On density of old sets in Prikry type extensions.

Moti Gitik

December 31, 2015

Abstract

Every set of ordinals of cardinality κ in a Prikry extension with a measure over κ contains an old set of arbitrary large cardinality below κ , and, actually, it can be split into countably many old sets. What about sets bigger cardinalities? Clearly, any set of ordinals in a forcing extension of a regular cardinality above the cardinality of the forcing used, contains an old set of the same cardinality. Still cardinals in the interval $(\kappa, 2^{\kappa}]$ remain. Here we would like to address this type of questions.

1 A situation under $2^{\kappa} = \kappa^+$.

Let us start with the following observation.

Proposition 1.1 Suppose that $2^{\kappa} = \kappa^+$. Let U be a normal ultrafilter over κ and \mathcal{P}_U be the Prikry forcing with U. Then in $V^{\mathcal{P}_U}$ there is a subset of κ^+ without old subsets of the same size.

Proof. Work in V. Pick a generating sequence $\langle A_{\alpha} \mid \alpha < \kappa^+ \rangle$ for U such that for every $\alpha \leq \beta < \kappa^+, A_{\beta} \subseteq^* A_{\alpha}^{-1}$. It is possible since $2^{\kappa} = \kappa^+$ and U is normal.

Define an other generating sequence $\langle A'_{\alpha} \mid \alpha < \kappa^+ \rangle$ as follows.

Let $C \subseteq \kappa^+$ be a club such that $|[\alpha_{\nu}, \alpha_{\nu+1}]| = \kappa$, for every $\nu < \kappa^+$, where $\{\alpha_{\nu} \mid \nu < \kappa^+\}$ is an increasing enumeration of C.

We set $A'_{\alpha_{\nu}} = A_{\nu}$.

Pick a surjective map $h : \kappa \to [\kappa]^{<\omega}$. Let, for every $\nu < \kappa^+$, $g_{\nu} : (\alpha_{\nu}, \alpha_{\nu+1}) \longleftrightarrow \kappa$. Now if $\beta \in (\alpha_{\nu}, \alpha_{\nu+1})$, for some $\nu < \kappa^+$, then set $A'_{\beta} = A'_{\alpha_{\nu}} \cup h(g_{\nu}(\beta))$.

Clearly, $\langle A'_{\alpha} \mid \alpha < \kappa^+ \rangle$ is a generating sequence for U and for every $\alpha \leq \beta < \kappa^+, A'_{\beta} \subseteq A'_{\alpha}$. Now let $G \subseteq \mathcal{P}_U$ be generic and $\{\kappa_n \mid n < \omega\}$ be the corresponding Prikry sequence. Set

$$X = \{ \alpha < \kappa^+ \mid A'_{\alpha} \supseteq \{ \kappa_n \mid n < \omega \} \}.$$

 ${}^{1}A \subseteq^{*} B$ means that $|A \setminus B| < \kappa$

Lemma 1.2 $|X| = \kappa^+$.

Proof. Work in V. Let $\langle t, A \rangle \in \mathcal{P}_U$ and $\delta < \kappa^+$. Pick $\alpha_{\nu} \in C \setminus \delta + 1$ such that $A \supseteq^* A'_{\alpha_{\nu}}$. Find $\beta \in (\alpha_{\nu}, \alpha_{\nu+1})$ such that $A'_{\beta} = A'_{\alpha_{\nu}} \cup t$. Then

$$\langle t, A \cap A'_{\alpha_{\nu}} \rangle \Vdash \beta \in X.$$

So, we are done, using a density argument.

 \Box of the lemma.

Suppose now that there is $X^* \subseteq X, |X^*| = \kappa^+$ and $X^* \in V$. Set

$$A = \bigcap_{\alpha \in X^*} A'_{\alpha}.$$

Then, clearly, $A \in V$ and $A \supseteq \{\kappa_n \mid n < \omega\}$. But then $A \in U$. Hence, there is $\alpha < \kappa^+$, $A'_{\alpha} \subseteq^* A$. Now, for every $\beta \in X, \beta \ge \alpha$, we have

$$A'_{\beta} \subseteq^* A'_{\alpha} \subseteq^* A.$$

But each such $A'_{\beta} \supseteq A$. Hence, for every $\beta \in X, \beta \ge \alpha$, we have

$$A'_{\beta} =^* A.$$

But this is impossible. Thus just split A in V into two disjoint sets each of cardinality κ . One of them should be in U, and so must almost contain on of such A'_{β} 's. Contradiction.

So there are sets of ordinals of cardinality κ^+ without old subsets of cardinality κ^+ . But what about subsets of size κ ? The next proposition provides an answer.

Proposition 1.3 Every set of ordinals of size $> \kappa$ contains an old subset of size κ .

Proof. Suppose otherwise. Pick $\langle t, A \rangle \in G$ and a name \underline{a} such that

 $\langle t, A \rangle \Vdash (|a| = \kappa^+ \text{ and } \underline{a} \text{ does not contain an old subset of size } \kappa).$

Let $\underline{\alpha} = \{\underline{\alpha}_{\nu} \mid \nu < \kappa^+\}$. For every $\nu < \kappa^+$, pick $\langle t_{\nu}, A_{\nu} \rangle \in G, \langle t_{\nu}, A_{\nu} \rangle \ge \langle t, A \rangle$ such that

$$\langle t_{\nu}, A_{\nu} \rangle \parallel \alpha_{\nu}$$

Find $S \subseteq \kappa^+$, $|S| = \kappa^+$ and t^* such that for every $\nu \in S$ we have $t_{\nu} = t^*$. Clearly, in order to derive a contradiction, it is enough to find $A^* \in U, A^* \subseteq A$ such that the condition

 $\langle t^*, A^* \rangle$ decides simultaneously α_{ν} 's for κ -many ν 's. Work in V. Set

$$Z = \{ \nu < \kappa^+ \mid \exists B \in U(B \subseteq A \land \langle t^*, B \rangle \parallel \alpha_{\nu}) \}.$$

Then $|Z| = \kappa^+$, since $Z \supseteq S$. Let us chose for every $\nu \in Z$ a set $B_{\nu} \in U, B_{\nu} \subseteq A$ such that $\langle t^*, B \rangle \parallel \alpha_{\nu}$.

Now let us use the following pretty observation of F. Galvin (see [1], but for a reader convenience let state the proof here):

Proposition 1.4 (Galvin) Suppose that $2^{<\lambda} = \lambda$, I is a normal ideal on λ and $\{B_{\nu} \mid \nu < \lambda^+\} \subseteq I$. Then there is $X \subseteq \lambda^+, |X| = \lambda$ such that $\bigcup_{\nu \in X} B_{\nu} \in I$.

Proof. Set

$$H_{\alpha\xi} = \{\beta < \lambda^+ \mid B_\alpha \cap \xi = B_\beta \cap \xi\},\$$

for every $\alpha < \lambda^+$ and $\xi < \lambda$.

Lemma 1.5 There is $\alpha < \lambda^+$ such that for every $\xi < \lambda$ we have $|H_{\alpha\xi}| = \lambda^+$.

Proof. Suppose otherwise. Then for every $\alpha < \lambda^+$ there is $\xi_{\alpha} < \lambda$ such that $|H_{\alpha\xi}| \leq \lambda$. But for every $\xi < \lambda$ we have $2^{\xi} \leq \lambda$, so there are at most λ -possibilities for $B_{\beta} \cap \xi$'s. Hence,

$$\big|\bigcup_{\alpha<\lambda^+}H_{\alpha\xi_\alpha}\big|\leq\lambda.$$

But, clearly, $\alpha \in H_{\alpha\xi\alpha}$, for every $\alpha < \lambda^+$. Contradiction. \Box of the lemma.

Pick α such that for every $\xi < \lambda, |H_{\alpha\xi}| = \lambda^+$. Define a sequence $\langle \eta_{\xi} | \xi < \lambda \rangle$ by induction as follows.

$$\eta_{\xi} \in H_{\alpha\xi+1} \setminus \{\eta_{\xi'} \mid \xi' < \xi\}.$$

 Set

$$B = \bigcup_{\xi < \lambda} B_{\eta_{\xi}}.$$

Then $B \in I$, since

$$B \setminus B_{\alpha} \subseteq \bigcup_{\xi < \lambda} (B_{\eta_{\xi}} \setminus \xi + 1),$$

and $\bigcup_{\xi < \lambda} (B_{\eta_{\xi}} \setminus \xi + 1) \in I$ due to normality of I.

So, there will be $X \subseteq Z$ of cardinality κ and $B \in U$ such that

$$B \subseteq \bigcap_{\nu \in X} B_{\nu}$$

Then $\langle t^*, B \rangle \geq^* \langle t^*, B_\nu \rangle$, for every $\nu \in X$, and so, $\langle t^*, B \rangle$ decides κ -many of α_{ν} 's. \Box

2 A situation without $2^{\kappa} = \kappa^+$.

Let us show that the assumption $2^{\kappa} = \kappa^+$ cannot be dropped from 1.1.

Start with the following general result.

Proposition 2.1 Suppose that U is a normal ultrafilter over κ which has a generating family $\langle A_{\nu} | \nu < \chi \rangle$ such that $A_{\beta} \subseteq^* A_{\alpha}$, for every $\alpha < \beta < \chi$. Let E be a set of ordinals in $V^{\mathcal{P}_U}$. Then

- 1. if $|E| = \kappa$, then for every $\eta < |E|$, there is an old subset of E of cardinality η .
- 2. there is subset of κ of cardinality κ without an old subset of cardinality κ ;
- 3. if $\omega < |E| < \kappa$, then for every $\eta \leq |E|$, there is an old subset of E of cardinality η ;
- 4. there is a subset of κ of cardinality ω without infinite old subsets;
- 5. if $|E| > cof(\chi)$, then for every $\eta \leq |E|$, there is an old subset of E of cardinality η ;
- 6. there is a subset of χ of cardinality $cof(\chi)$ without old subsets of the same cardinality;
- 7. for every cardinal $\mu < \chi$ with $(cof(\mu))^V = \kappa$, there is a subset of μ without old subsets of the same cardinality;
- 8. if $\kappa < |E| \le \chi$, then for every $\eta \le |E|$, such that $|E| = \operatorname{cof}(\chi)$ or $(\operatorname{cof}(|E|))^V = \kappa$ imply $\eta < |E|$, there is an old subset of E of cardinality η .²

Proof. The first four items are trivial. Item 5 is trivial as well, since \mathcal{P}_U will have a dense subset of cardinality $\operatorname{cof}(\chi)$.

Item 6 follows from the argument of 1.1 only replacing κ^+ by $cof(\chi)$. Let us deal with Item 7.

²Remember that by König's theorem, $cof(\chi) \ge \kappa^+$.

Suppose that $\kappa < |E| \le \chi$. Let $\eta \le |E|, \eta \ne \operatorname{cof}(\chi)$ and $\eta < |E|$, if $(\operatorname{cof}(|E|))^V = \kappa$. If $\eta = \kappa$, then the argument of 1.3 provides an old subset of *E* of cardinality κ . Assume that $\operatorname{cof}(\eta) > \kappa$.

Proceed as in 1.3. Let $\{ \alpha_{\xi} \mid \xi < \eta \}$ be a set of η elements of E. Find $Z \subseteq \eta, |Z| = \eta$, $t^*, B_{\nu} \in U$, for each $\nu \in Z$ such that

$$\langle t^*, B_{\nu} \rangle \parallel \alpha_{\nu}.$$

For every $\nu \in Z$ there is β_{ν} such that $A_{\beta_{\nu}} \subseteq^* B_{\nu}$. Then there will be $\beta^* < \chi$ and $Z^* \subseteq Z, |Z^*| = \eta$, such that for every $\nu \in Z^*$ we have

$$A_{\beta^*} \subseteq^* A_{\beta_\nu} \subseteq^* B_{\nu}.$$

Then for every $\nu \in Z^*$ there is $\tau_{\nu} < \kappa$ such that

$$A_{\beta^*} \setminus \tau_{\nu} \subseteq B_{\nu}.$$

Pick $Z' \subseteq Z^*$, $|Z'| = \eta$ and $\tau' < \kappa$ such that for every $\nu \in Z'$, $\tau_{\nu} = \tau'$. It is possible since $cof(\eta) > \kappa$. Now we will have

$$\langle t^*, B_{\nu} \setminus \tau' \rangle \leq^* \langle t^*, A_{\beta^*} \setminus \tau' \rangle,$$

for every $\nu \in Z'$. Hence, the condition $\langle t^*, A_{\beta^*} \setminus \tau' \rangle$ decides simultaneously α_{ν} 's for η -many ν 's. So we are done.

The existence of such generating families with $2^{\kappa} > \kappa^+$ follows from [4]:

Theorem 2.2 Let κ be an almost huge cardinal with a measurable target λ .³ Then for every cardinal $\chi, \kappa < \chi < \lambda, \operatorname{cof}(\chi) > \kappa$ there is a cofinalities preserving extension with a normal ultrafilter over κ which has a generating family $\langle A_{\nu} | \nu < \chi \rangle$ such that $A_{\beta} \subseteq^* A_{\alpha}$, for every $\alpha < \beta < \chi$.

In particular, we can conclude the following:

Corollary 2.3 It is consistent that in the Prikry forcing extension every set of ordinals of cardinality κ^+ contains an old subset of the same cardinality.

Working a bit harder it is possible to show the following:

³I.e. there is $j: V \to M$ such that $\lambda = j(\kappa)$ is a measurable cardinal and $\lambda > M \subseteq M$.

Proposition 2.4 It is consistent that in the Prikry forcing extension every set of ordinals of cardinality κ^+ is a countable union of old sets.

Proof. We start with the model with $2^{\kappa} = \kappa^{++}$ and a normal ultrafilter U over κ with a generating family $\langle A_{\nu} | \nu < \kappa^{++} \rangle$ such that $A_{\beta} \subseteq^* A_{\alpha}$, for every $\alpha < \beta < \kappa^{++}$.

Let $G \subseteq \mathcal{P}_U$ be generic and $X = \{\alpha_{\nu} \mid \nu < \kappa^+\}$ be a set of ordinals of cardinality κ^+ in V[G].

For every $\nu < \kappa^+$, pick $\langle t_{\nu}, B_{\nu} \rangle \in G$ which decides α_{ν} .

Let $\langle \kappa_n \mid n < \omega \rangle$ be the Prikry sequence. For every $n < \omega$, set

$$X_n = \{ \alpha_{\nu} \mid \exists B \in U(\langle \langle \kappa_0, ..., \kappa_n \rangle, B \rangle \in G \land \langle \langle \kappa_0, ..., \kappa_n \rangle, B \rangle \parallel \alpha_{\nu} \nu) \}.$$

It is enough to show that each X_n can be split into ω -old sets.

Fix $n < \omega$. Set $t = \langle \kappa_0, ..., \kappa_n \rangle$. So, for every $\alpha_\nu \in X_n$, we have $\langle t, B_\nu \rangle \in G$ which decides α_ν .

Find $\xi < \kappa^{++}$ large enough such that

- $A_{\xi} \subseteq^* B_{\nu}$, for every $\alpha_{\nu} \in X_n$,
- there is $m, n \leq m < \omega, \langle \langle \kappa_0, ..., \kappa_m \rangle, A_{\xi} \setminus \kappa_m + 1 \rangle \in G.$

Now, for every $k < \omega$, set

$$X_{nk} = \{ \alpha_{\nu} \mid A_{\xi} \setminus \kappa_k \subseteq B_{\nu} \}.$$

Note that

$$B_{\nu} \supseteq (A_{\xi} \setminus \kappa_k) \cup \{\kappa_{n+1}, ..., \kappa_{\max(k,m)}\},\$$

for every $\alpha_{\nu} \in X_{nk}$. Then

$$\langle t, B_{\nu} \rangle \leq^* \langle t, (A_{\xi} \setminus \kappa_k) \cup \{\kappa_{n+1}, ..., \kappa_{\max(k,m)}\} \rangle$$

and

$$\langle t, (A_{\xi} \setminus \kappa_k) \cup \{\kappa_{n+1}, ..., \kappa_{\max(k,m)}\} \rangle \in G$$

for every $\alpha_{\nu} \in X_{nk}$. It follows now that

$$X_{nk} = \{ \rho \mid \exists \nu < \kappa^+(\langle t, (A_{\xi} \setminus \kappa_k) \cup \{\kappa_{n+1}, ..., \kappa_{\max(k,m)}\} \rangle \Vdash \underline{\alpha}_{\nu} = \check{\rho}) \}.$$

Clearly, the set on the right is in V, and, hence $X_{nk} \in V$ as well, for every $k < \omega$. But also clear that

$$X_n = \bigcup_{k < \omega} X_{nk}$$

So we are done.

Let us point out that $2^{\kappa} = \kappa^{++}$ does not imply the conclusion of 2.3.

Proposition 2.5 It is consistent with $2^{\kappa} = \kappa^{++}$ that in the Prikry forcing extension there is a set of ordinals of cardinality κ^{+} without old subsets of the same cardinality.

Proof. Use the construction of [2]. We start with $V = L[\vec{E}]$ model with $o(\kappa) = \kappa^{++}$. Let U_0 denotes the normal measure on κ which concentrates on nonmeasurable cardinals and which extends to normal measure U in the final model V^* of $2^{\kappa} = \kappa^{++}$. The extension is of the form $V[G_{<\kappa}, G_{\kappa}]$, where $V[G_{<\kappa}]$ is an extension of V by a forcing of size κ and G_{κ} is the forcing over κ which consists of adding κ^{++} –Cohen subsets and may be some additional things which does not add new subsets to κ .

Let U be a normal ultrafilter over κ in $V^* = V[G_{<\kappa}, G_{\kappa}].$

Force with \mathcal{P}_U and let $\langle \kappa_n | n < \omega \rangle$ be the Prikry sequence. Then $\langle \kappa_n | n < \omega \rangle$ be a Prikry sequence also over V for U_0 .

Pick in V a generating family $\langle A_{\alpha} \mid \alpha < \kappa^+ \rangle$ for U_0 . Proceed exactly as in 1.1 and define $\langle A'_{\beta} \mid \beta < \kappa^+ \rangle$ and

$$X = \{ \beta < \kappa^+ \mid A'_\beta \supseteq \{ \kappa_n \mid n < \omega \} \}.$$

As in 1.1, then $|X| = \kappa^+$.

We claim that X does not contain old (i.e. those in V^*) subsets of cardinality κ^+ . Suppose otherwise. Let X^* witnesses this. Consider

$$A = \bigcap_{\beta \in X^*} A'_{\beta}.$$

Now, this A need not be in V, since X^* was picked in V^* and, so may not be in V. However

$$A \supseteq \{\kappa_n \mid n < \omega\},\$$

and so $A \in U$. Consider

$$j_U: V^* \to M_U \simeq (V^*)^{\kappa} / U_*$$

Then $j_U \upharpoonright V$ is an iterated ultrapower of V by its measures, but since U extends U_0 , it follows that U_0 was applied first in this iteration process. In particular, it is not on the sequence of core model \mathcal{K}_U of M_U and so not in M_U . But $A \in M_U$ and so be can define U_0 in M_U as follows:

$$\{Z \in \mathcal{P}(\kappa) \cap \mathcal{K}_U \mid A \subseteq^* Z\}.$$

Contradiction.

3 A remark on Extender based Prikry forcing.

Let *E* be an extender over κ of the length at least κ^+ . Denote by \mathcal{P}_E the Extender based forcing as defined in [3].⁴

Let $G \subseteq \mathcal{P}_E$ be a generic subset.

Proposition 3.1 In V[G] there is a subset of κ^+ without old subsets of cardinality κ .

Proof. Let us denote by $b_{\alpha} : \omega \to \kappa$ the Prikry sequence of G for the α -th measure E_{α} of E. Then, for each α , there is the least $n_{\alpha} < \omega$ such that for every $n, n_{\alpha} \leq n < \omega$,

$$\pi_{\alpha\kappa}(b_{\alpha}(n)) = b_{\kappa}(n),$$

where $\pi_{\alpha\kappa}$ denotes the canonical projection of E_{α} onto the normal measure E_{κ} of the extender. There are $A^* \subseteq \kappa^+$, $|A^*| = \kappa^+$ and $n^* < \omega$ such that for every $\alpha \in A^*$, $n_{\alpha} = n^*$.

We claim that A^* does not contain old subsets of cardinality κ .

Suppose otherwise. Let B be such a subset.

Pick some $p = \langle p^{\gamma} | \gamma \in supp(p) \rangle^{\frown} \langle p^{mc}, T \rangle \in G$ forcing this and deciding B.

We can assume that each $\alpha \in B$ belongs to supp(p), since otherwise we are completely free about b_{α} and can easily to make

$$\pi_{\alpha\kappa}(b_{\alpha}(n)) \neq b_{\kappa}(n),$$

for some $n \ge n^*$. Without loss of generality we can assume that for every $\alpha \in B$, $n^* \le m^* := |p^{\alpha}|$ and $m^* = |p^{mc}|$ (and then $= p^0$). Pick now some $\nu \in Suc_T(p^{mc})$. Let ν^0 , as usual be $\pi_{mc\kappa}(\nu)$. By the definition of the forcing, the set

 $\{\alpha \in supp(p) \mid \nu \text{ is permitted for } p^{\alpha}\}$

⁴A very similar argument works for the Merimovich variations [5].

has cardinality $< \kappa$ (actually at most ν^0). Now, since $|B| = \kappa$, there is $\alpha \in B$ such that ν is not permitted for α . This means that in the extension p^{ν} of p by ν , p^{α} does not extend. But then,

$$p^{\nu} \Vdash \pi_{\alpha\kappa}(b_{\alpha}(m^*)) = b_{\kappa}(m^*).$$

Contradiction. \Box

References

- J. Baumgartner, A. Hajnal and A. Mate, Weak saturation properties of ideals, Coll. Math. Soc. J. Bolyai 10, Infinite and Finite Sets, Keszthely, 1973, 137-158.
- [2] M. Gitik, Not SCH from $o(\kappa) = \kappa^{++}$,
- [3] M. Gitik and M. Magidor, The SCH revisited,
- [4] M. Gitik and S. Shelah, On density of the box products, Topology and its Applications, Volume 88, Issue 3, 6 November 1998, 219-237.
- [5] C. Merimovich, Prikry on Extenders, Revisited. Israel Journal of Mathematics, Volume 160, Issue 2, August 2007, pages 253-280.