached.

This completes the checking of 3.1(2(h)).

Let us check now 3.1(2(m)). Thus let 〈αi|i < j〉 be a strictly increasing

sequence of isomorphic images of α. For each i < j there is a model Yi ∈
dom(an) isomorphic to A0 such that αi = πA0Yi

(α) = αi. Note if i, k < j are

different then αk 6∈ Yi. Just, by 1.1(8) the isomorphisms between models are

identity on common parts of the models. Now, we pick for each i < j the least

ordinal τi ∈ Yi+1\Yi. There is such, since αi+1 ∈ Yi+1\Yi, αi+1 > αi ∈ Yi and

so,by 1.1(10(c)) we must have then min(Yi+1\ sup(Yi+1 ∩ Yi) + 1) > sup Yi.

Also, we have αi < sup Yi < τi ≤ αi+1. By 3.1(2(f)), τi ∈ dom(an) for each

i < j. Hence, ⋃
i<j

αi =
⋃
i<j

τi ∈ dom(an).

The rest of the conditions hold trivialy.

� of the claim.

Suppose now that i > 0 and for each j < i it is possible to add elements

of Aj. Let us show that it is possible to add elements of Ai. If i is limit, then

this is clear since then Ai = ∪{Aj|j < i}. So assume that i is a successor
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ordinal and let X ∈ Ai\∪{Aj|j < i}. Suppose first that X is not an ordinal.

Note that by 3.1(2(g)), in order to add an ordinal we need anyway to add

models first.

We would like to run now a new induction on a walk length from A to

X. Let us give a precise definition.

Suppose that K, L ∈ A1κ+
and L ∈ K, where as usual A1κ+

is taken

from G(P ′). Set wl(K, L) = 0, if L ∈ Cκ+
(K). Let wl(K, L) = 1, if there

is M ∈ Cκ+
(K) such that L is the immediate predecessor of M which is

not in Cκ+
(M). In general, set wl(K, L) = 2n + 2, if there is M such that

wl(K, M) = 2n + 1 and L ∈ Cκ+
(M); set wl(K, L) = 2n + 1, if there is M

such that wl(K, M) = 2n and L is the immediate predecessor of M which is

not in Cκ+
(M).

So the induction will be now on wl - the walk length from models in

the domain to one that we like to add. Then the zero stage and all even

stages are just as Case A. Stage one and all odd stages basically deal with

the situation of adding X to Ai ones X is the immediate predecessor of Ai

which is not in Cκ+
.

So let us concentrate on this case. Then Ai must have two immediate

predecessors Ai−1 and X. Again by Case A, we can assume that also Ai−1 ∈
dom(an). Note that it implies, in particular, that an fails to satisfy 3.1(2(l)).

The thing will fixed below by adding X.

Let Ai∗∗ be as in Case A but with Ai−1 replacing Ai∗ there.

By 1.1(4(d)), otpAi−1 = otpX. Also there are α1 ∈ Ai−1 ∩ A1κ++
, α2 ∈

X∩A1κ++
such that Ai−1∩α1 = Ai−1∩X = X∩α2, for some A1κ++

in G(P ′).
We first add α1 to dom(an). Note that α1 ∈ Ai−1 ∩A1κ++

. So, the induction

can be used to add it to the domain. Assume that already α1 ∈ dom(an)

and an(α1) = M so that M ∈ an(Ai−1) and it is an elementary submodel

of cardinality κ+n+2
n of H(χ+k) for some k � 2. Find X∗ ∈ M such that

|X∗| = κ+n+1
n , X∗ ≺ H(χ+k−1) and X∗ realizes over an(Ai−1) ∩M the same

k − 1-type as an(Ai−1) does. It exists by elementarity, since we replace k by
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k − 1.

If sup X < α1, then we take X∗ to be the image of X. Extend the

condition by coping from an(Ai−1) to X∗ all the elements of an(Ai−1) and

M ∩H(χk−1). If sup X > α1, then β1 = min(X\Ai−1∩X) > sup Ai−1. Work

then inside an(Ai) find a model M ′ above sup an(Ai−1) of the same type as

M and find X∗∗ in it above sup an(Ai−1) as well resembling X∗ above. Add

it to be the image of X.

Now copy everything from Ai−1 ∩ dom(an) to X and move this setting to

all the elements of dom(an) isomorphic to Ai (if any). Denote the result by

bn.

The above is the heart of the argument. The basic idea goes back to [1]

Claim B3 bn satisfies all the conditions of 3.1(2) but (l). Moreover, if

an satisfies all the conditions of 3.1(2) but (l) only for Ai and the models

isomorphic to it, then also bn satisfies all the conditions of 3.1(2).

Proof. Let us check first 3.1(2(f)).

Suppose first that X ′, X ′′ are images of X and its elements (ob-

tained by moving from Ai−1 ∩ dom(an) to X) which were added to

dom(an).

We need to show witnessing the intersection conditions for X ′ ∩ X ′′ are

in the domain. Split the proof into few cases.

Case B3.1 X ′ = X and X ′′ ∈ Ai.

Assume that X ′′ 6= X ′, otherwise every thing is just trivial. If X ′′ ∈ X

then we are done again. So we can assume that X ′′ = Ai−1 or X ′′ ∈ Ai−1 ∩
dom(an). If X ′′ = Ai−1, then α1 (from the definition of X) as well as its

image- πAi−1X(α1) = αX are in the domain of q and we are done. Suppose

that X ′′ ∈ Ai−1 ∩ dom(an).

Subcase B3.1.1 X ′′ is not an ordinal.

Then

X ∩X ′′ = X ∩ Ai−1 ∩X ′′ = Ai−1 ∩ α1 ∩X ′′ = α′ ∩X ′′.

31



Hence only α′ which is already in dom(an), is needed for the intersection of

X ′′ and X. The opposite way- let Z = πAi−1X [X ′′]. Then

X ∩X ′′ = X ∩ Ai−1 ∩X ′′ = Z ∩ Ai−1 = Z ∩ αX .

Again, Z and αX were added so we are done.

Subcase B3.1.2 X ′′ is an ordinal.

Let us denote X ′′ by ξ. Suppose that ξ < sup X∩κ+3. If ξ < α1, then ξ is

in the common part of Ai−1 and X. Otherwise, we will have αX = min(X\ξ)
, by 1.1(10).

Case B3.2 X ′ ∈ X and X ′′ ∈ Ai.

We allow the possibility that one of them is an ordinal. In this case we

care only about the intersection on the model side.

Let Z = πXAi−1
[X ′]. Then Z is in the domain of an. Also,

X ′ ∩X ′′ = X ′ ∩ Z ∩X ′′ = α1 ∩ Z ∩X ′′.

This takes care of the intersection of X ′ and X ′′ from the side of X ′. Let us

deal with the opposite side, i.e. X ′. Take Y = πXAi−1
[X ′′]. Then

X ′ ∩X ′′ = X ′ ∩ Y ∩X ′′ = αX ∩ Y ∩X ′.

But both Y and αX were added. So we are done.

Case B3.3 X ′ ∈ X ∪ {X} and X ′′ 6∈ Ai.

Then there is some A′′ ∈ dom(an) isomorphic to Ai with X ′′ ∈ A′′ being

the image of an element of X ∪ {X} that was added under the isomorphism

πAiA′′ . Let Z = πA′′Ai
[X ′′] and Z ′ = πAiA′′ [X ′].

We deal first with the intersection of X ′ with X ′′ on the side of X ′. Thus

X ′ ∩X ′′ = X ′ ∩ Ai ∩ A′′ ∩X ′′ = X ′ ∩ Ai ∩ αAiA′′ ∩ Z,

where αAiA′′ = min{δ|δ ∈ Ai\A′′}. Then we can use Case B3.1 or B3.2, since

all the components of the last intersection are in Ai.
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Let us turn to the opposite side. Again,

X ′ ∩X ′′ = X ′ ∩ Ai ∩ A′′ ∩X ′′ = X ′′ ∩ A′′ ∩ αA′′Ai
∩ Z ′,

where αA′′Ai
= min{δ|δ ∈ A′′\Ai}.

Now we can move all the members of the last equality to Ai using πA′′Ai

take care of the intersections using Case B3.1 or 3.2 and finally move back

the result by πAiA′′ .

Case B3.4 X ′ 6∈ Ai and X ′′ 6∈ Ai.

Then there are some A′, A′′ ∈ dom(an) isomorphic to Ai with X ′ ∈ A′ ,

X ′′ ∈ A′′ and both X ′, X ′′ being images of elements of X ∪ {X} that were

added under the isomorphisms πAiA′ and πAiA′′ . Let Z = πA′A′′ [X ′′] and

Z ′ = πAiA′′ [X ′].

We deal with the intersection of X ′ with X ′′ on the side of X ′. The

opposite side is similar. Thus

X ′ ∩X ′′ = X ′ ∩ A′ ∩ A′′ ∩X ′′ = X ′ ∩ A′ ∩ αA′A′′ ∩ Z,

where αA′A′′ = min{δ|δ ∈ A′\A′′}. Note that such ordinal exists by 3.1(f,k).

Now the members of the last equality are all in A′. Move them to Ai using

πA′′Ai
take care of the intersections using Case B3.1 or 3.2 and finally move

back the result by πAiA′′ .

Suppose now that only X ′ is an image of X or of its element and

X ′′ is old, i.e. in dom(an).

Then there is some A′ ∈ dom(an) isomorphic to Ai with X ′ ∈ A′ being

the image of an element of X ∪ {X} that was added under the isomorphism

πAiA′ . Split into two cases according to otpX ′′.

Case B3.5 otpX ′′ ≤ otpA′ or X ′′ is an ordinal.

Then we need only to deal with the intersection of X ′ and X ′′ on the side

of X ′.
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Let αA′X′′ = min{δ|δ ∈ A′\X ′′}. Note that such ordinal is in dom(an) by

3.1(f,k). Then

X ′ ∩X ′′ = X ′ ∩ A′ ∩X ′′ = X ′ ∩ A′ ∩ αA′X′′ .

Now all the components of the last equality are in A′, so we can deduce the

conclusion as in Case B3.4.

Case B3.6 otpX ′′ > otpA′.

Find first A′′ ∈ X ′′ ∩ dom(an) of the order type otp A′ such that A′ ∩
X ′′ = A′ ∩ A′′. It exists by 3.1(f). Also let αA′A′′ = min{δ|δ ∈ A′\A′′} and

αA′′A′ = min{δ|δ ∈ A′′\A′}.
Deal first with the intersection of X ′ and X ′′ on the side of X ′.

X ′ ∩X ′′ = X ′ ∩ A′ ∩X ′′ = X ′ ∩ A′ ∩ A′′ = X ′ ∩ A′ ∩ αA′A′′ .

Now all the components of the last equality are in A′, so we can deduce the

conclusion as in Case B3.3.

Now we deal with the intersection of X ′ and X ′′ on the side of X ′.

X ′ ∩X ′′ = X ′ ∩ A′ ∩X ′′ = X ′ ∩ A′ ∩ A′′ = πA′A′′ [X ′] ∩ A′ ∩ αA′′A′ .

Now all the components of the last equality are in A′′, so we can deduce the

conclusion as in Case B3.3.

This completes checking of 3.1(2(f)).

Let us turn to 3.1(2(h)).

Suppose that Y, U are appear in q and U ∈ Y . We claim that the walk

from Y to U is also in q. We may assume that at least one of the elements

Y, U is new (i.e. not in p). Split into few cases.

Case B3.7 Y 6∈ dom(an).

Then there is A ∈ dom(an) isomorphic to Ai such that Y ∈ A is the

isomorphic image of a model X or of its element obtained by moving from

Ai−1 ∩ dom(an) to X. We have U ∈ Y , so U ∈ A.
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Without loss of generality we can assume that A is Ai, otherwise just

move Y, U to Ai via the isomorphism run the the argument inside Ai and

then move the result back to A.

Now, we apply the isomorphism πXAi−1
to Y, U . Let Y ∗, U∗ be the images.

Then they are in Ai−1 ∪{Ai−1}∩ dom(an). Hence the walk from Y ∗ to U∗ is

in dom(an). Its image under πAi−1X will be then the walk from Y to U and

we are done.

Case B3.8 Y ∈ dom(an).

There is A ∈ dom(an) isomorphic to Ai such that U ∈ A is the isomorphic

image of a model X or of its element obtained by moving from Ai−1∩dom(an)

to X.

Subcase B3.8.1 U is an image of X

If the walk from Y to U terminates at A then we are done. Otherwise

there must be a model Z on this walk inside dom(an) which does not contain

A. We can take for example, Z = Y , if Y does not contain A or the point

were the walk from Y to A differs from the one from Y to U , if Y ⊇ A.

Compare Z and A. By 1.1(9,10) and 3.1(2(f)), there is µ ∈ A ∩ dom(an)

such that

Z ∩ A = A ∩ µ.

Also there is S ∈ Z∪{Z}∩dom(an) such that otpS = otpA and Z∩A = S∩A

(remember that A is isomorphic to Ai which is a minimal including X and

U is the image of X). If S is the final model of the walk from Y to U then

we are done. Suppose otherwise. Let T 6= S be such model.

Note that then necessary otpT = otpA, since A is a minimal including U

the only other possibility is otpT > otpA. But if this happens then there will

be T ′ ∈ T isomorphic to A and with U inside by 1.1(10). Which is impossible,

since then T ′ must be one of the immediate predecessors of T or a member

of them by 1.1(11). So it is possible to continue the walk contradicting to

the choice of T as the final model.
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Now T ∈ dom(an). The rest of the argument repeats completely those of

Claim B2.1.

Subcase B3.8.2 U is not an image of X

Suppose for simplicity that A = Ai. Then U will be in X and it will be

obtained by moving from Ai−1 ∩ dom(an) to X.

If the walk from Y to U goes via X, then using the previous case this

walk will be in q and we are done. Suppose that this does not happen.

If otpX > otpY , then by 3.1(2(f)) there is X ′ ∈ A in q with otpY = otpX ′

and Y ∩ X = Y ∩ X ′. Clearly, U ∈ X ′. Note that Y 6= X ′ unless Y is in

X. If Y ∈ X, then both U, Y ∈ X. Hence the argument of the previous case

applies. Assume so, that Y 6= X ′.

Set K = X, if otpX ≤ otpY and K = X ′, if otpX > otpY .

Let Z be the first model of the walk from Y to U which does not contain

K. Compare Z and K. By 1.1(9,10) and 3.1(2(f)), there is there is S ∈
Z ∪ {Z} in q such that otpS = otpK and Z ∩K = S ∩K. If the walk from

Y (or Z which is the same) to U goes through S, then use πKS to copy to

S the walk from K to U . The walk from K to U is in q, so the one copied

(from S to U) must be in q as well by 3.1(2(e)). But the walk from Y to U

is the combination of the walks from Y to S with the walk from S to U and

both are in q. So we are done. Just note that the walk from Y to S is in q,

since we have either

(a) K = X and then otpS = otpX.

So S is an image of X and hence, B3.8.1 applies

or

(b) K = X ′ and then otpY = otpX ′ = otpS.

In this case we must have Y = S and so the walk is trivial.

Suppose now that the walk from Y (or Z which is the same) to U does

not go through S.

Pick Y0 to be the last member of the common part of the walks from

Y to S and to U . Then it should be a successor model. Let Y00, Y01 be
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its immediate predecessors with Y00 ∈ Cκ+
(Y0). Then Y01 should include S,

since otherwise the walk to a common point U of both models S, Y0 must go

into direction of S, which is not the case. Now, Y0 must be in q. It follows

from the definition of the walk and 3.1(2(h)) applied to Y, S in q. But then

both Y00, Y01 are in q by 3.1(2(h)) and (l). Hence also S0 = πY00,Y01 [S] is in

q, by 3.1(2(e)). We have still U ∈ S0. If S0 is on the walk from Y to U , then

we are done exactly as above. Just as above use πS0K to copy the walk from

S0 to U to the one from K to U . Otherwise, pick Y1 to be the last member

of the common part of the walks from Y to S0 and to U . It should be a

successor model below Y00. Let Y10, Y11 be its immediate predecessors with

Y10 ∈ Cκ+
(Y1). Then Y11 should include S0, since otherwise the walk to a

common point U of both models S0, Y10 must go into direction of S0, which

is not the case. Now, Y1 must be in q. It follows from the definition of the

walk and 3.1(2(h)) applied to Y, S0 ∈ q . But then both Y10, Y11 are in q by

3.1(2(h)) and (l). Hence also S1 = πY10,Y11 [S0] is in q, by 3.1(2(e)). We have

still U ∈ S1. If S1 is on the walk from Y to U , then we are done. Otherwise,

pick Y2 to be the last member of the common part of the walks from Y to S1

and to U . It should be a successor model below Y10. Continue as above and

define S2 ∈ q. If S2 6= T , then we can continue to go down and to define Y3

etc. After finally many stages a model S∗ which is on the walk from Y to U

will be reached.

This completes the checking of 3.1(2(h)).

The checking of 3.1(2(k)) repeats those of Claim B2.1. The rest of the

conditions hold trivialy.

� of the claim.

It remains only to deal with the case when X is an ordinal. Recall that

i > 0 is the least with X ∈ Ai. We can assume now that all the immediate

predecessors of Ai (and there are at most two and at least one) are already

in dom(an). Let us denote X = α and let A′
i−1 denotes the immediate

predecessor different from Ai−1, if such exists.
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Split now into two cases.

Case B4.1 There is no Z ∈ Ai ∩ dom(an) with α < sup(κ+3 ∩ Z).

We proceed as in Case A. We assume that an(Ai) ≺ H(χ+k) for k � 2.

Pick X∗ to be an element of an(Ai) such that

(1) X∗ ≺ H(χ+k−1)

(2) X∗ ∩ κ+n+3 is an ordinal of cofinality κ+n+2

(3) for every Z ∈ Ai ∩ dom(an) we have an(Z) ∩H(χ+k−1) ∈ X∗

We take X∗ to be the image of X = α. Move this setting now to all the

elements of dom(an) isomorphic to Ai (if any). The arguments of Cases A,B

apply in order to show the result is a condition.

Case B4.1 There is Z ∈ Ai ∩ dom(an) with α < sup(κ+3 ∩ Z).

Then we pick Z ∈ Ai ∩ dom(an) with min(κ+3 ∩ Z\α) as small as pos-

sible. Let β be min(κ+3 ∩ Z\α), for such Z. Using induction we first add

β to dom(an). Assume without loss of generality that both an(Ai), an(β) ≺
H(χ+k) for k � 2. Pick X∗ to be an element of an(Ai) ∩ an(β) such that

(1) X∗ ≺ H(χ+k−1)

(2) X∗ ∩ κ+n+3 is an ordinal of cofinality κ+n+2

(3) for every Z ′ ∈ Ai ∩ dom(an) with sup(Z ′) ∩ κ+3 < β we have an(Z ′) ∩
H(χ+k−1) ∈ X∗

We take X∗ to be the image of X = α. Move this setting now to all the

elements of dom(an) isomorphic to Ai (if any). The arguments of Cases A,B

apply in order to show the result is a condition. The only new possibility

that was not considered in the checking of 3.1(2(k)) above is the following:

Y a model in dom(an) with sup Y > α, α 6∈ Y and otp(Y ) < otp(Ai).

Then use Subclaim B1.1.3.1 to find W ∈ dom(an) such that W ⊇ Y and
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otp(W ) = otp(Ai). Suppose first that α 6∈ W . Now compare W and Ai.

There is ξ ∈ W ∩ dom(an) such that Ai ∩W = W ∩ ξ. By 1.1(10(c)), then

ξ = min(W\ sup(W ∩ Ai)) > sup(Ai) > α. Hence min(Y \α) = min(Y \ξ).
But both Y and ξ are in dom(an). So we are done.

Suppose now that α ∈ W . Then α = πWAi
[α]. Set Y ′ = πWAi

[Y ].

Then sup Y ′ > α since πWAi
is order preserving. Induction on wl can be

applied now to Y ′. So, τ ′ = min(Y ′\α) ∈ dom(an). Set τ = πAiW (τ ′). Then

τ ∈ dom(an) and τ = min(Y \α) by the elementarity of πWAi
.

This completes the proof of the lemma.

� of 3.3

Remark 3.4 The proof of 3.3 provides a bit more information. Thus, if X

is a model that we like to add to dom(an), then

(1) if X ∈ Cκ+
(A), for some A ∈ dom(an), and either

(a) X is a limit model with cof(otpκ+(X)− 1) > κ

or

(b) X is a successor model, the immediate successor of X in Cκ+
(A)

is not in dom(an) and the same for the immediate predecessor (if

it exists at all)

or

(c) X is a successor model, the immediate successor of X in Cκ+
(A)

is in dom(an), but X is his unique immediate predecessor, the

immediate predecessor (if it exists ) is not in dom(an) or it is, but

then it is the unique immediate predecessor of X,

then X can be added without adding other additional models or ordi-

nals except the images of X under isomorphisms. I.e. if A′ ∈ dom(an) is

the least model including X and B ∈ dom(an) has the same otp as those

of A′, then πA′B[X] is added also. Note that necessary A′ ∈ Cκ+
(A),

otherwise just use 1.1(10),(4(a)).
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(2) if X is a successor model, X ∈ Cκ+
(A), for some A ∈ dom(an), and

(b), (c) of the previous case fail, then adding X requires adding of

an other immediate predecessor of the immediate successor of X in

Cκ+
(A), by 3.1(2(l)) or of an other its immediate predecessor. Which

in turn requires further additions which will be specified in (3) below.

(3) If X 6∈ Cκ+
(A), for a smallest A ∈ dom(an) including X (note that it

is possible to have many such A’s but all of them will have the same

otp and will agree about X not being on the sequence Cκ+
, just due

to isomorphism. Also its possible in general to have them immediate

successors of X. If one likes to fix one, then the one of the least rank

can be used), then in order to add X we need to add finitely many

models of the walk from A to X. Adding a model B1 which is an

immediate predecessor of a model B not in Cκ+
(B) for B that was in

dom(an) or was added during the walk requires adding the immediate

predecessor B0 of B inside Cκ+
(B), as well as an ordinal α0 ∈ B0 such

that

B1 ∩B0 = B0 ∩ α0.

Adding α0 may require further adding of the immediate predecessors

of B0 or of some model in Cκ+
(B0). This in turn requires adding

of new ordinal and so on. The rank (or wl) of the models and the

ordinals involved is decreasing. Hence after finitely many additions the

process will terminate. Again after each addition we need to take all

the isomorphic images.

The ordering ≤∗ on P and ≤n on Qn0 is not closed in the present sit-

uation. Thus it is possible to find an increasing sequence of ℵ0 conditions

〈〈ani, Ani, fni〉 | i < ω〉 in Qn0 with no upperbound. The reason is that the

union of maximal models of these conditions, i.e.
⋃

i<ω max(dom ani) need

not be in A11 for any A11 in G(P ′). The next lemma shows that still ≤n and

so also ≤∗ share a kind of strategic closure.
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Lemma 3.5 Let n < ω. Then 〈Qn0,≤n 〉 does not add new sequences of

ordinals of the length < κn, i.e. it is (κn,∞) – distributive.

Proof. Let δ < κn and f
∼

be a Qn0-name of a function from δ to ordinals.

Using genericity of G(P ′) (or stationarity of the set {A0κ+|A0κ+
appears in

an element of G(P ′)}) it is not hard to find elementary submodel M of some

H(ν) for ν big enough so that

(a) Qn0, f
∼
, P ′ ∈M

(b) |M | = κ+

(c) M∗ = M ∩H(κ+3) appears in A1κ++
of a condition of G(P ′)

(d) cf(M∗ ∩ κ++) = δ.

(e) δ>M ⊆M .

Note that for such M , M∗ = M ∩ H(κ+3) must be a limit model, since

by 1.1(12) successor models are closed under κ sequences, but M∗ is not by

(d) above.

We have Cκ+
(M∗)\{M∗} ⊆M∗ and, by elementarity of M , Cκ+

(B) ∈M

for each B ∈ Cκ+
(M∗)\{M∗} . Also the cofinality of Cκ+

(M∗)\{M∗} under

the inclusion must be δ, since it is an ∈-increasing continuous sequence of

elements of M∗ with limit M∗ and by (d) above cf(M∗ ∩ κ++) = δ. Fix an

increasing continuous sequence 〈Ai | i < δ〉 of elements of Cκ+
(M∗)\{M∗}

such that
⋃

i<δ Ai = M∗, A0 is a successor model and for each limit model

Ai in the sequence Ai+1 is its immediate successor in Cκ+
(M∗). By (e), each

initial segment of it will be in M . Now we decide inside M one by one values

of f
∼

and put models from 〈Ai | i < δ〉 to be maximal models of conditions

used. This way we insure that unions of such conditions is a condition.

We define by induction an increasing sequence of conditions

〈〈a(i), A(i), f(i)〉|i < δ〉.
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and an increasing continuous subsequence

〈Aki
|i < δ〉 of 〈Ai|i < δ〉

such that for each i < δ

(1) 〈a(i), A(i), f(i)〉 ∈M ,

(2) 〈a(i + 1), A(i + 1), f(i + 1)〉 decides f
∼
(i)

(3) Aki
, Aki+1

∈ dom(a(i)) and Aki+1
is the maximal model of dom(a(i))

There is no problem with A(i)’s and f(i)’s in this construction. Thus we

have enough completeness to take intersections of A(i)’s and unions of f(i)’s.

The only problematic part is a(i). So let us concentrate only on building of

a(i)’s.

i=0

Then let us pick some Y0 ≺ Y1 ≺ H(χω) of cardinality κ+n+2
n , closed under

κ+n+1
n - sequences of its elements and Y0 ∈ Y1 . Set a(0) = 〈〈A0, Y0〉, 〈A1, Y1〉〉.

i+1

Then we first extend 〈a(i), A(i), f(i)〉 to a condition 〈a(i)′, A(i)′, f(i)′〉
deciding f

∼
(i). Then preform swt (see 1.3) to turn 〈a(i)′, A(i)′, f(i)′〉 into

an equivalent condition 〈a(i)′′, A(i)′, f(i)′〉 with Aki
∈ Cκ+

(max dom(a(i)′′).

Pick a successor model Aj (from the cofinal sequence 〈Ai | i < δ〉) including

max dom(a(i)′′). Set ki+1 = j and add it to dom(a(i)′′, using ?? and swt

inside Aj if necessary. Finally we add Aj+1, using ??.

i is a limit ordinal

Then we need to turn a =
⋃

j<i a(j) into condition. For this we will need

to add to dom(a) models and ordinals which are limits of elements of dom(a).

First we extend a by adding to it 〈Aki
,
⋃

j<i a(Akj
)〉, where ki = ∪j<ikj. Then

for each non decreasing sequence 〈αj|j < i〉 of ordinals in dom(a) we add the

pair 〈∪j<i αj,∪j<i(a(αj)∩H(χ+`))〉, if it is not already in the dom(a), where
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` ≤ ω the maximal such that for unboundedly many j’s in i a(αj) ≺ H(χ+`),

if the maximum exists or ` >> n otherwise. Finally, for each model B ∈
dom(a) if there is a nondecreasing sequence 〈Bj|j < i〉 of elements of Cκ+

(B)

in dom(a) and B is the least possible (under inclusion or with least sup)

including the sequence, then we add the pair 〈∪j<iBj,∪j<i(a(Bj)∩H(χ+`))〉,
if it is not already in the dom(a), where ` ≤ ω is the minimum between

the least k such that a(B) ⊆ H(χ+k) and the maximal `′ such that for

unboundedly many j’s in i a(Bj) ≺ H(χ+`′), if the maximum exists

or

it is k, if the maximum does not exists and k < ω,

or

` >> n, if the maximum does not exists and k = ω.

Denote the result by b.

Claim 3.5.1 b satisfies 3.1(2).

Proof. Let start with 3.1(2(e)). Suppose that A, B ∈ dom(b) are different and

otp(A) = otp(B). Pick A′, B′ ∈ dom(a) to be the smallest possible (under

inclusion and rank, but actually any choice of a smallest under inclusion

alone will do) including A, B respectively.

Subclaim 3.5.1.1 otp(A′) = otp(B′).

Proof. Suppose otherwise. Let, for example otp(A′) < otp(B′). Then by

3.1(2(f)), there will be B′′ ∈ B ∩ dom(a) with otp(A′) = otp(B′′). Note that

i is limit so for some j < i big enough both A′, B′ are in dom(aj) which is

a part of a condition and so satisfies 3.1. Now, πA′B′′ [A] will be in dom(b)

as well, just all the models from the increasing sequence converging to A

are moved by πA′B′′ to form such sequence for πA′B′′ [A]. We can assume that

A′ ⊂ B′ just replacing A by πA′B′′ [A] and A′ by B′′ if necessary . Considering

the walk from B′ to A′ it is not hard to see that either A′ ∈ Cκ+
(B′) or there

is A′′ ∈ Cκ+
(B) ∩ dom(a) of the same otp as A′. Suppose for simplicity that

A′ ∈ Cκ+
(B′). Otherwise just use πA′A′′ to move to A′′. But A ∈ Cκ+

(A′).
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Hence A ∈ Cκ+
(B′). Also B ∈ Cκ+

(B′), by the choice of B′. otp(A) = otp(B)

implies then A = B. This contradicts the minimality of B′, since we have

now

B = A ⊂ A′ ⊂ B′.

� of the subclaim.

Once we have otp(A′) = otp(B′), the isomorphism πA′B′ between A′, B′

and those between a(A′) ∩ H(χ+k), a(B′) ∩ H(χ+k), k is the minimal so

that a(A′) ⊆ H(χ+k), a(B′) ⊆ H(χ+k), can be used to induce isomorphisms

between A and B, b(A)∩H(χ+m) and b(B)∩H(χ+m), where m is the minimal

so that b(A) ⊆ H(χ+m), b(B) ⊆ H(χ+m). Note that by the definition of b we

must have m ≤ k. Such isomorphisms will respect those of the members of

the sequences converging to A and B, since isomorphisms between members

of the sequences are induced in the same way.

Let turn now to 3.1(2(f)). Suppose that A, B ∈ dom(b), A 6⊆ B and

B 6⊆ A. We may assume that at least one of them is new. Again pick the

smallest models A′, B′ with A ∈ A′, B ∈ B′. Now, as in 3.3, Claim B3, we

can use induction on wl - the walk length. Thus basically we need only to

consider a situation when A′ ∈ Cκ+
(B′). But then A, B just extend one

another and we are done.

Let us check that 3.1(2(g)) holds. Suppose that α, A ∈ dom(b) and α ∈ A.

If A is a new model then α belongs to one of the members of the sequence

of models converging to A. So we can assume that A is an old one, i.e. in

dom(a). Let 〈αj|j < i〉 be a nondecreasing sequence from dom(a) converging

to α. By 3.1(2(k)), γj = min(A\αj) ∈ dom(a). Then 〈γj|j < i〉 will be also

a converging to α sequence. Apply 3.1(2(g)) to A and its members. Then

either there will be the model B ∈ Cκ+
(A) ∩ dom(a) which satisfy 3.1(2(g))

for a final segment of γj’s, or we will have an increasing sequence of such

models. In the former case B must be a successor model and so closed under

κ sequences with a(B) closed under < −κn sequences. Hence α will be in B,

44



b(α) ∈ a(B) and we are done. In the later case the union of the sequence of

models will be in dom(b) and it will be as desired.

Let us check 3.1(2(f)).

Suppose that A, B ∈ dom(b) and B ∈ A. We need to show that the

walk from A to B is in dom(b). If A is new, then it is limit. So B will

belong to a member of the sequence converging to A consisting of elements

of Cκ+
(A)∩dom(a). So we can assume without loss of generality that already

A ∈ dom(a). Pick B′ ∈ dom(a) to be the smallest model with B ∈ B′. Now,

as in 3.3, Claim B3, we can use induction on wl - the walk length. Thus

basically we need only to consider a situation when B′ ∈ Cκ+
(A). But then

everything is trivial.

Turn now to 3.1(2(k)) Thus let A, α ∈ dom(a) and sup A > α. If α is an

old then sup of one of the models converging to A will be above α. 3.1(2(k))

applies and we are done. Suppose so that α is a new. If also A is a new, then

sup of one of the models converging to A will be above α. We can replace

then A by one of such models. So without loss of generality, we can assume

that A ∈ dom(a). Let 〈αj|j < i〉 be a nondecreasing sequence from dom(a)

converging to α. By 3.1(2(k)), γj = min(A\αj) ∈ dom(a). If 〈γj|j < i〉
is eventually constant, then the constant value will be as desired. Suppose

otherwise. Then 〈γj|j < i〉 will be also a converging to α sequence. Apply

3.1(2(g)) to A and its members. It follow that α ∈ A. So min(A\α) = α ∈
dom(b) and we are done.

The condition 3.1(2(l)) is satisfied since all new models that were added

are limit models. By 1.1(11(b)), such models are unique immediate prede-

cessors of their immediate successor models. Hence even if some model in an

got the immediate predecessor it must be the unique one.

The rest of the conditions hold trivially.

� of the claim.

Now it remains only to add Aki+1 as the top model to dom(b) which can

be done easily using 3.3.
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� of the lemma.

Lemma 3.6 〈P ,≤∗ 〉 does not add new sequences of ordinals of the length

< κ0.

Proof. Repeat the argument of 3.5 with P replacing Qn0. Then use 2.10 of

[1] to insure 3.2(4). �

The argument of 3.5 can be used in a standard fashion to show the Prikry

condition (i.e. the standard argument runs inside elementary submodel M

with δ replaced by κ+).

Lemma 3.7 〈P ,≤∗ 〉 satisfies the Prikry condition.

Finally we define → on P similar to those of [1] or [2].

Using 3.4, the arguments of [2, 3.19] can be used to derive the following.

Lemma 3.8 〈P ,→ 〉 satisfies κ++-c.c.

Proof. Suppose otherwise. Work in V . Let 〈p
∼α
| α < κ++〉 be a name of

an antichain of the length κ++. Using 1.7 we find an increasing sequence

〈〈〈A0κ+

α , A1κ+

α , Cκ+

α 〉, A1κ++

α 〉 | α < κ++〉 of elements of P ′ and a sequence

〈pα | α < κ++〉 so that for every α < κ++ the following holds:

(a) 〈〈A0κ+

α+1, A
1κ+

α+1, C
κ+

α+1〉, A1κ+

α+1〉  p
∼α

= p̌α

(b)
⋃

β<α A0κ+

β = A0κ+

α

(c) κA0κ+

α+1 ⊆ A0κ+

α+1

(d) A0κ+

α+1 is a successor model

(e) 〈∪A1κ+

β | β < α〉 ∈ A0κ+

α+1.

(f) for every α ≤ β < κ++ we have

A0κ+

α ∈ Cβ(A0κ+

β )
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(g) A0κ+

α+2 is not an immediate successor model of A0κ+

α+1, for every α < κ++.

(h) pα = 〈pαn|n < ω〉

(i) for every n ≥ `(pα) A0κ+

α+1 is the maximal model of dom(aαn) where

pαn = 〈aαn, Aαn, fαn〉

Let pαn = 〈aαn, Aαn, fαn〉 for every α < κ++ and n ≥ `(pα). Extending

by 3.3 if necessary, let us assume that A0κ+

α ∈ dom(aαn), for every n ≥ `(pα).

Shrinking if necessary, we assume that for all α, β < κ+ the following holds:

(1) ` = `(pα) = `(pβ)

(2) for every n < ` pαn and pβn are compatible in Qn1 i.e. pαn ∪ pβn is a

function.

(3) for every n, ` ≤ n < ω 〈dom(aαn), dom(fαn) | α < κ++〉 form a

∆-system with the kernel contained in A0κ+

0

(4) for every n, ω > n ≥ ` rng(aαn) = rng(aβn).

Shrink now to the set S consisting of all the ordinals below κ++ of cofi-

nality κ+. Let α be in S. For each n, ` ≤ n < ω, there will be β(α) < α such

that

dom(aαn) ∩ A0κ+

α ⊆ A0κ+

β(α,n).

Just recall that |aαn| < κn. Shrink S to a stationary subset S∗ so that for

some α∗ < min S∗ of cofinality κ+ we will have β(α, n) < α∗, whenever

α ∈ S∗, ` ≤ n < ω. Now, the cardinality of A0κ+

α∗ is κ+. Hence, shrinking S∗

if necessary, we can assume that for each α, β ∈ S∗, ` ≤ n < ω

dom(aαn) ∩ A0κ+

α = dom(aβn) ∩ A0κ+

β .

Let us add A0κ+

α∗ to each pα, α ∈ S∗. By 3.3, 3.4(1(a)) it is possible to do

this without adding other additional models or ordinals except the images
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of A0κ+

α∗ under isomorphisms. Denote the result for simplicity by pα as well.

Note that (again by 3.3, 3.4(1(a))) any A0κ+

γ for γ ∈ S∗ ∩ (α∗, α) or, actually

any other successor or limit model X ∈ Cκ+
(A0κ

α ) with cof(otpκ+(X)) =

κ+, which is between A0κ+

α∗ and A0κ+

α can be added without adding other

additional models or ordinals except the images of it under isomorphisms.

Let now β < α be ordinals in S∗. We claim that pβ and pα are compatible

in 〈P ,→〉.
First extend pα by adding A0κ+

β+2 As it was remarked above this will not

add other additional models or ordinals except the images of A0κ+

β+2 under

isomorphisms to pα.

Let p be the resulting extension. Assume that `(q) = `(p). Otherwise

just extend q in an appropriate manner to achieve this. Let n ≥ `(p) and

pn = 〈an, An, fn〉. Let qn = 〈bn, Bn, gn〉. Without loss of generality we may

assume that an(A0κ+

β+2) is an elementary submodel of An,kn with kn ≥ 5. Just

increase n if necessary. Now, we can realize the kn− 1-type of rng(bn) inside

an(A0κ+

β+2) over the common parts dom(bn) and dom(an). This will produce

q′n = 〈b′n, Bn, gn〉 which is kn−1-equivalent to qn and with rng(b′n) ⊆ an(A0κ+

β+2).

Doing the above for all n ≥ `(p) we will obtain q′ = 〈q′n | n < ω〉 equivalent

to q (i.e. q′ ←→ q).

Extend q′ to q′′ by adding to it 〈A0κ+

β+2, an(A0κ+

β+2)〉 as the maximal set for

every n ≥ `(p). Recall that A0κ+

β+1 was its maximal model. So we are adding

a top model, also, by the condition (g) above A0κ+

β+2 is not an immediate

successor of A0κ+

β+1. Hence no additional models or ordinals are added at all.

Let q′′n = 〈b′′n, Bn, gn〉, for every n ≥ `(p).

Combine now p and q′′ together. Thus for each n ≥ `(p) we add b′′n to

an as well as all of its isomorphic images by π
A0κ+

β+2X
, for every X in dom(an)

which is isomorphic to A0κ+

β+2. The rest of the parts are combined in the

obvious fashion (we put together the functions and intersect sets of measure

one moving first to the same measure). Add if necessary a new top model to

insure 3.1(2(d)). Let r = 〈rn|n < ω〉 be the result, where rn = 〈cn, Cn, hn〉,
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for n ≥ `(p).

Claim 3.8.1 r ∈ P and r ≥ p.

Proof. Fix n ≥ `(p). The main points here are that b′′n and an agree on

the common part and adding of b′′n to an does not require other additions of

models or of ordinals except the images of b′′n under isomorphisms.

Thus let A ∈ dom(b′′n)\ dom(an) be a model. Let B ∈ dom(an)\ dom(b′′n).

Note that it is the main possibility. Once we know how to handle it, dealing

with isomorphic images can be reduced to the present case as it was done in

3.3. Suppose first that B 6⊇ A. This implies that B 6⊇ A0κ+

α and B 6⊆ A0κ+

α

(just if B ⊂ A0κ+

α , then B ∈ A0κ+

α∗ and so it is in dom(bn)).

Then

A ∩B = A ∩ A0κ+

β+2 ∩B = A ∩ A0κ+

α ∩B = A ∩ ρ,

for some ρ ∈ A0κ+

α ∩ A1κ++

α ∩ dom(an), since both B, A0κ+

α ∈ dom(an) and

3.1(2(f)) holds. But now we must to have this ρ in A0κ+

α∗ and then in dom(bn).

So, an(ρ) = bn(ρ) = b′′n(ρ). Hence,

b′′n(A) ∩ an(B) = b′′n(A) ∩ an(A0κ+

α ) ∩ an(B) = b′′n(A) ∩ an(ρ) = b′′n(A) ∩ b′′n(ρ),

due to the choice of the type of rng(b′′n).

Consider now the side of B of the intersection. So now B is a model.

Compare it with A0κ+

β+2. If otp(B) < otp(A0κ+

β+2) then there is D ∈ dom(an) ∩
A0κ+

β+2 of the order type of B and such that

B ∩ A0κ+

β+2 = B ∩D.

But then, again D ∈ A0κ+

α∗ and so in dom(bn). Hence D ∩ A can be handled

on the side of D, i.e. D ∩ A = E ∩ ξ, for some E ∈ D ∪ {D} ∩ dom(bn) and

an ordinal ξ ∈ D∩dom(bn). But D ∈ A0κ+

α∗ , hence E, ξ ∈ A0κ+

α∗ . This implies

that E, ξ ∈ dom(an). So an(E) = bn(E), an(ξ) = bn(ξ).

If otp(B) ≥ otp(A0κ+

β+2) then there is B′ ∈ (B ∪ {B}) ∩ dom(an) such that

otp(B′) = otp(A0κ+

β+2) and

B ∩ A0κ+

β+2 = B′ ∩ A0κ+

β+2.
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Now we move to the B- side using π
A0κ+

β+2B′ [A].

The same argument works once B ⊇ A, since then necessary, otp(B) ≥
otp(A0κ+

β+2).

The above shows 3.1(2(f)).

Let us check 3.1(2(h)). Suppose that A ∈ dom(b′′n), B ∈ dom(an). Again,

it is the main possibility. Once we know how to handle it, dealing with

isomorphic images can be reduced to the present case as it was done in 3.3.

Case 3.8.1.1 A ⊃ B.

Then B ∈ A0κ+

β+2 ⊆ A0κ+

α and hence B ∈ A0κ+

α∗ ∩ dom(an). Which implies

that B ∈ dom(bn). But then the walk from A to B in dom(b′′n) and we are

done.

Case 3.8.1.2 A ⊂ B.

If otp(B) < otp(A0κ+

β+2) then there is D ∈ dom(an) ∩ A0κ+

β+2 of the order

type of B and such that

B ∩ A0κ+

β+2 = B ∩D.

So D ⊃ A and hence A ∈ D. But D must be in A0κ+

α∗ ∩ dom(an). Then A

as an element of D must be in this intersection as well. So, both A, B are in

dom(an). Hence the walk from B to A is in dom(an) and we are done.

If otp(B) ≥ otp(A0κ+

β+2) then there is B′ ∈ (B ∪ {B}) ∩ dom(an) such that

otp(B′) = otp(A0κ+

β+2) and

B ∩ A0κ+

β+2 = B′ ∩ A0κ+

β+2.

Now we can use π
A0κ+

β+2B′ . It is identity on the common part of A0κ+

β+2, B
′ and

so does not move A. The walk from A0κ+

β+2 to A will be copied to those from

B′ to A. Once on the B-side we can run induction on wl as it was done in

3.3.

Now let us turn to 3.1(2(k)). Suppose that A, ξ ∈ dom(an)∪dom(b′′n) and

sup A > ξ.
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Case 3.8.1.3 A ∈ dom(b′′n)

If ξ ∈ dom(b′′n) then we are done. Suppose otherwise. Then, ξ 6∈ A0κ+

β+2.

Consider ρ = min(A0κ+

β+2\ξ). By 3.1(2(k)), ρ ∈ dom(an). But then ρ ∈ A0κ+

α∗

and, so it is in dom(bn). Now, the least µ ∈ A\ρ will be in dom(b′′n) and will

be as desired.

Case 3.8.1.4 A ∈ dom(an)\ dom(b′′n).

Assume that ξ ∈ dom(b′′n)\ dom(an). Compare A with A0κ+

β+2.

Subcase 3.8.1.4.1 otp(A) < otp(A0κ+

β+2).

There is C ∈ dom(an) such that A ⊆ C and otp(C) = otp(A0κ+

β+2). Note

that A0κ+

β+2 ∈ Cκ+
(A0κ+

α+1) (by (f) above) and A0κ+

β+2 6⊇ A, so the walk from A0κ+

α+1

to A splits from Cκ+
(A0κ+

α+1) above A0κ+

β+2. Now it is not hard to find such C.

Move now to A0κ+

β+2. Set A′ = π
CA0κ+

β+2
[A]. Then A′ is in dom(an)∩A0κ+

α . Hence

it is in dom(bn). So ρ = min(A′\ξ) ∈ dom(b′′n). If ξ ∈ C, then π
A0κ+

β+2C
(ρ) will

be as desired.

Suppose that ξ 6∈ C. Compare C with A0κ+

β+2. There will be µ ∈ C ∩ dom(an)

such that

C ∩ A0κ+

β+2 = C ∩ µ.

By 1.1(8), C, A0κ+

β+2 are isomorphic over C ∩ A0κ+

β+2. So

C ∩ µ = C ∩ sup(C ∩ A0κ+

β+2) = A0κ+

β+2 ∩ sup(C ∩ A0κ+

β+2).

Then ξ must be above sup(C ∩ A0κ+

β+2) since ξ 6∈ C. But ξ < sup(A), so by

1.1(10), sup(A0κ+

β+2) < µ. Hence µ = min(C\ξ). Now, clearly, min(A\ξ) =

min(A\µ). But A, µ ∈ dom(an), so we are done.

Subcase 3.8.1.4.2 otp(A) ≥ otp(A0κ+

β+2).

Pick then C ∈ Cκ+
(A0κ+

α+1) of the otp equal to otp(A). As in 3.3 (induction

on wl), C ∈ dom(an). By (f) above and the coherence of Cκ+
, we have

A0κ+

β+2 ∈ Cκ+
(C). So, ξ ∈ C. There is δ ∈ A ∩ dom(an) such that

A ∩ C = A ∩ δ.
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But ξ ∈ C\A and ξ < sup A, so by 1.1(10), we must have sup C < δ. Hence

δ = min(A\ξ) and we are done.

The rest of the conditions hold trivially.

� of the claim.

Now we have r ≥ p, q′′. Hence, p→ r and q → r. Contradiction.

�

4 pcf Structure With a Jump

The construction of the previous section gives the following pcf -structure –

bκ+3 consists of indiscernibles for κ+n+3
n , bκ++ consists of indiscernibles for

κ+n+2
n and bκ+ includes all the rest. In particular bκ+3 = {ρ+|ρ ∈ bκ++}. Here

we would like to sketch another construction in which bκ++ and bκ+3 will be

far a part. This was done first in [3, Sec.4]. The present approach is much

simpler.

We split κn’s into even and odd. For even κn’s we do exactly the same

forcing Qn0 as in the previous section. For odd n’s use Qn0 but rng(a) will

be a Qn−1-name. Thus for A ∈ dom(a) let a(A) be of cardinality κ+n+1
n if

A ∈ A10 or of κ+n+2
n if A ∈ A11 but cf(sup A)= the indiscernible for κ+n

n−1 or

κ+n+1
n−1 accordingly.

The need of models of such cardinality and not smaller than κ+3
n is to

catch all types inside. The arguments of the previous section work here

smoothly. Cofinalities of supremums of image models insure that in the

generic extension there will be a scale 〈fi | i < κ+3〉 in
∏

n<ω
n odd

ρ+n+3
n such that

for every i < κ+ of cofinality κ++ we will have fi to be the exact upperbound

of 〈fj | j < i〉 and cffi(n) = ρ+n+1
n−1 for each odd n < ω, where ρn are

indiscernibles for normal measures of En’s. Also

cf

 ∏
n<ω

n odd

ρ+n+2
n

/
finite

 = cf

 ∏
n<ω

n odd

ρ+n+1
n

/
finite

 = κ+ .
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