Dropping cofinalities

Moti Gitik
School of Mathematical Sciences
Raymond and Beverly Sackler Faculty of Exact Science
Tel Aviv University
Ramat Aviv 69978, Israel

May 12, 2006

Abstract

Our aim is to present constructions in which some of the cofinalities drop down, i.e. the generators of PCF structure are far a part.

1 Some Preliminary Settings

Let $\lambda_{0}<\kappa_{0}<\lambda_{1}<\kappa_{1}<\ldots<\lambda_{n}<\kappa_{n}<\ldots ., n<\omega$ be a sequence of cardinals such that for each $n<\omega$

- λ_{n} is $\lambda_{n}^{+\lambda_{n}^{+n+2}+2}$ - strong as witnessed by an extender $E_{\lambda_{n}}$
- κ_{n} is $\kappa_{n}^{+\kappa_{n}^{+n+2}+2}$ - strong as witnessed by an extender $E_{\kappa_{n}}$

Let $\kappa=\bigcup_{n<\omega} \kappa_{n}$. Fix some regular $\theta>\theta^{\prime} \geq \kappa^{+}$.
Our aim will be to make $2^{\kappa}=\theta^{+}$, but so that each cofinality from the interval $\left[\kappa^{++}, \theta^{\prime}\right]$ is obtained using only indiscernibles related to λ_{n} 's.

Let us force first with the preparation forcing \mathcal{P}^{\prime} of [6]. The assignment function of [6] is used here for models of cardinalities below θ^{\prime} intersected with $H\left(\theta^{\prime}\right)$ but with range over λ_{n} 's. We will use names of indiscernibles for λ_{n} 's to define the assignment to κ_{n} 's. Models of cardinalities in $\left[\kappa^{+}, \theta^{\prime}\right]$ will be assigned to those of cardinalities of this indiscernibles, so a way below κ_{n} 's.

We deal first with the simplest case: $\theta=\kappa^{+3}$ and $\theta^{\prime}=\kappa^{+}$. Such situation was considered in [3], but our approach here is different and generalizes to arbitrary θ, θ^{\prime}.

2 Models and types

The main difference in present setting from those of [1], [4] and [6] will be due to the fact that the cardinalities of models in the range of a condition may be smaller than the number of existing types. So any such model may contain only a limited number of types. We would like to insure that it will be still sufficiently large.

Fix $n<\omega$. Set $\delta_{n}=\kappa_{n}^{+\kappa_{n}^{+n+2}+1}$. Denote by δ_{n}^{-}the immediate predecessor of δ_{n}, i.e. $\kappa_{n}^{+\kappa_{n}^{+n+2}}$. Fix using GCH an enumeration $\left\langle a_{\alpha} \mid \alpha<\kappa_{n}\right\rangle$ of $\left[\kappa_{n}\right]^{<\kappa_{n}}$ so that for every successor cardinal $\delta<\kappa_{n}$ the initial segment $\left\langle a_{\alpha} \mid \alpha<\delta\right\rangle$ enumerates $[\delta]^{<\delta}$ and every element of $[\delta]^{<\delta}$ appears stationary many times in each cofinality $<\delta$ in the enumeration. Let $j_{n}\left(\left\langle a_{\alpha}\right| \alpha<\right.$ $\left.\left.\kappa_{n}\right\rangle\right)=\left\langle a_{\alpha} \mid \alpha<j_{n}\left(\kappa_{n}\right)\right\rangle$ where j_{n} is the canonical embedding of the $\left(\kappa_{n}, \delta_{n}^{+}\right)$-extender E_{n}. Then $\left\langle a_{\alpha} \mid \alpha<\delta_{n}^{+}\right\rangle$will enumerate $\left[\delta_{n}^{+}\right]^{\leq \delta_{n}}$ and we fix this enumeration. For each $k \leq \omega$ consider a structure

$$
\begin{gathered}
\mathfrak{A}_{n, k}=\left\langle H\left(\chi^{+k}\right), \in, \subseteq, \leq, E_{\kappa_{n}}, E_{\lambda_{n}}, \lambda_{n}, \kappa_{n}, \delta_{n}, \delta_{n}^{+},\right. \\
\chi,\left\langle a_{\alpha} \mid \alpha<\delta_{n}^{+}\right\rangle, 0,1, \ldots, \alpha, \ldots\left|\alpha<\kappa_{n}^{+k}\right\rangle
\end{gathered}
$$

in the appropriate language $\mathcal{L}_{n, k}$ with a large enough regular cardinal χ.
Remark 2.1 It is possible to use κ_{n}^{++}here (as well as in [1]) instead of κ_{n}^{+k}. The point is that there are only κ_{n}^{++}many ultrafilters over κ_{n} and we would like that equivalent conditions use the same ultrafilter. The only parameter that that need to vary is k in $H\left(\chi^{+k}\right)$.

Let $\mathcal{L}_{n, k}^{\prime}$ be the expansion of $\mathcal{L}_{n, k}$ by adding a new constant c^{\prime}. For $a \in H\left(\chi^{+k}\right)$ of cardinality less or equal than δ_{n} let $\mathfrak{A}_{n, k, a}$ be the expansion of $\mathfrak{A}_{n, k}$ obtained by interpreting c^{\prime} as a.

Let $a, b \in H\left(\chi^{+k}\right)$ be two sets of cardinality less or equal than δ_{n}. Denote by $t p_{n, k}(b)$ the $\mathcal{L}_{n, k}$-type realized by b in $\mathfrak{A}_{n, k}$. Further we identify it with the ordinal coding it and refer to it as the k-type of b. Let $t p_{n, k}(a, b)$ be a the $\mathcal{L}_{n, k}^{\prime}$-type realized by b in $\mathfrak{A}_{n, k, a}$. Note that coding a, b by ordinals we can transform this to the ordinal types of [1].

Fix a sequence $\left\langle\mathfrak{U}_{\nu} \mid \nu<\lambda_{n}\right\rangle$ such that

1. $\mathfrak{U}_{\nu} \prec \mathfrak{A}_{n, \omega}$
2. $\left|\mathfrak{U}_{\nu}\right| \leq|\nu|$, once $\nu \geq \omega$
3. $\mathfrak{U}_{\nu} \in \mathfrak{U}_{\nu+1}$
4. $\mathfrak{U}_{\nu} \subset \mathfrak{U}_{\nu+1}$
5. $\left|\mathfrak{K}_{\nu}\right|>\mathfrak{U}_{\nu} \subseteq \mathfrak{U}_{\nu}$
6. if ν is a limit, then $\mathfrak{U}_{\nu}=\bigcup_{\nu^{\prime}<\nu} \mathfrak{U}_{\nu^{\prime}}$.

Note that for each $k<\omega$ the set $\left\{t p_{n, k}(b) \mid b \in H\left(\chi^{+k}\right)\right\}$ is in \mathfrak{U}_{0}. Just this set is definable in $\mathfrak{A}_{n, \omega}$.

For each $k<\omega$ and $\mathfrak{U} \prec \mathfrak{A}_{n, \omega}$ let us denote $\mathfrak{U} \cap \mathfrak{A}_{n, k}$ by $\mathfrak{U} \upharpoonright k$.
The next lemma is obvious.

Lemma 2.2 Suppose that for some $k<\omega, \nu<\lambda_{0 n}, \mathfrak{U}_{\nu} \upharpoonright k \prec \mathfrak{B} \prec \mathfrak{A}_{n, k}$. Let $X \in H\left(\chi^{+} k^{\prime}\right)$, for some $k^{\prime} \leq \omega$ be so that $t p_{n, k^{\prime}}(X) \in \mathfrak{U}_{\nu}$. Then there is $Y \in B$ such that $t p_{n, \min \left\{k, k^{\prime}\right\}}(X)=$ $t p_{n, \min \left\{k, k^{\prime}\right\}}(Y)$.

Further we shall use models in the range of a condition such the interpretation X according to to a given $\nu<\lambda_{n}$ is so that

$$
\mathfrak{U}_{\nu} \subseteq X \in \mathfrak{U}_{\nu+1}
$$

or at least there is Y like this realizing the same type as X.
Note that the above may result the loss of closure of the forcing. Thus union of even countably many conditions can produce a type which is not in $\bigcup_{\nu<\lambda_{n}} \mathfrak{U}_{\nu}$. In order to overcome this we can either require that all models of the range are from $\bigcup_{\nu<\lambda_{n}} \mathfrak{U}_{\nu}$ and satisfy

$$
\mathfrak{U}_{\nu} \subseteq X \in \mathfrak{U}_{\nu+1}
$$

once ν is decided, or we can replace \leq^{*} by \rightarrow also for the closure arguments. Then each time a condition supposed to be replaced by an equivalent one inside $\bigcup_{\nu<\lambda_{n}} \mathfrak{U}_{\nu}$.

$3 \quad \theta=\kappa^{+3}$ and $\theta^{\prime}=\kappa^{+}$

In the present situation the preparation forcing $\mathcal{P}^{\prime}\left(\kappa^{++}\right)$produces only a closed chain of models of cardinality κ^{+}. They are submodels of $H\left(\kappa^{++}\right)$and have intersections with κ^{++} just an ordinal. We assign them to those between λ_{n}^{+n+1} and λ_{n}^{+n+2}, for each $n<\omega$. The forcing at this part will basically the same as those used in [1].

The forcing \mathcal{P}^{\prime} produces here models of cardinalities κ^{+}and κ^{++}only. They are submodels of $H\left(\kappa^{+3}\right)$. Moreover intersections of such models of cardinality κ^{+}with κ^{++}will give ordinals below κ^{++}and the models of cardinality κ^{++}can be viewed as ordinals below κ^{+3}. The issue here is to arrange the correspondence to κ_{n} 's. Thus κ^{+3} will correspond to κ_{n}^{+n+2}, s. Models of cardinality κ^{++}will be send to those of cardinality κ_{n}^{+n+1} which are basically ordinals below κ_{n}^{+n+2}. The delicate part will be to arrange images of models of cardinality κ^{+}. For those we will use names from the forcing over λ_{n} 's. Thus the cardinality of corresponding models at a level n will be the indiscernible for λ_{n}^{+n+1}.

We may assume here that $E_{\lambda_{n}}$ is a $\left(\lambda_{n}, \lambda_{n}^{+n+2}\right)$-extender and $E_{\kappa_{n}}$ is $\left(\kappa_{n}, \kappa_{n}^{+n+2}\right)$-extender.
Let $G\left(\mathcal{P}^{\prime}\left(\theta^{\prime}\right)\right)$ be a generic subset of $\mathcal{P}^{\prime}\left(\theta^{\prime}\right)$ and $G\left(\mathcal{P}^{\prime}\right)$ be a generic subset of \mathcal{P}^{\prime} over $V\left[G\left(\mathcal{P}^{\prime}\left(\theta^{\prime}\right)\right]\right.$. In the present case, i.e. $\theta^{\prime}=\kappa^{++}$, the first forcing is just the forcing for adding a club subset to κ^{++}with conditions of cardinality κ^{+}. It is possible to proceed without it as well. Fix $n<\omega$.

Definition 3.1 Let $Q_{n 0}$ be the set consisting of pairs of triples $\langle\langle a, A, f\rangle,\langle\underset{\sim}{\underset{\sim}{b}} \underset{\sim}{B}, g\rangle\rangle$ so that:

1. f is partial function from κ^{+2} to λ_{n} of cardinality at most κ
2. a is a partial function of cardinality less than λ_{n} so that
(a) There is $\left\langle\left\langle A^{0 \kappa^{+}}\left(\kappa^{++}\right), A^{1 \kappa^{+}}\left(\kappa^{++}\right), C^{\kappa^{+}}\left(\kappa^{++}\right)\right\rangle\right\rangle \in G\left(\mathcal{P}^{\prime}\left(\kappa^{++}\right)\right)$which we call it further a background condition of a, such that $\operatorname{dom}(a)$ consists of models appearing in $A^{1 \kappa^{+}}\left(\kappa^{++}\right)$, i.e. basically of ordinals below κ^{++}.

Note that the third component $C^{\kappa^{+}}\left(\kappa^{++}\right)$of a condition is just the same as the second $A^{1 \kappa^{+}}$. Also the inclusion is a linear order on $A^{1 \kappa^{+}}\left(\kappa^{++}\right)$and this set is closed under unions.
(b) for each $X \in \operatorname{dom}(a)$ there is $k \leq \omega$ so that $a(X) \subseteq H\left(\chi^{+k}\right)$.

Moreover,
(i) $|a(X)|=\lambda_{n}^{+n+1}$ and $a(X) \cap \lambda_{n}^{+n+2} \in O R D$
(iii) $A^{0 \kappa^{+}}\left(\kappa^{++}\right) \in \operatorname{dom}(a)$.

This way we arranged that λ_{n}^{+n+1} will correspond to κ^{+}and λ_{n}^{+n+2} will correspond to κ^{++}.
Further let us refer to $A^{0 \kappa^{+}}\left(\kappa^{++}\right)$as the maximal model of the domain of a. Denote it as $\max (\operatorname{dom}(a))$.
Later passing from $Q_{0 n}$ to \mathcal{P} we will require that for every $k<\omega$ for all but finitely many n 's the n-th image of X will be an elementary submodel of $H\left(\chi^{+k}\right)$. But in general just subsets are allowed here.
(c) (Models come from $A^{0 \kappa^{+}}\left(\kappa^{++}\right)$) If $X \in \operatorname{dom}(a)$ and $X \neq A^{0 \kappa^{+}}\left(\kappa^{++}\right)$then $X \in$ $A^{0 \kappa^{+}}\left(\kappa^{++}\right)$.

The condition puts restriction on models in $\operatorname{dom}(a)$ and allows to control them via the maximal model of cardinality κ^{+}.
(d) If $X, Y \in \operatorname{dom}(a), X \in Y$ (or $X \subseteq Y)$ and k is the minimal so that $a(X) \subseteq H\left(\chi^{+k}\right)$ or $a(Y) \subseteq H\left(\chi^{+k}\right)$, then $a(X) \cap H\left(\chi^{+k}\right) \in a(Y) \cap H\left(\chi^{+k}\right)\left(\right.$ or $a(X) \cap H\left(\chi^{+k}\right) \subseteq$ $\left.a(Y) \cap H\left(\chi^{+k}\right)\right)$.
The intuitive meaning is that b is supposed to preserve membership and inclusion. But we cannot literally require this since $a(A)$ and $a(B)$ may be substructures of different structures. So we first go down to the smallest of this structures and then put the requirement on the intersections.
(e) The image by a of $A^{0 \kappa^{+}}$, i.e. $a\left(A^{0 \kappa^{+}}\right)$, intersected with λ_{n}^{+n+2} is above all the rest of $\operatorname{rng}(a)$ restricted to λ_{n}^{+n+2} in the ordering of the extender E_{n} (via some reasonable coding by ordinals).
Recall that the extender $E_{\lambda_{n}}$ acts on λ_{n}^{+n+2} and our main interest is in Prikry sequences it will produce. So, parts of $\operatorname{rng}(a)$ restricted to δ_{n}^{+n+2} will play the central role.
3. $\left\{\alpha<\kappa^{+3} \mid \alpha \in \operatorname{dom}(a)\right\} \cap \operatorname{dom}(f)=\emptyset$
4. $A \in E_{\lambda_{n}, a(\max (a))}$
5. $\min (A)>|\operatorname{dom}(a)|+|\operatorname{dom}(b)|$
6. for every ordinals α, β, γ which are elements of $\operatorname{rng}(a)$ or actually the ordinals coding
models in $\operatorname{rng}(a)$ we have

$$
\begin{aligned}
& \alpha \geq_{E_{\lambda_{n}}} \beta \\
& \pi_{E_{\lambda_{n}}, \alpha, \gamma} \gamma \quad \text { implies } \\
& \pi_{\lambda_{n}, \beta, \gamma}\left(\pi_{\lambda_{n}, \alpha, \beta}(\rho)\right)
\end{aligned}
$$

for every $\rho \in \pi_{\lambda_{n}, \operatorname{maxrng}(a), \alpha}^{\prime \prime}(A)$.
Let us turn now to the second component of a condition, i. e. to $\langle\underset{\sim}{b} \underset{\sim}{b}, g\rangle$.
7. g is a function from κ^{+3} to κ_{n} of cardinality at most κ
8. $\underset{\sim}{b}$ is a name, depending on $\langle a, A\rangle$, of a partial function of cardinality less than λ_{n}. So, each choice of an element from A gives the actual function which is in V. Note that the relevant forcing is the One Element Prikry Forcing on Extender, which does not change V, i.e. it is trivial.

The following conditions are satisfied:
(a) (Domain)
the domain of $\underset{\sim}{b} \in V$, i.e. it is already decided in the sense that each choice of an element in A will give the same domain.
(b) (Background condition) There is $\left\langle\left\langle A^{0 \kappa^{+}}, A^{1 \kappa^{+}}, C^{\kappa+}\right\rangle,\left\langle A^{0 \kappa^{++}}, A^{1 \kappa^{++}}, C^{\kappa++}\right\rangle\right\rangle \in$ $G\left(\mathcal{P}^{\prime}\left(\kappa^{+3}\right)\right)$ which we call it further a background condition of $\underset{\sim}{b}$, such that $\operatorname{dom}(b)$ consists of models appearing in $A^{1 \kappa^{++}}$, i.e. basically of ordinals below κ^{++}and those of $A^{1 \kappa^{+}}$.

Note that for κ^{++}the third component $C^{\kappa^{++}}$of a condition is just the same as the second $A^{1 \kappa^{++}}$. Also the inclusion is a linear order on $A^{1 \kappa^{++}}$and this set is closed under unions.
(c) for each $X \in \operatorname{dom}(b)$ and each $\nu \in A$ there is $k \leq \omega$ so that the interpretation according to ν of $\underset{\sim}{b}(X)$ is a subset of $H\left(\chi^{+k}\right)$.
Moreover,
i. if $|X|=\kappa^{++}$, then it is forced that $|\underset{\sim}{\underset{\sim}{c}}(X)|=\kappa_{n}^{+n+1}$ and $\underset{\sim}{b}(X) \cap \kappa_{n}^{+n+2} \in O R D$, i.e. any choice of an element from A interprets $\underset{\sim}{b}(X)$ in such a way.
ii. if $|X|=\kappa^{+}$, then for each $\nu \in A$ the interpretation of $\underset{\sim}{b}(X)$ according to ν has cardinality $\left(\nu^{0}\right)^{+n+1}$, where ν^{0} denotes the projection of ν to the normal measure of the extender $E_{\lambda_{n}}$.
iii. $A^{0 \kappa^{+}}, A^{0 \kappa^{++}} \in \operatorname{dom}(a)$.

Further let us refer to $A^{0 \kappa^{+}}$as the maximal model of the domain of $\underset{\sim}{b}$. Denote it as $\max (\operatorname{dom}(\underset{\sim}{b}))$.
Later passing from $\widetilde{Q}_{n 0}$ to \mathcal{P} we will require that for every $k<\omega$ for all but finitely many n 's the n-th image of X will be an elementary submodel of $H\left(\chi^{+k}\right)$. But in general just subsets are allowed here.
(d) (Models come from $A^{0 \kappa^{+}}$) If $X \in \operatorname{dom}(\underset{\sim}{b})$ and $X \neq A^{0 \kappa^{+}}$, then $X \in A^{0 \kappa^{+}}$.
(e) Let $E, F \in \operatorname{dom}(\underset{\sim}{b}), E \in F$ (or $E \subseteq F$) and $\nu \in A$. If k is the minimal so that the interpretation of $\underset{\sim}{b}(E)$ according to ν is a subset of $H\left(\chi^{+k}\right)$ or $\underset{\sim}{b}(F)$ according to ν is a subset of $H\left(\chi^{+k}\right)$, then

$$
\begin{gathered}
\underset{\sim}{b}(E)[\nu] \cap H\left(\chi^{+k}\right) \in \underset{\sim}{b}(F)[\nu] \cap H\left(\chi^{+k}\right) \\
\left(\text { or } \underset{\sim}{b}(E)[\nu] \cap H\left(\chi^{+k}\right) \subseteq \underset{\sim}{\subseteq}(F)[\nu] \cap H\left(\chi^{+k}\right)\right),
\end{gathered}
$$

where in the last two lines we mean the interpretations according to ν. Let us further deal with such interpretations without mentioning this explicitly.

The intuitive meaning is that b is supposed to preserve membership and inclusion. But we cannot literally require this since $b(E)$ and $b(F)$ may be substructures of different structures. So we first go down to the smallest of this structures and then put the requirement on the intersections.
(f) The image by b of $A^{0 \kappa^{+}}$, i.e. $b\left(A^{0 \kappa^{+}}\right)$, intersected with κ_{n}^{+n+2} is above all (i.e. is forced by each $\nu \in A$ to be such) the rest of $\operatorname{rng}(b)$ restricted to κ_{n}^{+n+2} in the ordering of the extender $E_{\kappa_{n}}$ (via some reasonable coding by ordinals).
Recall that the extender $E_{\kappa_{n}}$ acts on κ_{n}^{+n+2} and our main interest is in Prikry sequences it will produce. So, parts of $\operatorname{rng}(b)$ restricted to κ_{n}^{+n+2} will play the central role.

Let us, as in [6], denote by ot $_{\kappa^{+}}(X)$ the order type of the maximal under inclusion chain of elements in $\mathcal{P}(X) \cap A^{1 \kappa^{+}}$which is just the order type of $C^{\kappa^{+}}(X)$, for $X \in A^{1 \kappa^{+}}$. If $X \in C^{\kappa^{+}}\left(A^{0 \kappa^{+}}\right)$, then $C^{\kappa^{+}}(X)=C^{\kappa^{+}}\left(A^{0 \kappa^{+}}\right) \cap(X \cup\{X\})=$ $C^{\kappa^{+}}\left(A^{0 \kappa^{+}}\right) \upharpoonright X+1$. Hence, in this case, otp $\kappa^{+}(X)=\operatorname{otp}\left(C^{\kappa^{+}}\left(A^{0 \kappa^{+}}\right) \upharpoonright X\right)+1$. Note that ot $p_{\kappa^{+}}(X)$ is always a successor ordinal below κ^{++}. Recall that by [6] we have for each $X \in A^{1 \kappa^{+}}$an element $Y \in C^{\kappa^{+}}\left(A^{0 \kappa^{+}}\right)$such that $\operatorname{otp}_{\kappa^{+}}(X)=\operatorname{otp}_{\kappa^{+}}(Y)$.

Next conditions deal with the connection between the structure over λ_{n} and those over κ_{n}. Note that there were no similar structures in the previous papers [4], [6].
(g) (Order types) If $X \in \operatorname{dom}(\underset{\sim}{b})$, then $A^{0 \kappa^{+}}\left(\kappa^{++}\right) \cap \kappa^{++} \geq o t \kappa_{\kappa^{+}}(X)$.

Denote by $X\left(\lambda_{n}\right)$ the last element Z of $A^{1 \kappa^{+}}\left(\kappa^{++}\right)$with $Z \cap \kappa^{++}<o t p_{\kappa^{+}}(X)$. It will be the one corresponding to X at the level λ_{n}. Notice that the domain of a need not be an ordinal but rather a closed set of ordinals of cardinality less than λ_{n}. Hence, $\operatorname{otp}_{\kappa^{+}}(X)$ itself or $\operatorname{otp}_{\kappa^{+}}(X)-1$ need not be in the domain of a. So, $X\left(\lambda_{n}\right)$ looks like a natural choice.

The next condition insures that the function $\operatorname{otp}_{\kappa^{+}}(X) \rightarrow X\left(\lambda_{n}\right)$ is order preserving.
(h) (Order preservation) If $X, X^{\prime} \in \operatorname{dom}(\underset{\sim}{b})$, then

- otp $\kappa_{\kappa^{+}}(X)=o t p_{\kappa^{+}}\left(X^{\prime}\right)$ iff $X\left(\lambda_{n}\right)=X^{\prime}\left(\lambda_{n}\right)$
- otp $\kappa_{\kappa^{+}}(X)<\operatorname{otp}_{\kappa^{+}}\left(X^{\prime}\right)$ iff $X\left(\lambda_{n}\right)<X^{\prime}\left(\lambda_{n}\right)$
(i) (Dependence) Let $X \in \operatorname{dom}(\underset{\sim}{b}) \cap C^{\kappa^{+}}\left(A^{0 \kappa^{+}}\right)$. Then $\underset{\sim}{b}(X)$ depends on the value of the one element Prikry forcing with the measure $a\left(X\left(\lambda_{n}\right)\right)$ over λ_{n}. More precisely: let $A(X)=\pi_{\operatorname{maxrng}(a), a\left(X\left(\lambda_{n}\right)\right)}^{E_{\lambda_{n}}} A$, then each choice of an element from $A(X)$ already decides $\underset{\sim}{b}(X)$, i.e. whenever $\nu_{1}, \nu_{2} \in A$ and

$$
\pi_{\operatorname{maxrng}(a), a\left(X\left(\lambda_{n}\right)\right)}^{E_{\lambda_{n}}}\left(\nu_{1}\right)=\pi_{\operatorname{maxrng}(a), a\left(X\left(\lambda_{n}\right)\right)}^{E_{\lambda_{n}}}\left(\nu_{2}\right)
$$

we have

$$
\underset{\sim}{b}(X)\left[\nu_{1}\right]=\underset{\sim}{b}(X)\left[\nu_{2}\right] .
$$

 by $\nu(X)$.

So $\underset{\sim}{b}(X)$ depends only on members of $A(X)$ rather than those of A.
The next condition is crucial for the κ^{++}-c.c. of the forcing.
(j) (Inclusion condition)

Let $\nu, \nu^{\prime} \in A, \nu<\nu^{\prime}$. Then

- $\quad \pi_{\operatorname{maxrng}(a), a\left(A^{0 \kappa^{+}}\left(\lambda_{n}\right)\right)}^{E_{\lambda_{n}}}\left(\nu^{\prime}\right)>\pi_{\operatorname{maxrng}(a), a\left(A^{0 \kappa^{+}}\left(\lambda_{n}\right)\right)}^{E_{\lambda_{n}}}(\nu)$ implies

$$
\underset{\sim}{b}\left(A^{0 \kappa^{+}}\right)[\nu] \in \underset{\sim}{b}\left(A^{0 \kappa^{+}}\right)\left[\nu^{\prime}\right] .
$$

This condition means that once $A^{0 \kappa^{+}}\left(\lambda_{n}\right)$-the set corresponding to $A^{0 \kappa^{+}}$ at the level λ_{n}, is mapped by a according to ν^{\prime} to a bigger set than those according to ν, then the same is true with corresponding models at the level κ_{n}.

- If $Y \in \operatorname{dom}(\underset{\sim}{b}) \cap C^{\kappa^{+}}\left(A^{0 \kappa^{+}}\right)$and

$$
\pi_{\operatorname{max~rng}(a), a\left(Y\left(\lambda_{n}\right)\right)}^{E_{\lambda_{n}}}\left(\nu^{\prime}\right)>\pi_{\operatorname{maxrng}(a), a\left(A^{0 \kappa^{+}}\left(\lambda_{n}\right)\right)}^{E_{\lambda_{n}}}(\nu),
$$

then either

$$
\underset{\sim}{b}\left(A^{0 \kappa^{+}}\right)[\nu] \in \underset{\sim}{b}(Y)\left[\nu^{\prime}\right]
$$

or
the k-type realized by $\underset{\sim}{b}\left(A^{0 \kappa^{+}}\right)[\nu] \cap H\left(\chi^{+k}\right)$ is in $\underset{\sim}{b}(Y)\left[\nu^{\prime}\right]$, where $k<\omega$ is the least such that $\underset{\sim}{b}(Y)\left[\nu^{\prime}\right] \subseteq H\left(\chi^{+k+1}\right)$.
The same holds over any element of $\underset{\sim}{b}(Y)\left[\nu^{\prime}\right]$, i.e. $t p_{k}\left(z, \underset{\sim}{b}\left(A^{0 \kappa^{+}}\right)[\nu] \cap H\left(\chi^{+k}\right)\right) \in$ $\underset{\sim}{b}(Y)\left[\nu^{\prime}\right]$, for any $z \in \underset{\sim}{b}(Y)\left[\nu^{\prime}\right]$.
We require in addition that this $k>2$.
Let us allow the above also if $\underset{\sim}{b}(Y)\left[\nu^{\prime}\right] \subseteq H\left(\chi^{+\omega}\right)$. In this case we take k to be any natural number above 2 and require that once we go up to the higher levels then corresponding k 's increase (with n).

We cannot in general require only that

$$
\underset{\sim}{b}\left(A^{0 \kappa^{+}}\right)[\nu] \in \underset{\sim}{b}(Y)\left[\nu^{\prime}\right]
$$

since extending conditions the sequence $C^{\kappa^{+}}$of the maximal model of a new background condition may go not through the old maximal model. But still having the type inside Y will be enough for our purposes.

It is possible to have $Y \subset X$, but $\nu(X)$ smaller than $\nu^{\prime}(Y)$ (note that $\nu(Y)<$ $\nu(X)$ in this case by 8 h$)$. In such situation the interpretation will reverse the order.
Note that given $\nu^{\prime} \in A$ the number of possibilities for $\nu \in \nu^{\prime} \cap A$ is bounded by $\left(\nu^{\prime 0}\right)^{+n+1}$, as $\nu^{\prime}<\left(\nu^{\prime 0}\right)^{+n+2}$.
(k) If $X \in \operatorname{dom}(\underset{\sim}{b})$ then $\left.C^{|X|}(X) \cap \operatorname{dom} \underset{\sim}{b}\right)$ is a closed chain. Let $\left\langle X_{i} \mid i<j\right\rangle$ be its increasing continuous enumeration. For each $l<j$ consider the final segment $\left\langle X_{i} \mid l \leq i<j\right\rangle$ and its image $\underset{\sim}{\langle b}\left(X_{i}\right)|l \leq i<j\rangle$. Find the minimal k so that

$$
\underset{\sim}{b}\left(X_{i}\right) \subseteq H\left(\chi^{+k}\right) \text { for each } i, l \leq i<j .
$$

Then the sequence

$$
\left\langle\underset{\sim}{b}\left(X_{i}\right) \cap H\left(\chi^{+k}\right) \mid l \leq i<j\right\rangle
$$

is increasing and continuous. More precisely, each $\nu \in A$ forces this.
Note that k here may depend on l, i.e. on the final segment.
(l) (The walk is in the domain) If $X \in \operatorname{dom} \underset{\sim}{(b)} \cap A^{1 \xi}$, for some $\xi \in\left\{\kappa^{+}, \kappa^{++}\right\}$, then the general walk from $\left(A^{0 \xi}\right)^{-}$to X is forced by each $\nu \in A$ to be in $\operatorname{dom}(\underset{\sim}{b})$.
(m) If $X \in \operatorname{dom} \underset{\sim}{(b)} \cap A^{1 \xi}$, for some $\xi \in\left\{\kappa^{+}, \kappa^{++}\right\}$is a limit model and $\operatorname{cof}\left(o t p_{\xi}(X)-\right.$ $1)<\kappa_{n}$ (i.e. the cofinality of the sequence $C^{\xi}(X) \backslash\{X\}$ under the inclusion relation is less than κ_{n}) then a closed cofinal subsequence of $C^{\xi}(X) \backslash\{X\}$ is in $\operatorname{dom}(b)$. The images of its members under b form a closed cofinal in $b(X)$ sequence.
(n) (Minimal cover condition) Let $E \in A^{0 \kappa^{+}} \cap \operatorname{dom}(\underset{\sim}{b}), X \in A^{0 \kappa^{++}} \cap \operatorname{dom}(\underset{\sim}{b})$. Suppose that $E \nsubseteq X$. Then the smallest model of $E \cap C^{\kappa^{+}}\left(A^{0 \kappa^{+}}\right)$including X is in $\operatorname{dom}(\underset{\sim}{b})$
(o) (The first models condition) Suppose that $E \in \operatorname{dom}(\underset{\sim}{b}) \cap C^{\kappa^{+}}\left(A^{0 \kappa^{+}}\right), F \in \operatorname{dom}(\underset{\sim}{b}) \cap$ $C^{\kappa^{++}}\left(A^{0 \kappa^{++}}\right), \sup (E)>\sup (F)$ and $F \notin E$. Then the first model $H \in A \cap$ $C^{\kappa^{++}}\left(A^{0 \kappa^{++}}\right)$which includes B is in $\operatorname{dom}(\underset{\sim}{b})$.
(p) (Models witnessing Δ-system type are in the domain) If $F_{0}, F_{1}, F \in A^{1 \kappa^{+}} \cap \operatorname{dom}(b)$ is a triple of a Δ - system type, then the corresponding models $G_{0}, G_{0}^{*}, G_{1}, G_{1}^{*}, \widetilde{G^{*}}$, as in the definition of a Δ - system type (see [6]), are in $\operatorname{dom}(\underset{\sim}{b})$ as well and

$$
\underset{\sim}{b}\left(F_{0}\right) \cap \underset{\sim}{b}\left(F_{1}\right)=\underset{\sim}{b}\left(F_{0}\right) \cap \underset{\sim}{b}\left(G_{0}\right)=\underset{\sim}{b}\left(F_{1}\right) \cap \underset{\sim}{b}\left(G_{1}\right) .
$$

(q) If $F_{0}, F_{1}, F \in A^{1 \kappa^{+}}$is a triple of a Δ - system type and $F, F_{0} \in \operatorname{dom}(\underset{\sim}{b})$ (or $\left.F, F_{1} \in \operatorname{dom}(b)\right)$, then $F_{1} \in \operatorname{dom}(\underset{\sim}{b})\left(\right.$ or $\left.F_{0} \in \operatorname{dom}(b)\right)$.
(r) (The isomorphism condition) Let $\left.F_{0}, F_{1}, F \in A^{1 \kappa^{+}} \cap \operatorname{dom} \underset{\sim}{b}\right)$ be a triple of a Δ system type. Then

$$
\left\langle\underset{\sim}{b}\left(F_{0}\right) \cap H\left(\chi^{+k}\right), \in\right\rangle \simeq\left\langle\underset{\sim}{b}\left(F_{1}\right) \cap H\left(\chi^{+k}\right), \in\right\rangle
$$

where k is the minimal so that $\underset{\sim}{b}\left(F_{0}\right) \subseteq H\left(\chi^{+k}\right)$ or $\underset{\sim}{b}\left(F_{1}\right) \subseteq H\left(\chi^{+k}\right)$.
Note that it is possible to have for example $\underset{\sim}{b}\left(F_{0}\right) \prec H\left(\chi^{+6}\right)$ and $\underset{\sim}{b}\left(F_{1}\right) \prec H\left(\chi^{+18}\right)$. Then we take $k=6$.

Let π be the isomorphism between

$$
\left\langle\underset{\sim}{b}\left(F_{0}\right) \cap H\left(\chi^{+k}\right), \in\right\rangle,\left\langle\underset{\sim}{b}\left(F_{1}\right) \cap H\left(\chi^{+k}\right), \in\right\rangle
$$

and $\pi_{F_{0} F_{1}}$ be the isomorphism between F_{0} and F_{1}. Require that for each $Z \in$ $F_{0} \cap \operatorname{dom}(\underset{\sim}{b})$ we have $\pi_{F_{0} F_{1}}(Z) \in F_{1} \cap \operatorname{dom}(\underset{\sim}{b})$ and

$$
\pi\left(\underset{\sim}{b}(Z) \cap H\left(\chi^{+k}\right)\right)=\underset{\sim}{b}\left(\pi_{F_{0} F_{1}}(Z)\right) \cap H\left(\chi^{+k}\right) .
$$

(s) $\left\{\alpha<\kappa^{+3} \mid \alpha \in \operatorname{dom}(b)\right\} \cap \operatorname{dom}(g)=\emptyset$.
(t) For each $\nu \in A$ we have $\underset{\sim}{B}[\nu] \in E_{\kappa_{n}, b}[\nu](\max (\underset{\sim}{b}))$.
(u) for every $\nu \in A$ and every ordinals α, β, γ which are elements of $\operatorname{rng} \underset{\sim}{\underset{\sim}{b}})[\nu]$ or actually the ordinals coding models in $\operatorname{rng} \underset{\sim}{(b)} \underset{\sim}{b}[\nu]$ we have

$$
\begin{aligned}
& \alpha \geq_{E_{\kappa_{n}}} \beta \geq_{E_{\kappa_{n}}} \gamma \quad \text { implies } \\
& \pi_{\kappa_{n}, \alpha, \gamma}(\rho)=\pi_{\kappa_{n}, \beta, \gamma}\left(\pi_{\kappa_{n}, \alpha, \beta}(\rho)\right)
\end{aligned}
$$

for every $\rho \in \pi_{\kappa_{n}, \max \operatorname{rng}(\underset{\sim}{\prime \prime}[\nu]), \alpha}(\underset{\sim}{B}[\nu])$.
We define now $Q_{n 1}$ and $\left\langle Q_{n}, \leq_{n}, \leq_{n}^{*}\right\rangle$ similar to [2, Sec.2].
Definition 3.2 Suppose that $\langle\langle a, A, f\rangle,\langle\underset{\sim}{b}, \underset{\sim}{B}, g\rangle\rangle$ and $\left\langle\left\langle a^{\prime}, A^{\prime}, f^{\prime}\right\rangle,\left\langle\underset{\sim}{b}, \underset{\sim}{b},{\underset{\sim}{x}}^{\prime}, g^{\prime}\right\rangle\right\rangle$ are two elements of $Q_{n 0}$. Define

$$
\langle\langle a, A, f\rangle,\langle\underset{\sim}{b}, \underset{\sim}{B}, g\rangle\rangle \geq_{Q_{n 0}}\left\langle\left\langle a^{\prime}, A^{\prime}, f^{\prime}\right\rangle,\left\langle\underset{\sim}{b}, \underset{\sim}{b^{\prime}}, g^{\prime}\right\rangle\right\rangle
$$

iff

1. $f \supseteq f^{\prime}$
2. $g \supseteq g^{\prime}$
3. $a \supseteq a^{\prime}$
4. $\pi_{\lambda_{n}, \max (a), \max \left(a^{\prime}\right)}^{\prime \prime} A \subseteq A^{\prime}$
5. for every $\nu \in A$ we have

$$
\underset{\sim}{b}[\nu] \supseteq \underset{\sim}{b}{\underset{\sim}{f}}^{\prime}\left[\pi_{\lambda_{n}, \max (a), \max \left(a^{\prime}\right)}(\nu)\right] .
$$

This means just that the empty condition of one element Prikry forcing forces the inclusion.
6. for every $\nu \in A$ we have

Definition 3.3 $Q_{n 1}$ consists of pairs $\langle f, g\rangle$ such that

1. f is a partial function from κ^{++}to λ_{n} of cardinality at most κ
2. g is a partial function from κ^{+3} to κ_{n} of cardinality at most κ
$Q_{n 1}$ is ordered by extension. Denote this order by \leq_{1}.
So, it is basically the Cohen forcing for adding κ^{+3} Cohen subsets to κ^{+}.
Definition 3.4 Set $Q_{n}=Q_{n 0} \cup Q_{n 1}$. Define $\leq_{n}^{*}=\leq_{Q_{n 0}} \cup \leq_{Q_{n 1}}$.
Define now a natural projection to the first coordinate:
Definition 3.5 Let $p \in Q_{n}$. Set $(p)_{0}=p$, if $p \in Q_{n 1}$ and let $(p)_{0}=\langle a, A, f\rangle$, if $p \in Q_{n 0}$ is of the form $\langle\langle a, A, f\rangle,\langle\underset{\sim}{\underset{\sim}{\sim}}, \underset{\sim}{B}, g\rangle\rangle$.

Let $\left(Q_{n}\right)_{0}=\left\{(p)_{0} \mid p \in Q_{n}\right\}$.
Definition 3.6 Let $p, q \in Q_{n}$. Then $p \leq_{n} q$ iff either

1. $p \leq_{n}^{*} q$
or
2. $p=\langle\langle a, A, f\rangle,\langle\underset{\sim}{b}, \underset{\sim}{b}, g\rangle\rangle \in Q_{n 0}, q=\langle e, h\rangle \in Q_{n 1}$ and the following hold:
(a) $e \supseteq f$
(b) $h \supseteq g$
(c) $\operatorname{dom}(e) \supseteq \operatorname{dom}(a)$
(d) $e(\max (\operatorname{dom}(a))) \in A$
(e) for every $\beta \in \operatorname{dom}(a), e(\beta)=\pi_{\lambda_{n}, a(\max (\operatorname{dom}(a)), a(\beta)}(e(\max (\operatorname{dom}(a)))$
(f) $\operatorname{dom}(h) \supseteq \operatorname{dom}(\underset{\sim}{b})$
(g) $h(\max (\operatorname{dom}(\underset{\sim}{b})) \in \underset{\sim}{B}[e(\max (\operatorname{dom}(a))]$.
I.e., we use $e(\max (\operatorname{dom}(a))$ in order to interpret B. Note that by 2 d above, it is inside A and so the interpretation makes sense.
(h) for every $\beta \in \operatorname{dom}(\underset{\sim}{b})$

$$
h(\beta)=\pi_{\kappa_{n}, \max (\operatorname{rng}(\underset{\sim}{b}[\nu])), \underset{\sim}{b}(\beta)[\nu]}(h(\max (\operatorname{dom}(\underset{\sim}{b})),
$$

where $\nu=e(\max (\operatorname{dom}(a)))$. Recall that we code models by ordinals.
Definition 3.7 The set \mathcal{P} consists of all sequences $p=\left\langle p_{n} \mid n<\omega\right\rangle$ so that

1. for every $n<\omega, p_{n} \in Q_{n}$
2. there is $\ell(p)<\omega$ such that
(a) for every $n<\ell(p), p_{n} \in Q_{n 1}$
(b) for every $n \geq \ell(p), p_{n}=\left\langle\left\langle a_{n}, A_{n}, f_{n}\right\rangle,\left\langle b_{n}, B_{n}, g_{n}\right\rangle\right\rangle \in Q_{n 0}$
(c) for every $n, m \geq \ell(p), \max \left(\operatorname{dom}\left(a_{n}\right)\right)=\max \left(\operatorname{dom}\left(a_{m}\right)\right)$ and $\max \left(\operatorname{dom}\left(b_{n}\right)\right)=$ $\max \left(\underset{\sim}{\operatorname{dom}}\left(b_{m}\right)\right)$
(d) for every $n \geq m \geq \ell(p)$, $\operatorname{dom}\left(a_{m}\right) \subseteq \operatorname{dom}\left(a_{n}\right)$ and $\left.\operatorname{dom}\left(b_{m}\right)\right) \subseteq \operatorname{dom}\left(b_{n}\right)$
(e) for every $n, \ell(p) \leq n<\omega$, and $X \in \operatorname{dom}\left(a_{n}\right)$ the following holds:
for each $k<\omega$ the set

$$
\left\{m<\omega \mid \neg\left(a_{m}(X) \cap H\left(\chi^{+k}\right) \prec H\left(\chi^{+k}\right)\right)\right\}
$$

is finite.
(f) for every $n, \ell(p) \leq n<\omega$, and $X \in \operatorname{dom}\left(b_{n}\right)$ the following holds: for each $k<\omega$ the set

$$
\left\{m<\omega \mid \exists \nu \in A_{m}\left(\neg\left(b_{m}(X)[\nu] \cap H\left(\chi^{+k}\right) \prec H\left(\chi^{+k}\right)\right)\right)\right\}
$$

is finite.
We define the orders \leq, \leq^{*} as in [2].
Definition 3.8 Let $p=\left\langle p_{n} \mid n<\omega\right\rangle, q=\left\langle q_{n} \mid n<\omega\right\rangle$ be in \mathcal{P}. Define

1. $p \geq q$ iff for each $n<\omega, p_{n} \geq_{n} q_{n}$
2. $p \geq^{*} q$ iff for each $n<\omega, p_{n} \geq_{n}^{*} q_{n}$

Definition 3.9 Let $p=\left\langle p_{n} \mid n<\omega\right\rangle \in \mathcal{P}$. Set $(p)_{0}=\left\langle\left(p_{n}\right)_{0} \mid n<\omega\right\rangle$.
Define $(\mathcal{P})_{0}=\left\{(p)_{0} \mid p \in \mathcal{P}\right\}$.
Finally, the equivalence relation \longleftrightarrow and the order \rightarrow are defined on $(\mathcal{P})_{0}$ exactly as it was done in [1], [2] and [3]. We extend \rightarrow to \mathcal{P} as follows:

Definition 3.10 Let $p=\left\langle p_{n} \mid n<\omega\right\rangle, q=\left\langle q_{n} \mid n<\omega\right\rangle \in \mathcal{P}$. Set $q \rightarrow p$ iff

1. $(q)_{0} \rightarrow(p)_{0}$
2. $\ell(p)=\ell(q)$
3. for every $n<\ell(p), p_{n}$ extends q_{n}
4. for every $n \geq \ell(p)$, let $p_{n}=\left\langle\left\langle a_{n}, A_{n}, f_{n}\right\rangle,\left\langle\underset{\sim}{\sim}, \underset{\sim}{b}, g_{n}, g_{n}\right\rangle\right.$ and $q_{n}=\left\langle\left\langle a_{n}^{\prime}, A_{n}^{\prime}, f_{n}^{\prime}\right\rangle,\left\langle\underset{\sim}{b_{n}^{\prime}}, \underset{\sim}{B_{n}^{\prime}}, g_{n}^{\prime}\right\rangle\right\rangle$. Require the following:
(a) $g_{n} \supseteq g_{n}^{\prime}$
(b) there is $b_{n}^{\prime \prime}$ such that for every $\nu \in A_{n}$ the following holds:
i. $b_{n}[\nu]$ extends $b_{n}^{\prime \prime}\left[\nu^{\prime}\right]$
ii. $\operatorname{dom}\left(b_{n}^{\prime}\right)=\operatorname{dom}\left(b_{n}^{\prime \prime}\right)$
iii. $\pi_{\kappa_{n}, \max \left(b_{n}[\nu]\right), \max \left(b_{n}^{\prime}\left[\nu^{\prime}\right]\right)}^{\sim} B_{\sim}^{\sim}[\nu] \subseteq B_{\sim}^{\prime}\left[\nu^{\prime}\right]$,
where $\nu^{\prime}=\pi_{\lambda_{n}, \max \left(\operatorname{rng}\left(a_{n}\right)\right), \xi(\nu) \text { and } \xi=a_{n}\left(\max \left(\operatorname{dom}\left(a_{n}^{\prime}\right)\right)\right.}$
iv. $\operatorname{rng}\left(\underset{\sim}{b_{n}^{\prime}}\right)\left[\nu^{\prime}\right] \longleftrightarrow k_{n} \operatorname{rng}\left(\underset{\sim}{b_{n}^{\prime \prime}}\right)\left[\nu^{\prime}\right]$, where ν^{\prime} is as above and k_{n} is the k_{n} 's member of a nondecreasing sequence converging to the infinity.
v. $\operatorname{rng}\left(b_{n}^{\prime}\right)\left[\nu^{\prime}\right] \upharpoonright \kappa^{+n+1}=\operatorname{rng}\left(b_{n}^{\prime}\right)\left[\nu^{\prime}\right] \upharpoonright \kappa^{+n+1}$

Here is the main difference between \rightarrow here and those of [1] etc. In the present context we deal with assignment functions b_{n} 's which act over κ_{n} 's but are of cardinalities below κ_{n} 's (as well as the models in $\operatorname{rng}\left(b_{n}\right)$ which are images of those of cardinality $\left.\kappa^{+}\right)$. Thus, assume that n is fixed and $X=b_{n}\left(\max \left(\operatorname{dom}\left(b_{n}\right)\right)\right.$, where $b_{n}=b_{n}[\nu]$ is the interpretation according to some $\nu<\lambda_{n}<\kappa_{n}$. Then $|X|=\left(\nu^{0}\right)^{+n+1}$ by $3.1(8 c(i i))$. Now if we like to realize types inside X, as it was done usually in [1] etc., it may be just impossible since X is too small and so does not contains all the types.
The way suggested here in order to overcome this difficulty, will be to use $3.1(8 \mathrm{j})$
together with the above definition. It turns out that once working with names it is still possible to prove κ^{++}-c.c. of the final forcing $\langle\mathcal{P}, \rightarrow\rangle$. It will be done in 4.6.

4 Basic Lemmas

In this section we study the properties of the forcing $\left\langle\mathcal{P}, \leq, \leq^{*}\right\rangle$ defined in the previous section.

Lemma 4.1 Let $p=\left\langle p_{k} \mid k<\omega\right\rangle \in \mathcal{P}, p_{k}=\left\langle\left\langle a_{k}, A_{k}, f_{k}\right\rangle,\left\langle b_{k}, B_{k}, g_{k}\right\rangle\right\rangle$ for $k \geq \ell(p)$ and X be a model appearing in an element of $G\left(\mathcal{P}^{\prime}\left(\kappa^{++}\right)\right.$. Suppose that
(a) $X \notin \bigcup_{\ell(p) \leq k<\omega} \operatorname{dom}\left(a_{k}\right) \cup \operatorname{dom}\left(f_{k}\right)$
(b) X is a successor model or if it is a limit one with $\operatorname{cof}\left(o t \kappa_{\kappa^{+}}(X)-1\right)>\kappa$

Then there is a direct extension $q=\left\langle q_{k} \mid k<\omega\right\rangle, q_{k}=\left\langle\left\langle a_{k}^{\prime}, A_{k}^{\prime}, f_{k}^{\prime}\right\rangle,\left\langle b_{k}^{\prime}, B_{k}^{\prime}, g_{k}\right\rangle\right\rangle$ for $k \geq \ell(q)$, of p so that starting with some $n \geq \ell(q)$ we have $X \in \operatorname{dom}\left(a_{k}^{\prime}\right)$ for each $k \geq n$. In addition the second part of the condition p, i.e. $\left\langle b_{k}, B_{\sim}, g_{k}\right\rangle$ remains basically unchanged (just names should be lifted to new A_{k} 's).

The proof is the same as those of the corresponding lemma in [6]
Turn now to a parallel lemma needed for adding elements of $G(\mathcal{P})$.
Lemma 4.2 Let $p=\left\langle p_{k} \mid k<\omega\right\rangle \in \mathcal{P}, p_{k}=\left\langle\left\langle a_{k}, A_{k}, f_{k}\right\rangle,\left\langle\underset{\sim}{\sim}, \underset{\sim}{x}, \underset{k}{B_{k}}, g_{k}\right\rangle\right\rangle$ for $k \geq \ell(p)$ and X be a model appearing in an element of $G\left(\mathcal{P}^{\prime}\right)$. Suppose that
(a) $X \notin \bigcup_{\ell(p) \leq k<\omega} \operatorname{dom}\left(\underset{\sim}{b_{k}}\right) \cup \operatorname{dom}\left(g_{k}\right)$
(b) X is a successor model or if it is a limit one with $\operatorname{cof}\left(o t p_{|X|}(X)-1\right)>\kappa$

Then there is a direct extension $q=\left\langle q_{k} \mid k<\omega\right\rangle, q_{k}=\left\langle\left\langle a_{k}^{\prime}, A_{k}^{\prime}, f_{k}^{\prime}\right\rangle,\left\langle b_{k}^{\prime}, B_{k}^{\prime}, g_{k}\right\rangle\right\rangle$ for $k \geq \ell(q)$, of p so that starting with some $n \geq \ell(q)$ we have $X \in \operatorname{dom}\left(b_{k}^{\prime}\right)$ for each $k \geq n$.

The ordering \leq^{*} on \mathcal{P} and \leq_{n} on $Q_{n 0}$ is not closed in the present situation. Thus it is possible to find an increasing sequence of \aleph_{0} conditions $\left\langle\left\langle a_{n i}, A_{n i}, f_{n i}\right\rangle \mid i<\omega\right\rangle$ in $\left(Q_{n 0}\right)_{0}$ with no upperbound. The reason is that the union of maximal models of these conditions, i.e. $\bigcup_{i<\omega} \max \left(\operatorname{dom} a_{n i}\right)$ need not be in $A^{1 \kappa^{+}}$for any $A^{1 \kappa^{+}}$in $G\left(\mathcal{P}^{\prime}\right)$. The next lemma shows that still \leq_{n} and so also \leq^{*} share a kind of strategic closure. The proof is similar to those of $[4,3.5]$.

Lemma 4.3 Let $n<\omega$. Then $\left\langle Q_{n 0}, \leq_{0}\right\rangle$ does not add new sequences of ordinals of the length $<\lambda_{n}$, i.e. it is $\left(\lambda_{n}, \infty\right)-$ distributive.

Now as in [4] we obtain the following:

Lemma $4.4\left\langle\mathcal{P}, \leq^{*}\right\rangle$ does not add new sequences of ordinals of the length $<\kappa_{0}$.

Lemma $4.5\left\langle\mathcal{P}, \leq^{*}\right\rangle$ satisfies the Prikry condition.
Let us turn now to the main lemma in the present context:

Lemma $4.6\langle\mathcal{P}, \rightarrow\rangle$ satisfies κ^{++}-c.c.

Proof. Suppose otherwise. Work in V. Let $\left\langle\underset{\sim}{p} \mid \alpha<\kappa^{++}\right\rangle$be a name of an antichain of the
 increasing sequence

$$
\left\langle\left\langle A_{\alpha}^{0 \tau}, A_{\alpha}^{1 \tau}, C_{\alpha}^{\tau}\right\rangle \mid \tau \in\left\{\kappa^{+}, \kappa^{++}\right\}, \alpha<\kappa^{++}\right\rangle,\left\langle\left\langle A_{\alpha}^{0 \kappa^{+}}\left(\kappa^{++}\right), A_{\alpha}^{1 \kappa^{+}}\left(\kappa^{++}\right), C_{\alpha}^{\kappa^{+}}\left(\kappa^{++}\right)\right\rangle \mid \alpha<\kappa^{++}\right\rangle
$$

of elements of $\mathcal{P}^{\prime} \times \mathcal{P}^{\prime}\left(\kappa^{++}\right)$and a sequence $\left\langle p_{\alpha} \mid \alpha<\kappa^{++}\right\rangle$so that for every $\alpha<\kappa^{++}$the following holds:

1. $\left\langle\left\langle\left\langle A_{\alpha+1}^{0 \tau}, A_{\alpha+1}^{1 \tau}, C_{\alpha+1}^{\tau}\right\rangle \mid \tau \in\left\{\kappa^{+}, \kappa^{++}\right\}\right\rangle,\left\langle\left\langle A_{\alpha+1}^{0 \kappa^{+}}\left(\kappa^{++}\right), A_{\alpha+1}^{1 \kappa^{+}}\left(\kappa^{++}\right), C_{\alpha+1}^{\kappa^{+}}\left(\kappa^{++}\right)\right\rangle\right\rangle\right\rangle \Vdash{\underset{\sim}{\alpha}}_{\underset{\alpha}{p}=}=$ \check{p}_{α}
2. if α is a limit ordinal, then $\bigcup\left\{A_{\beta}^{0 \tau} \mid \beta<\alpha\right\}=A_{\alpha}^{0 \tau}$, for each $\tau \in\left\{\kappa^{+}, \kappa^{++}\right\}$
3. if α is a limit ordinal, then $\bigcup\left\{A_{\beta}^{0 \kappa^{+}}\left(\kappa^{++}\right) \mid \beta<\alpha\right\}=A_{\alpha}^{0 \kappa^{+}}\left(\kappa^{++}\right)$
4. ${ }^{\tau>} A_{\alpha+1}^{0 \tau} \subseteq A_{\alpha+1}^{0 \tau}$, for each $\tau \in\left\{\kappa^{+}, \kappa^{++}\right\}$
5. $\kappa^{+}>A_{\alpha+1}^{0 \kappa^{+}}\left(\kappa^{++}\right) \subseteq A_{\alpha+1}^{0 \kappa^{+}}\left(\kappa^{++}\right)$
6. $A_{\alpha+1}^{0 \tau}$ is a successor model, for each $\tau \in\left\{\kappa^{+}, \kappa^{++}\right\}$
7. $A_{\alpha+1}^{0 \kappa^{+}}\left(\kappa^{++}\right)$is a successor model
8. $\left\langle\left\langle\cup A_{\beta}^{1 \tau} \mid \tau \in\left\{\kappa^{+}, \kappa^{++}\right\}\right\rangle \mid \beta<\alpha\right\rangle \in\left(A_{\alpha+1}^{0 \kappa^{+}}\right)^{-}$(i.e. the immediate predecessor over $C_{\alpha+1}^{\kappa^{+}}$)
9. for every $\alpha \leq \beta<\kappa^{++}, \tau \in\left\{\kappa^{+}, \kappa^{++}\right\}$we have

$$
A_{\alpha}^{0 \tau} \in C^{\beta}\left(A_{\beta}^{0 \tau}\right)
$$

10. $A_{\alpha+2}^{0 \tau}$ is not an immediate successor model of $A_{\alpha+1}^{0 \tau}$, for every $\alpha<\kappa^{++}, \tau \in\left\{\kappa^{+}, \kappa^{++}\right\}$.
11. $p_{\alpha}=\left\langle p_{\alpha n} \mid n<\omega\right\rangle$
12. for every $n \geq \ell\left(p_{\alpha}\right)$ the maximal model of $\operatorname{dom}\left(a_{\alpha n}\right)$ is $A_{\alpha+1}^{0 \kappa^{+}}\left(\kappa^{++}\right)$and the maximal

Let $p_{\alpha n}=\left\langle\left\langle a_{\alpha n}, A_{\alpha n}, f_{\alpha n}\right\rangle,\left\langle b_{\alpha n}, B_{\alpha n}, g_{\alpha n}\right\rangle\right\rangle$ for every $\alpha<\kappa^{++}$and $n \geq \ell\left(p_{\alpha}\right)$. Extending by 4.2 if necessary, let us assume that $A_{\alpha}^{0 \kappa^{+}}\left(\kappa^{++}\right) \in \operatorname{dom}\left(a_{\alpha n}\right)$ and $A_{\alpha}^{0 \kappa^{+}} \in \operatorname{dom}(b)$, for every $n \geq \ell\left(p_{\alpha}\right)$. Shrinking if necessary, we assume that for all $\alpha, \beta<\kappa^{+}$the following holds:
(1) $\ell=\ell\left(p_{\alpha}\right)=\ell\left(p_{\beta}\right)$
(2) for every $n<\ell \quad p_{\alpha n}$ and $p_{\beta n}$ are compatible in $Q_{n 1}$
(3) for every $n, \ell \leq n<\omega\left\langle\operatorname{dom}\left(a_{\alpha n}\right), \operatorname{dom}\left(f_{\alpha n}\right) \mid \alpha<\kappa^{++}\right\rangle$form a Δ-system with the kernel contained in $A_{0}^{0 \kappa^{+}}\left(\kappa^{++}\right)$
(4) for every $n, \omega>n \geq \ell \quad \operatorname{rng}\left(a_{\alpha n}\right)=\operatorname{rng}\left(a_{\beta n}\right)$.
(5) for every $n, \omega>n \geq \ell \quad A_{\alpha n}=A_{\beta n}$
(6) for every $n, \ell \leq n<\omega \quad\left\langle\operatorname{dom}\left(\underset{\sim}{b_{\alpha n}}\right), \operatorname{dom}\left(g_{\alpha n}\right) \mid \alpha<\kappa^{++}\right\rangle$form a Δ-system with the kernel contained in $A_{0}^{0 \kappa^{+}}$.

Remember that the domain of $\underset{\sim}{b}$ is not a name but rather a set.
(7) for every $n, \omega>n \geq \ell \operatorname{rng}\left(\underset{\sim}{b_{\alpha n}}\right)=\operatorname{rng}\left(\underset{\sim}{b_{\beta n}}\right)$, i.e. it is just the same name in the one element Prikry forcing.

Shrink now to the set S consisting of all the ordinals below κ^{++}of cofinality κ^{+}. Let α be in S. For each $n, \ell \leq n<\omega$, there will be $\beta(\alpha, n)<\alpha$ such that

- $\operatorname{dom}\left(a_{\alpha n}\right) \cap A_{\alpha}^{0 \kappa^{+}}\left(\kappa^{++}\right) \subseteq A_{\beta(\alpha, n)}^{0 \kappa^{+}}\left(\kappa^{++}\right)$
and
- $\operatorname{dom}\left(b_{\alpha n}\right) \cap A_{\alpha}^{0 \kappa^{+}} \subseteq A_{\beta(\alpha, n)}^{0 \kappa^{+}}$.

Just recall that $\left|a_{\alpha n}\right|<\lambda_{n}$ and $\left|\operatorname{dom}\left(b_{\alpha n}\right)\right|<\lambda_{n}$. Shrink S to a stationary subset S^{*} so that for some $\alpha^{*}<\min S^{*}$ of cofinality κ^{+}we will have $\beta(\alpha, n)<\alpha^{*}$, whenever $\alpha \in S^{*}, \ell \leq n<\omega$. Now, the cardinality of both $A_{\alpha^{*}}^{0 \kappa^{+}}$and $A_{\alpha^{*}}^{0 \kappa^{+}}\left(\kappa^{++}\right)$is κ^{+}. Hence, shrinking S^{*} if necessary, we can assume that for each $\alpha, \beta \in S^{*}, \ell \leq n<\omega$

- $\operatorname{dom}\left(a_{\alpha n}\right) \cap A_{\alpha}^{0 \kappa^{+}}\left(\kappa^{++}\right)=\operatorname{dom}\left(a_{\beta n}\right) \cap A_{\beta}^{0 \kappa^{+}}\left(\kappa^{++}\right)$
and
- $\operatorname{dom}\left(b_{\alpha n}\right) \cap A_{\alpha}^{0 \kappa^{+}}=\operatorname{dom}\left(\underset{\sim}{b_{\beta n}}\right) \cap A_{\beta}^{0 \kappa^{+}}$.

Let us add both $A_{\alpha^{*}}^{0 \kappa^{+}}$and $A_{\alpha^{*}}^{0 \kappa^{+}}\left(\kappa^{++}\right)$to each $p_{\alpha}, \alpha \in S^{*}$. By 4.2, it is possible to do this without adding other additional models except the images of $A_{\alpha^{*}}^{0 \kappa^{+}}$under isomorphisms. Thus, $A_{\alpha^{*}}^{0 \kappa^{+}} \in C^{\kappa^{+}}\left(A_{\alpha}^{0 \kappa^{+}}\right)$and $A_{\alpha}^{0 \kappa^{+}} \in \operatorname{dom}\left(b_{\alpha n}\right) \cap C^{\kappa^{+}}\left(A_{\alpha+1}^{0 \kappa^{+}}\right)$. So, 3.1(??) was already satisfied after adding $A_{\alpha}^{0 \kappa^{+}}$. The rest of 3.1 does not require adding additional models in the present situation.

Denote the result for simplicity by p_{α} as well. Note that (again by 4.2 and the argument above) any $A_{\gamma}^{0 \kappa^{+}}$for $\gamma \in S^{*} \cap\left(\alpha^{*}, \alpha\right)$ or, actually any other successor or limit model $X \in$ $C^{\kappa^{+}}\left(A_{\alpha}^{0 \kappa}\right)$ with $\operatorname{cof}\left(\right.$ otp $\left._{\kappa^{+}}(X)\right)=\kappa^{+}$, which is between $A_{\alpha^{*}}^{0 \kappa^{+}}$and $A_{\alpha}^{0 \kappa^{+}}$can be added without adding other additional models or ordinals except the images of it under isomorphisms.

Let now $\beta<\alpha$ be ordinals in S^{*}. We claim that p_{β} and p_{α} are compatible in $\langle\mathcal{P}, \rightarrow\rangle$. First extend p_{α} by adding $A_{\beta+2}^{0 \kappa^{+}}$. As it was remarked above, this will not add other additional models or ordinals except the images of $A_{\beta+2}^{0 \kappa^{+}}$under isomorphisms to p_{α}. Let p be the resulting extension. Denote p_{β} by q. Assume that $\ell(q)=\ell(p)$. Otherwise just extend q in an appropriate manner to achieve this. Let $n \geq \ell(p), p_{n}=\left\langle\left\langle a_{n}, A_{n}, f_{n}\right\rangle,\left\langle b_{n}, B_{n}, g_{n}\right\rangle\right\rangle$ and $q_{n}=\left\langle\left\langle a_{n}^{\prime}, A_{n}, f_{n}^{\prime}\right\rangle,\left\langle b_{n}^{\prime}, B_{n}^{\prime}, g_{n}^{\prime}\right\rangle\right\rangle$. Note that by (5) above the sets of measure one of p_{n}, q_{n} are the same. Without loss of generality we may assume that $a_{n}\left(A_{\beta+2}^{0 \kappa^{+}}\left(\kappa^{++}\right)\right)$is an elementary submodel of $\mathfrak{A}_{n, k_{n}}$ with $k_{n} \geq 5$. Just increase n if necessary. Now, we can realize the k_{n} - 1-type of $\operatorname{rng}\left(a_{n}^{\prime}\right)$ inside $a_{n}\left(A_{\beta+2}^{0 \kappa^{+}}\left(\kappa^{++}\right)\right)$over the common parts $\operatorname{dom}\left(a_{n}^{\prime}\right)$ and $\operatorname{dom}\left(a_{n}\right)$. This will produce $\left\langle a_{n}^{\prime \prime}, A_{n}^{\prime}, f_{n}^{\prime}\right\rangle$ which is $k_{n}-1$-equivalent to $\left\langle a_{n}^{\prime}, A_{n}^{\prime}, f_{n}^{\prime}\right\rangle$ and with $\operatorname{rng}\left(a_{n}^{\prime \prime}\right) \subseteq$ $a_{n}\left(A_{\beta+2}^{0 \kappa^{+}}\left(\kappa^{++}\right)\right)$. Doing the above for all $n \geq \ell(p)$ we will obtain $\left\langle\left\langle a_{n}^{\prime \prime}, A_{n}^{\prime}, f_{n}^{\prime}\right\rangle \mid n<\omega\right\rangle$ equivalent to $\left\langle\left\langle a_{n}^{\prime}, A_{n}^{\prime}, f_{n}^{\prime}\right\rangle \mid n<\omega\right\rangle$ (i.e. $\left\langle\left\langle a_{n}^{\prime \prime}, A_{n}^{\prime \prime}, f_{n}^{\prime \prime}\right\rangle \mid n<\omega\right\rangle \longleftrightarrow\left\langle\left\langle a_{n}^{\prime}, A_{n}^{\prime}, f_{n}^{\prime}\right\rangle \mid n<\omega\right\rangle$).

Let $t=\left\langle\left\langle\left\langle a_{n}^{\prime \prime}, A_{n}^{\prime}, f_{n}^{\prime}\right\rangle,\left\langle{\underset{\sim}{n}}_{\sim}^{\sim},{\underset{\sim}{n}}_{n}, g_{n}\right\rangle\right\rangle\right| n\langle\omega\rangle$. Extend t to t^{\prime} by adding to it

$$
\left\langle A_{\beta+2}^{0 \kappa^{+}}\left(\kappa^{++}\right), a_{n}\left(A_{\beta+2}^{0 \kappa^{+}}\left(\kappa^{++}\right)\right)\right\rangle
$$

as the maximal set for every $n \geq \ell(p)$. Recall that $A_{\beta+1}^{0 \kappa^{+}}\left(\kappa^{++}\right)$was its maximal model. So we are adding a top model, also, by the condition (15) above $A_{\beta+2}^{0 \kappa^{+}}\left(\kappa^{++}\right)$is not an immediate successor of $A_{\beta+1}^{0 \kappa^{+}}\left(\kappa^{++}\right)$. Hence no additional models or ordinals are added at all.

Let $t_{n}^{\prime}=\left\langle\left\langle a_{n}^{\prime \prime \prime}, A_{n}^{\prime \prime \prime}, f_{n}^{\prime}\right\rangle,\left\langle\underset{\sim}{\sim}, \underset{\sim}{b_{n}}, g_{n}\right\rangle\right\rangle$, for every $n \geq \ell(p)$.
Combine now the first coordinates of p and t^{\prime} together, i.e. $\left\langle a_{n}, A_{n}, f_{n}\right\rangle$'s with those of t^{\prime}. Thus for each $n \geq \ell(p)$ we add $a_{n}^{\prime \prime \prime}$ to a_{n}. Add if necessary a new top model to insure $3.1(2(\mathrm{~d}))$. Let $r=\left\langle r_{n} \mid n<\omega\right\rangle$ be the result, where $r_{n}=\left\langle\left\langle c_{n}, C_{n}, h_{n}\right\rangle,\left\langle{\underset{\sim}{n}}_{\sim}^{b_{\sim}},{\underset{\sim}{n}}_{n}, g_{n}\right\rangle\right\rangle$, for $n \geq \ell(p)$.

Claim 4.6.1 $r \in \mathcal{P}$ and $r \geq p$.
Proof. Fix $n \geq \ell(p)$. The main points here are that $a_{n}^{\prime \prime \prime}$ and a_{n} agree on the common part and adding of $a_{n}^{\prime \prime \prime}$ to a_{n} does not require other additions of models except the images of $a_{n}^{\prime \prime \prime}$ under isomorphisms.

The check of the rest of conditions of 3.1 is routine. We refer to [2] or [4] for similar arguments.
\square of the claim.
Now let us turn to the second coordinates of q and r. Recall that for a condition $x \in Q_{n 0}$ we denote by $(x)_{0}$ its first coordinate, i.e. the first triple. If $y=\left\langle y_{n} \mid n<\omega\right\rangle \in \mathcal{P}$, then $(y)_{0}$ denotes $\left\langle\left(y_{n}\right)_{0} \mid n<\omega\right\rangle$. So, we have $(q)_{0} \rightarrow(r)_{0}$. Shrinking if necessary A_{n} 's (the sets of measure one of $\left(q_{n}\right)_{0}$'s), we can assume that for each $n \geq \ell(p)=\ell(r)=\ell(q)$ the
 Remember that the interpretations of both $\left\langle\underset{\sim}{\sim}, b_{\sim}, B_{n}\right\rangle$ and $\left\langle\underset{\sim}{b_{n}^{\prime}}, B_{\sim}^{\prime}\right\rangle$ depend only on a choice of elements of A_{n}.

Our tusk will be extend r to r^{*} so that $q \rightarrow r^{*}$. This will show that p and q are compatible. Which provides the desired contradiction.

Fix $n, \omega>n \geq \ell(p)$, large enough. Let η be the maximal coordinate of $\left(r_{n}\right)_{0}$ (i.e. the ordinal coding max $\left(\operatorname{rng}\left(c_{n}\right)\right), \zeta$ those of $\left(p_{n}\right)_{0}$ (which is the same for $\left(q_{n}\right)_{0}$, since (4) above) and ξ the one corresponding to ζ (of $\left.\left(q_{n}\right)_{0}\right)$ under $\left(q_{n}\right)_{0} \rightarrow\left(r_{n}\right)_{0}$. Denote $\pi_{\lambda_{n}, \eta, \xi}^{\prime \prime} C_{n}$ by D_{n}. Assuming that $n>2$, it follows from the definitions of the equivalence relation \longleftrightarrow and of the order \rightarrow, that $E_{\lambda_{n}}(\xi)$ (the ξ 's measure of the extender) is the same as $E_{\lambda_{n}}(\zeta)$. Also, $D_{n} \subseteq A_{n}$.

Define now a condition

$$
\left.r_{n}^{*}=\left\langle\left\langle c_{n}, C_{n}, h_{n}\right\rangle, \underset{\sim}{\left\langle e_{n}\right.}, \underset{\sim}{E_{n}}, g_{n}\right\rangle\right\rangle \in Q_{n 0}
$$

which extends

$$
r_{n}=\left\langle\left\langle c_{n}, C_{n}, h_{n}\right\rangle,\left\langle\underset{\sim}{b_{n}},{\underset{\sim}{n}}^{B_{n}}, g_{n}\right\rangle\right\rangle .
$$

The addition will depend only on the coordinate ξ of $E_{\lambda_{n}}$. So we need to deal with each $\nu \in D_{n}$. Set $\operatorname{dom}\left(e_{n}\right)=\operatorname{dom}\left(b_{n}\right) \cup \operatorname{dom}\left(b_{n}^{\prime}\right)$. Let $X \in \operatorname{dom}\left(e_{\sim}\right)$. If $X \in \operatorname{dom}\left(b_{n}\right)$, then set

$$
e_{\sim}(X)[\rho]=b_{n}(X)[\rho],
$$

for each $\rho \in C_{n}$. Now, if X is new, i.e. $X \in \operatorname{dom}\left(b_{n}^{\prime}\right) \backslash \operatorname{dom}\left(b_{n}\right)$, then we consider X_{α} the model that corresponds to X in p_{α} under the Δ-system.

Now we use Definition 3.1(8j) to find inside $b_{n}\left(A_{\alpha}\right)[\rho]$ some σ realizing over the common part the type of $b_{n}\left(A_{\alpha+1}^{0{ }^{+}}\right)[\nu]$. Recall that

$$
\underset{\sim}{b_{n}}\left(A_{\alpha+1}^{0 \kappa^{+}}\right)[\nu]=\underset{\sim}{b_{n}^{\prime}}\left(A_{\beta+1}^{0 \kappa^{+}}\right)[\nu]
$$

and

$$
{\underset{\sim}{b}}_{b_{\alpha}}^{\left(X_{\alpha}\right)[\nu]} \underset{\sim}{b_{n}^{\prime}}(X)[\nu] .
$$

Set now $e_{n}(X)[\rho]$ to be the element of σ corresponding to $b_{n}^{\prime}(X)[\nu]$, for each $\rho \in C_{n}$ and $\nu=\pi_{\lambda_{n}, \eta, \xi}(\rho)$.

The following claim suffice in order to complete the argument:
Claim 4.6.2 $r_{n}^{*} \in Q_{n 0}, r_{n}^{*} \geq_{0} r_{n}$ and $q_{n} \rightarrow r_{n}^{*}$.
Proof. Let us check first that q_{n}, r_{n} or basically b_{n}^{\prime} and c_{n} agree about the values of models in $\operatorname{dom}\left(b_{n}^{\prime}\right) \cap \operatorname{dom}\left(c_{n}\right)$. Suppose that X is such a model. Then, by the assumptions we made on the Δ-system, $X \in A_{\alpha^{*}}^{0 \kappa^{+}}$. Also,

$$
\begin{gathered}
A_{\alpha^{*}}^{0 \kappa^{+}} \in \operatorname{dom}\left(\underset{\sim}{b_{n}^{\prime}}\right) \cap \operatorname{dom}\left(c_{n}\right), \\
\operatorname{otp}_{\kappa^{+}}\left(A_{\alpha^{*}}^{0 \kappa^{+}}\right)=\underset{A_{\alpha^{*}}^{0 \kappa^{+}}\left(\kappa^{++}\right) \cap \kappa^{++}}{ }
\end{gathered}
$$

and

$$
A_{\alpha^{*}}^{0 \kappa^{+}}\left(\kappa^{++}\right) \in \operatorname{dom}\left(c_{n}\right) .
$$

By 3.1, $b_{n}\left(A_{\alpha^{*}}^{0 \kappa^{+}}\right)$depends only on the measure indexed by the code of

$$
c_{n}\left(A_{\alpha^{*}}^{0 \kappa^{+}}\left(\kappa^{++}\right)\right)=a_{n}\left(A_{\alpha^{*}}^{0 \kappa^{+}}\left(\kappa^{++}\right)\right)=a_{n}^{\prime}\left(A_{\alpha^{*}}^{0 \kappa^{+}}\left(\kappa^{++}\right)\right) .
$$

Let δ denotes the index of this measure (or its code). Then for each $\rho \in C_{n}$ we will have

$$
\pi_{\lambda_{n}, \eta, \delta}(\rho)=\pi_{\lambda_{n}, \xi, \delta}\left(\pi_{\lambda_{n}, \eta, \xi}(\rho)\right) .
$$

Hence, restricting $\left(q_{n}\right)_{0}$ to D_{n}, i.e. by replacing A_{n} in $\left(q_{n}\right)_{0}$ with D_{n}, we can insure that $b_{n}\left(A_{\alpha^{*}}^{0 \kappa^{+}}\right)$and $b_{n}^{\prime}\left(A_{\alpha^{*}}^{0 \kappa^{+}}\right)$agree. The same applies to any $X \in A_{\alpha^{*}}^{0 \kappa^{+}}$which is in the common domain, since its value too will depend on the δ-th measure of the extender only.

Consider now the maximal model of q_{n}. By 12, above, it is $A_{\beta+1}^{0 \kappa^{+}}$and the one of p_{n} is $A_{\alpha+1}^{0{ }^{+}}$. Now, for each $\nu \in A_{n}$, by the condition (7) on the Δ-system above we have

$$
\underset{\sim}{b_{n}}\left(A_{\alpha+1}^{0 \kappa^{+}}\right)[\nu]=\underset{\sim}{b_{n}^{\prime}}\left(A_{\beta+1}^{0 \kappa^{+}}\right)[\nu] .
$$

Pick $\rho \in C_{n}$. Let $\nu=\pi_{\lambda_{n}, \eta, \xi}(\rho)$ and $\sigma=\pi_{\lambda_{n}, \eta, \zeta}(\rho)$. Then

$$
e_{\sim}\left(A_{\alpha+1}^{0 \kappa_{1}^{+}}\right)[\rho]=\underset{\sim}{b_{n}}\left(A_{\alpha+1}^{0 \kappa^{+}}\right)[\sigma]
$$

and

$$
e_{\sim}\left(A_{\beta+1}^{0 \kappa^{+}}\right)[\rho]=\underset{\sim}{b_{n}^{\prime}}\left(A_{\beta+1}^{0 \kappa^{+}}\right)[\nu] .
$$

The first equality holds since e_{n} extends b_{n} and the second by the same reason as e_{n} was defined this way above.

The crucial observation is that $\sigma, \nu \in A_{n}$ (just $D_{n} \subseteq A_{n}$) and $\sigma>\nu$, so by Definition $3.1(8 \mathrm{j})$,

$$
{\underset{\sim}{n}}_{b_{n}}\left(A_{\alpha+1}^{0 \kappa^{+}}\right)[\nu] \subseteq \underset{\sim}{b_{n}}\left(A_{\alpha+1}^{0 \kappa^{+}}\right)[\sigma] .
$$

Hence, also,

$$
\underset{\sim}{b_{n}^{\prime}}\left(A_{\beta+1}^{0 \kappa^{+}}\right)[\nu] \subseteq \underset{\sim}{b_{n}}\left(A_{\alpha+1}^{0 \kappa^{+}}\right)[\sigma],
$$

since

$$
\underset{\sim}{e_{n}}\left(A_{\beta+1}^{0 \kappa^{+}}\right)[\rho]=\underset{\sim}{b_{n}^{\prime}}\left(A_{\beta+1}^{0 \kappa^{+}}\right)[\nu] .
$$

The same inclusion holds, by Definition 3.1(8j), if we replace $A_{\alpha+1}^{0 \kappa^{+}}$with any $Y \in \operatorname{dom}\left(b_{n}\right) \cap$ $C^{\kappa^{+}}\left(A_{\alpha+1}^{0 \kappa^{+}}\right)$such that $\sigma(Y)>\nu$, where $\sigma(Y)$ is the measure corresponding to Y. Thus

$$
\underset{\sim}{b_{n}^{\prime}}\left(A_{\beta+1}^{0 \kappa^{+}}\right)[\nu]=\underset{\sim}{b_{n}}\left(A_{\alpha+1}^{0 \kappa^{+}}\right)[\nu] \subseteq \underset{\sim}{b_{n}}(Y)[\sigma] .
$$

In the present case we have the least such Y. It is $A_{\alpha}^{0 \kappa^{+}}$. Just below it everything falls into $A_{\alpha^{*}}^{0 \kappa^{+}}$the kernel of the Δ-system. Consider now Y^{\prime} 's in $\operatorname{dom}\left(\underset{\sim}{\left(b_{n}\right)} \backslash C^{\kappa^{+}}\left(A_{\alpha+1}^{0 \kappa^{+}}\right)\right.$. If such Y is in $A_{\alpha}^{0 \kappa^{+}}$, it belongs to $A_{\alpha^{*}}^{0 \kappa^{+}}$the kernel of the Δ-system. Hence as it was observed in the beginning of the proof of this claim, we have the agreement. Suppose now that $Y \notin A_{\alpha}^{0 \kappa^{+}}$. By the basic properties of $G\left(\mathcal{P}^{\prime}\right)$ there will be $Z \in A_{\alpha}^{0 \kappa^{+}}$such that

$$
Y \cap A_{\alpha}^{0 \kappa^{+}}=Z \cap A_{\alpha}^{0 \kappa^{+}}
$$

Then again this Z falls into $A_{\alpha^{*}}^{0 \kappa^{+}}$and into the kernel of the Δ-system on which we have the agreement.

This completes the proof of the claim.
\square of the claim.

Force with $\langle\mathcal{P}, \rightarrow\rangle$. Let $G(\mathcal{P})$ be a generic set. By the lemmas above no cardinals are collapsed. Let $\left\langle\nu_{n} \mid n<\omega\right\rangle$ denotes the diagonal Prikry sequence added for the normal measures of the extenders $\left\langle E_{\lambda_{n}} \mid n<\omega\right\rangle$ and $\left\langle\rho_{n} \mid n<\omega\right\rangle$ those for $\left\langle E_{\kappa_{n}} \mid n<\omega\right\rangle$. We can deduce now the following conclusion:

Theorem 4.7 The following hold in $V\left[G\left(\mathcal{P}^{\prime}\left(\theta^{\prime}\right)\right), G\left(\left(\mathcal{P}^{\prime}(\theta)\right), G(\mathcal{P})\right]\right.$:
(1) $\operatorname{cof}\left(\prod_{n<\omega} \nu_{n}^{+n+2} /\right.$ finite $)=\kappa^{++}$
(2) $\operatorname{cof}\left(\prod_{n<\omega} \rho_{n}^{+n+2} /\right.$ finite $)=\kappa^{+3}$
(3) for every unbounded subset a of κ consisting of regular cardinals and disjoint to both $\left\{\nu_{n}^{+n+2} \mid n<\omega\right\}$ and $\left\{\rho_{n}^{+n+2} \mid n<\omega\right\}$, for every ultrafilter D over a which includes all co-bounded subsets of κ we have

$$
\operatorname{cof}\left(\prod a / D\right)=\kappa^{+}
$$

Proof. Items (1) and (2) follow easily from the construction. Thus, for (1), take the increasing (under the inclusion) enumeration $\left\langle X_{\tau} \mid \tau<\kappa^{++}\right\rangle$of the chain of models given by $G\left(\mathcal{P}^{\prime}\left(\kappa^{++}\right)\right.$). Define a scale of functions $\left\langle F_{\tau} \mid \tau<\kappa^{++}\right\rangle$in the product $\prod_{n<\omega} \nu_{n}^{+n+2}$ as follows: let for each $\tau<\kappa^{++}$

$$
F_{\tau}^{\prime}(n)=f_{n}\left(X_{\tau}\right), \text { if } f_{n}\left(X_{\tau}\right)<\nu_{n}^{+n+2}
$$

and

$$
F_{\tau}^{\prime}(n)=0, \text { otherwise },
$$

where for some $p=\left\langle p_{k}\right| k\langle\omega\rangle \in G(\mathcal{P})$ with $\ell(p)>n$ we have f_{n} as the first coordinate of p_{n}. Now let $\left\langle F_{\tau} \mid \tau<\kappa^{++}\right\rangle$be the subsequence of $\left\langle F_{\tau}^{\prime} \mid \tau<\kappa^{++}\right\rangle$consisting of all F_{τ}^{\prime} which are not in V.

Similar, for (2), take the increasing (under the inclusion) enumeration $\left\langle Y_{\tau} \mid \tau<\kappa^{+3}\right\rangle$ of the chain of models of cardinality κ^{++}given by $G\left(\mathcal{P}^{\prime}\right)$. Define a scale of functions $\left\langle H_{\tau} \mid \tau<\kappa^{++}\right\rangle$ in the product $\prod_{n<\omega} \rho_{n}^{+n+2}$ as follows:

$$
H_{\tau}^{\prime}(n)=g_{n}\left(X_{\tau}\right), \text { if } g_{n}\left(Y_{\tau}\right)<\rho_{n}^{+n+2}
$$

and

$$
H_{\tau}^{\prime}(n)=0, \text { otherwise },
$$

where for some $p=\left\langle p_{k} \mid k<\omega\right\rangle \in G(\mathcal{P})$ with $\ell(p)>n$ we have g_{n} as the second coordinate of p_{n}. Let $\left\langle H_{\tau} \mid \tau<\kappa^{++}\right\rangle$be the subsequence of $\left\langle H_{\tau}^{\prime} \mid \tau<\kappa^{++}\right\rangle$consisting of all H_{τ}^{\prime} 's which are not in V.

Let us turn to (3) which requires a more delicate analyses of the forcing $\langle\mathcal{P}, \rightarrow\rangle$. We deal with

$$
\operatorname{cof}\left(\prod_{n<\omega} \rho_{n}^{+n+1} / \text { finite }\right) .
$$

The rest of cases are similar or just standard. The crucial observation here is that given $\left\langle\left\langle a_{n}, A_{n}, f_{n}\right\rangle,\left\langle b_{n}, B_{n}, g_{n}\right\rangle\right\rangle \in Q_{n 0}$, for some $n<\omega$, it is impossible to change $\operatorname{rng}\left(b_{n}\right)[\nu] \upharpoonright \kappa^{+n+1}$ by passing to an equivalent condition, for any $\nu \in A_{n}$. Just the definition 3.10(4(b)v) explicitly requires this.
This means, in particular that

$$
\operatorname{cof}\left(\prod_{n<\omega} \rho_{n}^{+n+1} / \text { finite }\right)=\operatorname{cof}\left(\prod_{n<\omega} \kappa_{n}^{+n+1} / \text { finite }\right),
$$

where the connection is provided by b_{n} 's. But note that the cofinality of the last product is κ^{+}, since every function their can be bounded by an old function. So we are done.

5 The general case.

Let us turn now from $\theta=\kappa^{+3}, \theta^{\prime}=\kappa^{+}$to arbitrary regular θ and θ^{\prime}. Assume We force with preparation forcings $\mathcal{P}^{\prime}\left(\theta^{\prime}\right)$ followed by $\mathcal{P}^{\prime}(\theta)$ of $[6]$. Let $G\left(\mathcal{P}^{\prime}\left(\theta^{\prime}\right)\right)$ and $G\left(\mathcal{P}^{\prime}(\theta)\right)$ be corresponding generic sets. We work in $V\left[G\left(\mathcal{P}^{\prime}\left(\theta^{\prime}\right)\right), G\left(\mathcal{P}^{\prime}(\theta)\right)\right]$ and define forcing notions $Q_{n 0}, Q_{n 1}$ and then \mathcal{P} similar to those of Section 2.

For each $n<\omega$ let $\delta_{n}=\kappa_{n}^{+\kappa_{n}^{+n+2}+1}$ and $\delta_{n}^{\prime}=\lambda_{n}^{\lambda_{n}^{+n+2}+1}$. Fix some $n<\omega$.
Definition 5.1 Let $Q_{n 0}$ be the set consisting of pairs of triples $\langle\langle a, A, f\rangle,\langle\underset{\sim}{\sim}, \underset{\sim}{b}, g\rangle\rangle$ so that:

1. f is partial function from θ^{\prime} to λ_{n} of cardinality at most κ
2. a is a partial function of cardinality less than λ_{n} so that
(a) There is $\left\langle\left\langle A^{0 \tau}\left(\theta^{\prime}\right), A^{1 \tau}\left(\theta^{\prime}\right), C^{\tau}\left(\theta^{\prime}\right)\right\rangle \mid \tau \in s\left(\theta^{\prime}\right)\right\rangle \in G\left(\mathcal{P}^{\prime}\left(\theta^{\prime}\right)\right)$ which we call it further a background condition of a,
such that for each $\tau \in s\left(\theta^{\prime}\right) \quad A^{0 \tau}\left(\theta^{\prime}\right)$ is a successor model having unique immediate predecessor $\left(A^{0 \tau}\left(\theta^{\prime}\right)\right)^{-}$(i.e. $\left.\operatorname{Pred}\left(A^{0 \tau}\left(\theta^{\prime}\right)\right)=\left\{\left(A^{0 \tau}\left(\theta^{\prime}\right)\right)^{-}\right\}\right)$and $\left\langle A^{0 \tau}\left(\theta^{\prime}\right)^{-}\right| \tau \in$ $\left.s\left(\theta^{\prime}\right)\right\rangle \in A^{0 \kappa^{+}}\left(\theta^{\prime}\right)$. The same holds for $\left\langle\left\langle\left(A^{0 \tau}\left(\theta^{\prime}\right)\right)^{-}, A^{1 \tau}\left(\theta^{\prime}\right) \backslash\left\{A^{0 \tau}\left(\theta^{\prime}\right)\right\}, C^{\tau}\left(\theta^{\prime}\right) \upharpoonright\right.\right.$ $\left.A^{0 \tau}\left(\theta^{\prime}\right)\right\rangle\left|\tau \in s\left(\theta^{\prime}\right)\right\rangle$, i.e. for each $\tau \in s \quad\left(A^{0 \tau}\left(\theta^{\prime}\right)\right)^{-}$is a successor model having unique immediate predecessor $\left(\left(A^{0 \tau}\left(\theta^{\prime}\right)\right)^{-}\right)^{-}\left(\right.$i.e. $\left.\operatorname{Pred}\left(\left(A^{0 \tau}\left(\theta^{\prime}\right)\right)^{-}\right)=\left\{\left(\left(A^{0 \tau^{\prime}}\left(\theta^{\prime}\right)\right)^{-}\right)^{-}\right\}\right)$ and $\left\langle\left(A^{0 \tau}\left(\theta^{\prime}\right)\right)^{-}\right)^{-}\left|\tau \in s\left(\theta^{\prime}\right)\right\rangle \in\left(A^{0 \kappa^{+}}\left(\theta^{\prime}\right)\right)^{-}$.
$\operatorname{dom}(a)$ consists of models appearing in $A^{1 \kappa^{+}}\left(\theta^{\prime}\right)$ and in $\left(A^{1 \tau}\left(\theta^{\prime}\right)\right)^{-}, \tau \in s\left(\theta^{\prime}\right)$.
Note that conditions as above are dense in $\mathcal{P}^{\prime}\left(\theta^{\prime}\right)$. Let us refer to them further as conditions of the right form.
(b) for each $X \in \operatorname{dom}(a)$ there is $k \leq \omega$ so that $a(X) \subseteq H\left(\chi^{+k}\right)$.

Also the following holds
(i) $|X|=\kappa^{+}$implies $|a(X)|=\lambda_{n}^{+n+1}$
(ii) $|X|=\theta^{\prime}$ implies $|a(X)|=\delta_{n}^{\prime}$ and $a(X) \cap\left(\delta_{n}^{\prime}\right)^{+} \in O R D$
(iii) $A^{0 \kappa^{+}}\left(\theta^{\prime}\right),\left(A^{0 \kappa^{+}}\left(\theta^{\prime}\right)\right)^{-},\left(A^{0 \theta^{\prime}}\left(\theta^{\prime}\right)\right)^{-} \in \operatorname{dom}(a)$.

This way we arranged that λ_{n}^{+n+1} will correspond to κ^{+}and δ_{n}^{\prime} to θ^{\prime}.
Further let us refer to $A^{0 \kappa^{+}}\left(\theta^{\prime}\right)$ as the maximal model of the domain of a and to $\left\langle\left(A^{0 \tau}\left(\theta^{\prime}\right)\right)^{-} \mid\left(A^{0 \tau}\left(\theta^{\prime}\right)\right)^{-} \in \operatorname{dom}(a)\right\rangle$ as the maximal sequence of the domain of a. Denote the first as $\max (\operatorname{dom}(a))$ and the second as $\max (\operatorname{dom}(a))$ (or just $\max (a), \max (a))$.

Further passing from $Q_{0 n}$ to \mathcal{P} we will require that for every $k<\omega$ for all but finitely many n 's the n-th image of X will be an elementary submodel of $H\left(\chi^{+k}\right)$. But in general just subsets are allowed here.
(c) (Models come from $A^{0 \kappa^{+}}\left(\theta^{\prime}\right)$) If $X \in \operatorname{dom}(a)$ and $X \neq A^{0 \kappa^{+}}\left(\theta^{\prime}\right)$ then $X \in A^{0 \kappa^{+}}\left(\theta^{\prime}\right)$. The condition puts restriction on models in $\operatorname{dom}(a)$ and allows to control them via the maximal model of cardinality κ^{+}.
(d) (All the cardinalities are inside $\left.A^{0 \kappa^{+}}\left(\theta^{\prime}\right)\right)$ If $\left(A^{0 \tau}\left(\theta^{\prime}\right)\right)^{-} \in \operatorname{dom}(a)$, then $\tau \in$ $A^{0 \kappa^{+}}\left(\theta^{\prime}\right)$.
(e) (No holes) If $X \in A^{1 \tau}\left(\theta^{\prime}\right) \cap \operatorname{dom}(a)$, for some $\tau \in s\left(\theta^{\prime}\right)$, then $\left(A^{0 \tau}\left(\theta^{\prime}\right)\right)^{-} \in \operatorname{dom}(a)$ as well.
This means that in order to add $X \in A^{1 \tau}\left(\theta^{\prime}\right)$ to $\operatorname{dom}(a)$ we need first to insure that the maximal model of cardinality as those of X is inside.
(f) If $X, Y \in \operatorname{dom}(a), X \in Y$ (or $X \subseteq Y$) and k is the minimal so that $a(X) \subseteq H\left(\chi^{+k}\right)$ or $a(Y) \subseteq H\left(\chi^{+k}\right)$, then $a(X) \cap H\left(\chi^{+k}\right) \in a(Y) \cap H\left(\chi^{+k}\right)\left(\right.$ or $a(X) \cap H\left(\chi^{+k}\right) \subseteq$ $\left.a(Y) \cap H\left(\chi^{+k}\right)\right)$.
The intuitive meaning is that a is supposed to preserve membership and inclusion. But we cannot literally require this since $a(A)$ and $a(B)$ may be substructures of different structures. So we first go down to the smallest of this structures and then put the requirement on the intersections.
(g) Let $X, Y \in \operatorname{dom}(a)$. Then
(i) $|X|=|Y|$ implies $|a(X)|=|a(Y)|$
(ii) $|X|<|Y|$ implies $|a(X)|<|a(Y)|$
(h) The set

$$
\left\{\nu \in s\left(\theta^{\prime}\right) \mid\left(A^{0 \nu}\left(\theta^{\prime}\right)\right)^{-} \in \operatorname{dom}(a)\right\}
$$

is closed.
(i) The image by a of $A^{0 \kappa^{+}}\left(\theta^{\prime}\right)$, i.e. $a\left(A^{0 \kappa^{+}}\left(\theta^{\prime}\right)\right)$, intersected with $\left(\delta_{n}^{\prime}\right)^{+}$is above all the rest of $\operatorname{rng}(a)$ restricted to $\left(\delta_{n}^{\prime}\right)^{+}$in the ordering of the extender E_{n} (via some reasonable coding by ordinals).
Recall that the extender $E_{\lambda_{n}}$ acts on $\left(\delta_{n}^{\prime}\right)^{+}$and our main interest is in Prikry sequences it will produce. So, parts of $\operatorname{rng}(a)$ restricted to $\left(\delta_{n}^{\prime}\right)^{+}$will play the central role.
(j) If $X \in \operatorname{dom}(a)$ then $C^{|X|}\left(\theta^{\prime}\right)(X) \cap \operatorname{dom}(a)$ is a closed chain. Let $\left\langle X_{i} \mid i<j\right\rangle$ be its increasing continuous enumeration. For each $l<j$ consider the final segment $\left\langle X_{i} \mid l \leq i<j\right\rangle$ and its image $\left\langle a\left(X_{i}\right) \mid l \leq i<j\right\rangle$. Find the minimal k so that

$$
a\left(X_{i}\right) \subseteq H\left(\chi^{+k}\right) \text { for each } i, l \leq i<j .
$$

Then the sequence

$$
\left\langle a\left(X_{i}\right) \cap H\left(\chi^{+k}\right) \mid l \leq i<j\right\rangle
$$

is increasing and continuous.
Note that k here may depend on l, i.e. on the final segment.
(k) (The walk is in the domain) If $X \in \operatorname{dom}(a) \cap A^{1 \nu}\left(\theta^{\prime}\right)$, for some $\nu \in s$, then the general walk from $\left(A^{0 \nu}\left(\theta^{\prime}\right)\right)^{-}$to X is in $\operatorname{dom}(a)$.
(l) If $X \in \operatorname{dom}(a) \cap A^{1 \nu}\left(\theta^{\prime}\right)$, for some $\nu \in s$ is a limit model and $\operatorname{cof}\left(o t p_{\nu}(X)-1\right)<\kappa_{n}$ (i.e. the cofinality of the sequence $C^{\nu}(X) \backslash\{X\}$ under the inclusion relation is less than κ_{n}) then a closed cofinal subsequence of $C^{\kappa^{+}}(X) \backslash\{X\}$ is in $\operatorname{dom}(a)$. The images of its members under a form a closed cofinal in $a(X)$ sequence.
(m) If $\left\langle X_{i} \mid i<j\right\rangle$ is an increasing (under the inclusion) sequence of elements of dom (a) with $X_{i} \in C^{\tau_{i}}\left(\theta^{\prime}\right)\left(A^{0 \tau_{i}}\left(\theta^{\prime}\right)\right), i<j$, then $\bigcup_{i<j} X_{i} \in \operatorname{dom}(a)$ as well.
Note that $\bigcup_{i<j} X_{i} \in C^{\cup i<j \tau_{i}}\left(\theta^{\prime}\right)\left(A^{0 \cup_{i<j} \tau_{i}}\left(\theta^{\prime}\right)\right)$. So, in particular, by ?? also $A^{0 \cup_{i<j} \tau_{i}}\left(\theta^{\prime}\right) \in$ $\operatorname{dom}(a)$.
(n) (The minimal models condition) Suppose that $X \in \operatorname{dom}(a) \cap C^{\xi}\left(\theta^{\prime}\right)\left(A^{0 \xi}\left(\theta^{\prime}\right)\right)$, for some $\xi \in s\left(\theta^{\prime}\right) \backslash \kappa^{+}+1$. Let $\tau \in s\left(\theta^{\prime}\right)$ and $X^{*} \in C^{\tau}\left(\theta^{\prime}\right)\left(A^{0 \tau}\left(\theta^{\prime}\right)\right)$ be such that $\tau<\xi, X \in X^{*}$ and for each $\rho, \tau \leq \rho<\xi, Z \in C^{\rho}\left(\theta^{\prime}\right)\left(A^{0 \rho}\left(\theta^{\prime}\right)\right)$ we have $X \in Z$ implies $X^{*} \in Z$ or $X^{*}=Z$. Then $X^{*} \in \operatorname{dom}(a)$ as well as $\left(X^{*}\right)^{-}$-its immediate predecessor in $C^{\tau}\left(\theta^{\prime}\right)\left(A^{0 \tau}\left(\theta^{\prime}\right)\right)$.
In addition, we require the following:
if $\left(X^{*}\right)^{-} \notin X$, then for each $H \in a\left(\left(X^{*}\right)^{-}\right)$there is $H^{\prime} \in a\left(\left(X^{*}\right)^{-}\right)$with $H \in H^{\prime}$ and $a(X) \subseteq H^{\prime}$. Moreover, if $|a(X)| \in a\left(\left(X^{*}\right)^{-}\right)$, then $\left|H^{\prime}\right|=|a(X)|$. If $|a(X)| \notin$ $a\left(\left(X^{*}\right)^{-}\right)$, then $\left|H^{\prime}\right|=\min \left(a\left(\left(X^{*}\right)^{-}\right) \cap O R D \backslash|a(X)|\right)$.
Note that $X \in A^{0 \kappa^{+}}\left(\theta^{\prime}\right) \in \operatorname{dom}(a)$, by ??. So X^{*} always exists.
The second part of the condition insures that there will be enough models in $a\left(\left(X^{*}\right)^{-}\right)$to allow extensions which will include $a(X)$.
(o) (Minimal cover condition) Let $Y \in A^{0 \xi}\left(\theta^{\prime}\right) \cap \operatorname{dom}(a), X \in A^{0 \tau}\left(\theta^{\prime}\right) \cap \operatorname{dom}(a)$ for some $\xi<\tau$ in s. Suppose that $Y \nsubseteq X$. Then

- $\tau \in Y$ implies that the smallest model of $Y \cap C^{\tau}\left(\theta^{\prime}\right)\left(A^{0 \tau}\left(\theta^{\prime}\right)\right)$ including X is in $\operatorname{dom}(a)$
- $\tau \notin Y$ implies that the smallest model of $Y \cap C^{\rho}\left(\theta^{\prime}\right)\left(A^{0 \rho}\left(\theta^{\prime}\right)\right)$ including X is in $\operatorname{dom}(a)$, for $\rho=\min (Y \cap s \backslash \tau)$.
(p) (The first models condition) Suppose that $X \in \operatorname{dom}(a) \cap C^{\tau}\left(\theta^{\prime}\right)\left(A^{0 \tau}\left(\theta^{\prime}\right)\right), Y \in$ $\operatorname{dom}(a) \cap C^{\rho}\left(\theta^{\prime}\right)\left(A^{0 \rho}\left(\theta^{\prime}\right)\right), \sup (X)>\sup (Y)$ and $Y \notin X$, for some $\tau<\rho, \tau, \rho \in$ $s\left(\theta^{\prime}\right)$. Let $\eta=\min ((X \cap s) \backslash \rho)$. Then the first model $E \in X \cap C^{\eta}\left(\theta^{\prime}\right)\left(A^{0 \eta}\left(\theta^{\prime}\right)\right)$ which includes Y is in $\operatorname{dom}(a)$.
(q) (Models witnessing Δ-system type are in the domain) If $F_{0}, F_{1}, F \in A^{1 \mu}\left(\theta^{\prime}\right) \cap$ $\operatorname{dom}(a)$ is a triple of a Δ - system type, for some $\mu \in s$, then the corresponding models $G_{0}, G_{0}^{*}, G_{1}, G_{1}^{*}, G^{*}$, as in the definition of a Δ - system type (see [6](Definition 1.1(????))), are in $\operatorname{dom}(a)$ as well and

$$
a\left(F_{0}\right) \cap a\left(F_{1}\right)=a\left(F_{0}\right) \cap a\left(G_{0}\right)=a\left(F_{1}\right) \cap a\left(G_{1}\right)
$$

(r) If $F_{0}, F_{1}, F \in A^{1 \mu}\left(\theta^{\prime}\right)$ is a triple of a Δ - system type, for some $\mu \in s$ and $F, F_{0} \in \operatorname{dom}(a)$ (or $\left.F, F_{1} \in \operatorname{dom}(a)\right)$, then $F_{1} \in \operatorname{dom}(a)$ (or $F_{0} \in \operatorname{dom}(a)$).
(s) (The isomorphism condition) Let $F_{0}, F_{1}, F \in A^{1 \mu}\left(\theta^{\prime}\right) \cap \operatorname{dom}(a)$ be a triple of a Δ - system type, for some $\mu \in s$. Then

$$
\left\langle a\left(F_{0}\right) \cap H\left(\chi^{+k}\right), \in\right\rangle \simeq\left\langle a\left(F_{1}\right) \cap H\left(\chi^{+k}\right), \in\right\rangle
$$

where k is the minimal so that $a\left(F_{0}\right) \subseteq H\left(\chi^{+k}\right)$ or $a\left(F_{1}\right) \subseteq H\left(\chi^{+k}\right)$.
Note that it is possible to have for example $a\left(F_{0}\right) \prec H\left(\chi^{+6}\right)$ and $a\left(F_{1}\right) \prec H\left(\chi^{+18}\right)$. Then we take $k=6$.
Let π be the isomorphism between

$$
\left\langle a\left(F_{0}\right) \cap H\left(\chi^{+k}\right), \in\right\rangle,\left\langle a\left(F_{1}\right) \cap H\left(\chi^{+k}\right), \in\right\rangle
$$

and $\pi_{F_{0} F_{1}}$ be the isomorphism between F_{0} and F_{1}. Require that for each $Z \in$ $F_{0} \cap \operatorname{dom}(a)$ we have $\pi_{F_{0} F_{1}}(Z) \in F_{1} \cap \operatorname{dom}(a)$ and

$$
\pi\left(a(Z) \cap H\left(\chi^{+k}\right)\right)=a\left(\pi_{F_{0} F_{1}}(Z)\right) \cap H\left(\chi^{+k}\right)
$$

3. $\left\{\alpha<\theta^{\prime} \mid \alpha \in \operatorname{dom}(a)\right.$ or it is a code of an element of $\left.\operatorname{dom}(a)\right\} \cap \operatorname{dom}(f)=\emptyset$
4. $A \in E_{\lambda_{n}, a(\max (a))}$
5. $\min (A)>|\operatorname{dom}(a)|+|\operatorname{dom}(\underset{\sim}{b})|$
6. for every ordinals α, β, γ which are elements of $\operatorname{rng}(a)$ or actually the ordinals coding models in $\operatorname{rng}(a)$ we have

$$
\begin{aligned}
& \alpha \geq_{E_{\lambda_{n}}} \beta \geq_{E_{\lambda_{n}}} \gamma \quad \text { implies } \\
& \pi_{\lambda_{n}, \alpha, \gamma}(\rho)=\pi_{\lambda_{n}, \beta, \gamma}\left(\pi_{\lambda_{n}, \alpha, \beta}(\rho)\right)
\end{aligned}
$$

for every $\rho \in \pi_{\lambda_{n}, \operatorname{maxrng}(a), \alpha}^{\prime \prime}(A)$.
Let us turn now to the second component of a condition, i. e. to $\langle\underset{\sim}{b} \underset{\sim}{b} \underset{\sim}{B}, g\rangle$.
7. g is a function from θ to κ_{n} of cardinality at most κ
8. b is a name, depending on $\langle a, A\rangle$, of a partial function of cardinality less than λ_{n}. So, each choice of an element from A gives the actual function which is in V. Note that the relevant forcing is the One Element Prikry Forcing on Extender, which does not change V, i.e. it is trivial.

The following conditions are satisfied:
(a) (Domain)
the domain of $\underset{\sim}{b} \in V$, i.e. it is already decided in the sense that each choice of an element in A will give the same domain.
(b) (Background condition) There is $\left\langle\left\langle A^{0 \tau}, A^{1 \tau}, C^{\tau}\right\rangle \mid \tau \in s\right\rangle \in G\left(\mathcal{P}^{\prime}(\theta)\right)$ which we call it further a background condition of $\underset{\sim}{b}$.
(c) (Supports) $s \cap \theta^{\prime} \subseteq s\left(\theta^{\prime}\right)$.
(d) for each $X \in \operatorname{dom}(\underset{\sim}{b})$ and each $\nu \in A$ there is $k \leq \omega$ so that the interpretation according to ν of $\underset{\sim}{b}(X)$ is a subset of $H\left(\chi^{+k}\right)$.
Moreover,
i. if $|X|=\left(\theta^{\prime}\right)^{+}$, then it is forced that $|\underset{\sim}{b}(X)|=\kappa_{n}^{+n+1}$, i.e. any choice of an element from A interprets $\underset{\sim}{b}(X)$ in such a way.
ii. if $|X|>\left(\theta^{\prime}\right)^{+}$then it is forced that $\underset{\sim}{b}(X) \mid>\kappa_{n}^{+n+1}$.
iii. if $|X|<\left(\theta^{\prime}\right)^{+}$, then $A^{0|X|}\left(\theta^{\prime}\right) \in \operatorname{dom}(a)$ and for each $\nu \in A$ the interpretation of $\underset{\sim}{b}(X)$ according to ν has cardinality corresponding to those of $\mid a\left(A^{0|X|}\left(\theta^{\prime}\right) \mid\right.$, i.e.

$$
\pi_{\lambda_{n}, \max (\operatorname{rng}(a)), \mid a\left(A^{0|X|}\left|\left(\theta^{\prime}\right)\right|\right.}(\nu)
$$

The above conditions mean that the correspondence splits over θ^{\prime}. Thus, as in the case $\theta=\kappa^{+3}, \theta^{\prime}=\kappa^{+}$we have models of cardinalities below θ^{\prime} correspond to those of cardinalities below λ_{n} and the models of cardinalities $\geq \theta^{\prime}$ to those of cardinalities κ^{+n+1} and above. In the previous case we had models of cardinalities κ^{+}and κ^{++}only. Here we can have plenty of them.
iv. if $|X|=\theta$, then it is forced that $|\underset{\sim}{b}(X)|=\delta_{n}$ and $\underset{\sim}{b}(X) \cap \delta_{n}^{+} \in O R D$ v. $A^{0 \kappa^{+}},\left(A^{0 \kappa^{+}}\right)^{-},\left(A^{0 \theta}\right)^{-}$are in $\operatorname{dom}(\underset{\sim}{b})$.

Further let us refer to $A^{0 \kappa^{+}}$as the maximal model of the domain of b and to $\left\langle\left(A^{0 \tau}\right)^{-} \mid\left(A^{0 \tau}\right)^{-} \in \operatorname{dom}(b)\right\rangle$ as the maximal sequence of the domain of b. Denote it as $\max (\operatorname{dom}(b))$.
Later passing from $Q_{n 0}$ to \mathcal{P} we will require that for every $k<\omega$ for all but finitely many n 's the n-th image of X will be an elementary submodel of $H\left(\chi^{+k}\right)$. But in general just subsets are allowed here.
(e) (Models come from $A^{0 \kappa^{+}}$) If $X \in \operatorname{dom}(\underset{\sim}{b})$ and $X \neq A^{0 \kappa^{+}}$, then $X \in A^{0 \kappa^{+}}$.
(f) Let $E, F \in \operatorname{dom}(\underset{\sim}{b}), E \in F$ (or $E \subseteq F$) and $\nu \in A$. If k is the minimal so that the interpretation of $\underset{\sim}{b}(E)$ according to ν is a subset of $H\left(\chi^{+k}\right)$ or $\underset{\sim}{b}(F)$ according to ν is a subset of $H\left(\chi^{+k}\right)$, then

$$
\begin{gathered}
\underset{\sim}{b}(E)[\nu] \cap H\left(\chi^{+k}\right) \in \underset{\sim}{b}(F)[\nu] \cap H\left(\chi^{+k}\right) \\
\left(\operatorname{or} \underset{\sim}{b}(E)[\nu] \cap H\left(\chi^{+k}\right) \subseteq \underset{\sim}{b}(F)[\nu] \cap H\left(\chi^{+k}\right)\right),
\end{gathered}
$$

where in the last two lines we mean the interpretations according to ν. Let us further deal with such interpretations without mentioning this explicitly.
The intuitive meaning is that b is supposed to preserve membership and inclusion. But we cannot literally require this since $b(E)$ and $b(F)$ may be substructures of different structures. So we first go down to the smallest of this structures and then put the requirement on the intersections.
(g) The image by b of $A^{0 \kappa^{+}}$, i.e. $b\left(A^{0 \kappa^{+}}\right)$, intersected with δ_{n}^{+}is above all (i.e. is forced by each $\nu \in A$ to be such) the rest of $\operatorname{rng}(b)$ restricted to δ_{n}^{+}in the ordering of the extender $E_{\kappa_{n}}$ (via some reasonable coding by ordinals).
Recall that the extender $E_{\kappa_{n}}$ acts on δ_{n}^{+}and our main interest is in Prikry sequences it will produce. So, parts of $\operatorname{rng}(b)$ restricted to δ_{n}^{+}will play the central role.

Let us, as in [6], denote by $\operatorname{otp}_{\tau}(X) \quad \tau \in s$ the order type of the maximal under inclusion chain of elements in $\mathcal{P}(X) \cap A^{1 \tau}$ which is just the order type of $C^{\tau}(X)$, for $X \in A^{1 \tau}$. If $X \in C^{\tau}\left(A^{0 \tau}\right)$, then $C^{\tau}(X)=C^{\tau}\left(A^{0 \tau}\right) \cap(X \cup\{X\})=C^{\tau}\left(A^{0 \tau}\right) \upharpoonright X+1$. Hence, in this case, otp $(X)=\operatorname{otp}\left(C^{\tau}\left(A^{0 \tau}\right) \upharpoonright X\right)+1$. Note that $\operatorname{otp}(X)$ is always a successor ordinal below τ^{+}. Recall that by [6] we have for each $X \in A^{1 \tau}$ an element $Y \in C^{\tau}\left(A^{0 \tau}\right)$ such that $\operatorname{otp}(X)=\operatorname{otp}_{\tau}(Y)$.

Next conditions deal with the connection between the structure over λ_{n} and those over κ_{n}. Note that there were no similar structures in the previous papers [4], [6].
(h) (Order types) If $X \in \operatorname{dom}(\underset{\sim}{b}) \cap A^{1 \tau}$, then $\operatorname{otp}_{\tau}\left(A^{0 \tau}\left(\theta^{\prime}\right)\right)=\operatorname{otp}\left(C^{\tau}\left(\theta^{\prime}\right)\left(A^{0 \tau}\left(\theta^{\prime}\right)\right) \geq\right.$ $\operatorname{otp}_{\tau}(X)$. Note that by $8(\mathrm{~d})$ iii we have $A^{0 \tau}\left(\theta^{\prime}\right) \in \operatorname{dom}(a)$.

Denote by $X\left(\lambda_{n}\right)$ the least element Z of $C^{\tau}\left(\theta^{\prime}\right)\left(A^{1 \tau}\left(\theta^{\prime}\right)\right)$ with otp $(Z) \geq$ otp (X). It will be the one corresponding to X at the level λ_{n}.
(i) $X\left(\lambda_{n}\right) \in \operatorname{dom}(a)$.

The next condition insures that the function $\operatorname{otp}_{\tau}(X) \rightarrow X\left(\lambda_{n}\right)$ is order preserving.
(j) (Order preservation) If $X, X^{\prime} \in \operatorname{dom}(\underset{\sim}{b})$, then

- $\operatorname{otp}_{\tau}(X)=\operatorname{otp}_{\tau}\left(X^{\prime}\right)$ iff $X\left(\lambda_{n}\right)=X^{\prime}\left(\lambda_{n}\right)$
- $\operatorname{otp}_{\tau}(X)<\operatorname{otp}_{\tau}\left(X^{\prime}\right)$ iff $X\left(\lambda_{n}\right) \subset X^{\prime}\left(\lambda_{n}\right)$
(k) (Dependence) Let $X \in \operatorname{dom}(\underset{\sim}{b}) \cap C^{\tau}\left(A^{0 \tau}\right)$. Then $\underset{\sim}{b}(X)$ depends on the value of the one element Prikry forcing with the measure $\left.a\left(X \tilde{(} \lambda_{n}\right)\right)$ over λ_{n}. More precisely: let $A(X)=\pi_{\max \operatorname{rng}(a), a\left(X\left(\lambda_{n}\right)\right)}^{E_{\lambda_{n}}}{ }^{\prime \prime} A$, then each choice of an element from $A(X)$ already decides $\underset{\sim}{b}(X)$, i.e. whenever $\nu_{1}, \nu_{2} \in A$ and

$$
\pi_{\max \operatorname{rng}(a), a\left(X\left(\lambda_{n}\right)\right)}^{E_{\lambda_{n}}}\left(\nu_{1}\right)=\pi_{\operatorname{maxrng}(a), a\left(X\left(\lambda_{n}\right)\right)}^{E_{\lambda_{n}}}\left(\nu_{2}\right)
$$

we have

$$
\underset{\sim}{b}(X)\left[\nu_{1}\right]=\underset{\sim}{b}(X)\left[\nu_{2}\right] .
$$

 by $\nu(X)$.

So $\underset{\sim}{b}(X)$ depends only on members of $A(X)$ rather than those of A.
The next condition is crucial for the κ^{++}-c.c. of the forcing.
(1) (Inclusion condition)

Let $\nu, \nu^{\prime} \in A, \nu<\nu^{\prime}$. Then

- $\pi_{\operatorname{maxrng}(a), a\left(A^{0^{+}+}\left(\lambda_{n}\right)\right)}^{E_{\lambda_{n}}}(\nu) \in \pi_{\operatorname{maxrng}(a), a\left(A^{0^{+}}\left(\lambda_{n}\right)\right)}^{E_{\lambda_{n}}}\left(\nu^{\prime}\right)$ implies

$$
\underset{\sim}{b}\left(A^{0 \kappa^{+}}\right)[\nu] \in \underset{\sim}{b}\left(A^{0 \kappa^{+}}\right)\left[\nu^{\prime}\right] .
$$

- If $Y \in \operatorname{dom} \underset{\sim}{b}) \cap C^{\kappa^{+}}\left(A^{0 \kappa^{+}}\right)$and

$$
\left.\pi_{\operatorname{maxrng}(a), a\left(A^{0^{+}}\right.}^{E_{\lambda_{n}}}\left(\lambda_{n}\right)\right)(\nu) \in \pi_{\operatorname{maxrng}(a), a\left(Y\left(\lambda_{n}\right)\right)}^{E_{\lambda_{n}}}\left(\nu^{\prime}\right),
$$

then either

$$
\underset{\sim}{b}\left(A^{0 \kappa^{+}}\right)[\nu] \in \underset{\sim}{b}(Y)\left[\nu^{\prime}\right]
$$

or
the k-type realized by $\underset{\sim}{b}\left(A^{0 \kappa^{+}}\right)[\nu] \cap H\left(\chi^{+k}\right)$ is in $\underset{\sim}{b}(Y)\left[\nu^{\prime}\right]$, where $k<\omega$ is the least such that $\underset{\sim}{b}(Y)\left[\nu^{\prime}\right] \subseteq H\left(\chi^{+k+1}\right)$.
The same holds over any element of $\underset{\sim}{b}(Y)\left[\nu^{\prime}\right]$, i.e. $t p_{k}\left(z, \underset{\sim}{b}\left(A^{0 \kappa^{+}}\right)[\nu] \cap H\left(\chi^{+k}\right)\right) \in$ $\underset{\sim}{b}(Y)\left[\nu^{\prime}\right]$, for any $z \in \underset{\sim}{b}(Y)\left[\nu^{\prime}\right]$.
We require in addition that this $k>2$.
Let us allow the above also if $\underset{\sim}{b}(Y)\left[\nu^{\prime}\right] \subseteq H\left(\chi^{+\omega}\right)$. In this case we take k to be any natural number above 2 and require that once we go up to the higher levels then corresponding k 's increase (with n).

We cannot in general require only that

$$
\underset{\sim}{b}\left(A^{0 \kappa^{+}}\right)[\nu] \in \underset{\sim}{b}(Y)\left[\nu^{\prime}\right]
$$

since extending conditions the sequence $C^{\kappa^{+}}$of the maximal model of a new background condition may go not through the old maximal model. But still having the type inside Y will be enough for our purposes.

It is possible to have $Y \subset X$, but $\nu(X)$ smaller than $\nu^{\prime}(Y)$ (note that $\nu(Y)<$ $\nu(X)$ in this case by 8 j$)$. In such situation the interpretation will reverse the order.
Note that given $\nu^{\prime} \in A$ the number of possibilities for $\nu \in \nu^{\prime} \cap A$ is bounded now by $\left(\nu^{\prime 0}\right)^{+\left(\nu^{\prime 0}\right)^{+n+2}+1}$ (i.e. the the ordinal corresponding to δ_{n}^{\prime}), as $\nu^{\prime}<\left(\nu^{\prime 0}\right)^{+\left(\nu^{\prime 0}\right)^{+n+2}+1}$.
(m) If $X \in \operatorname{dom}(\underset{\sim}{b})$ then $C^{|X|}(X) \cap \operatorname{dom}(\underset{\sim}{b})$ is a closed chain. Let $\left\langle X_{i} \mid i<j\right\rangle$ be its increasing continuous enumeration. For each $l<j$ consider the final segment
$\left\langle X_{i} \mid l \leq i<j\right\rangle$ and its image $\left\langle\underset{\sim}{b}\left(X_{i}\right) \mid l \leq i<j\right\rangle$. Find the minimal k so that

$$
\underset{\sim}{b}\left(X_{i}\right) \subseteq H\left(\chi^{+k}\right) \text { for each } i, l \leq i<j .
$$

Then the sequence

$$
\left\langle\underset{\sim}{b}\left(X_{i}\right) \cap H\left(\chi^{+k}\right) \mid l \leq i<j\right\rangle
$$

is increasing and continuous. More precisely, each $\nu \in A$ forces this.
Note that k here may depend on l, i.e. on the final segment.
(n) (The walk is in the domain) If $X \in \operatorname{dom} \underset{\sim}{b} \underset{\sim}{b} \cap A^{1 \xi}$, for some $\xi \in s$, then the general walk from $\left(A^{0 \xi}\right)^{-}$to X is forced by each $\nu \in A$ to be in $\operatorname{dom}(\underset{\sim}{b})$.
(o) If $X \in \operatorname{dom}(\underset{\sim}{b}) \cap A^{1 \xi}$, for some $\xi \in s$ is a limit model and $\operatorname{cof}\left(o t p_{\xi}(X)-1\right)<\kappa_{n}$ (i.e. the cofinality of the sequence $C^{\xi}(X) \backslash\{X\}$ under the inclusion relation is less than κ_{n}) then a closed cofinal subsequence of $C^{\xi}(X) \backslash\{X\}$ is in $\operatorname{dom}(\underset{\sim}{b})$. The images of its members under b form a closed cofinal in $b(X)$ sequence.
(p) If $\left\langle X_{i} \mid i<j\right\rangle$ is an increasing (under the inclusion) sequence of elements of $\operatorname{dom}(\underset{\sim}{b})$ with $X_{i} \in C^{\tau_{i}}\left(A^{0 \tau_{i}}\right), i<j$, then $\left.\bigcup_{i<j} X_{i} \in \operatorname{dom} \underset{\sim}{b}\right)$ as well.
Note that $\bigcup_{i<j} X_{i} \in C^{\bigcup_{i<j} \tau_{i}}\left(A^{0 \cup_{i<j} \tau_{i}}\right)$. So, in particular, by [6](Definition 1.1noholes) also $A^{0 \cup_{i<j} \tau_{i}} \in \operatorname{dom}(\underset{\sim}{b})$.
(q) (The minimal models condition) Suppose that $X \in \operatorname{dom}(b) \cap C^{\xi}\left(A^{0 \xi}\right)$, for some $\xi \in s \backslash \kappa^{+}+1$. Let $\tau \in s$ and $X^{*} \in C^{\tau}\left(A^{0 \tau}\right)$ be such that $\tau<\xi, X \in X^{*}$ and for each $\rho, \tau \leq \rho<\xi, Z \in C^{\rho}\left(A^{0 \rho}\right)$ we have $X \in Z$ implies $X^{*} \in Z$ or $X^{*}=Z$. Then $X^{*} \in \operatorname{dom}(\underset{\sim}{b})$ as well as $\left(X^{*}\right)^{-}$-its immediate predecessor in $C^{\tau}\left(A^{0 \tau}\right)$.
In addition, we require the following:
if $\left(X^{*}\right)^{-} \notin X$, then for each $H \in \underset{\sim}{b}\left(\left(X^{*}\right)^{-}\right)$there is $H^{\prime} \in \underset{\sim}{b}\left(\left(X^{*}\right)^{-}\right)$with $H \in H^{\prime}$ and $\underset{\sim}{b}(X) \subseteq H^{\prime}$. Moreover, if $|\underset{\sim}{b}(X)| \in \underset{\sim}{b}\left(\left(X^{*}\right)^{-}\right)$, then $\left|H^{\prime}\right|=|a(X)|$. If $|\underset{\sim}{b}(X)| \notin$ $\underset{\sim}{b}\left(\left(X^{*}\right)^{-}\right)$, then $\left|H^{\prime}\right|=\min \left(\underset{\sim}{b}\left(\left(X^{*}\right)^{-}\right) \cap O R D \backslash \underset{\sim}{b}(X) \mid\right)$.
Note that $X \in A^{0 \kappa^{+}} \in \operatorname{dom}(\underset{\sim}{b})$, by [6] Definition 1.1(noholes). So X^{*} always exists.
The second part of the condition insures that there will be enough models in $\underset{\sim}{b}\left(\left(X^{*}\right)^{-}\right)$to allow extensions which will include $\underset{\sim}{b}(X)$.
(r) (Minimal cover condition) Let $E \in A^{0 \xi} \cap \operatorname{dom}(\underset{\sim}{b}), X \in A^{0 \tau} \cap \operatorname{dom}(\underset{\sim}{b})$, for some $\xi<\tau$ in s. Suppose that $E \nsubseteq X$. Then

- $\tau \in E$ implies that the smallest model of $E \cap C^{\tau}\left(A^{0 \tau}\right)$ including X is in $\operatorname{dom}(\underset{\sim}{b})$
- $\tau \notin E$ implies that the smallest model of $E \cap C^{\rho}\left(A^{0 \rho}\right)$ including X is in $\operatorname{dom}(\underset{\sim}{b})$, for $\rho=\min (A \cap s \backslash \tau)$.
(s) (The first models condition) Suppose that $\left.E \in \operatorname{dom}(\underset{\sim}{b}) \cap C^{\tau}\left(A^{0 \tau}\right), F \in \operatorname{dom} \underset{\sim}{\underset{\sim}{b}}\right) \cap$ $C^{\rho}\left(A^{0 \rho}\right), \sup (E)>\sup (F)$ and $F \notin E$. for some $\tilde{\tau}<\rho, \tau, \rho \in s$. Let $\tilde{\eta}=$ $\min ((E \cap s) \backslash \rho)$. Then the first model $H \in A \cap C^{\eta}\left(A^{0 \eta}\right)$ which includes F is in $\operatorname{dom}(\underset{\sim}{b})$.
(t) (Models witnessing Δ-system type are in the domain) If $F_{0}, F_{1}, F \in A^{1 \kappa^{+}} \cap \operatorname{dom}(\underset{\sim}{b})$ is a triple of a Δ - system type, then the corresponding models $G_{0}, G_{0}^{*}, G_{1}, G_{1}^{*}, \widetilde{G^{*}}$, as in the definition of a Δ - system type (see [6]), are in $\operatorname{dom}(\underset{\sim}{b})$ as well and

$$
\underset{\sim}{b}\left(F_{0}\right) \cap \underset{\sim}{b}\left(F_{1}\right)=\underset{\sim}{b}\left(F_{0}\right) \cap \underset{\sim}{b}\left(G_{0}\right)=\underset{\sim}{b}\left(F_{1}\right) \cap \underset{\sim}{b}\left(G_{1}\right) .
$$

(u) If $F_{0}, F_{1}, F \in A^{1 \mu}$ is a triple of a Δ - system type, for some $\mu \in s$ and $F, F_{0} \in$ $\operatorname{dom}(\underset{\sim}{b})\left(\operatorname{or} F, F_{1} \in \operatorname{dom}(\underset{\sim}{b})\right)$, then $F_{1} \in \operatorname{dom}(\underset{\sim}{b})\left(\right.$ or $\left.F_{0} \in \operatorname{dom}(\underset{\sim}{b})\right)$.
(v) (The isomorphism condition) Let $\left.F_{0}, F_{1}, F \in A^{1 \kappa^{+}} \cap \operatorname{dom} \underset{\sim}{b}\right)$ be a triple of a Δ system type. Then

$$
\left\langle\underset{\sim}{b}\left(F_{0}\right) \cap H\left(\chi^{+k}\right), \in\right\rangle \simeq\left\langle\underset{\sim}{b}\left(F_{1}\right) \cap H\left(\chi^{+k}\right), \in\right\rangle
$$

where k is the minimal so that $\underset{\sim}{b}\left(F_{0}\right) \subseteq H\left(\chi^{+k}\right)$ or $\underset{\sim}{b}\left(F_{1}\right) \subseteq H\left(\chi^{+k}\right)$.
Note that it is possible to have for example $\underset{\sim}{b}\left(F_{0}\right) \prec H\left(\chi^{+6}\right)$ and $\underset{\sim}{b}\left(F_{1}\right) \prec H\left(\chi^{+18}\right)$. Then we take $k=6$.
Let π be the isomorphism between

$$
\left\langle\underset{\sim}{b}\left(F_{0}\right) \cap H\left(\chi^{+k}\right), \in\right\rangle,\left\langle\underset{\sim}{b}\left(F_{1}\right) \cap H\left(\chi^{+k}\right), \in\right\rangle
$$

and $\pi_{F_{0} F_{1}}$ be the isomorphism between F_{0} and F_{1}. Require that for each $Z \in$ $F_{0} \cap \operatorname{dom}(\underset{\sim}{b})$ we have $\pi_{F_{0} F_{1}}(Z) \in F_{1} \cap \operatorname{dom}(\underset{\sim}{b})$ and

$$
\pi\left(\underset{\sim}{b}(Z) \cap H\left(\chi^{+k}\right)\right)=\underset{\sim}{b}\left(\pi_{F_{0} F_{1}}(Z)\right) \cap H\left(\chi^{+k}\right) .
$$

(w) $\left\{\alpha<\kappa^{+3} \mid \alpha \in \operatorname{dom}(\underset{\sim}{b})\right\} \cap \operatorname{dom}(g)=\emptyset$.
(x) For each $\nu \in A$ we have $\left.\underset{\sim}{B}[\nu] \in E_{\kappa_{n}, b}[\nu](\max \underset{\sim}{b})\right)$.
(y) for every $\nu \in A$ and every ordinals α, β, γ which are elements of $\operatorname{rng} \underset{\sim}{\underset{\sim}{b}} \underset{\sim}{[\nu]}$ or actually the ordinals coding models in $\operatorname{rng} \underset{\sim}{b})[\nu]$ we have

$$
\begin{aligned}
& \alpha \geq_{E_{\kappa_{n}}} \beta \geq_{E_{\kappa_{n}}} \gamma \quad \text { implies } \\
& \pi_{\kappa_{n}, \alpha, \gamma}(\rho)=\pi_{\kappa_{n}, \beta, \gamma}\left(\pi_{\kappa_{n}, \alpha, \beta}(\rho)\right)
\end{aligned}
$$

for every $\rho \in \pi_{\kappa_{n}, \max \operatorname{rng}(\underset{\sim}{\prime \prime}[\nu]), \alpha}^{\sim}(\underset{\sim}{B}[\nu])$.
The definition of the order $\leq_{Q_{n 0}}$ on $Q_{n 0}$ repeats Definition 3.2. Define $Q_{n 1}$ as follows:
Definition 5.2 $Q_{n 1}$ consists of pairs $\langle f, g\rangle$ such that

1. f is a partial function from θ^{\prime} to λ_{n} of cardinality at most κ
2. g is a partial function from θ to κ_{n} of cardinality at most κ
$Q_{n 1}$ is ordered by extension. Denote this order by \leq_{1}.
So, it is basically the Cohen forcing for adding θ Cohen subsets to κ^{+}.
The ordered sets $\left\langle Q_{n}, \leq_{n}, \leq_{n}^{*}\right\rangle$ and $\left\langle\mathcal{P}, \leq, \leq^{*}, \rightarrow\right\rangle$ are defined exactly as in Section 2.
The properties of $\left\langle\mathcal{P}, \leq, \leq^{*}, \rightarrow\right\rangle$ are similar to those of the forcing of Section 2.
Lemma 5.3 Let $p=\left\langle p_{k} \mid k<\omega\right\rangle \in \mathcal{P}, p_{k}=\left\langle\left\langle a_{k}, A_{k}, f_{k}\right\rangle,\left\langle\underset{\sim}{\sim}, \underset{\sim}{b_{k}},{\underset{\sim}{r}}_{k}, g_{k}\right\rangle\right\rangle$ for $k \geq \ell(p)$ and X be a model appearing in an element of $G\left(\mathcal{P}^{\prime}\left(\theta^{\prime}\right)\right)$. Suppose that
(a) $X \notin \bigcup_{\ell(p) \leq k<\omega} \operatorname{dom}\left(a_{k}\right) \cup \operatorname{dom}\left(f_{k}\right)$
(b) X is a successor model or if it is a limit one with $\operatorname{cof}\left(o t p_{|X|}(X)-1\right)>\kappa$

Then there is a direct extension $q=\left\langle q_{k} \mid k<\omega\right\rangle, q_{k}=\left\langle\left\langle a_{k}^{\prime}, A_{k}^{\prime}, f_{k}^{\prime}\right\rangle,\left\langle b_{k}^{\prime}, B_{k}^{\prime}, g_{k}\right\rangle\right\rangle$ for $k \geq \ell(q)$, of p so that starting with some $n \geq \ell(q)$ we have $X \in \operatorname{dom}\left(a_{k}^{\prime}\right)$ for each $k \geq n$. In addition the second part of the condition p, i.e. $\left\langle b_{k}, B_{k}, g_{k}\right\rangle$ remains basically unchanged (just names should be lifted to new A_{k} 's).

Lemma 5.4 Let $p=\left\langle p_{k} \mid k<\omega\right\rangle \in \mathcal{P}, p_{k}=\left\langle\left\langle a_{k}, A_{k}, f_{k}\right\rangle,\left\langle\underset{\sim}{b_{k}}, \underset{\sim}{B_{k}}, g_{k}\right\rangle\right\rangle$ for $k \geq \ell(p)$ and X be a model appearing in an element of $G\left(\mathcal{P}^{\prime}\right)$. Suppose that
(a) $X \notin \bigcup_{\ell(p) \leq k<\omega} \operatorname{dom}\left(\underset{\sim}{b_{k}}\right) \cup \operatorname{dom}\left(g_{k}\right)$
(b) X is a successor model or if it is a limit one with $\operatorname{cof}\left(o t p_{|X|}(X)-1\right)>\kappa$

Then there is a direct extension $q=\left\langle q_{k} \mid k<\omega\right\rangle, q_{k}=\left\langle\left\langle a_{k}^{\prime}, A_{k}^{\prime}, f_{k}^{\prime}\right\rangle,\left\langle b_{k}^{\prime}, B_{k}^{\prime}, g_{k}\right\rangle\right\rangle$ for $k \geq \ell(q)$, of p so that starting with some $n \geq \ell(q)$ we have $X \in \operatorname{dom}\left(b_{k}^{\prime}\right)$ for each $k \geq n$.

Lemma 5.5 Let $n<\omega$. Then $\left\langle Q_{n 0}, \leq_{0}\right\rangle$ does not add new sequences of ordinals of the length $<\lambda_{n}$, i.e. it is $\left(\lambda_{n}, \infty\right)-$ distributive.

Lemma 5.6 $\left\langle\mathcal{P}, \leq^{*}\right\rangle$ does not add new sequences of ordinals of the length $<\kappa_{0}$.
Lemma $5.7\left\langle\mathcal{P}, \leq^{*}\right\rangle$ satisfies the Prikry condition.
Let us turn now to the chain condition lemma. Its proof is similar to those of 4.6, but contains an additional point.

Lemma $5.8\langle\mathcal{P}, \rightarrow\rangle$ satisfies κ^{++}-c.c.
Proof. Suppose otherwise. Work in V. Let $\left\langle\underset{\sim}{p} \mid \alpha<\kappa^{++}\right\rangle$be a name of an antichain of the length κ^{++}. As in [6], using the κ^{++}-strategic closure of $\mathcal{P}\left(\theta^{\prime}\right)$ and $\mathcal{P}^{\prime}(\theta)([6,1.6])$ we find an increasing sequence

$$
\left\langle\left\langle\left\langle A_{\alpha}^{0 \tau}(\theta), A_{\alpha}^{1 \tau}(\theta), C_{\alpha}^{\tau}(\theta)\right\rangle \mid \tau \in s_{\alpha}, \alpha<\kappa^{++}\right\rangle,\left\langle\left\langle A_{\alpha}^{0 \tau}\left(\theta^{\prime}\right), A_{\alpha}^{1 \tau}\left(\theta^{\prime}\right), C_{\alpha}^{\tau}\left(\theta^{\prime}\right)\right\rangle \mid \tau \in s_{\alpha}^{\prime}, \alpha<\kappa^{++}\right\rangle\right\rangle
$$

of elements of $\mathcal{P}^{\prime}(\theta) \times \mathcal{P}^{\prime}\left(\theta^{\prime}\right)$ and a sequence $\left\langle p_{\alpha} \mid \alpha<\kappa^{++}\right\rangle$so that for every $\alpha<\kappa^{++}$the following holds:

1. $\left.\left.\left\langle\left\langle\left\langle A_{\alpha+1}^{0 \tau}(\theta), A_{\alpha+1}^{1 \tau}(\theta), C_{\alpha+1}^{\tau}(\theta)\right\rangle\right| \tau \in s_{\alpha+1}\right\}\right\rangle,\left\langle\left\langle A_{\alpha+1}^{0 \tau}\left(\theta^{\prime}\right), A_{\alpha+1}^{1 \tau}\left(\theta^{\prime}\right), C_{\alpha+1}^{\tau}\left(\theta^{\prime}\right)\right\rangle \mid \tau \in s_{\alpha+1}^{\prime}\right\rangle\right\rangle \Vdash$

$$
\underset{\sim}{p}{ }_{\alpha}=\check{p}_{\alpha}
$$

2. if α is a limit ordinal, then $s_{\alpha}^{\prime}=\bigcup_{\beta<\alpha} s_{\beta}^{\prime}$
3. if α is a limit ordinal, then $\bigcup\left\{A_{\beta}^{0 \tau}\left(\theta^{\prime}\right) \mid \beta<\alpha, \tau \in s_{\beta}^{\prime}\right\}=A_{\alpha}^{0 \tau}\left(\theta^{\prime}\right)$
4. if α is a limit ordinal, then $s_{\alpha}=\bigcup_{\beta<\alpha} s_{\beta}$
5. if α is a limit ordinal, then $\bigcup\left\{A_{\beta}^{0 \tau}(\theta) \mid \beta<\alpha, \tau \in s_{\beta}\right\}=A_{\alpha}^{0 \tau}(\theta)$
6. ${ }^{\tau>} A_{\alpha+1}^{0 \tau}\left(\theta^{\prime}\right) \subseteq A_{\alpha+1}^{0 \tau}\left(\theta^{\prime}\right)$, for each $\tau \in s_{\alpha+1}^{\prime}$
7. ${ }^{\tau>} A_{\alpha+1}^{0 \tau}(\theta) \subseteq A_{\alpha+1}^{0 \tau}(\theta)$, for each $\tau \in s_{\alpha+1}$
8. $A_{\alpha+1}^{0 \tau}\left(\theta^{\prime}\right)$ is a successor model, for each $\tau \in s_{\alpha+1}^{\prime}$
9. $A_{\alpha+1}^{0 \tau}(\theta)$ is a successor model, for each $\tau \in s_{\alpha+1}$
10. $\left\langle\left\langle\cup A_{\beta}^{1 \tau}\left(\theta^{\prime}\right) \mid \tau \in s_{\beta}^{\prime}\right\rangle \mid \beta<\alpha\right\rangle \in\left(A_{\alpha+1}^{0 \kappa^{+}}\left(\theta^{\prime}\right)\right)^{-}$(i.e. the immediate predecessor over $\left.C_{\alpha+1}^{\kappa^{+}}\left(\theta^{\prime}\right)\right)$
11. for every $\alpha \leq \beta<\kappa^{++}, \tau \in s_{\alpha}^{\prime}$ we have

$$
A_{\alpha}^{0 \tau}\left(\theta^{\prime}\right) \in C^{\beta}\left(\theta^{\prime}\right)\left(A_{\beta}^{0 \tau}\left(\theta^{\prime}\right)\right)
$$

12. $A_{\alpha+2}^{0 \tau}\left(\theta^{\prime}\right)$ is not an immediate successor model of $A_{\alpha+1}^{0 \tau}\left(\theta^{\prime}\right)$, for every $\alpha<\kappa^{++}, \tau \in s_{\alpha+1}^{\prime}$.
13. $\left\langle\left\langle\cup A_{\beta}^{1 \tau}(\theta) \mid \tau \in s_{\beta}\right\rangle \mid \beta<\alpha\right\rangle \in\left(A_{\alpha+1}^{0 \kappa^{+}}(\theta)\right)^{-}$(i.e. the immediate predecessor over $\left.C_{\alpha+1}^{\kappa^{+}}(\theta)\right)$
14. for every $\alpha \leq \beta<\kappa^{++}, \tau \in s_{\alpha}$ we have

$$
A_{\alpha}^{0 \tau}(\theta) \in C^{\beta}(\theta)\left(A_{\beta}^{0 \tau}(\theta)\right)
$$

15. $A_{\alpha+2}^{0 \tau}(\theta)$ is not an immediate successor model of $A_{\alpha+1}^{0 \tau}(\theta)$, for every $\alpha<\kappa^{++}, \tau \in s_{\alpha+1}$.
16. $p_{\alpha}=\left\langle p_{\alpha n} \mid n<\omega\right\rangle$
17. for every $n \geq \ell\left(p_{\alpha}\right)$ the maximal model of $\operatorname{dom}\left(a_{\alpha n}\right)$ is $A_{\alpha+1}^{0 \kappa^{+}}\left(\theta^{\prime}\right)$ and the maximal model of $\operatorname{dom}\left(b_{\alpha n}\right)$ is $A_{\alpha+1}^{0{ }^{+}+}(\theta)$, where $p_{\alpha n}=\left\langle\left\langle a_{\alpha n}, A_{\alpha n}, f_{\alpha n}\right\rangle,\left\langle b_{\alpha n}, \underset{\sim}{B_{\alpha n}}, g_{\alpha n}\right\rangle\right\rangle$

Let $p_{\alpha n}=\left\langle\left\langle a_{\alpha n}, A_{\alpha n}, f_{\alpha n}\right\rangle,\left\langle b_{\alpha n}, \underset{\sim}{b_{\alpha n}}, g_{\alpha n}\right\rangle\right\rangle$ for every $\alpha<\kappa^{++}$and $n \geq \ell\left(p_{\alpha}\right)$. Extending by 5.4 if necessary, let us assume that $A_{\alpha}^{0 \kappa^{+}} \in \operatorname{dom}\left(a_{\alpha n}\right)$ and $A_{\alpha}^{0 \kappa^{+}}(\theta) \in \operatorname{dom}(\underset{\sim}{b})$, for every $n \geq \ell\left(p_{\alpha}\right)$. Shrinking if necessary, we assume that for all $\alpha, \beta<\kappa^{+}$the following holds:
(1) $\ell=\ell\left(p_{\alpha}\right)=\ell\left(p_{\beta}\right)$
(2) for every $n<\ell \quad p_{\alpha n}$ and $p_{\beta n}$ are compatible in $Q_{n 1}$
(3) for every $n, \ell \leq n<\omega \quad\left\langle\operatorname{dom}\left(a_{\alpha n}\right), \operatorname{dom}\left(f_{\alpha n}\right) \mid \alpha<\kappa^{++}\right\rangle$form a Δ-system with the kernel contained in $A_{0}^{0 \kappa^{+}}\left(\theta^{\prime}\right)$
(4) for every $n, \omega>n \geq \ell \quad \operatorname{rng}\left(a_{\alpha n}\right)=\operatorname{rng}\left(a_{\beta n}\right)$.
(5) for every $n, \omega>n \geq \ell \quad A_{\alpha n}=A_{\beta n}$
(6) for every $n, \ell \leq n<\omega \quad\left\langle\operatorname{dom}\left(\underset{\sim}{b_{\alpha n}}\right), \operatorname{dom}\left(g_{\alpha n}\right) \mid \alpha<\kappa^{++}\right\rangle$form a Δ-system with the kernel contained in $A_{0}^{0 \kappa^{+}}(\theta)$.

Remember that the domain of $\underset{\sim}{b}$ is not a name but rather a set.
(7) for every $n, \omega>n \geq \ell \quad \operatorname{rng}\left(b_{\alpha n}\right)=\operatorname{rng}\left(b_{\sim}\right)$, i.e. it is just the same name in the one element Prikry forcing.

Shrink now to the set S consisting of all the ordinals below κ^{++}of cofinality κ^{+}. Let α be in S. For each $n, \ell \leq n<\omega$, there will be $\beta(\alpha, n)<\alpha$ such that

- $\operatorname{dom}\left(a_{\alpha n}\right) \cap A_{\alpha}^{0 \kappa^{+}}\left(\theta^{\prime}\right) \subseteq A_{\beta(\alpha, n)}^{0 \kappa^{+}}\left(\theta^{\prime}\right)$
and
- $\operatorname{dom}\left(b_{\alpha n}\right) \cap A_{\alpha}^{0 \kappa^{+}}(\theta) \subseteq A_{\beta(\alpha, n)}^{0 \kappa^{+}}(\theta)$.

Just recall that $\left|a_{\alpha n}\right|<\lambda_{n}$ and $\left|\operatorname{dom}\left(b_{\alpha n}\right)\right|<\lambda_{n}$. Shrink S to a stationary subset S^{*} so that for some $\alpha^{*}<\min S^{*}$ of cofinality κ^{+}we will have $\beta(\alpha, n)<\alpha^{*}$, whenever $\alpha \in S^{*}, \ell \leq n<\omega$. Now, the cardinality of both $A_{\alpha^{*}}^{0 \kappa^{+}}\left(\theta^{\prime}\right)$ and $A_{\alpha^{*}}^{0 \kappa^{+}}(\theta)$ is κ^{+}. Hence, shrinking S^{*} if necessary, we can assume that for each $\alpha, \beta \in S^{*}, \ell \leq n<\omega$

- $\operatorname{dom}\left(a_{\alpha n}\right) \cap A_{\alpha}^{0 \kappa^{+}}\left(\theta^{\prime}\right)=\operatorname{dom}\left(a_{\beta n}\right) \cap A_{\beta}^{0 \kappa^{+}}\left(\theta^{\prime}\right)$
and
- $\operatorname{dom}\left(\underset{\sim}{b_{\alpha n}}\right) \cap A_{\alpha}^{0 \kappa^{+}}(\theta)=\operatorname{dom}\left(b_{\sim n}\right) \cap A_{\beta}^{0 \kappa^{+}}(\theta)$.

Let us add both $A_{\alpha^{*}}^{0 \kappa^{+}}\left(\theta^{\prime}\right)$ and $A_{\alpha^{*}}^{0 \kappa^{+}}(\theta)$ to each $p_{\alpha}, \alpha \in S^{*}$. By 5.3,5.4, it is possible to do this without adding other additional models except the images of this models under isomorphisms. Thus, $A_{\alpha^{*}}^{0 \kappa^{+}}(\theta) \in\left(C^{\kappa^{+}}(\theta)\right)\left(A_{\alpha}^{0 \kappa^{+}}(\theta)\right)$ and $A_{\alpha}^{0 \kappa^{+}}(\theta) \in \operatorname{dom}\left(b_{\alpha n}\right) \cap$ $\left.\left(C^{\kappa^{+}}(\theta)\right)\left(A^{0 \kappa^{+}}(\theta)\right)_{\alpha+1}\right)$. So, $5.1(8 \mathrm{q})$ was already satisfied after adding $A_{\alpha}^{0 \kappa^{+}}(\theta)$. The rest of 5.1 does not require adding additional models in the present situation.

Denote the result for simplicity by p_{α} as well. Note that (again by 5.4 and the argument above) any $A_{\gamma}^{0 \kappa^{+}}(\theta)$ for $\gamma \in S^{*} \cap\left(\alpha^{*}, \alpha\right)$ or, actually any other successor or limit model $X \in C^{\kappa^{+}}(\theta)\left(A_{\alpha}^{0 \kappa}(\theta)\right)$ with $\operatorname{cof}\left(o t p_{\kappa^{+}}(X)\right)=\kappa^{+}$, which is between $A_{\alpha^{*}}^{0 \kappa^{+}}(\theta)$ and $A_{\alpha}^{0 \kappa^{+}}(\theta)$ can be added without adding other additional models or ordinals except the images of it under isomorphisms.
The same holds once we replace θ by θ^{\prime}.

Let now $\beta<\alpha$ be ordinals in S^{*}. We claim that p_{β} and p_{α} are compatible in $\langle\mathcal{P}, \rightarrow\rangle$. First extend p_{α} by adding to it both $A_{\beta+2}^{0 \kappa^{+}}\left(\theta^{\prime}\right)$ and $A_{\beta+2}^{0 \kappa^{+}}(\theta)$. As it was remarked above, this will not add other additional models or ordinals except the images of this models under isomorphisms to p_{α}. Let p be the resulting extension. Denote p_{β} by q. Assume that $\ell(q)=\ell(p)$. Otherwise just extend q in an appropriate manner to achieve this. Let $n \geq \ell(p)$, $p_{n}=\left\langle\left\langle a_{n}, A_{n}, f_{n}\right\rangle,\left\langle b_{\sim}, \underset{\sim}{B_{n}}, g_{n}\right\rangle\right\rangle$ and $q_{n}=\left\langle\left\langle a_{n}^{\prime}, A_{n}, f_{n}^{\prime}\right\rangle,\left\langle{\underset{\sim}{n}}_{n}^{\prime}, B_{n}^{\prime}, g_{n}^{\prime}\right\rangle\right\rangle$. Note that by (5) above the sets of measure one of p_{n}, q_{n} are the same. Without loss of generality we may assume that $a_{n}\left(A_{\beta+2}^{0 \kappa^{+}}\left(\theta^{\prime}\right)\right)$ is an elementary submodel of $\mathfrak{A}_{n, k_{n}}$ with $k_{n} \geq 5$. Just increase n if necessary. Now, we can realize the $k_{n}-1$-type of $\operatorname{rng}\left(a_{n}^{\prime}\right)$ inside $a_{n}\left(A_{\beta+2}^{0 \kappa^{+}}\left(\theta^{\prime}\right)\right)$ over the common parts $\operatorname{dom}\left(a_{n}^{\prime}\right)$ and $\operatorname{dom}\left(a_{n}\right)$. This will produce $\left\langle a_{n}^{\prime \prime}, A_{n}^{\prime}, f_{n}^{\prime}\right\rangle$ which is $k_{n}-1$-equivalent to $\left\langle a_{n}^{\prime}, A_{n}^{\prime}, f_{n}^{\prime}\right\rangle$ and with $\operatorname{rng}\left(a_{n}^{\prime \prime}\right) \subseteq a_{n}\left(A_{\beta+2}^{0 \kappa^{+}}\left(\theta^{\prime}\right)\right)$. Doing the above for all $n \geq \ell(p)$ we will obtain $\left\langle\left\langle a_{n}^{\prime \prime}, A_{n}^{\prime}, f_{n}^{\prime}\right\rangle \mid n<\omega\right\rangle$ equivalent to $\left\langle\left\langle a_{n}^{\prime}, A_{n}^{\prime}, f_{n}^{\prime}\right\rangle \mid n<\omega\right\rangle$ (i.e. $\left\langle\left\langle a_{n}^{\prime \prime}, A_{n}^{\prime \prime}, f_{n}^{\prime \prime}\right\rangle\right| n<$ $\left.\omega\rangle \longleftrightarrow\left\langle\left\langle a_{n}^{\prime}, A_{n}^{\prime}, f_{n}^{\prime}\right\rangle \mid n<\omega\right\rangle\right)$.

Let $t=\left\langle\left\langle\left\langle a_{n}^{\prime \prime}, A_{n}^{\prime}, f_{n}^{\prime}\right\rangle,\left\langle b_{n}, B_{n}, g_{n}\right\rangle\right\rangle \mid n<\omega\right\rangle$. Extend t to t^{\prime} by adding to it

$$
\left\langle A_{\beta+2}^{0 \kappa^{+}}\left(\theta^{\prime}\right), a_{n}\left(A_{\beta+2}^{0 \kappa^{+}}\left(\theta^{\prime}\right)\right)\right\rangle
$$

as the maximal set for every $n \geq \ell(p)$. Recall that $A_{\beta+1}^{0 \kappa^{+}}\left(\theta^{\prime}\right)$ was its maximal model. So we are adding a top model, also, by the condition (15) above $A_{\beta+2}^{0 \kappa^{+}}\left(\theta^{\prime}\right)$ is not an immediate successor of $A_{\beta+1}^{0 \kappa^{+}}\left(\theta^{\prime}\right)$. Hence no additional models or ordinals are added at all.

Let $t_{n}^{\prime}=\left\langle\left\langle a_{n}^{\prime \prime \prime}, A_{n}^{\prime \prime \prime}, f_{n}^{\prime}\right\rangle,\left\langle b_{n}, B_{n}, g_{n}\right\rangle\right\rangle$, for every $n \geq \ell(p)$.
Combine now the first coordinates of p and t^{\prime} together, i.e. $\left\langle a_{n}, A_{n}, f_{n}\right\rangle$'s with those of t^{\prime}. Thus for each $n \geq \ell(p)$ we add $a_{n}^{\prime \prime \prime}$ to a_{n}. Add if necessary a new top model to insure $5.1(2(\mathrm{~d}))$. Let $r=\left\langle r_{n} \mid n<\omega\right\rangle$ be the result, where $r_{n}=\left\langle\left\langle c_{n}, C_{n}, h_{n}\right\rangle,\left\langle{\underset{\sim}{n}}_{n},{\underset{\sim}{n}}_{n}, g_{n}\right\rangle\right\rangle$, for $n \geq \ell(p)$.

Claim 4.6.1 $r \in \mathcal{P}$ and $r \geq p$.
Proof. Fix $n \geq \ell(p)$. The main points here are that $a_{n}^{\prime \prime \prime}$ and a_{n} agree on the common part and adding of $a_{n}^{\prime \prime \prime}$ to a_{n} does not require other additions of models except the images of $a_{n}^{\prime \prime \prime}$ under isomorphisms.

The check of the rest of conditions of 5.1 is routine. We refer to [2] or [4] for similar arguments.
\square of the claim.
Now let us turn to the second coordinates of q and r. Recall that for a condition $x \in Q_{n 0}$ we denote by $(x)_{0}$ its first coordinate, i.e. the first triple. If $y=\left\langle y_{n} \mid n<\omega\right\rangle \in \mathcal{P}$, then
$(y)_{0}$ denotes $\left\langle\left(y_{n}\right)_{0} \mid n<\omega\right\rangle$. So, we have $(q)_{0} \rightarrow(r)_{0}$. Shrinking if necessary A_{n} 's (the sets of measure one of $\left(q_{n}\right)_{0}$'s), we can assume that for each $n \geq \ell(p)=\ell(r)=\ell(q)$ the
 Remember that the interpretations of both $\left\langle b_{n}, B_{n}\right\rangle$ and $\left\langle b_{n}^{\prime}, B_{n}^{\prime}\right\rangle$ depend only on a choice of elements of A_{n}.

Our tusk will be extend r to r^{*} so that $q \rightarrow r^{*}$. This will show that p and q are compatible. Which provides the desired contradiction.

Fix $n, \omega>n \geq \ell(p)$, large enough. Let η be the maximal coordinate of $\left(r_{n}\right)_{0}$ (i.e. the ordinal coding $\max \left(\operatorname{rng}\left(c_{n}\right)\right), \zeta$ those of $\left(p_{n}\right)_{0}$ (which is the same for $\left(q_{n}\right)_{0}$, since (4) above) and ξ the one corresponding to ζ (of $\left.\left(q_{n}\right)_{0}\right)$ under $\left(q_{n}\right)_{0} \rightarrow\left(r_{n}\right)_{0}$. Denote $\pi_{\lambda_{n}, \eta, \xi}^{\prime \prime} C_{n}$ by D_{n}. Assuming that $n>2$, it follows from the definitions of the equivalence relation \longleftrightarrow and of the order \rightarrow, that $E_{\lambda_{n}}(\xi)$ (the ξ 's measure of the extender) is the same as $E_{\lambda_{n}}(\zeta)$. Also, $D_{n} \subseteq A_{n}$.
Define now a condition

$$
\left.r_{n}^{*}=\left\langle\left\langle c_{n}, C_{n}, h_{n}\right\rangle, \underset{\sim}{\left\langle e_{n}\right.}, \underset{\sim}{E_{n}}, g_{n}\right\rangle\right\rangle \in Q_{n 0}
$$

which extends

$$
r_{n}=\left\langle\left\langle c_{n}, C_{n}, h_{n}\right\rangle,\left\langle b_{\sim},{\underset{\sim}{n}}_{n}^{B_{n}}, g_{n}\right\rangle\right\rangle .
$$

The addition will depend only on the coordinate ξ of $E_{\lambda_{n}}$. So we need to deal with each $\nu \in D_{n}$. Set $\operatorname{dom}\left(e_{n}\right)=\operatorname{dom}\left(b_{n}\right) \cup \operatorname{dom}\left(b_{n}^{\prime}\right)$. Let $X \in \operatorname{dom}\left(e_{\sim}^{e}\right)$. If $X \in \operatorname{dom}\left(b_{n}\right)$, then set

$$
\underset{\sim}{e_{n}}(X)[\rho]=\underset{\sim}{b_{n}}(X)[\rho],
$$

for each $\rho \in C_{n}$. Now, if X is new, i.e. $X \in \operatorname{dom}\left(\underset{\sim}{b_{n}^{\prime}}\right) \backslash \operatorname{dom}\left(\underset{\sim}{b_{n}}\right)$, then we consider X_{α} the model that corresponds to X in p_{α} under the Δ-system.

Now we use Definition 5.1(81) to find inside $\underset{\sim}{b_{n}}\left(A_{\alpha}\right)[\rho]$ some σ realizing over the common part the type of $\underset{\sim}{b_{n}}\left(A_{\alpha+1}^{0 \kappa^{+}}\right)[\nu]$. Recall that

$$
\underset{\sim}{b_{n}}\left(A_{\alpha+1}^{0 \kappa^{+}}\right)[\nu]=\underset{\sim}{b_{n}^{\prime}}\left(A_{\beta+1}^{0 \kappa^{+}}\right)[\nu]
$$

and

$$
\underset{\sim}{b_{n}}\left(X_{\alpha}\right)[\nu]=\underset{\sim}{b_{n}^{\prime}}(X)[\nu] .
$$

Set now $\underset{\sim}{e}(X)[\rho]$ to be the element of σ corresponding to $\underset{\sim}{b_{n}^{\prime}}(X)[\nu]$, for each $\rho \in C_{n}$ and $\nu=\pi_{\lambda_{n}, \eta, \xi}(\rho)$.

The following claim suffice in order to complete the argument:
Claim 4.6.2 $r_{n}^{*} \in Q_{n 0}, r_{n}^{*} \geq_{0} r_{n}$ and $q_{n} \rightarrow r_{n}^{*}$.
Proof. Let us check first that q_{n}, r_{n} or basically b_{n}^{\prime} and c_{n} agree about the values of models in $\operatorname{dom}\left(b_{n}^{\prime}\right) \cap \operatorname{dom}\left(c_{n}\right)$. Suppose that X is such a model. Then, by the assumptions we made on the $\tilde{\Delta}$-system, $X \in A_{\alpha^{*}}^{0 \kappa^{+}}(\theta)$. Also,

$$
\begin{gathered}
A_{\alpha^{*}}^{0 \kappa^{+}}(\theta) \in \operatorname{dom}\left(b_{n}^{\prime}\right) \cap \operatorname{dom}\left(c_{n}\right), \\
\sim \\
\operatorname{otp}_{\kappa^{+}}\left(A_{\alpha^{*}}^{0 \kappa^{+}}(\theta)\right)=o t p_{\kappa^{+}} A_{\alpha^{*}}^{0 \kappa^{+}}\left(\theta^{\prime}\right)
\end{gathered}
$$

and

$$
A_{\alpha^{*}}^{0 \kappa^{+}}\left(\theta^{\prime}\right) \in \operatorname{dom}\left(c_{n}\right)
$$

By 5.1, $b_{n}\left(A_{\alpha^{*}}^{0 \kappa^{+}}(\theta)\right)$ depends only on the measure indexed by the code of

$$
c_{n}\left(A_{\alpha^{*}}^{0 \kappa^{+}}\left(\theta^{\prime}\right)\right)=a_{n}\left(A_{\alpha^{*}}^{0 \kappa^{+}}\left(\theta^{\prime}\right)\right)=a_{n}^{\prime}\left(A_{\alpha^{*}}^{0 \kappa^{+}}\left(\theta^{\prime}\right)\right) .
$$

Let δ denotes the index of this measure (or its code). Then for each $\rho \in C_{n}$ we will have

$$
\pi_{\lambda_{n}, \eta, \delta}(\rho)=\pi_{\lambda_{n}, \xi, \delta}\left(\pi_{\lambda_{n}, \eta, \xi}(\rho)\right) .
$$

Hence, restricting $\left(q_{n}\right)_{0}$ to D_{n}, i.e. by replacing A_{n} in $\left(q_{n}\right)_{0}$ with D_{n}, we can insure that $b_{n}\left(A_{\alpha^{*}}^{0 \kappa^{+}}\right)$and $b_{n}^{\prime}\left(A_{\alpha^{*}}^{0 \kappa^{+}}\right)$agree. The same applies to any $X \in A_{\alpha^{*}}^{0 \kappa^{+}}$which is in the common domain, since its value too will depend on the δ-th measure of the extender only.

Consider now the maximal model of q_{n}. By 17, above, it is $A_{\beta+1}^{0{ }^{+}}(\theta)$ and the one of p_{n} is $A_{\alpha+1}^{0{ }^{+}}(\theta)$. Now, for each $\nu \in A_{n}$, by the condition (7) on the Δ-system above we have

$$
\underset{\sim}{b_{n}}\left(A_{\alpha+1}^{0 \kappa^{+}}(\theta)\right)[\nu]=\underset{\sim}{b_{n}^{\prime}}\left(A_{\beta+1}^{0 \kappa^{+}}(\theta)\right)[\nu] .
$$

Pick $\rho \in C_{n}$. Let $\nu=\pi_{\lambda_{n}, \eta, \xi}(\rho)$ and $\sigma=\pi_{\lambda_{n}, \eta, \zeta}(\rho)$. Then

$$
e_{\sim}^{e}\left(A_{\alpha+1}^{0 \kappa^{+}}(\theta)\right)[\rho]=\underset{\sim}{b_{n}}\left(A_{\alpha+1}^{0 \kappa^{+}}(\theta)\right)[\sigma]
$$

and

$$
e_{\sim}^{e}\left(A_{\beta+1}^{0 \kappa^{+}}(\theta)\right)[\rho]=\underset{\sim}{b_{n}^{\prime}}\left(A_{\beta+1}^{0 \kappa^{+}}(\theta)\right)[\nu] .
$$

The first equality holds since e_{n} extends b_{n} and the second by the same reason as e_{n} was defined this way above.

The crucial observation is that $\sigma, \nu \in A_{n}$ (just $D_{n} \subseteq A_{n}$) and $\sigma>\nu$, so by Definition 5.1(81),

$$
{\underset{\sim}{n}}_{b_{n+1}}\left(A_{\alpha+1}^{0 \kappa^{+}}(\theta)\right)[\nu] \subseteq \underset{\sim}{b_{n}}\left(A_{\alpha+1}^{0{ }^{\circ}+}(\theta)\right)[\sigma] .
$$

Hence, also,

$$
\underset{\sim}{b_{n}^{\prime}}\left(A_{\beta+1}^{0 \kappa^{+}}(\theta)\right)[\nu] \subseteq \underset{\sim}{b_{n}}\left(A_{\alpha+1}^{0 \kappa^{+}}(\theta)\right)[\sigma],
$$

since

$$
\underset{\sim}{e_{n}}\left(A_{\beta+1}^{0 \kappa^{+}}(\theta)\right)[\rho]=\underset{\sim}{b_{n}^{\prime}}\left(A_{\beta+1}^{0 \kappa^{+}}(\theta)\right)[\nu] .
$$

The same inclusion holds, by Definition 5.1(8l), if we replace $A_{\alpha+1}^{0 \kappa^{+}}(\theta)$ with any $Y \in \operatorname{dom}\left(b_{n}\right) \cap$ $\left(C^{\kappa^{+}}(\theta)\right)\left(A_{\alpha+1}^{0 \kappa^{+}}(\theta)\right)$ such that $\sigma(Y)>\nu$, where $\sigma(Y)$ is the measure corresponding to Y. Thus

$$
\underset{\sim}{b_{n}^{\prime}}\left(A_{\beta+1}^{0 \kappa^{+}}(\theta)\right)[\nu]=\underset{\sim}{b_{n}}\left(A_{\alpha+1}^{0 \kappa^{+}}(\theta)\right)[\nu] \subseteq \underset{\sim}{b_{n}}(Y)[\sigma] .
$$

In the present case we have the least such Y. It is $A_{\alpha}^{0 \kappa^{+}}(\theta)$. Just below it everything falls into $A_{\alpha^{*}}^{0 \kappa^{+}}(\theta)$ the kernel of the Δ-system. Consider now Y 's in $\operatorname{dom}\left(b_{n}\right) \backslash\left(C^{\kappa^{+}}(\theta)\right)\left(A_{\alpha+1}^{0 \kappa^{+}}(\theta)\right)$. If such Y is in $A_{\alpha}^{0 \kappa^{+}}(\theta)$, it belongs to $A_{\alpha^{*}}^{0 \kappa^{+}}(\theta)$ the kernel of the Δ-system. Hence as it was observed in the beginning of the proof of this claim, we have the agreement. Suppose now that $Y \notin A_{\alpha}^{0 \kappa^{+}}(\theta)$. By the basic properties of $G\left(\mathcal{P}^{\prime}\right)$ there will be $Z \in A_{\alpha}^{0 \kappa^{+}}(\theta)$ such that

$$
Y \cap A_{\alpha}^{0 \kappa^{+}}(\theta)=Z \cap A_{\alpha}^{0 \kappa^{+}}(\theta) .
$$

Then again this Z falls into $A_{\alpha^{*}}^{0 \kappa^{+}}(\theta)$ and into the kernel of the Δ-system on which we have the agreement.

This completes the proof of the claim.of the claim.

Force with $\langle\mathcal{P}, \rightarrow\rangle$. Let $G(\mathcal{P})$ be a generic set. By the lemmas above no cardinals are collapsed. Let $\left\langle\nu_{n} \mid n<\omega\right\rangle$ denotes the diagonal Prikry sequence added for the normal measures of the extenders $\left\langle E_{\lambda_{n}} \mid n<\omega\right\rangle$ and $\left\langle\rho_{n} \mid n<\omega\right\rangle$ those for $\left\langle E_{\kappa_{n}} \mid n<\omega\right\rangle$. The following analog of 4.7 holds here:

Theorem 5.9 The following hold in $V\left[G\left(\mathcal{P}^{\prime}\left(\theta^{\prime}\right)\right), G\left(\left(\mathcal{P}^{\prime}(\theta)\right), G(\mathcal{P})\right]\right.$:
(1) $\operatorname{cof}\left(\prod_{n<\omega} \nu_{n}^{+n+2} /\right.$ finite $)=\kappa^{++}$
(2) $\operatorname{cof}\left(\prod_{n<\omega} \nu_{n}^{+\nu_{n}^{+n+2}+1} /\right.$ finite $)=\theta^{\prime}$
(3) $\operatorname{cof}\left(\prod_{n<\omega} \nu_{n}^{+\nu_{n}^{+n+2}+2} /\right.$ finite $)=\left(\theta^{\prime}\right)^{+}$
(4) for every regular cardinal $\mu \in\left[\kappa^{++},\left(\theta^{\prime}\right)^{+}\right]$,
there is a sequence of regular cardinals $\left\langle\nu_{n}(\mu) \mid n<\omega\right\rangle$ such that
(a) for each $n<\omega, \nu_{n}(\mu) \in\left[\nu_{n}^{+n+2}, \nu_{n}^{+\nu_{n}^{+n+2}+2}\right]$
(b) $\operatorname{cof}\left(\prod_{n<\omega} \nu_{n}(\mu) /\right.$ finite $)=\mu$
(5) $\operatorname{cof}\left(\prod_{n<\omega} \rho_{n}^{+n+2} /\right.$ finite $)=\left(\theta^{\prime}\right)^{++}$
(6) $\operatorname{cof}\left(\prod_{n<\omega} \rho_{n}^{+\rho_{n}^{+n+2}+1} /\right.$ finite $)=\theta$
(7) $\operatorname{cof}\left(\prod_{n<\omega} \rho_{n}^{+\rho_{n}^{+n+2}+2} /\right.$ finite $)=\theta^{+}$
(8) for every regular cardinal $\mu \in\left[\left(\theta^{\prime}\right)^{++}, \theta^{+}\right]$, there is a sequence of regular cardinals $\left\langle\rho_{n}(\mu) \mid n<\omega\right\rangle$ such that
(a) for each $n<\omega, \rho_{n}(\mu) \in\left[\rho_{n}^{+n+2}, \rho_{n}^{+\rho_{n}^{+n+2}+2}\right]$
(b) $\operatorname{cof}\left(\prod_{n<\omega} \rho_{n}(\mu) /\right.$ finite $)=\mu$
(9) for every unbounded subset a of κ consisting of regular cardinals and disjoint to both $\cup_{n<\omega}\left[\nu_{n}^{+n+2}, \nu_{n}^{+\nu_{n}^{+n+2}+2}\right]$ and $\cup_{n<\omega}\left[\rho_{n}^{+n+2}, \rho_{n}^{+\rho_{n}^{+n+2}+2}\right]$, for every ultrafilter D over a which includes all co-bounded subsets of κ we have

$$
\operatorname{cof}\left(\prod a / D\right)=\kappa^{+}
$$

Proof. Items (1),(2),(3) and (4) follow easily from the construction, as in [6] or the arguments of 4.7 can be used. Thus, for (3), take the increasing (under the inclusion) enumeration $\left\langle X_{\tau} \mid \tau<\left(\theta^{\prime}\right)^{+}\right\rangle$of the chain of models given by $G\left(\mathcal{P}^{\prime}\left(\theta^{\prime}\right)\right)$. Define a scale of functions $\left\langle F_{\tau} \mid \tau<\left(\theta^{\prime}\right)^{+}\right\rangle$in the product $\prod_{n<\omega} \nu_{n}^{+\nu_{n}^{+n+2}+1}$ as follows:
let for each $\tau<\left(\theta^{\prime}\right)^{+}$

$$
F_{\tau}^{\prime}(n)=f_{n}\left(X_{\tau}\right), \text { if } f_{n}\left(X_{\tau}\right)<\nu_{n}^{+\nu_{n}^{+n+2}+1}
$$

and

$$
F_{\tau}^{\prime}(n)=0, \text { otherwise }
$$

where for some $p=\left\langle p_{k}\right| k\langle\omega\rangle \in G(\mathcal{P})$ with $\ell(p)>n$ we have f_{n} as the first coordinate of p_{n}. Let $\left\langle F_{\tau} \mid \tau<\left(\theta^{\prime}\right)^{+}\right\rangle$be the subsequence of $\left\langle F_{\tau}^{\prime} \mid \tau<\left(\theta^{\prime}\right)^{+}\right\rangle$consisting of all F_{τ}^{\prime} 's not in V.

Now, (1),(2) and (4) follow from No Hole Theorem of Shelah [8] or just directly as follows. Let us show (4). Fix a regular cardinal μ in the interval $\left[\kappa^{++},\left(\theta^{\prime}\right)^{+}\right]$. Pick a model $M \prec H(\chi)^{V}$ for χ big enough such that

- $|M|=\mu$
- $M\left[G\left(\mathcal{P}^{\prime}\left(\theta^{\prime}\right)\right), G\left(\mathcal{P}^{\prime}(\theta)\right)\right] \prec H(\chi)^{V\left[G\left(\mathcal{P}^{\prime}\left(\theta^{\prime}\right)\right), G\left(\mathcal{P}^{\prime}(\theta)\right)\right]}$
- $M \cap H\left(\left(\theta^{\prime}\right)^{+}\right) \in G\left(\mathcal{P}^{\prime}\left(\theta^{\prime}\right)\right)$
- for some $p=\left\langle p_{n} \mid n<\omega\right\rangle \in G\left(\mathcal{P}^{\prime}\left(\theta^{\prime}\right)\right)$ we have $M \cap H\left(\left(\theta^{\prime}\right)^{+}\right) \in \operatorname{dom}\left(a_{n}\right)$, for each n large enough

Then there is an increasing unbounded in M chain of models $\left\langle X_{\tau} \mid \tau<\mu\right\rangle$ in $G\left(\mathcal{P}^{\prime}\left(\theta^{\prime}\right)\right)$ of cardinalities below μ. Fix such a chain. Let $p=\left\langle p_{n} \mid n<\omega\right\rangle \in G\left(\mathcal{P}^{\prime}\left(\theta^{\prime}\right)\right)$ be so that $M \cap H\left(\left(\theta^{\prime}\right)^{+}\right) \in \operatorname{dom}\left(a_{n}\right)$, for each n large enough. Let n_{0} be such that for each $n>n_{0}$ we have $M \cap H\left(\left(\theta^{\prime}\right)^{+}\right) \in \operatorname{dom}\left(a_{n}\right)$. For each $n<\omega$ we set

$$
M_{n}^{*}=f_{n}\left(M \cap H\left(\left(\theta^{\prime}\right)^{+}\right)\right),
$$

where for some $q \geq p$ in $G\left(\mathcal{P}^{\prime}\left(\theta^{\prime}\right)\right)$ with $l(q)>n, \quad f_{n}$ is the first coordinate of q_{n}. Define now

$$
\nu_{n}(\mu)=\left|M_{n}^{*}\right|,
$$

if $n \geq n_{0}$ and $\left|M_{n}^{*}\right|$ is a regular cardinal and

$$
\nu_{n}(\mu)=\omega,
$$

otherwise.
Now, let for each $\tau<\mu$

$$
F_{\tau}^{\prime}(n)=f_{n}\left(X_{\tau}\right), \text { if } f_{n}\left(X_{\tau}\right) \subset M_{n}^{*} \text { of cardinality less than } \nu_{n}(\mu)
$$

and

$$
F_{\tau}^{\prime}(n)=0, \text { otherwise },
$$

where for some $p=\left\langle p_{k}\right| k\langle\omega\rangle \in G(\mathcal{P})$ with $\ell(p)>n$ we have f_{n} as the first coordinate of p_{n}. Let $\left\langle F_{\tau}^{\prime \prime} \mid \tau<\mu\right\rangle$ be the subsequence of $\left\langle F_{\tau}^{\prime} \mid \tau<\mu\right\rangle$ consisting of all $F_{\tau}^{\prime \prime}$ s not in V. Finally, we set

$$
F_{\tau}(n)=F_{\tau}^{\prime \prime}(n) \cap \nu_{n}(\mu)
$$

for each $n<\omega$ and $\tau<\mu$. The sequence $\left\langle F_{\tau} \mid \tau<\mu\right\rangle$ will witness (4).
The proof of (5)-(8) is similar. The argument for (9) repeats those of 4.7. Thus, dealing with

$$
\operatorname{cof}\left(\prod_{n<\omega} \rho_{n}^{+n+1} / \text { finite }\right)
$$

we observe that given a condition $\left\langle\left\langle a_{n}, A_{n}, f_{n}\right\rangle,\left\langle{\underset{\sim}{n}}_{\sim}^{\sim},{\underset{\sim}{r}}_{n}, g_{n}\right\rangle\right\rangle \in Q_{n 0}$, for some $n<\omega$, then it is impossible to change $\operatorname{rng}\left(b_{n}\right)[\nu]\left\lceil\kappa^{+n+1}\right.$ by passing to an equivalent one, for any $\nu \in A_{n}$. Just the definition $3.10(4(\mathrm{~b}) \mathrm{v})$ explicitly requires this.
This means, in particular that

$$
\operatorname{cof}\left(\prod_{n<\omega} \rho_{n}^{+n+1} / \text { finite }\right)=\operatorname{cof}\left(\prod_{n<\omega} \kappa_{n}^{+n+1} / \text { finite }\right),
$$

where the connection is provided by b_{n} 's. But note that the cofinality of the last product is κ^{+}, since every function their can be bounded by an old function. So we are done.

6 Some Generalizations

It is possible using the same ideas to realize any finite number of droppings instead of just one. Thus let $m<\omega$ and $\left\langle\theta_{k} \mid k<m\right\rangle$ be an increasing sequence of regular cardinals in the interval $\left[\kappa^{+}, \theta\right)$. We assume that κ is a limit of a sequence

$$
\kappa_{00}<\kappa_{01}<\ldots<\kappa_{0 m}<\kappa_{10}<\ldots<\kappa_{1 m}<\ldots<\kappa_{n 0}<\ldots<\kappa_{n m}<\ldots,
$$

$n<\omega$ such that for each $n<\omega$ and $k \leq m$

$$
\kappa_{n k} \text { is } \kappa_{n k}^{+\kappa_{n k}^{+n+2}+2} \text { - strong as witnessed by an extender } E_{\kappa_{n k}} \text {. }
$$

Force with $\mathcal{P}^{\prime}\left(\theta_{0}\right) * \ldots \mathcal{P}^{\prime}\left(\theta_{m-1}\right) * \mathcal{P}^{\prime}(\theta)$. Let G be a generic set.
We define $\left\langle\mathcal{P}, \leq, \leq^{*}, \rightarrow\right\rangle$ in $V[G]$ parallel to those of Sections 2, 4. Just replace there two sequences $\left\langle\lambda_{n} \mid n<\omega\right\rangle$ and $\left\langle\kappa_{n} \mid n<\omega\right\rangle$ by $m+1$-many sequences

$$
\left\langle\kappa_{n k} \mid n<\omega, k \leq m\right\rangle
$$

Force with $\langle\mathcal{P}, \rightarrow\rangle$ over $V[G]$. Let $G(\mathcal{P})$ be a generic subset of \mathcal{P}. Let $\left\langle\nu_{n k} \mid n<\omega\right\rangle$ denotes the diagonal Prikry sequence added for the normal measures of the extenders $\left\langle E_{\kappa_{n k}} \mid n<\omega\right\rangle$, for each $k \leq m+1$. Denote θ by θ_{m} and assume that $\theta_{0}=\kappa^{+}$.

The following analog of 4.7, 5.9 holds in this context:
Theorem 6.1 The following hold in $V[G, G(\mathcal{P})]$:
(1) for each $k \leq m$ we have

$$
\operatorname{cof}\left(\prod_{n<\omega} \nu_{n k+1}^{+\nu_{k+1}^{+n+2}+1} / \text { finite }\right)=\theta_{k+1}
$$

(2) for each $k \leq m$ we have

$$
\operatorname{cof}\left(\prod_{n<\omega} \nu_{n k+1}^{+\nu_{n k+1}^{+n+2}+2} / \text { finite }\right)=\left(\theta_{k+1}\right)^{+}
$$

(3) for every $k \leq m$ and a regular cardinal $\mu \in\left[\theta_{k}^{+}, \theta_{k+1}^{+}\right]$,
there is a sequence of regular cardinals $\left\langle\nu_{n k+1}(\mu) \mid n<\omega\right\rangle$ such that
(a) for each $n<\omega, \nu_{n k+1}(\mu) \in\left[\nu_{n k+1}^{+n+2}, \nu_{n k+1}^{+\nu_{k+1}^{+n+2}+2}\right]$
(b) $\operatorname{cof}\left(\prod_{n<\omega} \nu_{n k+1}(\mu) /\right.$ finite $)=\mu$
(4) for every unbounded subset a of κ consisting of regular cardinals and disjoint to $\bigcup_{n<\omega, k \leq m}\left[\nu_{n k}^{+n+2}, \nu_{n k}^{+\nu_{n k}^{+n+2}+2}\right]$, for every ultrafilter D over a which includes all co-bounded subsets of κ we have

$$
\operatorname{cof}\left(\prod a / D\right)=\kappa^{+}
$$

In a similar fasion, ω many drops can be realized. Let $\left\langle\theta_{k} \mid k<\omega\right\rangle$ be an increasing sequence of regular cardinals in the interval $\left[\kappa^{+}, \theta\right]$, with $\theta=\left(\bigcup_{k<\omega} \theta_{k}\right)^{+}$. We assume now that we have a sequence of cardinals

$$
\left\langle\kappa_{n k} \mid n<\omega, k \leq n\right\rangle
$$

such that

- $\kappa_{n k}<\kappa_{m l}$ whenever $n<m$ or $n=m$ and $k<l$
- for each $k<\omega$ we have $\left\langle\kappa_{n k} \mid n \geq k\right\rangle$ is unbounded in κ
- $\kappa_{n k}$ is $\kappa_{n k}^{+\kappa_{n k}^{+n+2}+1}$ - strong as witnessed by an extender $E_{\kappa_{n k}}$.

Force with $\mathcal{P}^{\prime}\left(\theta_{0}\right) * \ldots \mathcal{P}^{\prime}\left(\theta_{m}\right) * \ldots, m<\omega$. Let G be a generic set.
We define $\left\langle\mathcal{P}, \leq, \leq^{*}, \rightarrow\right\rangle$ in $V[G]$ parallel to those of Sections 2, 4. Just replace there two sequences $\left\langle\lambda_{n} \mid n<\omega\right\rangle$ and $\left\langle\kappa_{n} \mid n<\omega\right\rangle$ by ω-many sequences

$$
\left\langle\kappa_{n k} \mid n<\omega, k \leq n\right\rangle,
$$

but note at each level $n<\omega$ we have here only finitely many (n) possibilities.
Force with $\langle\mathcal{P}, \rightarrow\rangle$ over $V[G]$. Let $G(\mathcal{P})$ be a generic subset of \mathcal{P}. Let $\left\langle\nu_{n k}\right| k \leq n<$ $\omega\rangle$ denotes the diagonal Prikry sequence added for the normal measures of the extenders $\left\langle E_{\kappa_{n k}} \mid n<\omega\right\rangle$, for each $k<\omega$. Assume that $\theta_{0}=\kappa^{+}$.

Then the following analog of 4.7, 5.9, 6.1 holds:
Theorem 6.2 The following hold in $V[G, G(\mathcal{P})]$:
(1) for each $k<\omega$ we have

$$
\operatorname{cof}\left(\prod_{k \leq n<\omega} \nu_{n k}^{+\nu_{n k+1}^{+n+2}+1} / \text { finite }\right)=\theta_{k+1}
$$

(2) for each $k<\omega$ we have

$$
\operatorname{cof}\left(\prod_{k \leq n<\omega} \nu_{n k}^{+\nu_{n k+1}^{+n+2}+2} / \text { finite }\right)=\left(\theta_{k+1}\right)^{+}
$$

(3) for every $k<\omega$ and a regular cardinal $\mu \in\left[\theta_{k}^{+}, \theta_{k+1}^{+}\right]$, there is a sequence of regular cardinals $\left\langle\nu_{n k+1}(\mu) \mid k \leq n<\omega\right\rangle$ such that
(a) for each $k \leq n<\omega, \nu_{n k+1}(\mu) \in\left[\nu_{n k+1}^{+n+2}, \nu_{n k+1}^{+\nu_{n k+1}^{+n+2}+1}\right]$
(b) $\operatorname{cof}\left(\prod_{n<\omega} \nu_{n k+1}(\mu) /\right.$ finite $)=\mu$
(4)

$$
\operatorname{cof}\left(\prod_{n<\omega} \nu_{n n}^{+\nu_{n n}^{+n+2}+1} / \text { finite }\right)=\theta
$$

(5) for every unbounded subset a of κ consisting of regular cardinals and disjoint to $\bigcup_{k<\omega, k \leq n<\omega}\left[\nu_{n k}^{+n+2}, \nu_{n k}^{+\nu_{n k}^{+n+2}+2}\right]$, for every ultrafilter D over a which includes all cobounded subsets of κ we have

$$
\operatorname{cof}\left(\prod a / D\right)=\kappa^{+}
$$

References

[1] M. Gitik, Blowing up power of a singular cardinal, Annals of Pure and Applied Logic 80 (1996) 349-369
[2] M. Gitik, Blowing up power of a singular cardinal-wider gaps, Annals of Pure and Applied Logic 116 (2002) 1-38
[3] M. Gitik, No bound for the power of the first fixed point, www.math.tau.ac.il/ ~ gitik, submitted,
[4] M. Gitik, Simpler short extenders forcing - gap 3, preprint
[5] M. Gitik, Simpler short extenders forcing - gap κ^{+}, preprint
[6] M. Gitik, Simpler short extenders forcing - arbitrary gap, preprint
[7] D. Velleman, Simplified morasses with linear limits, J. of Symbolic Logic, 49 (1984), 1001-1021
[8] S. Shelah, Cardinal Arithmetic, Oxford Logic Guides, Vol. 29, Oxford Univ. Press, Oxford, 1994.

