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Abstract

We continue the study started in [2] and characterize j �V , where
j : V [G] → M [H] is an ultrapower embedding by a normal ultrafilter
after a non-stationary support iteration of Prikry forcings.

Introduction

Let P be a forcing notion, and assume that G ⊆ P is generic over V . Assume

that a cardinal κ is measurable in V [G], and let W ∈ V [G] be a normal measure

on κ, with a corresponding ultrapower embedding jW : V [G] → M [H]. We

continue our study from [2], and consider the embedding jW �V , focusing on

the following questions:

1. Is jW �V an iteration of V (by its measures or extenders)?

2. Is jW �V definable over V ?

The answers to both questions depend on the forcing notion P and the ground

model V . The first question is answered affirmatively, for every forcing notion

P , assuming that there is no inner model with a Woodin cardinal, and V = K

is the core model [4]. The answer to the second question can go both ways. For

instance, if P has a gap below κ, in the sense of [3], jW �V is a definable class

of V , no matter what is the ground model. On the other hand, the answer for

2 can be negative, even when we force over the core model and κ is measurable

there (see, e.g., section 5.2 in [2]).
∗The work was partially supported by ISF grant No. 1216/18.
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In this paper we focus on iterations of Prikry forcings. Let κ be a measurable

limit of measurables, and assume that GCH holds below κ. We would like to

perform an iterated forcing, destroying the measurability of every measurable

cardinal α < κ. Our main goal will be the following theorem:

Theorem 0.1. Assume GCH below κ. Let P be a nonstationary support itera-

tion of Prikry forcings below κ. Let G ⊆ P be generic over V , and W ∈ V [G]

be a normal measure on κ in V [G]. Then jW �V is an iterated ultrapower of V

by normal measures.

Moreover, a description of such iteration is given.

We focus on the nonstationary-support iteration for sake of simplicity; the

full-support iteration will be considered in a future work.

This paper is structured as follows: In section 1, we present the forcing and

its basic properties. In section 2, we characterize all the normal measures W ∈

V [G] on κ, using and extending results from [1] and [2]; More specifically, we

prove that every such measure is the unique extension of some normal measure

of Mitchell order 0 on κ in V . In section 3, we present the structure of jW �V

as an iterated ultrapower, and provide a sufficient condition for its definability

in V . Finally, in section 4, we study iterated ultrapowers of V in general,

developing tools for computation of cofinalities, in V , of ordinals which become

inaccessibles at some stage in an iteration; we apply those tools to simplify the

presentation of jW �V as an iteration of V .

We assume throughout this paper that GCH≤κ holds.

1 The Forcing

Definition 1.1. An iteration 〈Pα, Q∼β : α ≤ κ , β < κ〉 is called a nonstationary

support iteration of Prikry-type forcings if and only if, for every α ≤ κ and

p ∈ Pα,

1. p is a function with domain α such that for every β < α, p � β ∈ Pβ, and

p � β  p(β) ∈ Q
∼β and 〈Q

∼β ,≤∼Q∼β
,≤∼

∗
Q∼β

〉 is a Prikry-type forcing.

2. If α ≤ κ is inaccessible, then supp(p) ∩ α is nonstationary in α (where

supp(p) ⊆ α is the complement of the set {β < α : p �β p(β) is trivial}).
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In other words, there exists a club C ⊆ α such that for every β ∈ C,

p �β p(β) is trivial.

Suppose that p, q ∈ Pα. Then p ≥ q, which means that p extends q, holds if

and only if:

1. supp(q) ⊆ supp(p).

2. For every β ∈ supp(q), p � β  p(β) ≥β q(β) (where ≥β is the order of

Qβ).

3. There is a finite subset b ⊆ supp(q), such that for every β ∈ supp(q) \ b,

p � β  p(β) ≥∗
β q(β) (where ≥∗

β is the direct extension order of Qβ).

If b = ∅, we say that p is a direct extension of q, and denote it by p ≥∗ q.

In this section we consider a nonstationary support iteration of Prikry forc-

ings, 〈Pα, Q∼β : α ≤ κ , β < κ〉. Denote by ∆ ⊆ κ the set of measurable cardinals

below κ in V . Assume that α ∈ ∆ and Pα has been defined. Assume that U∼
∗
α

is a Pα-name for a normal measure on α in V Pα (we will prove that at least

one such measure exists). Let Q
∼α be the Prikry forcing with U∼

∗
α. If α is not

measurable in V , Q
∼α is the trivial forcing.

We did not specify the normal measure U∗
α which is used at stage α. As

we will prove, each such measure in V Pα is the unique extension of a normal

measure Uα of Mitchell order 0 in V . Let U∼ = 〈U∼α : α ∈ ∆〉 be a sequence of

names, such that, for every α ∈ ∆, U∼α is forced by the weakest condition in

Pα to be U∼
∗
α ∩ V . Given G ⊆ Pκ generic over V , let U = 〈Uα : α ∈ ∆〉 be the

interpretation of the names in U∼. Then U is a sequence of measures in V , but U

itself does not necessarily belong to V . Since U depends on G, a more accurate

notation would be UG, but most of the time G will be clear from the context.

An iteration of Prikry-type forcings with nonstationary support was studied

in [1]. The following key property was proved:

Lemma 1.2. P = Pκ satisfies the Prikry property.

The proof relies on a fusion property which holds in our iteration. We will

use the formulation of this property as it is stated and proved in [1]:
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Lemma 1.3. (Fusion Lemma) Let λ ≤ κ be a limit ordinal, and assume that

p ∈ Pλ. Suppose that e : λ → V is a function such that for every α < λ, e(α) is

a Pα+1-name, such that,

p �α+1”e(α) is a dense open subset of Pλ \ (α+ 1) above p \ (α+ 1) ,

with respect to the direct extension order.”

assume also that ν < λ is an ordinal. Then there exists p∗ ≥∗ p which satisfies

p∗ �ν= p �ν , and a club C ⊆ λ, such that for every α ∈ C,

p∗ �α+1 p∗ \ (α+ 1) ∈ e(α)

The Fusion Lemma will be applied repeatedly in this paper, and is standard

in nonstationary support iterations. For sake of completeness, we provide the

proof.

Proof. As in [1], we focus first on the case where λ is an inaccessible cardinal.

The other case is simpler since an inverse limit is taken at λ.

We construct a sequence 〈pξ : ξ < λ〉 of conditions in Pλ, a sequence 〈νξ : ξ <

λ〉 of ordinals below λ and a sequence of clubs 〈Cξ : ξ < η〉, such that,

1. The sequence 〈pξ : ξ < λ〉 is increasing with respect to direct extensions.

2. The sequence 〈νξ : ξ < λ〉 is increasing, continuous and unbounded in λ.

3. For every ξ < λ, Cξ ∩ supp (pξ) = ∅.

4. For every ξ < λ, {νη : η < λ} is disjoint from the support of pξ.

5. For every ξ < λ, pξ �(νξ+1) pξ \ (νξ + 1) ∈ e (νξ).

6. Whenever η < ξ < λ,

(a) µξ ∈ Cη.

(b) pξ �νη+1= pη �νη+1.

(c) pξ �νη+1 pξ \ (νη + 1) ≥∗ pη \ (νη + 1).

Take p0 = p, C0 a club disjoint from supp (p0), and ν0 > ν in C0.
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Successor stages: Suppose that the construction is done up, and including,

some ξ < λ, and let us construct pξ+1 and νξ+1. Define–

νξ+1 = min

 ⋂
η<ξ+1

Cη \ (νξ + 1)


Let us construct pξ+1. First, we require pξ+1 �νξ+1+1= pξ �νξ+1+1. Now,

there exists a Pνξ+1
-name for a direct extension of pξ \ νξ+1 which is forced, by

pξ �νξ+1+1, to belong to e(νξ+1). Let σ be this name, and take pξ+1 \ νξ+1 = σ.

There exists a Pνξ+1
-name C∼ for a club in λ disjoint from supp(σ); Since λ is

inaccessible, Pνξ+1
is λ-c.c., so there exists a club in λ, C ′ ∈ V , which is forced

to be a subset of C∼. Hence pξ+1 has a club Cξ+1 ∈ V disjoint from its support,

and is a legitimate condition in Pλ.

Limit stages: Suppose that ξ < λ is a limit ordinal. Set νξ = ∪η<ξνη. For

every η < ξ, νξ is a limit point of Cη, and thus νξ /∈ supp (pη). Let us construct

pξ. We construct it such that νξ /∈ supp(pξ). First, we set–

pξ �νξ
=

⋃
η<ξ

pη �νη+1

note that 〈νη : η < ξ〉 is disjoint from the support of pξ �νξ
, so pξ �νξ

∈ Pνξ
holds

even if νξ is inaccessible. Also, pξ �νξ+1 forces that 〈pη \ (νξ + 1) : η < ξ〉 is

an increasing sequence with respect to direct extension in P \ (νξ + 1), which

is forced to be |νξ|+-closed (so it’s definitely more than ξ-closed). Thus, there

exists an upper bound. Take pξ \ (νξ + 1) to be a name, which is forced, by

pξ �νξ+1, to be a direct extension of the upper bound which belongs to e(νξ).

Pick Cξ ⊆ λ as a club disjoint from supp (pξ).

This finishes the construction. Finally, set–

p∗ =
⋃
ξ<λ

pξ �νξ+1

Let C = {νξ : ξ < λ} ⊆ 4ξ<λCξ. Then, by our construction, C ⊆ λ is a club

disjoint from supp (p∗). Therefore, p∗ is a legitimate condition in Pλ. Also,

given α ∈ C, let ξ < λ be such that α = νξ. Then p∗ �α+1= pξ �α+1, and thus

it forces that p∗ \ (α+ 1) ≥∗ pξ \ (α+ 1) ∈ e(α), as desired.

Now, let us adjust the proof to the case where λ is not inaccessible. Fix

in advance an increasing, continuous and cofinal sequence 〈νξξ : ξ < cf(λ)〉 in
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λ, such that ν0 > cf(λ). Now construct a ≤∗-increasing sequence of conditions

〈pξ : ξ < cf(λ)〉. In successor steps, assuming that pξ has been constructed, pick

pξ+1 such that–

pξ+1 �νξ+1+1= pξ �(νξ+1+1)

and pξ+1 �νξ+1+1 pξ+1 \ (νξ+1 + 1) ∈ e (νξ+1) . In limit steps, say for limit

ξ < cf(λ), choose pξ such that–

pξ �νξ
=

⋃
η<ξ

pη �νη+1

and pξ �νξ
forces that pξ \µξ is a ≤∗-upper bound of 〈pη \ νξ : η < ξ〉 (this is the

main difference from the case where λ is regular. Note that the direct extension

order of Pλ \νξ is more than ξ-closed, since νξ > ξ). Then, direct extend further

above νξ + 1 such that pξ �νξ+1 pξ \ νξ + 1 ∈ e(νξ).

Finally, set p∗ =
⋃

ξ<cf(λ) pξ �νξ+1.

The following claim takes care of dense open subsets of Pκ (not necessarily

with respect to direct extensions).

Claim 1.4. Let λ ≤ κ be a limit ordinal and let D ⊆ Pλ be a dense open subset

of Pλ. Assume that p ∈ Pλ and ν < λ. Then there exists p∗ ≥∗ p and a club

C ⊆ λ, such that p∗ �ν= p �ν , and, for every p∗ ≤ q ∈ D,

q �γ+1
_p∗ \ (γ + 1) ∈ D

where γ ∈ C is the first coordinate for which–

q �γ+1 ”q \ γ is a direct extension of p∗ \ γ”

Proof. Fix a non-measurable ξ < λ and Gξ ⊆ Pξ generic over V such that

p �ξ∈ Gξ. Given p �ξ≤ q ∈ Gξ, we define a subset of P \ ξ which is ≤∗-dense

open above p \ ξ:

eq(ξ) = {r ∈ P \ ξ : q_r ∈ D or (∀r′ ≥∗ r, q_r′ /∈ D)}

Since ξ is non-measurable, the direct extension order of P \ ξ is more than

|Gξ|+-distributive. Let e(ξ) be a Pξ-name for the set–

e(ξ) =
⋂

q∈Gξ

eq(ξ)
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then p �ξ forces that e(ξ) is ≤∗-dense open above p \ ξ.

Apply lemma 1.3. Let p∗ ≥∗ p be such that p∗ �ν= p �ν , and there exists a

club C such that, for every α ∈ C,

p∗ �α+1 p∗ \ (α+ 1) ∈ e(α)

Assume now that p∗ ≤ q ∈ D. Let γ ∈ C be as in the formulation of the claim.

Then–

p∗ �γ+1 p∗ \ (γ + 1) ∈ e(γ + 1)

In particular,

q �γ+1 p∗ \ (γ + 1) ∈ e(γ + 1)

Finally, since there exists a direct extension r′ = q \ (γ + 1) ≥∗ p∗ \ (γ + 1)

such that q �γ+1
_r′ ∈ D, it follows that q �γ+1

_p∗\(γ + 1) ∈ D, as desired.

Lemma 1.5. P = Pκ preserves cardinals. It also preserves cofinalities ≥ κ+.

Proof. P clearly preserves cardinals and cofinalities ≥ κ++, since it has cardi-

nality κ+.

Let us prove by induction that every cardinal µ ≤ κ+ is not collapsed. For

limit µ it’s clear. Suppose that µ = λ+ is a successor. Split P = Pλ ∗Q
∼λ ∗ P \

(λ+ 1). The direct extension order of P \ (λ+ 1) is more than µ-closed, so it

preserves µ. Qλ preserves cardinals, whether λ is measurable or not. Thus, it

suffices to prove that Pλ preserves λ+ = µ, for every λ ≤ κ. Suppose that f∼
is a Pλ-name for an increasing function from λ to µ, and this is forced by an

arbitrary condition p ∈ Pλ. We will prove that there exists an extension p∗ of p

in Pλ which forces that the image of f∼ is bounded in µ.

For every ξ < λ, define the following Pξ+1-name for a dense open subset of

P \ (ξ + 1),

e(ξ) = {r ∈ P \ ξ + 1: ∃δ < λ+, r  f∼(ξ) < δ}

We claim that e(ξ) is ≤∗-dense open. First, let us argue that this suffices.

Indeed, by fusion, there exists p∗ ∈ G and a club C ⊆ λ such that for every

ξ ∈ C,

p∗ �ξ+1 ∃δξ < λ+, p∗ \ (ξ + 1)  f∼(ξ) < δξ
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and set–

δ∗ = sup

⋃
ξ∈C

{δ : ∃r ≥ p∗ �ξ+1, r  δξ∼
= δ}


Then δ∗ < λ+ and, since f∼ is increasing, p∗  Im (f∼) ⊆ δ∗ + 1.

Let us prove that e(ξ) is indeed ≤∗-dense open. Fix ξ < λ. Let G′ ⊆ Pξ+1

be generic over V , and work in V [G′]. Denote P ′ = P \ (ξ + 1). Apply claim

1.4 for the dense open set D of conditions in P ′ which decide the value of f∼(ξ).

Given a condition q ∈ P ′, there exists q∗ ≥∗ q and a club C ⊆ λ such that for

every q∗ ≤ p ∈ D,

p �γ+1
_q∗ \ (γ + 1) ∈ D

where γ is the least coordinate in C above the non-direct extensions. Let–

δ∗ = sup

 ⋃
γ∈C

{δ : ∃s ∈ P ′
γ+1, s_q∗ \ (γ + 1)  f∼(ξ) = δ}


Then q∗  f∼(ξ) < δ∗.

The following lemma is a minor modification of lemma 3.6 from [1].

Lemma 1.6. Let λ ≤ κ be inaccessible. Let p ∈ Pλ and assume that f∼ is a

Pλ-name for a function from λ to the ordinals. Then there exists p∗ ≥∗ p, a

club C ⊆ λ and a function F : λ → [Ord]<λ in V , such that for every ξ ∈ C,

p∗  f∼(ξ) ∈ F (ξ).

Proof. For each ξ < λ, consider the Pξ+1-name for the following set–

e(ξ) = {r ∈ P \ ξ : ∃A ∈ [Ord]<λ
, r  f∼(ξ) ∈ A}

It suffices to prove that for every ξ < λ, e(ξ) is forced to be ≤∗-dense open

subset of P \ (ξ + 1). Indeed, once we prove this, there exists p∗ ∈ G above p

and a club C ⊆ λ such that for every ξ ∈ C,

p∗ �ξ+1 ∃Aξ ∈ [Ord]<λ
, p∗ \ (ξ + 1)  f∼(ξ) ∈ A(ξ)

and then, for every ξ ∈ C, we can define–

F (ξ) = {γ : ∃q ≥ p∗ �ξ+1, q  γ ∈ A∼ξ}

Then |F (ξ)| < λ for every ξ ∈ C, and p∗  f∼(ξ) ∈ F (ξ).
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Let us prove that e(ξ) is ≤∗ dense open. Fix ξ < κ. Let G′ ⊆ Pξ+1 be

generic over V , and work in V [G′]. Denote P ′ = P \ (ξ + 1). It suffices to prove

that given a condition q ∈ P ′, there exists a direct extension q∗ ≥∗ q and a set

A ∈ [Ord]<λ such that q∗  f∼(ξ) ∈ A.

Let D ⊆ P ′ be the dense open set of conditions r ∈ P ′ such that, for some

A ∈ [Ord]
<λ, r  f∼(ξ) ∈ A. By claim 1.4, there exists q∗ ≥∗ q and a club

C ⊆ D, such that for every q∗ ≤ p ∈ D, p �γ′+1
_q∗ \ (γ′ + 1) ∈ D, where

γ′ = min (C \ (γ + 1)), and γ is the maximal coordinate in which a non-direct

extension is taken in the extension q∗ ≤ p.

Let us construct a direct extension q∗∗ ≥∗ q∗ with the same support as

q∗. Let µ ∈ supp (q∗) be a measurable, and assume that q∗∗ �µ was con-

structed. Take an arbitrary generic Gµ ⊆ P ′
µ with q∗∗ �µ∈ Gµ. Denote

µ′ = min (C \ (µ+ 1)). In V [G′, Gµ], shrink the set A∼
q∗

µ to a set A such that, for

each n < ω, exactly one of the following holds: Either for every s ∈ [A]
n, there

exists direct extension rs ≥∗ q∗ �(µ,µ′] and a set of ordinals As with |As| < λ,

such that–

〈tq
∗

µ

_
s,A \max(s)〉

_
rs

_q∗ \ (µ′ + 1)  f∼(ξ) ∈ Ǎs

or, there is no such s ∈ [A]
n.

Let us prove now that q∗∗ has a direct extension which belongs to e(ξ).

Assume otherwise. Let p ≥ q∗∗ be a condition which decides the value of f∼(ξ),

and is chosen with the least number of non–direct extensions. Let γ ∈ supp(q∗)

be the maximal coordinate in which a non-direct extension is taken, and let

γ′ = min (C \ (γ + 1)). Clearly p ≥ q∗, and by the choice of q∗,

p �γ′+1
_q∗ \ (γ′ + 1) ∈ D

In particular, for some A ∈ [Ord]<λ,

p �γ p �[γ,γ′] q∗ \ (γ′ + 1)  f∼(ξ) ∈ A

Now, let Gγ ⊆ P ′
γ be generic over V [G′] with p �γ∈ Gγ . Then in V [G′, Gγ ],

there exists A ∈ [Ord]<λ such that–

〈tpγ , Ap
γ〉

_
p �(γ,γ′]

_q∗ \ (γ′ + 1)  f∼(ξ) ∈ A
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Let n < ω be such that lh
(
tpγ
)
= n + lh

(
tq

∗

γ

)
. Then p �γ extends q∗∗ �γ , and

thus forces that for every s ∈
[
A∼

p
γ

]n, there exists rs ≥∗ q∗ �(γ,γ′] and a set As

bounded in λ, such that–

〈tq
∗

γ

_
s, A∼

p
γ \max(s)〉

_
rs

_q∗ \ (γ′ + 1)  f∼(ξ) ∈ As

Let r be a Pγ+1-name for the direct extension of q∗ which is forced by–

〈tq
∗

γ

_
s, A∼

p
γ \max(s)〉

to be rs, for every s of length n. Then r ≥∗ q∗ �(γ,γ′], and by direct extending

r inside the support of q∗, we can assume that r ≥∗ q∗∗ �(γ,γ′] (note that

the coordinates in which a non-direct extension is taken in the extension r ≥∗

q∗ �(γ,γ′] does not lie inside supp (q∗)).

By taking a union of the sets As above, there exists a set of ordinals A ∈

V [G′, Gµ] with |A| < λ such that–

〈tq
∗

γ , A∼
p
γ〉

_
r_q∗ \ (γ + 1)  f∼(ξ) ∈ A

Gγ was an arbitrary generic set with p �γ∈ Gγ ; thus, in V [G′],

p �γ ∃A ∈ [Ord]
<λ

, 〈tq
∗

γ , A∼
p
γ〉

_
r_q∗ \ (γ + 1)  f∼(ξ) ∈ A

Let A∼ be a P ′
γ-name for the above set A, and let A∗ ∈ V [G′] be the set of

all possible values of elements in A∼ as forced by extensions of p �γ . Then

A∗ ∈ [Ord]<λ, and–

p �γ
_〈tq

∗

γ , A∼
p
γ〉

_
r_q∗∗ \ (γ + 1)  f∼(ξ) ∈ A∗

This contradicts the minimality of the number of non-direct extensions in the

choice of p ≥ q∗∗.

Let us mention several immediate corollaries of the last lemma, all of them

were introduced in [1]:

Corollary 1.7. Let λ ≤ κ be a regular cardinal and p ∈ Pλ. Assume that α∼ is

a Pλ-name for an ordinal. Then there exist p∗ ≥∗ p and a set of ordinals A of

cardinality |A| < λ, such that p∗  α∼ ∈ Ǎ.
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Proof. If λ is a limit of measurables, then it is inaccessible, and then the proof

is included in the proof of lemma 1.6. Else, let λ′ < λ be the supremum of the

set of measurables below λ. Then Pλ = Pλ′ . We can now repeat the argument

in the proof of lemma 1.6 for the forcing Pλ′ , with minor changes: first define

D = {r ∈ Pλ′ : ∃A ∈ [Ord]<λ such that r  α∼ ∈ A}. Direct extend p∗ ≥∗ p and

find a club C ⊆ µ′ such that for every p∗ ≤ q ∈ D, q �γ′+1
_p∗ \ (γ′ + 1) ∈ D,

where γ′ ∈ C is a above the finite set of non-direct extensions taken in the

extension q ≥ p∗. Then, direct extend p∗∗ ≥∗ p∗, without changing the support,

as in the previous lemma. Arguing as above, p∗∗ has a direct extension which

decides α∼ up to < λ-many possibilities.

We remark that if λ > λ′+, a simpler argument exists: by GCH, Pλ′ is

λ− c.c.. let A ∈ V be the set–

A = {ξ : ∃q ≥ p, q  ξ = α∼}

then |A| < λ and p  α∼ ∈ A (here a direct extension of p is not required).

Corollary 1.8. Let λ ≤ κ be inaccessible, and assume that Gλ ⊆ Pλ is generic

over V . Then λ is still regular iv V [Gλ]. Moreover, every function f : λ → λ

in V [Gλ] is dominated by a function g : λ → λ in V .

Proof. Assume that λ is singular in V [Gλ]. Let µ = cf (λ). Let f : µ → λ be an

increasing cofinal sequence in V [Gλ]. Let p ∈ Pλ be a condition which forces

this. We argue that there exists δ < λ and p∗ ≥ p such that p∗  Im(f) ⊆ δ,

which is a contradiction. Assume without loss of generality that p is the weakest

condition in Pλ.

Work in an arbitrary generic extension of V with the forcing Pµ+1. We argue

that every condition q ∈ P \ (µ+ 1) has a direct extension q∗ ∈ P \ (µ+ 1) and

function α 7→ F (α) such that for every ξ < µ, F (ξ) is a bounded subset of λ,

and–

q∗  f∼(ξ) ∈ F (ξ)

Indeed, given ξ < µ , f∼(ξ) is a P \ (µ+ 1)-name for an ordinal below λ. By

corollary 1.7, every q ∈ P \ (µ+ 1) can be direct extended to q∗ ∈ P \ (µ+ 1)

such that for some set of ordinals Aξ ⊆ λ with |Aξ| < λ, q∗  f∼(ξ) ∈ Aξ. Since

the direct extension order of P \ (µ+ 1) is more then µ-closed, we can find a
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single q∗ ∈ P \ (µ+ 1), and, for every ξ < µ, a bounded subset Aξ ⊆ λ such

that q∗  ∀ξ < µ, f∼(ξ) ∈ Aξ; then, set F (ξ) = Aξ as desired.

Since we worked in an arbitrary generic extension above (µ+ 1) and gave a

density argument in P \ (µ+ 1), we can assume that there exists p∗ ∈ G such

that–

p∗ �µ+1 there exists a function ξ 7→ F (ξ) such that, for every ξ < µ,

F (ξ) is a bounded subset of λ and p∗ \ (µ+ 1)  f∼(ξ) ∈ F (ξ)

Finally, define, in V ,

δ = sup

⋃
ξ<µ

{β < λ : ∃q ≥ p∗ �µ+1, q  β̌ ∈ F∼(ξ)}


and note that δ < λ and p∗  Im (f∼) ⊆ δ.

Let us argue now that every function f : λ → λ in V [G] is dominated by

a function g : λ → λ in V . First, in V [G], f is dominated by an increasing

function f ′ : λ → λ. By 1.6, f ′ is dominated on a club C ⊆ λ by a function

g′ : λ → λ in V . Given ξ < κ, let cξ = min (C \ ξ + 1). Finally, define g : λ → λ,

g(ξ) = g′ (cξ)

Then for every ξ < κ, f(ξ) ≤ f ′(ξ) ≤ f ′ (cξ) < g′ (cξ) = g(ξ).

Corollary 1.9. Let λ ≤ κ be inaccessible. The forcing Pλ preserves stationary

subsets of λ.

Proof. It suffices to prove that for every club in κ, C ∈ V [G], there exists a

club in κ, D ∈ V , such that D ⊆ C. In V [G], let f : κ → κ be the increasing

enumeration of C. By corollary 1.8, there exists g ∈ V which dominates f . Let

D be the set of closure points of g. Clearly, D is a club. Let us prove that

D ⊆ C. Given α ∈ D, α is a closure point of f , and thus a limit point of

Im(f) = C. Therefore α ∈ C.

Recall that a set of ordinals A ∈ V [G] is called fresh if A /∈ V and, for every

ordinal ξ < sup(A), A ∩ ξ ∈ V . Every old measurable µ < κ clearly has a fresh

unbounded subset: its Prikry sequence. So if sup(A) was a measurable cardinal

below κ in V , A might be fresh over V . Let us address the case where sup(A)

is κ or κ+.
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Lemma 1.10. P = Pκ does not add new unbounded subsets of κ or κ+ which

are fresh over V .

The proof appears in [2]. Having no fresh subsets of κ, κ+, together with

preservation of cardinals and 2κ = κ+, leads to the following key property:

Corollary 1.11. Let W ∈ V [G] be a κ-complete ultrafilter on κ. Then W ∩V ∈

V .

For the proof, see proposition 2.1 in [2].

Corollary 1.12. Let W ∈ V [G] be a normal measure. Then W ∩ V ∈ V is a

normal measure of Mitchell order 0 in V .

Proof. Denote U = W ∩ V . By corollary 1.11, U ∈ V . U inherits normality

from W , since it is closed under diagonal intersections. Finally, let us prove

that U has Mitchell order 0. Assume otherwise. Then U concentrates on the

set ∆ of measurables below κ in V . Hence, ∆ ∈ W . However, in V [G], each

cardinal in ∆ is singular and has cofinality ω, and by normality of W , it cannot

concentrate on ∆.

2 Normal Measures in the Generic Extension

Our goal in this section is to prove that there exists a bijection between normal

measures of Mitchell order 0 in V , and normal measures on κ in V [G]. Let

U ∈ V be a normal measure of Mitchell order 0. We will define a normal

measure U∗ ∈ V [G] which extends U . We will prove the following:

Theorem 2.1. Every normal measure W ∈ V [G] on κ has the form U∗ for

some normal measure U ∈ V of Mitchell order 0. Furthermore, U∗ is the

unique normal measure in V [G] which extends U .

Let U ∈ V be any normal measure on κ of Mitchell order 0. After forcing an

iteration of Prikry forcings, with any standard support, one can define, in the

generic extension V [G], a natural filter which extends U : The filter consisting

of sets (A∼)G, where A∼ is a name for subset of κ, such that, for some p ∈ G,

{α < κ : p  α̌ ∈ A} ∈ U

13



or simply jU (p)  α̌ ∈ jU (A∼), in MU .

Forcing with nonstationary support has the advantage, that this filter is

actually a normal, κ-complete ultrafilter.

Lemma 2.2. Let U be a normal measure of Mitchell order 0 on κ. Define

U∗ ∈ V [G] as follows: For every Pκ-name A∼ for a subset of κ, (A∼)G ∈ U∗ if

and only if there exists p ∈ G such that jU (p)  κ̌ ∈ jU (A∼). Then U∗ is a

normal, κ-complete ultrafilter in V [G], which extends U .

Proof. Let us check first that U∗ is well defined. Assume that A∼, B∼ are P -

names for subsets of κ, and p ∈ G is a condition such that p  A∼ = B∼.

Then jU (p)  jU (A∼) = jU (B∼), and thus jU (p)  κ̌ ∈ jU (A∼) if and only if

jU (p)  κ̌ ∈ jU (B∼), so (A∼)G ∈ U∗ if and only if (B∼)G ∈ U∗, as desired.

It’s not hard to verify that U∗ is a filter. Let us prove that it’s κ-complete

(thus, in particular, it’s an ultrafilter). Assume that γ < κ and 〈A∼β : β < γ〉 is

forced by the weakest condition to be a partition of κ.

For every α ∈ (γ, κ), let e(α) ⊆ P \ (α+ 1) be the following ≤∗-dense open

subset:

e(α) = {r ∈ P \ (α+ 1) : ∃β∗ < γ r  α̌ ∈ A∼β∗}

By lemma 1.3, there exists p ∈ G and a club C ⊆ κ such that for every α ∈ C,

p �α+1 p \ α+ 1 ∈ e(α)

C is a club, so C ∈ U , and thus,

p_0Q∼α
 ∃β∗ < γ jU (p) \ (κ+ 1)  κ̌ ∈ jU (A∼β∗)

therefore, for some q > p, q ∈ G and β∗ < γ,

q  jU (p) \ κ  κ̌ ∈ jU (A∼β∗)

so jU (q)  κ̌ ∈ jU (A∼β∗).

Let us prove normality. Assume that f∼ is a name for a regressive function

from κ to κ. Work in MU . jU (f∼) is forced there to be a regressive function.

There exists a Pκ+1-name for a dense open subset D of jU (P )\(κ+ 1), consisting

of all the conditions which force that jU (f∼)(κ) = β∗ for some β∗ < κ. Let

α 7→ d(α) be a function in V which represents D in the ultrapower construction.
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We can assume that for every α < κ, e(α) is a Pα+1-name, forced by the weakest

condition to be a ≤∗ dense-open subset of Pκ \ (α+ 1). Now we apply fusion

just as before, and find p ∈ G such that–

p_0Q∼κ
 ∃β∗ < κ jU (p) \ (κ+ 1)  jU (f∼)(κ) = β∗

so for some q ∈ G, q > p, and for some β∗ < κ,

jU (q)  jU (f∼)(κ) = β∗

Therefore, {ξ < κ : f(ξ) = β∗} ∈ U∗ as desired.

Now, given a normal measure W ∈ V [G] on κ, denote U = W ∩ V . By

corollary 1.11, U ∈ V . Our goal will be to prove that W = U∗. We start with

the following observation:

Lemma 2.3. Let W ∈ V [G] be a normal measure on κ. Let jW : V [G] → M [H]

be the ultrapower embedding. Denote U = W ∩ V , and define k : MU → M as

follows: k ([f ]U ) = [f ]W . Then:

1. k : MU → M is an elementary embedding.

2. k ◦ jU = jW �V .

3. k �µ= id, where µ is the first measurable above κ in MU . In particular,

for every η < µ, there exists f ∈ V such that [f ]U = [f ]W = η.

4. crit(k) = µ.

5. (Vµ)
M

= (Vµ)
MU .

Proof. 1. k is well defined, since, if [f ]U = [g]U , then {x < κ : f(x) = g(x)} ∈

U , and thus this set belongs to W . So [f ]W = [g]W . Similarly, k respects

∈. Finally, assume that ϕ(a1, . . . , an) is a formula and f1, . . . , fn are

functions. Then:

MU � ϕ ([f1]U , . . . [fn]U ) ⇐⇒ {x < κ : V � ϕ (f1(x), . . . , fn(x)} ∈ U

⇐⇒ {x < κ : V � ϕ (f1(x), . . . , fn(x)} ∈ W

⇐⇒ M [H] � M � ϕ ([f1]W , . . . [fn]W )

⇐⇒ M � ϕ ([f1]W , . . . [fn]W )
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2. Clear from the definitions.

3. First, let us note that for every η ≤ κ+, k (η) = η, using the canonical

function which represents η. Also, k (κ+) = κ+ since κ+ is represented by

the successor cardinal function. Thus, crit(k) > κ+.

Now, Assume, for contradiction, that there exists η < µ such that k(η) >

η. Take the minimal such η. There exists g ∈ V [G] such that [g]W = η.

Let h : κ → κ be a function in V such that [h]U = η. So–

[g]W = η = [h]U ≤ [h]W

and thus, by changing g on a set which doesn’t belong to W , we can

assume that, for every ξ < κ,

g(ξ) ≤ h(ξ) < the first measurable above ξ

For every ξ < κ, let e(ξ) be the Pξ+1-name for the following set–

e(ξ) = {r ∈ P \ (ξ + 1) : ∃α ≤ h(ξ), r  g(ξ) = α̌}

this set is ≤∗-dense open, since the direct extension order is more than

h(ξ)-closed. Apply fusion. There exits p∗ ≥∗ p and a club C ⊆ κ such

that, for every ξ ∈ C,

p∗ �ξ+1 p∗ \ (ξ + 1) ∈ e(ξ)

in other words,

p∗ �ξ+1 ∃α ≤ h(ξ), p∗ \ (ξ + 1)  g(ξ) = α̌

Define F : C → V as follows: For every ξ ∈ C, let α∼ be a Pξ+1-name for

α as above, and set–

F (ξ) = {α : ∃a ∈ Pξ+1 a ≥ p∗ �ξ+1 and a_p∗ \ (ξ + 1)  g(ξ) = α̌}

Note that for every ξ ∈ C, p∗  g(ξ) ∈ F̌ (ξ), and |F (ξ)| ≤ |ξ|+. Also,

C ∈ U and thus C ∈ W . Therefore, in M [H],

η = [g]W ∈ [F ]W = jW (F )(κ) = k (jU (F )(κ))

but, in MU , |jU (F )(κ)| ≤ κ+, which is strictly below the critical point of

k. So η ∈ Im(k), i.e., for some α ≤ η, η = k(α). But η was the minimal

such that k(η) 6= η, so α < η and α = k(α) = η, a contradiction.
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4. It suffices to prove that k(µ) 6= µ. Since µ is measurable in MU , it suffices

to prove that µ is not measurable in M . Assume otherwise. Then in

V [G], cf(µ) = ω would hold. Therefore, in V , cf(µ) ≤ κ. By closure

under κ-sequences, this is true in MU as well, a contradiction.

5. It suffices to prove that, for every α < µ, (Vα)
M

= (Vα)
MU . Indeed,

(Vα)
M

= k
(
(Vα)

MU

)
= k′′

(
(Vα)

MU

)
= (Vα)

MU

We now have all the tools necessary for the proof of theorem 2.1

Proof of theorem 2.1. Assume that W ∈ V [G] is a normal measure. Denote

U = W ∩ V . Let us use the notations of lemma 2.3: Assume that jW : V [G] →

M [H] is the ultrapower embedding of W , and let k : MU → M be such that

jW �V = k ◦ jU .

Let us prove that W = U∗. Since both are ultrafilters on κ, it suffices to

prove that U∗ ⊆ W . Assume that X ∈ W . Let X∼ ∈ V be a Pκ-name such that

(X∼)G = X. There exists p ∈ G such that jU (p)  κ̌ ∈ jU (X∼). By applying k,

jW (p)  κ̌ ∈ jW �V (X∼)

since crit(k) > κ. But jW (p) ∈ jW (G) = H. Hence, in M [H],

κ ∈ (jW �V (X∼))H = jW ((X∼)G) = jW (X)

so X ∈ W .

3 The Structure of jW �V

As usual, let W ∈ V [G] be a normal measure, and denote U = W ∩ V . Let

κ∗ = jU (κ). Given α < κ, recall that U∼
∗
α is a Pα-name, forced by the weakest

condition in Pα to be the normal measure on α used in the Prikry forcing Q
∼α.

Let U∼ = 〈U∼α : α ∈ ∆〉 be the sequence of names, such that, for every α ∈ ∆, U∼α

is forced by the weakest condition in Pα to be U∼
∗
α ∩ V . Given G ⊆ Pκ generic

over V , let U = 〈Uα : α ∈ ∆〉 be the interpretation of the names in U∼ with

respect to the generic G.
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Our goal in this section is to factor jW �V to an iterated ultrapower of V ,

while revealing, simultaneously, more and more information about the generic

set H = jW (G).

By induction, we define for every α < κ∗ a model Mα, an embedding

jα : V → Mα, a measurable cardinal µα in Mα and a measure Uµα
∈ Mα

on it. The definition goes by induction on α < κ∗, such that the sequence of

models 〈Mα : α < κ∗〉 is a linear iterated ultrapower of V with direct limit Mκ∗ .

The iteration is continuous, namely, for every α ≤ κ∗ limit, Mα is the direct

limit of the models 〈Mα′ : α′ < α〉.

Given α < κ∗, we define µα to be the least measurable µ in Mα, such that

for every α′ < α, µα′ < µ, and such that (cf(µ))V > κ. We will define a measure

Uµα
∈ Mα on µα. We postpone the definition of Uµα

, but mention only that it

will have Mitchell order 0. After Uµα
is defined, we take Mα+1 = Ult (Mα, Uµα

)

and jα+1 =
(
jUµα

)Mα ◦ jα.

Our goal in this section will be to prove the following:

Theorem 3.1. M = Mκ∗ , jW �V = jκ∗ and κ∗ = jW (κ). If U ∈ V , then both

M and jW �V are definable classes of V .

Remark 3.2. Given α < κ∗, we will prove, in the next section, that every

inaccessible λ of Mα above µ̄ = sup{µα′ : α′ < α} satisfies (cf(λ))V > κ. So

whenever µα is picked as the least measurable above µ̄ with cofinality > κ in V ,

it is simply the least measurable above µ̄. The proof appears in lemma 4.6, and

a simpler characterization of 〈µα : α < κ∗〉 appears in corollary 4.7. In order

to avoid complications in the current section, we chose to provide those results,

which involve a detailed study of the iteration 〈Mα : α ≤ κ∗〉, in the next section.

The proof of theorem 3.1 goes as follows: By induction on α ≤ κ∗, we define

an elementary embedding kα : Mα → M , as follows:

kα (jα(h) (κ, µα0
, . . . , µαk

)) = jW (h) (κ, µα0
, . . . , µαk

)

for h ∈ V , k < ω and α0 < . . . < αk < α.

Note that for α = 0, k0 = k is the embedding defined in lemma 2.3. In

general, it’s not trivial that kα is a well defined elementary embedding. This

will be proved in lemma 3.3. We denote λα = crit (kα). We will prove that for

every α < κ∗, the following properties hold:
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(A) kα : Mα → M is an elementary embedding, and jW �V = kα ◦ jα.

(B) λα is measurable in Mα.

(C) λα appears as an element in the Prikry sequence of kα (λα) in M [H].

(D) λα = µα.

(E) Let Uµα = {X ⊆ µα : µα ∈ kα(X)}∩Mα. Then Uµα ∈ Mα, and is a normal

measure of Mitchell order 0 there. Moreover, jW (U) (kα(µα)) = kα (Uµα),

and, if U ∈ V , then Uµα
= jα (U) (µα).

After we prove that properties (A)-(E) above hold for every α < κ∗, we will

show that kκ∗ is the identity function.

Let us assume now that the Mβ-ultrafilter Uµβ
and the embedding kβ : Mβ →

M have been defined for every β < α, such that properties (A)-(E) hold. We

first prove that kα is indeed elementary.

Lemma 3.3. kα : Mα → M is an elementary embedding, and jW �V = kα ◦ jα.

Proof. We prove only that kα is a well defined injection (and the rest of ele-

mentarity follows similarly). Assume that a, a′ ∈ Mα. Let k < ω, h, h′ ∈ V and

α0 < . . . < αk < α be such that–

a = jα(h) (κ, µα0 , . . . , µαk
) , a′ = jα(h

′) (κ, µα0 , . . . , µαk
)

If α is limit, let α′ < α be high enough such that µα′ > µαk
. By induction,

jW �V = kα′ ◦ jα′ , and thus–

jW (h) (κ, µα0 , . . . , µαk
) = jW (h′) (κ, µα0 , . . . , µαk

)

⇐⇒ jα′(h) (κ, µα0
, . . . , µαk

) = jα′(h′) (κ, µα0
, . . . , µαk

)

⇐⇒ jα(h) (κ, µα0 , . . . , µαk
) = jα(h

′) (κ, µα0 , . . . , µαk
)

If α = α′ + 1 is successor, we can assume that αk = α′, and then–

jW (h) (κ, µα0 , . . . , µαk
) = jW (h′) (κ, µα0 , . . . , µik)

⇐⇒ µα′ ∈ kα′
(
{y < µα′ : jα′(h)(κ, µα0

, . . . , µik−1
, y) = jα′(h′)(κ, µα0

, . . . , µik−1
, y)}

)
⇐⇒ {y < µα′ : jα′(h)(κ, µα0 , . . . , µik−1

, y) = jα′(h′)(κ, µα0 , . . . , µik−1
, y)} ∈ Uµα′

⇐⇒ jα(h) (κ, µα0
, . . . , µαk

) = jα(h
′) (κ, µ0, . . . , µik)
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Finally, we argue that kα ◦ jα = jW �V : For each x ∈ V , let cx : κ → V be

the function such that for every ξ < κ, cx(ξ) = x. Then–

kα (jα(x)) = kα (jα(cx)(κ)) = jW (cx)(κ) = jW (x)

Since α is fixed from now on, we denote simply λ = λα = crit (kα). Then λ is

a regular uncountable cardinal. Our goal will be to prove that it is measurable

in Mα, and moreover, λ = µα. There are several straightforward limitations on

the value of λ:

Claim 3.4. sup{µα′ : α′ < α} ≤ λ ≤ µα.

Proof. By the definition of kα, for every α′ < α,

kα (µα′) = kα (jα(id)(µα′)) = jW (id)(µα′) = µα′

Now, if x < µα′ for some α′ < α, then jα′,α(x) = x. Thus, for some h ∈ V , and

α0 < . . . < αk < α′, x = jα′ (h) (κ, µα0 , . . . , µαk
). Denote ~µ = 〈µα0 , . . . , µαk

〉.

Then–

kα(x) = kα (jα(h) (κ, ~µ)) = jW (h) (κ, ~µ) = kα′ (jα′(h) (κ, ~µ)) = kα′ (x) = x

where the last equality holds since x < µα′ , and, by induction, crit (kα′) = µα′ .

This shows that crit(kα) ≥ µα′ for every α′ < α.

For the second inequality, recall that µα is measurable in Mα which satisfies

(cf (µα))
V
> κ. If kα (µα) = µα, then, by elementarity, µα is measurable in M .

Therefore, in M [H], cf (µα) = ω, and thus in V [G], cf (µα) = ω. Therefore, in

V , cf (µα) ≤ κ, a contradiction.

Recall that for every β < α, µβ appears as an element in the Prikry sequence

added to kβ (µβ) in M [H]. Assume that it is the (nβ + 1)-th element in this

Prikry sequence, and has an initial segment tβ of length nβ below it. Note that,

by induction, kβ (tβ) = tβ .

We now provide a useful way to represent elements in the model Mα.

Definition 3.5. An increasing sequence 〈α0, . . . , αk〉 of ordinals below κ∗ is

called nice if, for every 0 ≤ i ≤ k, there are functions gi, ti, Fi ∈ V such that–

µαi
= jαi

(gi)
(
κ, µα0

, . . . , µαi−1

)
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tαi
= jαi

(ti)
(
κ, µα0

, . . . , µαi−1

)
Uµαi

= jαi (Fi)
(
κ, µα0 , . . . , µαi−1

)
(for i = 0, µα0

= jα0
(g0) (κ), tα0

= jα0
(t0) (κ) and Uµα0

= jα0
(F0) (κ) ).

(We remark that the functions Fi used to represent Uµαi
will be relevant

only in the next section, so the third requirement, that includes them, can be

omitted from the definition at the moment). It’s not hard to prove that, given

a pair of nice sequences, the increasing enumeration of their union is nice.

Lemma 3.6. Every element in Mα has the form–

jα(h) (κ, µα0
, . . . , µαk

)

for some k < ω, (k + 1)-ary function h ∈ V and a nice sequence 〈α0, . . . , αk〉 of

ordinals below α.

Proof. We assume that the lemma holds for every α′ < α. Let x ∈ Mα.

If α is limit: There exists α′ < α and x′ ∈ Mα′ such that x = jα′,α (x′). By

induction, x′ = jα′ (h) (µα0
, . . . , µαk

) for a nice sequence 〈α0, . . . , αk〉 below α′.

Then x = jα (h) (µα0 , . . . , µαk
), as desired.

If α = α′ + 1 is successor: Let f ∈ Mα be a function such that x =

jα′,α(f) (µα′). Let h1, h2, h3, h4 ∈ V be functions, and 〈α0, . . . , αk〉, 〈β0, . . . , βl〉,

〈γ0, . . . , γs〉, 〈δ0, . . . , δr〉 be nice sequences below α′ such that–

f = jα′ (h1) (µα0
, . . . , µαk

) , µα′ = jα′ (h2) (µβ0
, . . . , µβk

)

tα′ = jα′ (h3) (µγ0
, . . . , µγs

) , Uµα′ = jα′ (h4) (µδ0 , . . . , µδr )

The increasing enumeration of–

〈α0, . . . , αk〉 ∪ 〈β0, . . . , βl〉 ∪ 〈γ0, . . . , γs〉 ∪ 〈δ0, . . . , δr〉 ∪ 〈α′〉

is a nice sequence. Denote it by 〈ε0, . . . , εm, α′〉, where εm < α′.

By modifying the function h1 in V , we can assume for simplicity that–

f = jα′ (h1) (µε0 , . . . , µεm)

Define, in V , a function h, as follows:

h (〈ν0, . . . , νm, ν〉) = h1 (ν0, . . . , νm) (ν)

Then jα(h) (µε0 , . . . , µεm , µα′) = x.
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We now introduce several notations. We fix those notations throughout the

proof that properties (A)-(E) hold at α. Recall that crit (kα) is denoted by λ.

Let h ∈ V be a function such that–

λ = jα(h) (κ, µα0 , . . . , µαk
)

for a nice sequence 〈α0, . . . , αk〉 below α. Fix, for every 0 ≤ i ≤ k, functions

gi, ti ∈ V as in the definition of a nice sequence. In other words–

µαi
= jαi

(gi)
(
κ, µα0

, . . . , µαi−1

)
tαi

= jαi
(ti)

(
κ, µα0

, . . . , µαi−1

)
Remark 3.7. 1. The functions gi might be more or less the same. For

instance, set, for every ξ < κ, g0 = s(ξ) = the first measurable in V

strictly above ξ, and g1(ξ, ν) = s(ξ). Then µ0 = j0 (g0) (κ) and µ1 =

j1(g0)(κ) = j1 (g1) (κ).

2. It is not necessarily true that, given ξ, ~ν, h (ξ, ~ν) ≥ gi (ξ, ν0, . . . , νi−1).

For instance, take, µαk
to be a measurable of Mitchell order > 0 in MU ,

and λ to be the first measurable above it in Mµαk
+1 = Ult

(
Mαk

, Uµαk

)
.

Then λ = jαk+1(h) (κ, µαk
), where h(ξ, ν) = s (ν). Assume that µαk

=

jU (f)(ξ) for some f ∈ V . In M [H], kµαk
+1(λ) < kµαk

(µαk
), namely,

h(ξ, µαk
(ξ)) < f (ξ) for a set of ξ-s in W , where ξ 7→ µαk

(ξ) is a function

in V [G] represents µαk
in the ultrapower with W .

Given β < α, recall that, by induction, µβ appears in the Prikry sequence of

kβ(µβ). For every 0 ≤ i ≤ k, denote by ni < ω the length of the finite sequence

ti, which is the initial segment of the Prikry sequence of kαi (µαi) below µαi .

Then µαi
is the (ni + 1)-th element in this Prikry sequence.

For every i ≤ k, we define, in V [G], a function ξ 7→ µαi
(ξ) such that

[ξ 7→ µαi
(ξ)]W = µαi

:

• For i = 0, set the (n0 + 1)-th element in the Prikry sequence of g0(ξ) to

be µα0
(ξ).

• Assume that 0 < i < k, and the functions ξ 7→ µαj
(ξ) have been defined for

every j ≤ i. Let µαi(ξ) be the (ni + 1)-th element in the Prikry sequence

of gi
(
µα0

(ξ), . . . , µαi−1
(ξ)

)
.
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For every 0 ≤ i ≤ k, [ξ 7→ µαi
(ξ)]W = µαi

, and–

tαi =
[
ξ 7→ ti

(
ξ, µα0(ξ), . . . , µαi−1(ξ)

)]
W

where the last equality follows since crit (kαi
) = µαi

and thus kαi
(tαi

) = tαi
.

We fix an abbreviation, ξ 7→ ~µ(ξ) for the function ξ 7→ 〈µα0
(ξ), . . . , µαk

(ξ)〉.

Given ξ, ~ν = 〈ν0, . . . , νk〉, denote–

~t (ξ, ~ν) = 〈t0(ξ), t1(ξ, ν0), . . . , tk (ξ, ν0, . . . , νk−1)〉

Our next goal is lemma 3.11, which generalizes the Fusion Lemma 1.3. We

deal there with sets which are ≤∗ dense open above conditions which decide

the values of 〈µα0(ξ), . . . , µαk
(ξ)〉. We first define the notion of a C-tree, which

consists of sequences 〈ξ, ~ν〉 = 〈ξ, ν0, . . . , νk〉 which are possible candidates for

the exact values of 〈ξ, µα0
(ξ), . . . , µαk

(ξ)〉. Then, we define in 3.10 whenever

such a candidate is admissible for a given condition p ∈ G, in the sense that p

can be extended to force that ~µ(ξ) = ~ν.

Definition 3.8. A tree T ⊆ [κ]
k+1 is called a C-tree (with respect to a fixed

nice sequence 〈α0, . . . , αk〉) if SuccT (〈〉) is a club in κ, and for every i < k and

〈ξ, ν0, . . . , νi〉 ∈ T , SuccT (ξ, ν0, . . . , νi) is a club in gi+1 (ξ, ν0, . . . , νi).

Given i < k and a sequence 〈ξ, ν0, . . . , νi〉, a C-tree above it is a tree

T ⊆ [κ]
n−i, such that SuccT (〈〉) is a club in gi+1 (ξ, ν0, . . . , νi) and, for ev-

ery i + 1 ≤ j ≤ k − 1 and 〈νi+1, . . . , νj〉 ∈ T , SuccT (νi+1, . . . , νj) is a club in

gj+1 (ξ, ν0, . . . , νj).

Claim 3.9. Let T be a C-tree. Then, in V [G],

{ξ < κ : 〈ξ, µα0
(ξ), . . . , µαk

(ξ)〉 ∈ T} ∈ W

Proof. Work in V [G]. First, {ξ < κ : µα0
(ξ) ∈ SuccT (ξ)} ∈ W . Indeed, for each

ξ ∈ SuccT (〈〉) ∈ W , SuccT (ξ) is a club in g0(ξ), and thus–

µ0 ∈ k0 ([ξ 7→ SuccT (〈ξ〉)]U )

This holds since [ξ 7→ SuccT (〈ξ〉)]U is a club in [g0]U = µα0
and thus belongs

to Uµα0
.

Now proceed by induction. For every i ≤ k − 1,

{ξ < κ : µαi+1
(ξ) ∈ SuccT (〈ξ, µα0

(ξ), . . . , µαi
(ξ)〉)} ∈ W
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Indeed, denote–

C = jαi+1
(〈ξ, ν0, . . . , νi〉 7→ SuccT (ξ, ν0, . . . , νi)) (κ, µα0

, . . . , µαi
)

Then C is a club in jαi+1
(gi+1) (κ, µα0

, . . . , µαi
) = µαi+1

. Thus C ∈ Uµαi+1
,

and µαi+1 ∈ kαi+1(C), as desired.

Definition 3.10. Fix α < κ and a nice sequence 〈α0, . . . , αk〉 below α. Let

p ∈ Pκ be a condition and 〈ξ, ν0, . . . , νk〉 be a sequence below κ. Let us define

whenever 〈ξ, ν0, . . . , νk〉 is admissible for p, and in that case, define as well an

extension p_〈ξ, ν0, . . . , νk〉 ≥ p in Pκ.

1. 〈ξ, ν0〉 is admissible for p if–

p �g0(ξ) 〈t0 (ξ)_ 〈ν0〉, Ap
g0(ξ)

\ (ν0 + 1)〉 is compatible with p(g0(ξ))

if this holds, and tpg0(ξ) is an initial segment of t0(ξ)_〈ν0〉, let–

p_〈ξ, ν0〉 = p �g0(ξ)
_〈t0 (ξ)_ 〈ν0〉, Ap

g0(ξ)
\ (ν0 + 1)〉_p \ (g0(ξ) + 1)

otherwise, let p_〈ξ, ν0〉 = p.

2. Let 0 ≤ m < k. Assume that 〈ξ, ν0, . . . , νm〉 is admissible for p and

p_〈ξ, ν0, . . . , νm〉 has been defined. Denote–

gm+1 = gm+1 (ξ, ν0, . . . , νm)

tm+1 = tm+1 (ξ, ν0, . . . , νm)

We say that 〈ξ, ν0, . . . , νm+1〉 is admissible for p if–

p_〈ξ, ν0, . . . , νm〉 �gm+1
〈tm+1

_〈νm+1〉, Ap
gm+1

\ (νm+1 + 1)〉 is

compatible with (p_〈ξ, ν0, . . . , νm〉) (gm+1)

if this holds, and t
p_〈ξ,ν0,...,νm〉
gm+1 is an initial segment of tm+1

_〈νm+1〉, let–

p_〈ξ, ν0, . . . , νm+1〉 =
(
p_〈ξ, ν0, . . . , νm〉 �gm+1

)_
〈tm+1

_〈νm+1〉, Ap
gm+1

\ (νm+1 + 1)〉_

(p_〈ξ, ν0, . . . , νm〉) \ (gm+1 + 1)

else, set p_〈ξ, ν0, . . . , νm+1〉 = p_〈ξ, ν0, . . . , νm〉.
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Finally, assume that p is a condition, ξ < κ, i < k and 〈ν0, . . . , νi〉 is a

sequence such that p  〈µ∼α0
(ξ), . . . , µ∼αi

(ξ)〉 = 〈ν0, . . . , νi〉. Given a sequence

〈νi+1, . . . , νk〉, we can define similarly whether it is admissible for p; if it is, we

say that 〈νi+1, . . . , νk〉 is admissible for p above 〈ξ, ν0, . . . , νi〉, and define, in a

similar way as above, the condition p_〈νi+1, . . . , νk〉.

Lemma 3.11 (Multivariable Fusion). Fix α < κ and a nice sequence 〈α0, . . . , αk〉

below α. Let p ∈ Pκ be a condition. Assume that for every 〈ξ, ν0, . . . , νk〉 below κ

there exists a subset e (ξ, ~ν) ⊆ Pκ \ (νk + 1) which is ≤∗-dense open above every

condition q ∈ P \ (νk + 1) which forces that ~µ∼(ξ) = ~ν. Then there exists p∗ ≥∗ p

and a C-tree T , such that for every 〈ξ, ν0, . . . , νk〉 ∈ T which is admissible for

p∗,

(p∗_〈ξ, ~ν〉) �νk+1 (p∗_〈ξ, ~ν〉) \ (νk + 1) ∈ e (ξ, ~ν)

Proof. For every i < k and 〈ξ, ν0, . . . , νi〉, we define a subset e (ξ, ν0, . . . , νi) ⊆

P \(νi + 1) which is ≤∗-dense open above every condition q ∈ P \(νi + 1) which

forces that–

〈µ∼α0(ξ), . . . , µ∼αi(ξ)〉 = 〈ν0, . . . , νi〉

as follows:

e (ξ, ν0, . . . , νi) ={q ∈ P \ (νi + 1) : there exists a C-tree T above 〈ξ, ν0, . . . , νi〉

such that, for every 〈νi+1, . . . , νk〉 ∈ T, which is admissible for

q above 〈ξ, ν0, . . . , νi〉,

(q_〈νi+1, . . . , νk〉) �νk+1 (q_〈νi+1, . . . , νk〉) \ (νk + 1) ∈ e (ξ, ~ν)}

The lemma now follows by applying, repeatedly, the following claim:

Claim 3.12. Let 0 ≤ i < k and fix an increasing sequence 〈ξ, ν0, . . . , νi, νi+1〉.

Assume that e (ξ, ν0, . . . , νi, νi+1) is ≤∗-dense open above every condition in

P \ (νi+1 + 1) which forces that 〈µ∼α0
(ξ), . . . , µ∼αi+1

(ξ)〉 = 〈ν0, . . . , νi+1〉. Then

e (ξ, ν0, . . . , νi) is ≤∗-dense open above every condition in P \ (νi + 1) which

forces that 〈µ∼α0
(ξ), . . . , µ∼αi

(ξ)〉 = 〈ν0, . . . , νi〉.

Proof. Let p ∈ P\(νi + 1) be a condition which forces that 〈µ∼α0
(ξ), . . . , µ∼αi

(ξ)〉 =

〈ν0, . . . , νi〉. Denote for simplicity gi+1 = gi+1 (ξ, ν0, . . . , νi). First, direct extend
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p �gi+1
such that it decides the length of tpgi+1

, and whether tpgi+1
, ti+1 (ξ, ν0, . . . , νi)

are compatible:

1. If p �gi+1 decides that tpgi+1
and ti+1 (ξ, ν0, . . . , νi) are incompatible, do

nothing.

2. If p �gi+1
decides that the length of tpgi+1

is at least ni+1+1, direct extend

it further, such that for some γ < gi+1, p �gi+1
 tpgi+1

(ni+1 + 1) < γ

(namely, γ bounds the (ni+1 + 1)-th element in the Prikry sequence of

gi+1).

3. If p �gi+1
decides that gi+1 /∈ supp (p), direct extend p such that tpgi+1

=

ti+1 (ξ, ν0, . . . , νi).

4. If p �gi+1
decides that the length of tpgi+1

is less or equal than ni+1, direct

extend by shrinking A∼
p
gi+1

to Ap
gi+1

\ (max (ti+1 (ξ, ν0, . . . , νi)) + 1).

Assume that p is already direct extended as described above. Let us direct

extend p∗ �gi+1
≥∗ p �gi+1

using the Fusion lemma in the forcing P �(νi,gi+1). For

every ν ∈ (νi, gi+1), consider the following ≤∗-dense open subset of P �(ν+1,gi+1):

E(ν) ={r ∈ P �(ν+1,gi+1) : if r  trgi+1
= ti+1 (ξ, ν0, . . . , νi) and ν ∈ A∼

r
gi+1

,

there exists a direct extension–

q = q(ν) ≥∗ 〈tpgi+1

_〈ν〉, A∼
r
gi+1

\ (ν + 1)〉_p \ (gi+1 + 1)

such that r_q ∈ e (ξ, ν0, . . . , νi, ν)}

The ≤∗-density of E(ν) follows from the ≤∗-density of e (ξ, ν0, . . . , νi, ν) above

any condition which forces that 〈ν∼α0
(ξ), . . . , µ∼αi+1

(ξ)〉 = 〈ξ, ν0, . . . , νi, ν〉.

Apply Fusion, and let p∗ �gi+1
≥∗ p �gi+1

be a direct extension, such that for

some club C = C (ξ, ν0, . . . , νi) ⊆ gi+1, and for every ν ∈ C,

p∗ �ν+1  p∗ \ (ν + 1) ∈ e (ξ, ν0, . . . , νi, ν)

Shrink C such that C ∩ (γ + 1) = ∅ (if necessary, namely, if γ was defined and

C contains ordinals below it).

Let us define now p∗ (gi+1). For every ν ∈ C, such that p∗ �gi+1
 tp

∗

gi+1
=

ti+1 (ξ, ν0, . . . , νi) and ν ∈ Ap∗

gi+1
, let q(ν) be the condition as in the definition
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of E(ν). For every other value of ν, let q(ν) = p \ gi+1. Now, direct extend

p(gi+1) to–

p∗ (gi+1) = 〈tpgi+1
, A∼

p
gi+1

∩
(
4ν<gi+1A∼

q(ν)
gi+1

)
∩ C〉

Finally, we define p∗ \ (gi+1 + 1) = q (ν), where ν is the (ni+1 + 1)-th element

in the Prikry sequence of gi+1.

Let us argue now that p∗ ∈ e (ξ, ν0, . . . , νi). We first define a C-tree T above

〈ξ, ν0, . . . , νi〉. Let SuccT (〈〉) = C = C (ξ, ν0, . . . , νi) . Fix νi+1 = ν ∈ C, and

let us define T〈ν〉, which is the tree T above the node 〈ν〉.

If p∗ �gi+1
forces that tp

∗

gi+1
6= ti+1 (ξ, ν0, . . . , νi) or ν /∈ A∼

p∗

gi+1
, let T〈ν〉 be any

C-tree above 〈ξ, ν0, . . . , νi, ν〉 (we will prove that any branch starting from ν in

T is not admissible for p∗).

Else, note that–

p∗_〈ν〉 = p∗ �gi+1

_〈tp
∗

gi+1

_
〈ν〉, Ap∗

gi+1
\ (ν + 1)〉

_
p∗\(gi+1 + 1) ≥∗ p∗ �gi+1

_q(ν)

since A∼
p∗

gi+1
\ (νi+1 + 1) ⊆ A∼

q(νi+1)
gi+1 . Thus, p∗_〈ν〉 belongs to e (ξ, ν0, . . . , νi, ν).

This is witnessed by a P �ν+1-name for a C-tree T∼ (ν) above 〈ξ, ν0, . . . , νi, ν〉. We

construct T〈ν〉 in V Pν+1 to be a C-tree which is forced, by p∗_〈ν〉 �ν+1= p∗ �ν+1

to be contained in T∼ (ν). The definition is inductive: First, let SuccT (ν) ⊆ gi+1

be a club in V Pνi+1 which is forced by p∗ �ν+1= (p∗_〈ν〉) �ν+1 to be contained

in SuccT∼(ν) (〈〉); Such a club exists since the forcing P �(νi,ν+1) has cardinal-

ity strictly below gi+1. Now, given νi+2 ∈ SuccT (ν), let SuccT (ν, νi+2) ⊆

gi+2 (ξ, ν0, . . . , νi, ν, νi+2) be a club which is forced by p∗ �ν+1 to be contained

in SuccT∼(ν) (〈νi+2〉). Continue in this fashion.

This finishes the definition of T . Finally, assume that 〈νi+1, . . . , νk〉 belongs

to T and is admissible for p∗ above 〈ξ, ν0, . . . , νi〉. Then p∗ �νi+1+1 forces that

〈νi+2, . . . , νk〉 ∈ T∼ (ν). By admissibility of 〈νi+1, . . . , νk〉 for p∗, νi+1 ∈ A∼
p∗

gi+1
,

and tp
∗

gi+1
is compatible with, but not a strict initial segment of ti+1 (ξ, ν0, . . . , νi).

Since νi+1 belongs to C (ξ, ν0, . . . , νi), and in particular is above γ, tp
∗

gi+1
=

ti+1 (ξ, ν0, . . . , νi). Thus,

p∗(gi+1) = 〈ti+1 (ξ, ν0, . . . , νi) , A∼
p∗

gi+1
〉

and as before, p∗_〈νi+1〉 ≥∗ q (νi+1). Thus p∗_〈νi+1〉 forces that 〈νi+2, . . . , νk〉 ∈

T∼ (νi+1) and therefore,

(p∗_〈νi+1, νi+2, . . . , νk〉) �νk+1 (p∗_〈νi+1, νi+2, . . . , νk〉)\(νk + 1) ∈ e (ξ, ν0, . . . , νk)
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as desired.

Let us prove that the above claim completes the proof of the Multivariable

Fusion Lemma. Let ξ < κ. By applying the claim repeatedly, the set e(ξ) is

≤∗-dense open, where e (ξ) is defined as follows:

e (ξ) ={q ∈ P \ (ξ + 1) : there exists a C-tree T above 〈ξ〉 such that, for every

〈ν0, . . . , νk〉 ∈ T, which is admissible for q above 〈ξ〉,

(q_〈ν0, . . . , νk〉) �νk+1 (q_〈ν0, . . . , νk〉) \ (νk + 1) ∈ e (ξ, ~ν)}

Thus, given a condition p ∈ Pκ, there exists p∗ ≥∗ p and a club C ⊆ κ, such

that, for every ξ ∈ C,

p∗ �ξ+1 p∗ \ (ξ + 1) ∈ e(ξ)

In particular, p∗ �ξ+1 forces that there exists a Pξ+1-name for a C-tree T∼(ξ)

above 〈ξ〉, such that for every 〈ν0, . . . , νk〉 ∈ T∼(ξ) which is admissible for p∗ \

(ξ + 1) above ξ,

(p∗ \ (ξ + 1))
_ 〈ν0, . . . , νk〉 �νk+1 (p∗ \ (ξ + 1))

_ 〈ν0, . . . , νk〉\(νk + 1) ∈ e (ξ, ν0, . . . , νk)

Now, we can construct in V the C-tree T as desired in the formulation of the

lemma, such that SuccT (〈〉) = C, and, for every ξ ∈ C, T〈ξ〉 is a tree in V which

is forced by p∗ �ξ+1 to be contained in T∼(ξ). Then p∗, T are a desired.

Remark 3.13. The condition p∗ and the C-tree T , obtained from the Multi-

variable Fusion Lemma, can be assumed to satisfy the following property: For

every i < k, 〈ξ, ν0, . . . , νi〉 ∈ T which is admissible for p∗ , and for every

νi+1 ∈ SuccT (ξ, ν0, . . . , νi),

p∗_〈ξ, ν0, . . . , νi〉 �gi+1(ξ,ν0,...,νi)‖ 〈ξ, ν0, . . . , νi, νi+1〉 is admissible for p∗

this requires a minor change in the definition of the set e (ξ, ν0, . . . , νi), which

is adding the above as requirement (the same proof provided shows that this

additional requirement holds).

Thus, if we apply the standard density argument and choose the condition

p∗ provided by the Multivariable Fusion Lemma inside G, it follows that–

{ξ < κ : 〈ξ, ~µ(ξ)〉 ∈ T is admissible for p∗ and p∗_〈ξ, ~µ(ξ)〉 ∈ G} ∈ W

28



Indeed, note first that X = {ξ < κ : 〈ξ, ~µ(ξ)〉 ∈ T} ∈ W by claim 3.9. Note that

if Y = {ξ ∈ X : 〈ξ, ~µ(ξ)〉 is admissible for p∗} ∈ W then {ξ ∈ Y : p∗_〈ξ, ~µ(ξ)〉 ∈

G} ∈ W , since p∗ ∈ G, by the definition of the functions ~µ(ξ).

Thus, it’s enough to argue that–

{ξ < κ : 〈ξ, ~µ(ξ)〉 ∈ T is admissible for p∗} ∈ W

Indeed, we proceed by induction on i ≤ k. Assume that–

{ξ ∈ X : p∗_〈ξ, µα0
(ξ), . . . , µαi

(ξ)〉 is admissible for p∗} ∈ W

For every such ξ < κ,

p∗_〈ξ, µα0
(ξ), . . . , µαi

(ξ)〉 �gi+1

(
ξ,µα0

(ξ),...,µαi
(ξ)

)‖ 〈ξ, µα0
(ξ), . . . , µαi+1

(ξ)〉 is admissible for p∗

and the decision must be positive for a set of ξ-s in W , since ti+1 (µα0
(ξ), . . . , µαi

(ξ))
_〈µαi+1

(ξ)〉

is an initial segment of gi+1 (ξ, µα0(ξ), . . . , µαi(ξ)) for a set of ξ-s in W . There-

fore,

{ξ ∈ X : p∗_〈ξ, µα0
(ξ), . . . , µαi+1

(ξ)〉 is admissible for p∗} ∈ W

We are now ready to prove that λ is measurable in Mα, which is property

(B) above.

Lemma 3.14. λ is measurable in Mα.

Proof. Assume otherwise. Then it can be assumed that for every ξ and ~ν,

h (ξ, ~ν) is a non-measurable regular cardinal. Let f ∈ V [G] be a function such

that [f ]W = λ. Let f∼ ∈ V be a Pκ-name such that (f∼)G = f . Similarly, let

~µ∼ ∈ V be the sequence of P–names 〈µ∼α0
(ξ), . . . , µ∼αk

(ξ)〉 described above. In

M [H],

[f ]W < jW (h) (κ, ~µ)

and thus we can assume that there exists a condition p ∈ G such that, for every

ξ < κ,

p  f∼(ξ) < h (ξ, ~µ∼(ξ))

From now on we work above p. We can also assume that p forces, for every

0 ≤ i ≤ k, that µ∼αi(ξ) is the ni + 1-th element in the Prikry sequence of

gi
(
ξ, µ∼α0

(ξ), . . . , µ∼αi−1
(ξ)

)
.
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Apply the Multivariable Fusion Lemma. For every 〈ξ, ~ν〉 = 〈ξ, ν0, . . . , νk〉,

let–

e (ξ, ~ν) ={r ∈ P \ (νk + 1) : ∃α < h (ξ, ~ν) , r  f∼(ξ) < α}

Since h (ξ, ~ν) is regular and non-measurable, and by corollary 1.7, e (ξ, ~ν) is

≤∗-dense open above conditions which force that ~µ(ξ) = ~ν.

Let p∗ ≥∗ p and T be a C-tree, such that, for every 〈ξ, ν0, . . . , νk〉 ∈ T which

is admissible for p∗,

(p∗_〈ξ, ~ν〉) �νk+1 ∃α < h (ξ, ~ν) , (p∗_〈ξ, ~ν〉) \ (νk + 1)  f∼(ξ) < α

We can assume that p∗ ∈ G, by applying the same argument above any condition

which extends p. For every 〈ξ, ~ν〉 ∈ T , pick a Pνk+1-name α∼ (ξ, ~ν) for the above

α.

Given 〈ξ, ν0, . . . , νk〉 ∈ T which is admissible for p∗, let–

δ (ξ, ~ν) = sup{γ < h (ξ, ~ν) : ∃r ≥ p∗_〈ξ, ~ν〉 �νk+1, r  α∼ (ξ, ~ν) = γ}

Note that δ (ξ, ~ν) < h (ξ, ~ν) since the forcing P �νk+1 has cardinality strictly

below h (ξ, ~ν) (we can assume that h (ξ, ~ν) > |νk|+ since λ > µ+
αk

. The latter

can be easily verified since kα maps µαk
, and its successor, to themselves, and

λ = crit (kα) ). It follows that for every 〈ξ, ~ν〉 ∈ T which is admissible for p∗,

p∗_〈ξ, ~ν〉  f∼(ξ) < δ (ξ, ~ν)

and the mapping 〈ξ, ~ν〉 7→ δ (ξ, ~ν) lies in V .

Apply remark 3.13, and let us assume that–

{ξ < κ : 〈ξ, ~µ(ξ)〉 ∈ T is admissible for p∗ and p∗_〈ξ, ~µ(ξ)〉 ∈ G} ∈ W

For every ξ in the above set, f(ξ) < δ (ξ, ~µ(ξ)) holds in V [G]. Thus, in M [H],

λ = [f ]W < [ξ 7→ δ (ξ, ~µ(ξ))]W = kα (jα (〈ξ, ~ν〉 7→ δ (ξ, ~ν)) (κ, µα0
, . . . , µαk

))

But this is a contradiction since λ = crit (kα) and–

jα (〈ξ, ~ν〉 7→ δ (ξ, ~ν)) (κ, µα0
, . . . , µαk

) < jα (h) (κ, ~µ) = λ
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Lemma 3.15. Denote λ∗ = kα(λ). Then λ appears in the Prikry sequence of

λ∗ in M [H].

Proof. In M [H], denote by tλ the finite initial segment of the Prikry sequence

of λ∗, which contains all the elements strictly below λ. By modifying the nice

sequence 〈α0, . . . , αk〉, we can assume that there exists a function 〈ξ, ~ν〉 7→

tλ (ξ, ~ν) in V , such that tλ = jα (〈ξ, ~ν〉 7→ tλ (ξ, ~ν)) (κ, ~µ). Assume that tλ has

length n∗ < ω.

Define (in V [G]) a function ξ 7→ λ(ξ) with domain κ, such that for each ξ <

κ, λ(ξ) is the (n∗ + 1)-th element in the Prikry sequence of h (ξ, µα0(ξ), . . . , µαk
(ξ)).

Clearly [ξ 7→ λ(ξ)]W ≥ λ, as it is the first element which appears after tλ in the

Prikry sequence of λ∗. Thus, it suffices to prove that for every η < [ξ 7→ λ(ξ)]W ,

η < λ.

Assume that f ∈ V [G] is a function such that η = [f ]W < [ξ 7→ λ (ξ)]W .

Assume that for every ξ < κ, f(ξ) < λ(ξ). Let p ∈ G be a condition which

forces this.

Let us apply the Multivariable Fusion Lemma. For every 〈ξ, ~ν〉 = 〈ξ, ν0, . . . , νk〉,

let–

e (ξ, ~ν) = {r ∈ P \ (νk + 1) : ∃α < h (ξ, ~ν) , r  if tλ (ξ, ~ν) is an initial segment

of the Prikry sequence of h (ξ, ~ν) , then f∼(ξ) < α}

We argue that e (ξ, ~ν) is ≤∗ dense above every condition which forces that

~µ∼(ξ) = ~ν. Let p ∈ P \ (νk + 1) be such a condition. Denote for simplicity

h = h (ξ, ~ν). First, direct extend p �(νk+1,h) such that it decides whether tλ (ξ, ~ν)

and tph are compatible:

1. If h /∈ supp (p), direct extend p such that tph = tλ (ξ, ~ν).

2. If tλ (ξ, ~ν) and tph are incompatible, pick α = 0.

3. If tph is a strict initial segment of tλ (ξ, ~ν), direct extend by replacing A∼
p
h

with A∼
p
h \max (tλ (ξ, ~ν)) + 1. Then take α = 0.

4. If tλ (ξ, ~ν) is strictly an initial segment of tph, direct extend p∗ �(νk+1,h)≥∗

p �(νk+1,h) such that for some α < h, p∗ �(νk+1,h) forces that the (n∗ + 1)-

th element of tph is bounded by α. It will follow that p∗ �h
_p\h  λ∼(ξ) <

α.
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Let us assume that p has already been direct extended as above, and p �h tph =

tλ (ξ, ~ν). Direct extend p∗ \ (h+ 1) ≥∗ p \ (h+ 1) such that–

p �h+1 ∃δ < h, p∗ \ (h+ 1)  f∼(ξ) = δ

Since it is forced that f(ξ) < λ(ξ), p �h forces that for every α ∈ A∼
p
h there exists

an ordinal δα < α and a set Bα such that–

〈tλ (ξ, ~ν)_〈α〉, Bα〉_p∗ \ (h+ 1)  f∼(ξ) = δα

Thus, there exists a set B ∈ U∼
∗
h, B ⊆ A∼

p
h ∩ (4α<hBα), and an ordinal δ < h,

such that for every α ∈ B, δα = δ. Direct extend p∗(h) ≥∗ p(h) such that

A∼
p∗

h = B. Finally, direct extend p∗ �h≥∗ p �h such that, for some α < h (in

V Pνk+1), p∗ �h δ∼ < α. Thus, p∗ ≥∗ p forces that f∼(ξ) < α.

Now, fix p∗ ∈ G and a C-tree T such that for every 〈ξ, ~ν〉 ∈ T ,

(p∗_〈ξ, ~ν〉) �νk+1∃α < h (ξ, ~ν) , if tλ (ξ, ~ν) is an initial segment of the Prikry

sequence of h (ξ, ~ν) then (p∗_〈ξ, ~ν〉) \ (νk + 1)  f∼(ξ) < α

Let α∼ (ξ, ~ν) be a name for the above α, and define–

δ (ξ, ~ν) = sup{γ < h (ξ, ~ν) : ∃r ≥ p∗_〈ξ, ~ν〉 �νk+1, r  α∼ (ξ, ~ν) = γ}

as before, δ (ξ, ~ν) < h (ξ, ~ν).

Finally, work in V [G]. As before,

{ξ < κ : 〈ξ, ~µ(ξ)〉 ∈ T is admissible for p∗ and p∗_〈ξ, ~µ(ξ) ∈ G〉} ∈ W

Moreover,

{ξ < κ : tλ (ξ, ~µ(ξ)) is an initial segment of the Prikry sequence of h (ξ, ~µ(ξ))} ∈ W

Thus, in M [H],

[f ]W < [ξ 7→ δ (ξ, ~µ(ξ))]W = kα (jα (〈ξ, ~ν〉 7→ δ (ξ, ~ν)) (κ, ~µ))

but jα (〈ξ, ~ν〉 7→ δ (ξ, ~ν)) (κ, ~µ) < λ since δ (ξ, ~ν) < h (ξ, ~ν) for every ξ, ~ν. Thus,

in M [H], η = [f ]W < λ, as desired.
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Let us denote Uλ = {X ⊆ λ : λ ∈ kα (X)} ∩Mα. This is an Mα-ultrafilter.

We will eventually prove that λ = µα, and then Uλ = Uµα
will be the Mα-

ultrafilter which is used to form Mα+1 in the iterated ultrapower.

Lemma 3.16. Uλ ∈ Mα. Moreover, it is a normal measure of Mitchell order

0 there.

Proof. The proof follows from a pair of claims.

Claim 3.17. There exist p ∈ G and a set F ∈ Mα of normal measures on λ,

each of Mitchell order 0, such that |F| < λ and jα(p)
_〈κ, ~µ〉 �λ jα (U∼) (λ) ∈ F .

Proof. In V , for every measurable x < κ, let Sx be an enumeration of all the

normal measures on x of order 0.

We claim that there exists p ∈ G and a C-tree T , such that for every 〈ξ, ~ν〉 ∈

T which is admissible for p, there exists a set of ordinals A (ξ, ~ν) with |A (ξ, ~ν)| <

h (ξ, ~ν), such that–

p_〈ξ, ~ν〉 �h(ξ,~ν) U∼h(ξ,~ν) ∈
(
Sh(ξ,~ν)

)′′
A (ξ, ~ν)

This follows from the Multivariable Fusion Lemma. Fix 〈ξ, ~ν〉 = 〈ξ, ν0, . . . , νk〉

and denote for simplicity h = h (ξ, ~ν). Consider–

e (ξ, ~ν) = {r ∈ P \ νk + 1: there exists a set of ordinals A with |A| < h

such that r �h U∼h ∈ Sh
′′A}

Let us argue that e (ξ, ~ν) is ≤∗-dense open above conditions which force that

µ∼(ξ) = ~ν. Let p be such a condition. Note that every condition in Ph, and

p �h in particular, forces that there exists an ordinal α such that U∼h = Sh(α);

Now, direct extend p∗ �h≥∗ p �h such that for some A of cardinality less then

h, p∗ �h α∼ ∈ A.

Now pick p ∈ G and a C-tree T as above. Then for every 〈ξ, ~ν〉 ∈ T which

is admissible for p,

p_〈ξ, ~ν〉 �νk+1 there exists a set of ordinals A with |A| < h (ξ, ~ν) ,

such that p_〈ξ, ~ν〉 �(νk,h(ξ,~ν)) U∼h(ξ,~ν) ∈ Sh(ξ,~ν)
′′A

For every such 〈ξ, ~ν〉 ∈ T , let A∼ (ξ, ~ν) be a Pνk+1-name for A above, and let–

A∗ (ξ, ~ν) = {γ : ∃r ≥ p_〈ξ, ~ν〉, r  γ ∈ A∼ (ξ, ~ν)}

33



Then |A∗ (ξ, ~ν)| < h (ξ, ~ν), and–

p_〈ξ, ~ν〉 �h(ξ,~ν) U∼h(ξ, ~µ∼(ξ)) ∈ Sh(ξ, ~µ∼(ξ))
′′A∗ (ξ, ~µ∼(ξ))

Let A∗ = jα (〈ξ, ~ν〉 7→ A∗ (ξ, ~ν)). Denote F = ((jα(S))λ)
′′
A∗. Then |A∗| <

λ and thus |F| < λ. jW (p)
_〈κ, ~µ〉 �kα(λ) forces that jW (U∼) (kα (λ)) ∈ kα (F).

Thus, by elementarity of kα, jα(p)_〈κ, ~µ〉 �λ forces that jα (U∼) (λ) ∈ F .

Claim 3.18. Assume that B ∈ Uλ. Then there exists p ∈ G such that

jα(p)
_〈κ, ~µ〉 �λ B ∈ jα (U∼) (λ).

Proof. Let 〈ξ, ~ν〉 7→ B (ξ, ~ν) be a function in V such that–

B = jα (〈ξ, ~ν〉 7→ B (ξ, ~ν)) (κ, ~µ)

(we assumed, without loss of generality, that B can be represented using ~µ;

else, change ~µ). Let n∗ < ω be the coordinate in which λ appears in the

Prikry sequence of λ∗. In V [G], denote by λ(ξ) the n∗-th element in the Prikry

sequence of h (ξ, ~µ(ξ)), so that [ξ 7→ λ(ξ)]W = λ.

As usual, we apply the Multivariable Fusion Lemma. Given 〈ξ, ~ν〉, let–

e (ξ, ~ν) = {r ∈ P \ νk + 1: r �h(ξ,~ν) decides whether B (ξ, ~ν) ∈ U∼h(ξ,~ν), and there

exists a bounded subset A ⊆ h (ξ, ~ν) such that the following holds:

If r �h(ξ,~ν) B (ξ, ~ν) ∈ U∼h(ξ,~ν), λ∼ (ξ) ∈ A ∪B (ξ, ~ν) ; else,

λ∼ (ξ) ∈ A ∪ (h (ξ, ~ν) \B (ξ, ~ν))}

e (ξ, ~ν) is ≤∗ dense open above any condition which forces that ~µ∼(ξ) = ~ν. Indeed,

let p ∈ P \ νk + 1 be such a condition. Denote h = h (ξ, ~ν). Direct extend

p∗ �h≥∗ p �h such that it decides the length of tph and which of the sets B (ξ, ~ν),

h \B (ξ, ~ν) belongs to U∼h:

1. If the length of tph is ≥ n∗, direct extend p∗ �h≥∗ p �h such that for some

bounded subset A ⊆ λ, p∗ �h forces that the n∗-th element in the Prikry

sequence of h belongs to A.

2. Otherwise, tph = tλ (ξ, ~ν). In this case, direct extend and shrink A∼
p
h such

that it is entirely contained in exactly one of the sets B (ξ, ~ν), h \B (ξ, ~ν).
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The condition p∗ obtained this way is as desired.

Now pick p ∈ G and a C-tree T such that for every 〈ξ, ~ν〉 ∈ T which is

admissible for p,

p_〈ξ, ~ν〉 �νk+1 p_〈ξ, ~ν〉 �(νk,h(ξ,~ν)) decides whether B (ξ, ~ν) ∈ U∼h(ξ,~ν),

and there exists a bounded subset A ⊆ h (ξ, ~ν) such that

p_〈ξ, ~ν〉 �(νk,h(ξ,~ν)) λ∼(ξ) belongs to exactly one of the sets A ∪B (ξ, ~ν)

or A ∪ (h (ξ, ~ν) \B (ξ, ~ν)) , according to the above decision.

For every such 〈ξ, ~ν〉 ∈ T , let A∼ (ξ, ~ν) be a Pνk+1-name for A above, and let–

A∗ (ξ, ~ν) = {γ : ∃r ≥ p_〈ξ, ~ν〉, r  γ ∈ A∼ (ξ, ~ν)}

Then A∗ (ξ, ~ν) is a bounded subset of h (ξ, ~ν).

We argue that jα(p)
_〈κ, ~µ〉  B ∈ jα (U∼) (λ). Work in V [G]. Then for a

set of ξ-s in W , 〈ξ, ~µ(ξ)〉 ∈ T is admissible for p. Thus,

p_〈ξ, ~µ(ξ)〉 �h(ξ,~µ(ξ))‖ B (ξ, ~µ(ξ)) ∈ U∼ (h (ξ, ~µ(ξ)))

We argue that for a set of ξ-s in W ,

p_〈ξ, ~µ(ξ)〉 �h(ξ,~µ(ξ)) B (ξ, ~µ(ξ)) ∈ U∼ (h (ξ, ~µ(ξ)))

Assume otherwise. Then–

{ξ < κ : λ(ξ) ∈ A (ξ, ~µ(ξ)) ∪ (h (ξ, ~ν) \B (ξ, ~µ(ξ)))} ∈ W

However, this cannot hold:

1. If {ξ < κ : λ(ξ) ∈ A (ξ, ~µ(ξ))} ∈ W , then, since |A(ξ, ~ν)| < h (ξ, ~ν) for

every ξ, ~ν, it follows that λ ∈ Im (kα), which is a contradiction.

2. Else, {ξ < κ : λ(ξ) ∈ h (ξ, ~µ(ξ) \B (ξ, ~µ(ξ)))}. But then λ /∈ kα (B),

contradicting the fact that B ∈ Uλ.

Thus, jW (p)_〈κ, ~µ〉 �kα(λ) kα(B) ∈ jW (U∼) (kα (λ)) and by elementarity of kα,

jα(p)
_〈κ, ~µ〉 �λ B ∈ jα (U∼) (λ) , as desired.

Fix now a set F and a condition p ∈ G as in the first claim. Since F is a

sequence of normal measures on λ of cardinality < λ, there exists a partition
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〈BF : F ∈ F〉 of λ such that for every F ∈ F , BF ∈ F . |F| < λ, and thus

there exists a unique F ∗ ∈ F such that λ ∈ kα (BF∗). We denote for simplicity

B∗ = BF∗ .

By second claim, applied for the set B∗ ∈ Uλ, there exists p∗ ∈ G above p

such that jα(p
∗)

_〈κ, ~µ〉  jα (U∼) (λ) = F ∗.

Finally, F ∗ = Uλ follows. Indeed, let X ∈ F ∗. By the second claim, for every

X ∈ Uλ, there exists p ∈ G such that jα(p)
_〈κ, ~µ〉  X ∈ jα (U∼) (λ). Without

loss of generality, p extends p∗ which was chosen in the previous paragraph, and

thus jα(p)  X ∈ F ∗. Since X and F ∗ are elements of Mα (and not names), it

follows that X ∈ F ∗.

Corollary 3.19. In M [H], jW (U) (kα(λ)) = kα (Uλ). In particular, if U ∈ V ,

then jα (U) (λ) = Uλ.

Proof. This follows since, by the proof of the previous lemma, there exists p ∈ G

such that jα(p)
_〈κ, ~µ〉  jα (U∼) (λ) = Uλ. Now apply kα : Mα → M and use

the fact that jW (p)
_〈κ, ~µ〉 ∈ H.

Lemma 3.20. In V , cf(λ) ≥ κ+.

Proof. Denote M ′ = Ult (Mα, Uλ), and let j′ : V → M ′, be defined as follows:

j′ = jMα

Uλ
◦ jα

There exists an elementary embedding k′ : M ′ → M , defined as follows:

k′ (j′(f) (κ, µi0 , . . . , µim , λ)) = jW (f) (κ, µi0 , . . . , µim , λ)

for every f ∈ V and i0 < . . . < im < α.

Since Uλ was derived from kα, k′ : M ′ → M is elementary (the proof is the

same as in lemma 3.3). It’s not hard to verify that crit (k′) > λ. Therefore, λ,

which is a non-measurable inaccessible cardinal in M ′, is still a non-measurable

inaccessible cardinal in M .

Let us argue that λ is regular in M [H]. Split H = Hλ ∗ H ′, where Hλ ⊆

jW (P ) �λ. If λ changes its cofinality in M [H], then it changes its cofinality in

M [Hλ] (since the upper forcing has a direct extension order which is more than

λ–closed). However, by corollary 1.8, λ is regular in M [Hλ].

It follows that, in V [G], cf(λ) ≥ κ+. Thus, in V , cf (λ) ≥ κ+.
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Corollary 3.21. crit (kα) = µα.

Proof. It suffices to prove that crit (kα) ≥ µα. Denote µ̄ = sup{µβ : β < α}.

We already argued that crit(kα) ≥ µ̄.

By all the properties proved so far, crit (kα) is a measurable cardinal in Mα,

with cofinality > κ in V . By the definition, µα ≥ µ̄ is the least such cardinal.

Thus, crit (kα) ≥ µα.

This finishes the inductive proof of properties (A)-(E). We are now prepared

to finish the proof of Theorem 3.1:

Proof of theorem 3.1. Recall that κ∗ = jU (κ). It’s not hard to prove by in-

duction that, for every α < κ∗, µα < κ∗. Note that jκ∗(κ) = κ∗, since jκ∗

is an iterated ultrapower with measures on measurables below κ∗. Since κ∗ is

measurable in each step, it does not move in j1,κ∗ : MU → Mκ∗ .

Recall the embedding kκ∗ : Mκ∗ → M , defined as follows:

kκ∗ (jκ∗(f) (κ, µi0 , . . . , µim)) = jW (f) (κ, µi0 , . . . , µim)

for every f ∈ V , m < ω and i0, . . . , im < κ∗. As in lemma 3.3, kκ∗ is elementary,

kκ∗ ◦ jκ∗ = jW �V and crit (kκ∗) ≥ κ∗.

In order to prove that M = Mκ∗ , jκ∗ = jW �V and k∗ = jW (κ), it suffices

to prove that kκ∗ : Mκ∗ → M is the identity. Thus, it suffices to prove that for

every ordinal η, η ∈ Im (kκ∗). Assume that g ∈ V [G] is a function such that

η = [g]W . Let p ∈ G be a condition. By lemma 1.6, there exists a condition

p ≤ p∗ ∈ G, a function ξ 7→ Aξ in V and a club C ⊆ κ such that, for every

ξ ∈ C, |Aξ| < κ, and p∗  g∼(ξ) ∈ Aξ. Then jW (p∗) ∈ H forces that η =

[ξ 7→ g∼(ξ)]W ∈ [ξ 7→ Aξ]W = kκ∗ (jκ∗ (ξ 7→ Aξ) (κ)); but |jκ∗ (ξ 7→ Aξ) (κ)| <

jκ∗(κ) = κ∗ ≤ crit (kκ∗). Therefore, η ∈ Im (kκ∗) as desired.

Finally, note that if U ∈ V , then by corollary 3.19, Uµα
= jα (U) (µα) ∈ Mα

for every α < κ, and thus the iteration jκ∗ is definable over V . Also, M = Mκ∗

is a class of M .

We finish this section with several remarks about definability of jW �V in V .

The condition U ∈ V is sufficient but not necessary for the definability of

jW �V . For instance, let η ∈ ∆ be the first measurable. Assume that, in V ,

there are infinitely many measurables which carry η measures of Mitchell order
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0. Take in V an enumeration 〈αn : n < ω〉 of the first ω such measurables above

η. For every n < ω, let 〈F ξ
αn

: ξ < η〉 be an enumeration of η-many measures of

Mitchell order 0 on αn. Let P be the forcing notion which uses, at stage αn, the

unique normal measure which extends F ηn
αn

, where ηn < η is the n-th element in

the Prikry sequence of η. For every other measurable α, use a measure which

extends the least measure on α of Mitchell order 0 with respect to a prescribed

well order of Vκ. So U /∈ V , since it codes the Prikry sequence of η. However,

jW �V is definable in V , by repeating the argument of corollary 3.19, replacing

U with U �∆\{αn : n<ω}= 〈Uα : α ∈ ∆ \ {αn : n < ω}〉 ∈ V . More generally, the

following holds, ind is proved similarly to corollary 3.19:

Lemma 3.22. Assume that for some ξ < κ, U \ξ = 〈Uα : α ∈ ∆\ξ〉 ∈ V . Then

jW �V is definable in V .

Remark 3.23. Let A ⊆ ∆ be a set such that, for every α < κ∗, µα ∈ jα (A). If

U �A= 〈Uα : α ∈ A〉 ∈ V , then jW �V is definable in V , and again, this is proved

by repeating the argument of corollary 3.19, replacing U with U �A. This seems

like an improvement of the previous lemma; however, we will prove in lemma

4.12, that a set A satisfies that µα ∈ jα (A) for every α < κ∗, if and only if, for

some ξ < κ, ∆ \ ξ ⊆ A.

By lemma 3.22, definability of jW �V in V follows from the assumption that

jW (U) \ κ ∈ M . In the next section we will prove that the other direction is

not necessarily true.

4 A General Analysis Of Iterated Ultrapowers

Our main goal in this section is to simplify the presentation of jW �V provided

in the previous section; for instance, we will provide a simpler characterization

of the critical points µα. Simultaneously, we describe in detail how the Prikry

sequences, added to measurables of M above κ, look like: up to a finite initial

segment, those are sequences of critical points of an iterated ultrapower, gener-

ated over some finite sub-iteration of 〈Mα : α < κ∗〉, using a single measure. It

will follow that every Prikry sequence, added in M [H] for a measurable cardinal

above κ, already belongs to V .

Our goals are lemma 4.6 and corollaries 4.7, 4.9 and 4.13.

38



We start by studying linear iterations of V in more general settings. Let

us assume that κ∗ is an ordinal, and 〈Mα : α < κ∗〉 is a linear iteration of

V , by normal measures of Mitchell order 0. More specifically, we assume that

M0 = Ult (V,U) where U is a measure of Mitchell order 0 on some measurable

κ; in successor steps, Mα+1 = Ult (Mα, Uµα
), where Uµα

∈ Mα is a normal

measure of order 0 on some measurable µα; at limit steps a direct limit is taken.

We assume also that the iteration is normal in the sense that 〈µα : α < κ∗〉 is

increasing. We do not assume that the entire iteration is definable in V . Finally,

we denote M = Mκ∗ .

We begin by observing that every finite nice sequence corresponds to a finite

iteration of V which naturally embeds in M . Assume that 〈α0, . . . , αm〉 is a

nice sequence below some ordinal α < κ∗. Recall that this means that, every

0 ≤ k ≤ m, there are functions gk, Fk ∈ V such that–

µαk
= jαk

(gk)
(
κ, µα0 , . . . , µαk−1

)
Uµαk

= jαk
(Fk)

(
κ, µα0

, . . . , µαk−1

)
(for k = 0, µα0

= jα0
(g0) (κ) and Uµα0

= jα0
(F0) (κ) ).

We define a finite iteration 〈Nk : k ≤ m + 1〉 of V , for each k ≤ m an

embedding ik : V → Nk, a cardinal λk measurable in Nk and a measure Wk ∈ Nk

on it of order 0.

First, let N0 ' Ult (V,U), i0 : V → M0 the ultrapower embedding, λ0 =

i0 (g0) (κ) and W0 = i0 (F0) (κ).

Assume that k ≤ m and Nk has been defined. Let Nk+1 ' Ult (Nk,Wk),

ik+1 : V → Nk+1, ik+1 = jNk

Wk
◦ ik, λk+1 = ik+1 (gk+1) (κ, λ0, . . . , λk) and

Wk+1 = ik+1 (Fk+1) (κ, λ0, . . . , λk).

Lemma 4.1. Fix a nice sequence 〈α0, . . . , αm〉 below some α < κ∗. In the above

notations, define km+1 : Nm+1 → Mα as follows:

km+1 (im+1 (f) (κ, λ0, . . . , λm)) = jα(f) (κ, µα0
, . . . , µαm

)

for every f ∈ V . Then km+1 : Nm+1 → Mα is an elementary embedding, and–

km+1 = (jαm+1,α ◦ . . . ◦ jα0+1,α1
◦ j0,α0

) �Nm+1
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Remark 4.2. The iteration jαm+1,α◦. . .◦jα0+1,α1
◦j0,α0

above is not necessarily

internal to Nm+1; this means that the sub-iterations jαi+1,αi+1
participating in it

are iterated ultrapowers as defined over Mαi+1. In the proof of the lemma we will

show that the external iteration jαm+1,α ◦ . . .◦jα0+1,α1
◦j1,α0

is well defined over

Nm+1, in the sense that for every x ∈ Nm+1,
(
jαi−1+1,αi

◦ . . . ◦ jα0+1,α1
◦ j0,α0

)
(x)

belongs to Mαi+1. Later in this section, we will prove that such an iteration

might be an internal iteration of Nm+1, provided that the initial nice sequence

is chosen more carefully.

Proof. We proceed by induction on m. The induction basis is given for ”m =

−1”, namely, the case where the given nice sequence below α is empty. In this

case, N0 = Ult (V,U), i0 = jU : V → N0 and k0 (i0(f)(κ)) = jα(f)(κ), and

clearly k0 = j0,α : M0 → Mα.

Assume now that m < ω and km+1 : Nm+1 → Mαm+1
has been constructed

(here, the embedding km+1 corresponds to the nice sequence 〈α0, . . . , αm〉 below

αm+1). Let us argue that km+2 = jαm+1+1,α ◦ km+1 �Nm+2 . Indeed, given an

arbitrary element im+2(f) (κ, λ0, . . . , λm, λm+1) of Nm+2,

km+1 (im+2(f) (κ, λ0, . . . , λm, λm+1))

= km+1

(
j
Nm+1

Wm+1
(im+1(f)) (κ, λ0, . . . , λm+1)

)
= jUµαm+1

(
jαm+1

(f)
) (

κ, µα0
, . . . , µαm

, µαm+1

)
= jαm+1+1(f)

(
κ, µα0 , . . . , µαm , µαm+1

)
where we used the fact that Wm+1 = im+1 (Fm+1) (κ, λ0, . . . , λm) and λm+1 =

im+1 (gm+1) (κ, λ0, . . . , λm) for the computation on their values under km+1.

Finally, apply jαm+1+1,α on both sides.

If the sequence 〈α0, . . . , αm〉 below α is clear from the context, we denote

N∗ = Nm+1, i∗ = im+1 : V → N∗ and k∗ = km+1 : N
∗ → Mα. Note that k∗

is not necessarily an internal iteration of N∗. Indeed, assume that λ0 < µα0

(this happens, e.g., if α0 = 1. In this case, λ0 = µ0 and µ1 = jUµ0
(µ0) > µ0).

If k∗ was an internal iteration of N∗, then λ0 would have to be one of the

critical points participating in the iteration, since λ0 is inaccessible in N∗ and

k∗ (λ0) = µα0 . However, this is not possible because λ0 is not measurable in

N∗.
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Our goal is lemma 4.6. In the proof, it will be useful to consider a nice

sequence 〈α0, . . . , αm〉 below α and its associated iteration N∗, such that the

embedding k∗ : N∗ → Mα is an internal iteration of N∗. This will require a

more sophisticated choice of the initial nice sequence. The example from the

last paragraph offers a lead: we would like λk = µαk
to hold for every 0 ≤ k ≤ m.

Lemma 4.3. k∗ is an internal iteration of N∗ if and only if, for every 0 ≤ k ≤

m, λk = µαk
.

Proof. Let us assume first that k∗ is an iteration of N∗. Then λk is a non-

measurable inaccessible in N∗, and thus λk cannot move by k∗. So µαk
=

k∗ (λk) = λk.

Let us concentrate on the other direction. Assume that λk = µαk
for every

0 ≤ k ≤ m. λ0 = µα0 is measurable in MU = N0, and thus j0,α0 (µα0) = µα0 .

Also, j0,α0
(W0) = Uµα0

. Note that–

jα = jα0+1,α ◦ jUµα0
◦ jα0 = jα0+1,α ◦ jN1

0,α0
◦ jW0 ◦ jU

where jN1
0,α0

is the iterated ultrapower consisting of the same measures as j0,α0
,

but acting on N1. jN1
0,α0

: N1 → Mα0+1 is internal to N1, and so is jα0+1,α ◦jN1
0,α0

.

We proceed now by induction on m. Assume that km+1 : Nm+1 → Mαm+1

is an internal iteration of Nm+1 (with respect to the nice sequence 〈α0, . . . , αm〉

below αm+1). Then–

Uµαm+1
= km+1 (Wm+1)

and thus–

jαm+1+1 = jUµαm+1
◦ km+1 ◦ im+1

= km+1 �Nm+2
◦im+2

=
(
jαm+1,αm+1 ◦ . . . ◦ jα0+1,α1 ◦ j0,α0

)
�Nm+2 ◦im+2

Where
(
jαm+1,αm+1

◦ . . . ◦ jα0+1,α1
◦ j0,α0

)
�Nm+2

above is an internal iteration

of Nm+2, since Wm+1 is a measure over λm+1 = µαm+1
, and lies strictly above

all the participating critical points. Thus, the embedding km+2, obtained by

applying jαm+1+1,α on
(
jαm+1,αm+1

◦ . . . ◦ jα0+1,α1
◦ j0,α0

)
�Nm+2

, is an internal

iteration of Nm+2.
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Lemma 4.4. Every nice sequence 〈α0, . . . , αm〉 below α can be completed to a

nice sequence–

〈α0
0, . . . , α

n0
0 , α0

1, . . . , α
n1
1 , . . . . . . , α0

m, . . . , αnm
m 〉

where αn0
0 = α0, α

n1
1 = α1, . . . , α

nm
m = αm, such that the embedding k∗ associated

to the latter sequence is an iteration of N∗.

Proof. We begin with an arbitrary nice sequence 〈α0, . . . , αm〉, and complete it

to a nice sequence–

〈α0
0, . . . , α

n0
0 , α0

1, . . . , α
n1
1 , . . . . . . , α0

m, . . . , αnm
m 〉

where αn0
0 = α0, α

n1
1 = α1, . . . , α

nm
m = αm.

We first extend the sequence below α0, namely define α0
0, . . . , α

n0
0 .

Denote N0
0 = Ult (V,U) and i00 = jU : V → N0

0 . Let λ0
0 = i00 (g0) (κ). Let

α0
0 ≤ α0 be the first such that λ0

0 ≤ µα0
0
.
(
cf
(
λ0
0

))V
> κ, so actually λ0

0 = µα0
0
.

If α0
0 = α0, we set n0 = 0 and we are done extending the sequence below α0.

Assume otherwise.

Work in N0
0 and define there W 0

0 = i00 (U)
(
λ0
0

)
. Let N1

0 = Ult
(
N0

0 ,W
0
0

)
and i10 = j

N0
0

W 0
0
◦ i00 : V → N1

0 . Define k10 : N
1
0 → Mα0

0+1 to be such that for every

f ∈ V ,

k10
(
i10 (f)

(
κ, λ0

0

))
= jα0

0+1 (f)
(
κ, µα0

0

)
by lemma 4.3, k10 is an iterated ultrapower of N1

0 . The measures participating

in this iteration lie on measurables below α0
0 (actually, k10 = j

N1
0

1,α0
0
). In N1

0 ,

let λ1
0 = jW 0

0

(
λ0
0

)
, and note that λ1

0 is measurable in N1
0 above λ1

0. Thus,

λ1
0 does not participate in the iteration k10, namely k10

(
λ1
0

)
= λ1

0. So λ1
0 is a

measurable cardinal in Mα0
0+1, and

(
cf
(
λ1
0

))V
> κ. Thus, there exists an index

α1
0, such that µα1

0
= λ1

0 and α0
0 < α1

0 ≤ α0. If α1
0 = α0, we finish extending

the sequence below α0 and set n0 = 1. Assume otherwise. Define in N1
0 the

measure W 1
0 = i10(U)

(
λ1
0

)
. Let N2

0 = Ult
(
N1

0 ,W
1
0

)
and i20 = j

N1
0

W 1
0
◦ i10 : V → N2

0 .

Define k20 : N
2
0 → Mα1

0+1 in the natural way, namely, for every f ∈ V ,

k20
(
i20(f)

(
κ, λ0

0, λ
1
0

))
= jα1

0+1(f)
(
κ, λ0

0, λ
1
0

)
and by 4.3, k20 is an iterated ultrapower of N2 with measurables below µα1

0
.

Denote λ2
0 = j

N1
0

W 1
0

(
λ1
0

)
> λ1

0. Arguing as before, λ2
0 is measurable in Mα1

0+1
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with cofinality above κ, and thus, there exists α2
0 such that λ2

0 = µα2
0

and

α0
0 < α1

0 < α2
0 ≤ α0.

Continue in this fashion, and construct an increasing sequence α0
0 < α1

0 <

. . . ≤ α0. We argue that the construction stops after finitely many steps. As-

sume otherwise, and let 〈αn
0 : n < ω〉 be a strictly increasing sequence of ordinals

below α0, such that for every n < ω,

µα0
> µαn+1

0
= λn+1

0 = jWn
0
(λn

0 ) > λn
0 = µαn

0

and–

µαn+1
0

= λn+1
0 = kn+1

0

(
λn+1
0

)
= kn+1

0

(
in+1
0 (g0) (κ)

)
= jαn

0 +1 (g0) (κ) = jUµαn
0

(
µαn

0

)
let α∗

0 = sup{αn
0 : n < ω} ≤ α0. Note that–

jα∗
0
(g0)(κ) = jα0

0,α
∗
0

(
µα0

0

)
= sup{µαn

0
: n < ω} < µα∗

0

and thus–

µα0 = jα0 (g0) (κ) = jα∗
0 ,α0

(
jα∗

0
(g0) (κ)

)
= jα∗

0
(g0) (κ)

which contradicts the fact that jα∗
0
(g0) (κ) < µα∗

0
≤ µα0

.

Thus, there exists n0 < ω and a sequence α0
0 < α1

0 < . . . < αn0
0 = α0 such

that for every n < n0,

µαn+1
0

= jUµαn
0

(
µαn

0

)
= jαn+1

0
(g0) (κ)

where the last equality follows by induction, since–

jαn+1
0

(g0)(κ) = jαn
0 ,α

n+1
0

(
jαn

0
(g0)(κ)

)
= jαn

0 ,α
n+1
0

(
µαn

0

)
= jUαn

0

(
µαn

0

)
let us justify the last equality in the above equation. If µα0

is not a limit of

measurables, then αn+1
0 = αn

0 + 1 and the equation is clear. Otherwise, µαn
0

is

a limit of measurables. Therefore µαn+1
0

= jUαn
0

(
µαn

0

)
is a limit of measurables,

and each factor in jαn
0 +1,αn+1

0
is an ultrapower embedding with one of them.

Thus, each such factor maps µαn+1
0

to itself.

This finishes the completion of the initial nice sequence below α0. Let N∗
0

be the iterated ultrapower associated to the nice sequence 〈α0
0, . . . α

n
0 〉, with a
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corresponding embedding i∗0 : V → N∗
0 . Let k∗0 : N

∗
0 → Mα0+1 be defined as

follows: for every f ∈ V ,

k∗0

(
i∗0(f)

(
κ, µα0

0
, . . . , µα

n0
0

))
= jα1

(f)
(
κ, µα0

0
, . . . , µα

n0
0

)
By lemma 4.3, the embedding k∗0 is an iterated ultrapower of N∗

0 , and jα0+1 =

k∗0 ◦ i∗0. All the ultrapowers in k∗0 are taken on measurables below α0.

Now work over N∗
0 , define λ0

1 = i∗0 (g1) (κ, µα0
). λ0

1 > µα0
is measurable in

N∗
0 and thus is not moved by k∗0 . Also, it has cofinality above κ in V . Let

α0
1 ≤ α1 be such that λ0

1 = µα0
1
. If λ0

1 = µα1 , we set n1 = 0 and move on to

extend the sequence below α2. Assume otherwise. Let W 0
1 = i∗0 (U)

(
λ0
1

)
. Let

N0
1 = Ult

(
N∗

0 ,W
0
1

)
, and i01 = j

N∗
0

W 0
1
◦ i∗0. Let k01 : N

1
0 → Mα0

1+1 be the natural

embedding, and continue the construction as above. It will stop after finitely

many steps.

By repeating the same argument for α2, . . . , αm, we generate the desired

completion of 〈α0, . . . , αm〉.

Remark 4.5. For every 0 ≤ i ≤ m, µαi
appears in the Prikry sequence of

µ∗
αi

= kαi (µαi) in M [H]. Note that in the above proof, the completion below

µαi , namely the sequence 〈α0
k . . . , α

ni
i 〉, is a subsequence of the Prikry sequence

of µ∗
αi

below µαi
. In lemma 4.8 we will prove that this subsequence is actually

a segment in this Prikry sequence.

Lemma 4.6. Assume that α < κ∗. Denote µ̄ = sup{µα′ : α′ < α}. Let λ > µ̄

be an inaccessible cardinal in Mα. Then (cf(λ))V > κ.

Proof. Let us first consider the case where there is no β < α and λ′ < λ such

that jβ,α (λ′) = λ. Let 〈α0, . . . , αm〉 be a nice sequence below α such that

λ = jα(h) (κ, µα0
, . . . , µαm

) for some function h ∈ V . We can assume that the

sequence in complete as in lemma 4.4, and so k∗ : N∗ → Mα is an internal

iterated ultrapower. Denote–

λ∗ = i∗(h) (κ, µα0
, . . . , µαm

)

and note that k∗ (λ∗) = λ. It suffices to prove that λ∗ = λ, since every inac-

cessible above κ in a finite iteration of V has cofinality > κ in V . Assume that
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λ∗ < λ. Because λ∗ is inaccessible in N∗, λ∗ is one of the measurables partic-

ipating in the iteration k, namely λ∗ = µβ for some β < α. Since λ∗ > µαm
,

β > αm. Then–

λ = k∗ (λ∗)

=
(
jβ,α ◦ jαm+1,β ◦ jαm−1+1,αm ◦ . . . ◦ jα0+1,α1 ◦ j1,α0

)
(λ∗)

= jβ,α (λ∗)

where we used the fact that λ∗ = µβ is inaccessible in N∗ above µαm , and thus

is fixed by ultrapowers below µαm
and by jαm+1,β . It follows that there exists

β < α and λ∗ < λ such that jβ,α (λ∗) = λ, which is a contradiction.

Let us now take care of the case where, for some β < α and λ0 < λ,

jβ,α (λ0) = λ. Let β < α be the least such that such λ0 exists. Since λ0 is

inaccessible in Mβ and λ0 < jβ,α (λ0), λ0 is one of the measurables participating

in the iteration jβ,α. Thus, λ0 = µγ0
, for some γ0 < α.

Denote λ1 = jUµγ0
(µγ0). This is an inaccessible cardinal in Mγ0+1. Let us

argue that (cf (λ1))
V
> κ.

Pick a complete nice sequence 〈α0, . . . , αm〉 below γ0+1 such that, for some

function h ∈ V ,

λ1 = jγ0+1(h) (κ, µα0 , . . . , µαm)

we can assume that αm = γ0 (else, add it. The sequence will remain complete

since there is no λ′ < λ0 and γ′ ≤ γ0 such that jγ′,γ0+1 (λ
′) = λ0). Let N∗ be

the associated finite iteration, with an embedding i∗ : V → N∗. let k∗ : N∗ →

Mγ0+1 be the corresponding iterated ultrapower such that k∗ ◦ i∗ = jγ0+1.

Denote λ∗
1 = i∗(h) (κ, µα0

, . . . , µαm
). Then k∗ (λ∗

1) = λ1. Let us argue that

λ∗
1 = λ1. Assume that λ∗

1 < λ1. Then λ∗
1, which is measurable in N∗, is one of

the measurables participating in k∗. Note that–

λ1 = k∗ (λ∗
1) = jαm+1,γ0+1 ◦ jαm−1+1,αm

◦ jαm−2+1,αm−1
◦ . . . ◦ j1,α0

(λ∗
1)

but αm = γ0, so jαm+1,γ0+1 is the identity. So λ∗
1 < µαm

= µγ0
. µγ0

is already

a non-measurable inaccessible in N∗ (since we started from a complete nice

sequence which includes it), and thus k∗ (µγ0
) = µγ0

. Namely jUγ0
(µγ0

) =

λ1 = k∗ (λ∗
1) < µγ0 , a contradiction.
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Thus (cf(λ1))
V

> κ. If λ1 = λ, we are done. Else, λ1 < λ is inaccessible in

Mγ0+1, and is mapped via jγ0+1,α to λ. Hence, arguing as before, λ1 ≤ µ̄ is one

of the measurables participating in the iterated ultrapower jγ0+1,α. Therefore,

there exists γ1 ∈ (γ0, α) such that λ1 = µαγ1
. Denote λ2 = jUµγ1

(
Uµγ1

)
> λ1.

As above, (cf (λ2))
V

> κ. If λ2 = λ, we are done. Assume otherwise, and

continue in this fashion.

Let us argue that the process stops after finitely many steps. Assume other-

wise. Then we have constructed an ω-sequence of ordinals below α, 〈γn : n < ω〉,

and an increasing sequence–

λ0 = µγ0 < λ1 = µγ1 < λ2 = µγ2 < . . . < λ

such that, for every n < ω, λn+1 = µγn+1
= jUµγn

(µγn
). Denote γ∗ =

sup{γn : n < ω} (possibly γ∗ = α). Let λ∗ = sup{λn : n < ω}. Then–

jγ∗,α (λ∗) = λ

however, jγ∗,α (λ∗) = λ∗: if γ∗ = α this is clear. Else, note that µγ∗ is chosen

strictly above sup{µξ : ξ < γ∗} = λ∗. Therefore, the critical point of jγ∗,α is

above λ∗, and jγ∗,α (λ∗) = λ∗.

It follows that λ∗ = λ. But λ∗ ≤ µ̄ (equality may hold if γ∗ = α), contra-

dicting the fact that λ > µ̄.

We now return to our context, and assume that 〈Mα : α ≤ κ∗〉 is the iteration

described in the previous section, with the same notations. We can first simplify

the definition of the critical points µα:

Corollary 4.7. Assume that α < κ∗. Let µ̄ = sup{µα′ : α′ < α}.

If α is successor, µα is the first measurable above µ̄ in Mα.

If α is limit and (cf (α))V ≤ κ, then µα is the first measurable above µ̄ in Mα.

If α is limit and (cf (α))V > κ, then µα is the first measurable in Mα which is

greater or equal to µ̄.

Proof. If µ̄ is measurable in Mα and (cf (α))V > κ, then (cf (µ̄))V > κ and thus

µα = µ̄ by the definition. Else, µα is chosen to be the least measurable in Mα

above µ̄ with cofinality above κ in V , which is, by the previous lemma, the least

measurable above µ̄ in Mα.
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Lemma 4.8. Assume that α < κ∗ and λ appears after µα in the Prikry sequence

of µ∗ = kα (µα). Then λ = jUµα
(µα).

Proof. Since jUµα
(µα) is measurable in Mα+1 above µ̄α+1 = sup{µα′ : α′ ≤ α},

it follows, by lemma 4.6, that–(
cf
(
jUµα

(µα)
))V

> κ

Thus there exists β > α such that jUµα
(µα) = µβ , and appears in the Prikry

sequence of kβ (µβ) = jβ,κ∗ (jα,β (µα)) = µ∗.

Let us prove now that jUµα
(µα) = µβ is the immediate successor of µα in

the Prikry sequence of µ∗.

Assume, for contradiction, that µα < λ < jUµα
(µα), and λ appears after µα

in the Prikry sequence of µ∗. Assume that λ = jα+1(g) (κ, µα0 , . . . , µαk
, µα),

for some g ∈ V and α0 < . . . < αk < α. Assume also that h ∈ V is a function

such that µα = jα(h) (κ, µα0
, . . . , µαk

) for the same α0 < . . . < αk < α (this

can always be arranged by changing the sequence 〈α0, . . . , αk〉). Then–

jα+1(g) (κ, µα0 , . . . , µαk
, µα) < jα+1(h) (κ, µα0 , . . . , µαk

)

so we may assume that for every ξ, ν0, . . . , νk, η, below κ, g (ξ, ν0, . . . , νk, η) <

h (ξ, ν0, . . . , νk). Assume also that µα is the n-th element in the Prikry sequence

of µ∗. In V [G], let λ(ξ) be the (n+ 1)-th element in the Prikry sequence of

h (ξ, ~µ(ξ)), so that [ξ 7→ λ(ξ)]W = λ.

Assume that the sequence 〈α0, . . . , αk〉 ⊆ α is nice (else, add more coordi-

nates). Now apply the Multivariable Fusion Lemma. For every 〈ξ, ~ν〉, let–

e (ξ, ~ν) = {r ∈ P \ νk + 1: there exists a bounded subset A ⊆ h (ξ, ~ν) such that

r forces that the (n+ 1) -th element in the Prikry sequence of h (ξ, ~ν)

belongs either to A or to the club of closure points of the function

η 7→ g (ξ, ~ν, η)}

We argue that e (ξ, ~ν) is ≤∗ dense open above any condition which forces that

~µ∼(ξ) = ~ν. Let p ∈ P \ νk + 1 be such a condition. Denote for simplicity

h = h (ξ, ~ν). Direct extend p �h such that it decides the length of tph; if the

length is ≥ (n+ 1), direct extend p �h further, so that it forces that there exists

a bounded subset A ⊆ h such that the (n+ 1)-th element in the Prikry sequence
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of h belongs to it. Finally, shrink A∼
p
h by intersecting with the club of closure

points of the function which maps each η < h to g (ξ, ~ν, η). The condition

obtained this way indeed belongs to e (ξ, ~ν).

Now, fix p ∈ G and a C-tree T such that for every 〈ξ, ~ν〉 ∈ T which is

admissible for p,

(p_〈ξ, ~ν〉) �νk+1 there exists a bounded subset A ⊆ h (ξ, ~ν) such that

p_〈ξ, ~ν〉 \ (νk + 1) forces that the (n+ 1) -th element in the Prikry sequence

of h (ξ, ~ν) belongs either to A or to the club of closure points of the function

η 7→ g (ξ, ~ν, η)}

Let A∼ (ξ, ~ν) be a Pνk+1-name for the set A above, and set–

A∗ (ξ, ~ν) = {γ < h (ξ, ~ν) : ∃r ≥ p_〈ξ, ~ν〉 �νk+1, r  γ ∈ A∼ (ξ, ~ν)}

It follows that for a set of ξ-s in W , λ(ξ) either belongs to A∗ (ξ, ~µ(ξ)) of to

the club of closure points of η 7→ g (ξ, ~µ(ξ), η).

However, it cannot hold that for a set of ξ-s in W , λ(ξ) ∈ A∗ (ξ, ~µ(ξ)). Indeed

assume otherwise. Denote–

A∗ = jα (〈ξ, ~ν〉 7→ A∗ (ξ, ~ν)) (κ, µ)

then A∗ is bounded in µα, and, under the above assumption, λ ∈ kα (A∗) =

A∗ ⊆ µα, which is a contradiction.

Thus, in M [H], λ is a closure point of η 7→ jW (g) (κ, ~µ, η). Recall that µα <

λ, and thus jW (g) (κ, ~µ, µα) < λ = jα(g) (κ, ~µ, µα), which is a contradiction.

Corollary 4.9. Let α < κ∗ and denote µ∗ = kα (µα). Then the Prikry sequence

of µ∗ in M [H] has a final segment of the form–

〈µα0 , µα1 , µα2 , . . . , µαn , . . .〉

where α0 = α, and for every n < ω, µαn+1
= jUµαn

(µαn
). Furthermore, the

above sequence belongs to V , namely (cf (µ∗))
V
= ω.

Proof. The first part follows immediately from the previous lemma. Let us

concentrate on the second part. Assume that there is no β < α0 and µ < µα0

such that jβ,α (µ) = µα0
(if there is, replace µα0

with the least such µ). Let
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β0, . . . , βk be a complete nice sequence such that µα0
= jα0

(h) (β0, . . . , βk) for

some h ∈ V . It follows that the sequence 〈β0, . . . , βk, α0, α1, . . . , αn〉 is complete,

for every n < ω. Then, for every n < ω, a finite iteration 〈Ni : i ≤ n + 1〉 can

be defined as in the beginning of this section. If f ∈ V is a function such that

Uµα0
= jα0

(f) (κ, µβ0
, . . . , µβk

), then the sequence 〈Ni : i < ω〉 is definable in

V , since each step above the first k-many steps in the iteration, uses a measure

represented by f . Because each sequence 〈β0, . . . , βk, α0, . . . , αn〉 is complete,

the sequence 〈µα0
, µα1

, . . . , µαn
, . . .〉 is a final segment of the sequence of critical

points in the iteration 〈Ni : i < ω〉, and thus belongs to V .

Remark 4.10. We would like to emphasize the point that the characterization

of Prikry sequences given in the previous corollary is given only up to some

finite initial segment. Let us denote µ = µ0, which is the first measurable above

κ in MU , and µ∗ = k0 (µ0) which is the first measurable above κ in M . We

argue that the Prikry sequence of µ∗ in M [H] may have any prescribed finite

initial segment t ∈ [µ]
<ω. We use those notations only in the following claim:

Claim 4.11. For every finite, increasing sequence t ∈ [µ]
<ω, there exists a

condition p ∈ Pκ which forces that t is an initial segment of the Prikry sequence

of µ∗ in M [H].

Proof. Assume that ξ 7→ t(ξ) is a function in V such that [ξ 7→ t(ξ)]U = t. For

each ξ < κ, let s(ξ) be the first measurable strictly above ξ. We can assume

that for every ξ < κ, max (t(ξ)) < s(ξ).

Note that the set {s(ξ) : ξ < κ} ∩ λ is nonstationary in any inaccessible

λ ≤ κ: This is clear if λ is not a limit of measurables. If it is, {s(ξ) : ξ < κ} is

disjoint to the club of limit points of ∆ = {α < κ : α is measurable} below λ.

Now, let us define a condition p ∈ Pκ, with supp(p) = {s(ξ) : ξ < κ}. We

first choose a set X ∈ U on which the function ξ 7→ s(ξ) with domain X is

injective. Note that by normality of U , every function is either one-to-one or

constant modulo U , so such a set X ∈ U exists.

Set, for a given ξ ∈ X, p(s(ξ)) = 〈t(ξ), s (ξ)〉. This is forced by any condition

in P �s(ξ) to be a legitimate element of Q
∼s(ξ). The condition p ∈ Pκ defined in

this way forces that the Prikry sequence of µ∗ starts with t: Indeed, in V [G],

{ξ < κ : t(ξ) is an initial segment of the Prikry sequence of s(ξ)} ⊇ X ∈ W
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thus, in M [H], [ξ 7→ t(ξ)]W is an initial segment of the Prikry sequence of the

measurable cardinal [ξ 7→ s(ξ)]W . But by lemma 2.3,

[ξ 7→ t(ξ)]W = k ([ξ 7→ t(ξ)]U ) = k(t) = t

and clearly–

[ξ 7→ s(ξ)]W = µ∗

so in M [H], t is an initial segment of the Prikry sequence added to µ∗.

Let us prove now that for every measurable µ∗ above κ in M , µ∗ has the

form kα (µα) for some α < κ∗. In particular, in the light of corollary 4.9,

(cf(µ∗))
V
= ω.

Lemma 4.12. Assume that µ∗ ∈ (κ, κ∗) is measurable in M . Then µ∗ =

kα (µα) for some α < κ∗.

Proof. Let β < κ∗ be the first such that, for some µ ≤ µ∗, µ∗ = kβ (µ). Then

µ is measurable in Mβ . β is either 0 or a successor by its minimality. Assume

first that β = α + 1. µ = µα cannot hold since µα is not measurable in Mα+1.

If µ < µα then jα,β (µ) = µ, contradicting the minimality. Thus assume that

µ > µα = µ̄β = sup{µβ′ : β′ < β}. Recall that µ is measurable in Mβ . By

lemma 4.6, (cf (µ))V > κ. Therefore, for some γ ∈ [β, κ∗), µ = µγ . Hence

kγ (µγ) = µ∗.

If β = 0 then µ is measurable in M0 above κ and below κ∗, and clearly

(cf(µ))V > κ. So, again, there exists γ < κ∗ such that µ = µγ , and kγ (µγ) =

µ∗.

Corollary 4.13. Assume that α < κ∗ is limit, and denote µ̄ = sup{µα′ : α′ <

α}. Assume that µ̄ is measurable in Mα. Then (cf(α))V is either ω or κ+.

In the former case, µ̄ is measurable in M . In the latter case, µ̄ = µα is a

non-measurable inaccessible cardinal in M . Moreover:

1. If µ̄ is not measurable in Mα or (cf (α))V > κ, µα is the first measurable

≥ µ̄ in Mα (this includes the case where α is successor, since, in this case,

µα−1 is not measurable in Mα).

2. Else, µ̄ is measurable in Mα and (cf(α))V = ω, and then µα = µ̄.
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Proof. Assume that µ̄ is measurable in Mα. If (cf(α))V ≤ κ, then µ̄ < µα, so

µ̄ = kα (µ̄) is measurable in M . By the previous lemma, µ̄ = kγ (µγ) for some

γ < κ∗. By corollary 4.9, (cf (µ̄))V = ω. Hence (cf(α))V = ω.

Remark 4.14. Recall that jW (U) \ κ ∈ M is sufficient for the definability of

jW �V over V . Let us argue that it is not necessary.

For every measurable η < κ, let 〈sn(η) : n < ω〉 be the increasing enumeration

of the first ω-many measurables above η which carry at least η-many normal

measures of Mitchell order 0. For each such η and n < ω, let ~F (sn(η)) be an

enumeration for all the normal measures of order 0 on sn(η). Fix an unbounded

nonstationary subset X ⊆ ∆ such that for every η ∈ X and n < ω, sn(η) /∈ X.

Let P be the forcing notion which uses, at stage sn(η) where η ∈ X and n < ω,

the measure which extends
(
~F (sn (η))

)
(ηn). Here, ηn < η is the n-th element

in the Prikry sequence of η in M [H]. For every other measurable, use the

measure chosen first with respect to a prescribed well order of Vκ.

Pick a generic set G ⊆ P such that G contains a condition p such that

X ⊆ supp(p), but for every ξ ∈ X, p �ξ tpξ = 〈〉.

Then jW (U) \ κ /∈ M , since the measures used in jW (P ) on M -measurables

above κ code the Prikry sequences of all the measurables in jW (X) \ κ.

However, jW �V is definable in V : Assume that α < κ∗. If there is no

η ∈ jα(X) and n < ω such that µα = sn(η), Uµα is the first measure on α with

respect to the image under jα of the prescribed well order on Vκ. Otherwise,

assume that η ∈ jα(X), n < ω and µα = sn(η). Denote η∗ = kα (η), so that

kα (µα) = sn (η∗). Let β = β0 < κ∗ be the least such that kβ (µβ) = η∗. We

argue that the Prikry sequence of η∗ in M [H] is the sequence of critical points

taken by iteration Uµβ
ω-many times over Mβ. This will follow once we prove

that µβ is the first element in the Prikry sequence of η∗, and this is true since

η∗ ∈ jW (X) and there exists a condition p ∈ G which forces that tpξ = 〈〉 for

every ξ ∈ X. Thus, we can assume that 〈µβ0 , µβ1 , . . . , µβn , . . .〉 is the Prikry

sequence of η∗ in M [H].

Recall that kα (Uµα
) = jW (U) (kα (µα)); by the definition of the forcing,

jW (U) (kα (µα)) is the Prikry forcing taken with the measure–(
jW

(
~F
)
(kα (µα))

)
(µβn

)
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thus, Uµα
can be computed in V as follows: first, calculate over Mβ0

(which is

already definable in V by induction) the sequence 〈µβn
: n < ω〉, which are the

critical points in the iteration of length ω with Uµβ0
over Mβ0 (here, Uµβ

is the

least measure with respect to the image under jβ of the prescribed well order on

Vκ); then, compute Uµα
=

(
jα

(
~F
)
(µα)

)
(µβn

).
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