On decomposability spectra and an extender which overlaps a measure

Moti Gitik

February 2, 2021

1 Introduction

C. Chang and J. Keisler introduced the following notion:

Definition 1.1 Let U be an ultrafilter over a set I and let λ be an infinite cardinal. U is called λ -decomposable iff there is a partition of I into disjoint sets $\langle I_{\alpha} \mid \alpha < \lambda \rangle$, so that whenever $S \subseteq \lambda$ and $|S| < \lambda$, $\bigcup_{\alpha \in S} I_{\alpha} \notin U$.

This can be stated in terms of the Rudin-Keisler ordering (further R-K ordering):

Proposition 1.2 An ultrafilter U over a set I is λ -decomposable iff it is above a uniform ultrafilter over λ in the Rudin-Keisler ordering.

The following natural notion was introduced by P. Lipparini [8]:

Definition 1.3 The *decomposability spectrum* K_U , for an ultrafilter U, is the set of all infinite cardinals λ such that U is λ -decomposable.

Let us state some relevant results related to the decomposability spectrum.

Theorem 1.4 (K. Kunen-K. Prikry [7]) Let U be an ultrafilter and let λ be an infinite cardinal.

- 1. If λ is regular and $\lambda^+ \in K_U$, then $\lambda \in K_U$, as well.
- 2. If $\kappa = \operatorname{cof}(\lambda) < \lambda$ and $\lambda^+ \in K_U$, then
 - (a) $\kappa \in K_U$, or

(b) a final segment of regular cardinals below λ is in K_U .

Theorem 1.5 (P. Lipparini)

Suppose that U is an ultrafilter and $\langle \lambda_{\alpha} \mid \alpha < \eta \rangle$ be an increasing sequence of elements of K_U . Then there is a cardinal $\delta \in K_U$ with $\bigcup_{\alpha < \eta} \lambda_{\alpha} \leq \delta \leq |\prod_{\alpha < \eta} \lambda_{\alpha}|$.

Theorem 1.6 (P. Lipparini [8])

Suppose that U is an ultrafilter, λ is a singular cardinal and \mathfrak{a} is a set of elements of $K_U \cap \operatorname{Reg} \cap \lambda$ unbounded in λ with $\min(\mathfrak{a}) > |\mathfrak{a}|$. Then there is a cardinal $\delta \in K_U$ with $\lambda \leq \delta \leq \max(\operatorname{pcf}(\mathfrak{a}))$.

It is easy to deduce the following:

Corollary 1.7 Let U, λ and \mathfrak{a} be as in Theorem 1.6. If there are pcf generators which are disjoint mod bounded subsets of λ (for example, if $|pcf(\mathfrak{a})| = |\mathfrak{a}|$), then $\lambda \in K_U$ or $pcf(\mathfrak{a}) \subseteq K_U$.

Proof. Just apply Theorem 1.6 separately to every pcf –generator. \Box

Corollary 1.8 Let U, λ and \mathfrak{a} be as in Theorem 1.6. If $\lambda^+ \in pcf(\mathfrak{a})$, then $\lambda \in K_U$ or $\lambda^+ \in K_U$.

Proof. Apply Theorem 1.6 to a generator for λ^+ . \Box

Corollary 1.9 Let U and λ as in Theorem 1.6. If K_U contains a final segment of regular cardinals below λ , then $\lambda \in K_U$ or $\lambda^+ \in K_U$.

Corollary 1.10 Let U and λ as in Theorem 1.6. If $2^{\lambda} = \lambda^+$ or even $pp(\lambda) = \lambda^+$, then $\lambda \in K_U$ or $\lambda^+ \in K_U$.

G. Goldberg [5] studied a specially interesting case of σ -complete ultrafilters U. For such ultrafilters, cardinals of countable cofinality cannot be in the spectrum. This allowed Goldberg to sharpen previous results of Lipparini. Namely, he proved the following:

Theorem 1.11 Let U is a σ -complete ultrafilter, λ is a singular cardinal of cofinality ω . Suppose that $K_U \cap \lambda$ is unbounded in λ . If $2^{\lambda} = \lambda^+$, then $\lambda^+ \in K_U$. Hence, by 1.4(2), a final segment of regular cardinals below λ is in K_U . **Theorem 1.12** Let U is a σ -complete ultrafilter, λ is a singular cardinal of cofinality ω . Suppose that $K_U \cap \text{Reg} \cap \lambda$ is unbounded in λ . If $pp(\lambda) = \lambda^+$, then $\lambda^+ \in K_U$. Hence, by 1.4(2), a final segment of regular cardinals below λ is in K_U .

Theorem 1.13 Assume SCH. Let U is a σ -complete ultrafilter, λ is an infinite cardinal. Suppose that $K_U \cap \lambda$ is unbounded in λ . Then a final segment of regular cardinals below λ is in K_U .

Let $\eta > \omega$ be the degree of completeness of U. G. Goldberg [5] pointed out that then by J. Ketonen [6], some $\kappa, \eta \leq \kappa < \lambda$ is (η, λ^+) -strongly compact, i.e., there exists a fine η -complete ultrafilter over $\mathcal{P}_{\kappa}(\lambda^+)$.

Note that by R. Solovay [11] and J. Bagaria, M. Magidor [1] the Singular Cardinals Hypothesis holds between κ and λ^+ .

Our aim here will be to analyze further possibilities for K_U , for a σ -complete ultrafilter U. In particular we will show that it is impossible to remove SCH assumptions from the Goldberg results above.

Our main result will be the following:

Theorem 1.14 Assume GCH. Suppose that a cardinal κ carries an extender which overlaps a measurable cardinal λ . Then there is a cardinal preserving generic extension which satisfies the following:

- 1. $\operatorname{cof}(\kappa) = \omega$.
- 2. No new bounded subsets are added to κ .
- 3. $2^{\kappa} = \lambda^+$.
- 4. There is a uniform σ -complete ultrafilter U over λ such that $K_U = \{\lambda_n \mid n < \omega\} \cup \{\lambda\}$, for some increasing unbounded in κ sequence of regular cardinals $\langle \lambda_n \mid n < \omega \rangle$.

2 Extender overlapping a measure

Assume GCH. Let E be a (κ, λ^+) -extender overlapping a measurable cardinal λ . Fix a normal ultrafilter U_{λ} over λ which belongs to M_E .

Denote by \mathcal{P}_E the extender based forcing with E and G its generic subset.

Let $\langle \lambda_n \mid n < \omega \rangle$ be the Prikry sequence corresponding to λ . Then each $\lambda_n, n < \omega$ is measurable in V[G] and let U_{λ_n} be a normal ultrafilter over λ_n which corresponds to U_{λ} . Work in V[G].

Let us take there first the ultrapower M_{λ_0} of V by U_{λ_0} . Denote it by M_0 . Note that all inaccessible cardinals $> \lambda_0$ of V, and in particular $\lambda_n, 0 < n < \omega, \kappa$ and λ do not move by $j_{U_{\lambda_0}}$. Also, $j_{U_{\lambda_0}}(U_{\lambda_n}), 0 < n < \omega, j_{U_{\lambda_0}}(U_{\lambda})$ are generated by U_{λ_n} 'S and U_{λ} , respectively.

Continue further. Form M_1 by taking the ultrapower of M_0 with $j_{U_{\lambda_0}}(U_{\lambda_1})$, etc. We form M_n 's $n < \omega$ this way. Let M_ω be the direct limit of M_n 's and let $j_n : V \to M_n, j_{nm} : M_n \to M_\omega, j_\omega : V \to M_\omega, j_{n\omega} : M_n \to M_\omega$, for every $n \le m < \omega$, be the corresponding elementary embeddings. Note that $\kappa, \kappa^+, \lambda$ do not move by them, and also, $j_\omega(U_\lambda)$ is generated by U_λ . Finally apply $j_\omega(U_\lambda)$ to M_ω . Denote by M the resulting ultrapower and by j the corresponding elementary embedding from V to M.

Clearly, M is not closed even under ω -sequences.

Our prime goal will be to construct G^* such that j extends to $j^* : V[G] \to M[G^*]$ and $M[G^*]$ is closed under λ_0 -sequences.

Suppose for a while that we have such G^* .

Define an extension U^* of U as follows:

$$X \in U^*$$
 iff $\lambda \in j^*(X)$.

Clearly, U^* is a uniform ultrafilter over λ , since it extends U.

We have a natural elementary embedding

$$k: M_{U^*} \to M[G^*]$$

defined by setting $k([f]_{U^*}) = j^*(f)(\lambda)$. Clearly, $j^* = k \circ j_{U^*}$.

Lemma 2.1 The only regular cardinals which are not continuity points of j^* are $\lambda_n, n < \omega$, and λ .

Proof. $j^* \upharpoonright On = j \upharpoonright On$ and, by the definition of j, its only not continuity points are $\lambda_n, n < \omega$, and λ .

Lemma 2.2 The set of regular cardinals which are not continuity points of j_{U^*} is a subset $\{\lambda_n \mid n < \omega\} \cup \{\lambda\}.$

Proof. Let δ be a regular cardinal which is not a continuity points of j_{U^*} . Then $\cup (j_{U^*}"\delta) < j_{U^*}(\delta)$. Apply k. Then we will have $\cup (j^*"\delta) < j^*(\delta)$, by the elementarity. So, we are done.

The following is a well known consequence of an uniformity:

Lemma 2.3 A regular cardinal δ is in K_{U^*} iff it is a non-continuity point of j_{U^*} .

The next lemma follows from the previous lemma and the fact that U^* is a uniform ultrafilter over λ :

Lemma 2.4 $\lambda \in K_{U^*}$.

Lemma 2.5 A final segment of λ_n 's is in K_{U^*} .

Proof. We have $j_{U^*}: V[G] \to M_{U^*}$. By elementarity, M_{U^*} is of the form M'[G'] such that $G' \in M_{U^*}$ is M'-generic for the forcing $j_{U^*}(\mathcal{P}_E)$ and k maps M' to M, $k(G') = G^*$. G can be viewed as a set $\langle t_\alpha \mid \alpha \in \lambda^+ \setminus \kappa \rangle$ of Prikry sequences of its measures.

Note that $\langle t_{\alpha} \mid \alpha \in \lambda \setminus \kappa \rangle$ for a scale in $\prod_{n < \omega} t_{\lambda}(n)$ mod finite, and so t_{λ} is the exact upper bound of $\langle t_{\alpha} \mid \alpha \in \lambda \setminus \kappa \rangle$. Remember that $t_{\lambda} = \langle \lambda_n \mid n < \omega \rangle$.

Denote $j_{U^*}(\langle t_\alpha \mid \alpha \in \lambda^+ \setminus \kappa \rangle)$ by $\langle t'_\alpha \mid \alpha \in j_{U^*}(\lambda^+ \setminus \kappa) \rangle$.

Note that for every inaccessible (in V) $\alpha \in \lambda \setminus \kappa$, $t_{\alpha}(n)$ is an inaccessible cardinal $< \lambda_n$, for all but finitely many *n*'s. So, for such α 's, we have

- $j(\alpha) = \alpha$,
- $j(t_{\alpha}(n)) = t_{\alpha}(n)$, for all but finitely many $n < \omega$.

Hence, $j^*(t_{\alpha}) = t_{\alpha} \mod \text{finite}$, and so, $t'_{\alpha} = t_{\alpha} \mod \text{finite}$.

Now, inside M_{U^*} , we have that $t'\lambda$ is the exact upper bound of $\langle t'_{\alpha} \mid \alpha \in \lambda \setminus \kappa \rangle$. Also, $t_{\lambda} \in M_{U^*}$ due to the closure under ω -sequences.

Hence, $t'_{\lambda} = t_{\lambda} \mod \text{finite}.$

Consider $j_{U^*}(t_{\lambda}) = t'_{j_{U^*}\lambda}$. We have that $t'_{j_{U^*}\lambda}$ is above t'_{λ} almost everywhere, since $j_{U^*}\lambda > \lambda$. This is possible only if a final segment of λ_n 's is moved by j_{U^*} .

Note that for every $n < \omega, \bigcup (j''\lambda_n) = \lambda_n$, and hence, using k, the same is true for j_{U^*} . Combining together, it follows that a final segment of λ_n 's are non continuity points of j_{U^*} , and hence, by Lemma 2.3, are in K_{U^*} .

Let us turn to the construction of G^* .

We will use the Merimovich Genericity Criterion for an extender based Prikry forcing [9]. In order to formulate it, let state two definitions from [9]:

Definition 2.6 Let $F : \lambda^+ \setminus \kappa \to {}^{\omega}\kappa$.

Let $N \prec H_{\chi}$, for χ large enough such that $|N| = \kappa, N \supseteq {}^{\kappa>}N, \mathcal{P}_E \in N$.

N is called F-happy iff there are $f: d \to {}^{\omega>}\kappa \in \mathcal{P}_E^*$ and an increasing sequence $\langle \tau_n \mid n < \omega \rangle$ such that

- 1. $d = N \cap \lambda^+ \setminus \kappa$,
- 2. f is (N, \mathcal{P}_E^*) -generic,
- 3. for every E(d)-tree T there is k such that for every $n, k \leq n < \omega, \langle \tau_k, ..., \tau_n \rangle \in T$,
- 4. for every $\alpha \in d$, $F(\alpha) = \bigcup \{ f_{\langle \tau_0, \dots, \tau_n \rangle}(\alpha) \mid n < \omega \}.$

Definition 2.7 Let $G \subseteq \mathcal{P}_E$. Define $F_G : \lambda^+ \setminus \kappa \to {}^{\omega}\kappa$ by setting for every $\alpha \in \lambda^+ \setminus \kappa$, $F_G(\alpha) = \bigcup \{ f^p(\alpha) \mid p \in G \}.$

Theorem 2.8 (Merimovich Genericity Criterion) A subset G of \mathcal{P}_E is \mathcal{P}_E -generic iff the set of F_G -happy models $N \prec H_{\chi}$ is unbounded.

We would like to define G^* in V[G] and then to apply the Merimovich Genericity Criterion in order to argue that G^* is M-generic for $j(\mathcal{P}_E)$.

The criterion has basically two parts: namely (2) of 2.6 connects with the Cohen forcing and (3) with the Prikry forcing.

Let us deal first with the Prikry part.

For every $\nu, \kappa \leq \nu < \lambda^+$, denote, as before, by t_{ν} the Prikry sequence in G for the measure E_{ν} of E. Then $\langle \lambda_n \mid n < \omega \rangle = t_{\lambda}$.

First, the $j(\nu)$ -Prikry sequence of G^* will be $j(t_{\nu})$. There are many places which are not of the form $j(\nu)$, for some ν . Still Prikry sequence at them should be defined.

We use $j_{U_{\lambda_n}}$'s to stretch the original sequence $\langle t_{\nu} | \kappa \leq \nu < \lambda^+ \rangle$ first and then U to stretch it further. The use of U creates gaps that we will need to fill.

Let $\gamma < j(\lambda^+)$. Define an ω -sequence t'_{γ} . If γ has a pre-image, then we use the Prikry sequence of it to be t'_{γ} .

Suppose that this is not the case. Pick then a function $f_{\gamma} : \lambda \to \lambda^+$ which represents γ in the ultrapower of M_{ω} by U_{λ} .

 f_{γ} is in M_{ω} , so there is $n < \omega$ and $f' \in M_n$ such that $f_{\gamma} = j_{n\omega}(f')(\lambda_0, ..., \lambda_n)$.

Suppose for simplicity that f' is just in V, the general case is similar.

Recall that E is (κ, λ^+) -extender and $2^{\lambda} = \lambda^+$. So, $f' \in M_E$.

Then there is a finite $a \subseteq \lambda^+$ and a function $g: [\kappa]^{|a|} \to V_{\kappa}$ such that $j_E(g)(a) = f'$.

Pick some $\eta \geq_E a$ and replace g by $g' : \kappa \to V_{\kappa}$, i.e., $j_E(g')(\eta) = f'$.

Now let us use the Prikry sequence t_{η} . Then $g'(t_{\eta}(n)) := f'_n : \lambda_n \to \lambda_n^+$, for almost every

 $n < \omega$. Set $t'_{\gamma}(n) = j_{U_{\lambda_n}}(f'_n)(\lambda_n)$, for every $n < \omega$.

Note that such defined t'_{γ} depends on the choice of f_{γ} , etc. However, any other choice will define a sequence which is identical to t'_{γ} mod finite.

In particular, t'_{λ} and $\langle \lambda_n \mid n < \lambda \rangle$ agree on a final segment.

Let us argue now that such defined sequences t'_{γ} 's are Prikry sequences for the corresponding measures of j(E) over M.

So, let $B \subseteq \kappa, B \in M$ and $B \in j(E)_{\gamma}$, for some $\gamma \in j(\lambda^+) \setminus \kappa$. Note that the last ultrapower embedding by $j_{\omega}(U_{\lambda})$ from M_{ω} to M does not move B. Then there are $n_0 < \omega$ and $A \in M_{n_0}$ such that $B = j_{n_0\omega}(A)$. Suppose for simplicity that A comes already from V.

Similar, with γ , we assume that $\gamma = j_{U_{\lambda}}(j_{\omega}(f))(\lambda)$, for some $f : \lambda \to \lambda^+$ in V.

Then, using $j_{U_{\lambda}} \circ j_{\omega} = j_{\omega} \circ j_{U_{\lambda}}$, we obtain that, in $M_{U_{\lambda}}$, $A \in (j_{U_{\lambda}}(E))_{\gamma'}$, where $\gamma' = j_{U_{\lambda}}(f)(\lambda)$. Set, in V,

$$Z_A = \{ \rho < \lambda \mid A \in E_{f(\rho)} \}.$$

Then $Z_A \in U_{\lambda}$. Now, in M_E , we have

$$\rho \in Z_A$$
 iff $f(\rho) \in j_E(A)$.

Pick now $\eta < \lambda^+$ large enough such that $\lambda, U_{\lambda}, Z_A, f$ are in the range of k_{η} , where $k_{\eta} : M_{E\eta} \to M_E$ is defined by setting $k_{\eta}([h]_{E_{\eta}} = j_E(h)(\eta)$. Denote by $\lambda^*, U_{\lambda}^*, Z_A^*, f^*$ the pre-images under k_{η} of $\lambda, U_{\lambda}, Z_A, f$. Let $\nu \mapsto \lambda_{\nu}, \nu \mapsto U_{\nu}, \nu \mapsto Z_{\nu}, \nu \mapsto f_{\nu}$ be the functions which represent $\lambda^*, U_{\lambda}^*, Z_A^*, f^*$ in $M_{E_{\eta}}$.

Then, by elementarity of k_{η} , there is $C \in E_{\eta}$ such that for every $\nu \in C$ the following hold:

- 1. λ_{ν} is a measurable cardinal,
- 2. U_{ν} is a normal ultrafilter over λ_{ν} ,
- 3. $Z_{\nu} \in U_{\lambda_{\nu}}$,
- 4. $f_{\nu} : \lambda_{\nu} \to \lambda_{\nu}^+,$
- 5. $\rho \in Z_{\nu}$ iff $f_{\nu}(\rho) \in A$.

Consider the sequence t_{η} . Starting with some $n^* < \omega$, all its members are in C. Let $n, n^* \leq n < \omega$. Then $\lambda_{t_{\eta}(n)} = \lambda_n$. We have $Z_{\nu} \in U_{\lambda_{\nu}}$, hence $j_{U_{\lambda_n}}(f_{\lambda_n})(\lambda_n) \in j_{U_{\lambda_n}}(A)$. Note that further ultrapowers with U_{λ_m} 's, m > n will not effect this conclusion. So,

$$\{j_{U_{\lambda_n}}(f_{\lambda_n})(\lambda_n) \mid n^* \le n < \omega\} \subseteq j_{\omega}(A),$$

and we are done.

Let us deal now with Cohen subsets of κ^+ .

Note that in V[G] we have many Cohen generic subsets of κ^+ . For example $\langle t_{\gamma}(0) | \gamma \in \lambda^+ \backslash \kappa \rangle$ produces a set of λ^+ -many Cohen generic over V subsets of κ^+ . Just organize them into blocks in V of size κ^+ .

Now we can apply Theorem 3.6 of [4], with a measurables λ_0 and λ in order to get additional Cohen functions over $\text{Ult}(M_0, U_{\lambda})$. By Kunen-Paris, it easy to move them further to Mtaking ultrapowers by U_{λ_n} 's, $0 < n < \omega$.

Finally we correct the constructed above Prikry sequences using such Cohen's.

3 Prikry forcing case

Let deal first with the basic Prikry forcing.

Suppose that U is a normal ultrafilter over a measurable cardinal κ which is a limit of measurables.

For every $\nu < \kappa$ let ν^* denotes the least measurable above ν . Pick a normal ultrafilter $U(\nu^*)$ over ν^* .

Consider the ultrapower M_U . For every $\alpha \in [\kappa, j_U(\kappa))$ we consider a κ -complete ultrafilter $U_{\alpha} = \{X \subseteq \kappa \mid \alpha \in j_U(X)\}$. All of them are Rudin-Keisler equivalent to U. Namely, if $[f]_U = \alpha$, then f will be a witness for such equivalence between U_{α} and U.

A Prikry sequence for U will generate those for U_{α} 's.

Let $\langle \kappa_n \mid n < \omega \rangle$ be a Prikry sequence for U.

Let $\lambda = \kappa^*$. Set $\lambda_n = \kappa_n^*$, for every $n < \omega$. Then $\langle \lambda_n \mid n < \omega \rangle$ be a Prikry sequence for U_{λ} .

Consider now in M_U the normal ultrafilter $U(\lambda)$ over λ . Take an ultrapower of M_U with $U(\lambda)$. Let $j: V \to M := M_{U(\lambda)}^{M_U}$.

For every $\alpha \in [\kappa, j(\kappa))$ we consider a κ -complete ultrafilter $W_{\alpha} = \{X \subseteq \kappa \mid \alpha \in j(X)\}$. Note that inside $V[\langle \kappa_n \mid n < \omega \rangle]$ we will not have a Prikry sequence for W_{λ} . However, let us define an iterated ultrapower of V inside $V[\langle \kappa_n \mid n < \omega \rangle]$. Set

$$M_0 = M_{U(\lambda_0)}, M_1 = M_{U(\lambda_1)}^{M_{U(\lambda_0)}}, \dots$$

Finally, let M_{ω} be the direct limit of M_n 's.

We argue that $\langle \lambda_n | n < \omega \rangle$ is a Prikry sequence for W_{λ} over M_{ω} . Deal with an equivalent ultrafilter $W_{\{\kappa,\lambda\}}$. Let $A \in W_{\{\kappa,\lambda\}} \cap M_{\omega}$. Then for some $n < \omega$, A has a preimage in M_n . Assume for simplicity that it has a preimage already in V. Denote it by B. Then, in V,

$$\{\nu < \kappa \mid \{\rho < \nu^* \mid (\nu, \rho) \in B\} \in U(\nu^*)\} \in U.$$

Denote the projection of B to its first coordinate intersected with the set above by B_0 and for every $\nu \in B_0$ let

$$B_{\nu 1} = \{ \rho < \nu^* \mid (\nu, \rho) \in B \}.$$

Then, starting with some $n_0 < \omega$, all κ_n 's are in B_0 .

But then, for every $n \ge n_0$, $\lambda_n \in j_{U(\lambda_n)}(B_{\kappa_n 1})$.

Hence, for every $n \ge n_0$, $(\kappa_n, \lambda_n) \in j_{\omega}(B) = A$.

Note that $M[\langle \kappa_n \mid n < \omega \rangle, \langle \lambda_n \mid n < \omega \rangle]$ (or the same model $M[\langle \lambda_n \mid n < \omega \rangle]$) is closed under ω -sequences or even λ_0 -sequences of its elements. It is not closed under λ_0^+ -sequences, since $U(\lambda_0)$ is not inside.

References

- [1] J. Bagaria and M. Magidor,
- [2] M. Gitik, More on uniform ultrafilters over a singular cardinal, Fundamenta Math.,
- [3] M. Gitik, On σ -complete uniform ultrafilters, to appear
- [4] M. Gitik, Adding Cohen functions to an ultrapower,
- [5] G. Goldberg, Some combinatorial properties of Ultimate L and V, arXive:2007.04812v1, 2020.
- [6] J. Ketonen,
- [7] K. Kunen and K. Prikry, On descendingly incomplete ultrafilters, JSL, vol. 36, 1971, 650-652.
- [8] P. Lipparini, Decomposable ultrafilters and possible cofinalities, Norte Dame Journal of Formal Logic, vol. 49, 2008, 307-312.
- [9] C. Merimovich, MATHIAS LIKE CRITERION FOR THE EXTENDER BASED, PRIKRY FORCING
- [10] D. Raghavan and S. Shelah, A SMALL ULTRAFILTER NUMBER AT SMALLER CARDINALS,
- [11] R. Solovay,