Some consistency results on density numbers.

Moti Gitik

October 14, 2015

Abstract

We answer some questions of M. Kojman on density numbers.

1 Introduction

Menachem Kojman introduced and studied in [4], [5] the following natural notion.

Definition 1.1 (Kojman) Suppose $\theta \leq \mu$ are cardinals.

- 1. The θ -density of μ , denoted by $D(\mu, \theta)$, is the least cardinality of a subset $D \subseteq [\mu]^{\theta}$ which is dense in $\langle [\mu]^{\theta}, \subseteq \rangle$ (i.e. every $X \subset \mu$ of cardinality θ contains an element of D).
- 2. The θ -upper density of μ , denoted by $\overline{D}(\mu, \theta)$, is the least cardinality of a subset $D \subseteq [\mu]^{\theta}$ such that
 - (a) for every $Z \in D$, for every $\alpha < \mu$, $|Z \cap \alpha| < \theta$,
 - (b) for every $X \subset \mu$ of cardinality θ , such that for every $\alpha < \mu$, $|X \cap \alpha| < \theta$ contains an element of D.
- 3. The θ -lower density of μ , denoted by $\underline{D}(\mu, \theta)$, is the least cardinality of a subset $D \subseteq \bigcup \{ [\alpha]^{\theta} \mid \alpha < \mu \}$ which is dense in $\bigcup \{ [\alpha]^{\theta} \mid \alpha < \mu \}$.

In [5], Kojman asked the following questions:

Question 1.

Is the negation of the following statement consistent:

There is κ such that for any two regular cardinals θ_1, θ_2 above κ , for every sufficiently large μ

$$\mu = \min(D(\mu, \theta_1), D(\mu, \theta_2))?$$

Question 2.

Is the negation of the following statement consistent: For every κ there is a finite set F of regular cardinals above κ , for every sufficiently large μ

$$\mu = \min(D(\mu, \theta) \mid \theta \in F)?$$

Clearly the second statement is stronger and Kojman showed in [4], that it is impossible to replace finite by countable.

Our aim is to prove the following that answers both questions affirmatively:

Theorem 1.2 Suppose that η is an inaccessible cardinal which is a limit of strong cardinals. Then there is a forcing extension V[G] of V such that the model $V_n[G]$ satisfies the following:

- 1. ZFC,
- 2. for every finite set $\rho_1 < ... < \rho_n$ of regular cardinals, for every ξ , there are $\mu_1 < ... < \mu_n$ such that
 - (a) $\mu_1 > \xi$,
 - (b) $\operatorname{cof}(\mu_1) = \rho_n, \operatorname{cof}(\mu_2) = \rho_{n-1}, ..., \operatorname{cof}(\mu_n) = \rho_1,$
 - (c) $\mu_1^{\rho_n} = D(\mu_1, \rho_n) = \overline{D}(\mu_1, \rho_n) > \mu_2^{\rho_{n-1}} = D(\mu_2, \rho_{n-1}) = \overline{D}(\mu_2, \rho_{n-1}) > \dots > \mu_n^{\rho_1} = D(\mu_n, \rho_1) = \overline{D}(\mu_n, \rho_1) > \mu_n,$

(d)
$$\mu_n < \mu_n^{\rho_1} = D(\mu_n, \rho_1) < \mu_n^{\rho_2} = D(\mu_n, \rho_2) < \dots < \mu_n^{\rho_n} = D(\mu_n, \rho_n),$$

3. for every finite set of cardinals F (consisting not necessary of regular cardinals) there are arbitrary large cardinals μ such that $\mu \neq \min(\{D(\mu, \theta) \mid \theta \in F\})$.

The idea of the construction goes back to [1], however we prefer to use more modern approach based on Extender Based Magidor forcings due to Merimovich [6], since it is more straightforward and allows to preform cardinal arithmetic calculations more easily.

2 Forcing constructions

Let η be an inaccessible cardinal which is a limit of strong cardinals.¹ Assume GCH.

¹Alternatively, it is possible to assume that there are unboundedly many strongs and to work with classes instead of using η .

Fix an enumeration $\langle F_{\nu} | \nu < \eta \rangle$ of all finite sequences of regular cardinals below η . Assume that always $\nu \geq \max(F_{\nu})$.

Split the set of strong cardinals $\langle \eta \rangle$ into η -disjoint sets $\langle S_{\xi} | \xi \langle \eta \rangle$ each of cardinality η . Fix a function $f : \eta \to [\eta]^2$ such that for every $\xi, \nu < \eta$ we have

$$|\{\rho < \eta \mid f(\rho) = (\nu, \xi)\}| = \eta.$$

Define now by induction an Easton support iteration of Prikry type forcing notions (see [2] or [3])

$$\langle P_{\alpha}, Q_{\beta} \mid \alpha \leq \eta, \beta < \eta \rangle.$$

Suppose that P_{α} is defined. Work in $V^{P_{\alpha}}$ and define Q_{α} .

Consider $f(\alpha)$. Let $f(\alpha) = (\nu_{\alpha}, \xi_{\alpha})$. If some of the elements of $F_{\nu_{\alpha}}$ is not regular anymore (i.e. it is singular in $V^{P_{\alpha}}$, then let Q_{α} be the trivial forcing.

Suppose that all elements of $F_{\nu_{\alpha}}$ remain regular in $V^{P_{\alpha}}$. Let $\langle \rho_1, ..., \rho_n \rangle$ be an increasing enumeration of $F_{\nu_{\alpha}}$.

Pick some $\mu_1 < ... < \mu_n$ in $S_{\xi_{\alpha}}$ above $|P_{\alpha}|$. Clearly, they remain strong in $V^{P_{\alpha}}$.

Define Q_{α} to be a finite iteration of forcing notions $Q_{\alpha,n} * \ldots * Q_{\alpha,1}$, where $Q_{\alpha,i}$'s are defined as follows.

Let $Q_{\alpha,n}$ be the extender based Magidor forcing (above μ_{n-1} or above $2^{|P_{\alpha}|}$, if n-1=0) which changes the cofinality of μ_n to ρ_1 and blows up its power, to say, μ_n^{+7} (we will elaborate on this more below).

If n > 1, and assuming the right preparation was done below (see [1]), each $\mu_i, 1 \le i < n$ remains strong. Define $Q_{\alpha,n-1}$ to be the extender based Magidor forcing (above μ_{n-2} or above $2^{|P_{\alpha}|}$, if n - 2 = 0) which changes the cofinality of μ_{n-1} to ρ_2 and blows up its power, to say, μ_n^{+14} .

If n > 2, then we continue and define $Q_{\alpha,n-2}$ in the same fashion, and so on.

This way the following cardinals configuration is arranged:

$$\mu_1^{\rho_n} > \mu_2^{\rho_{n-1}} > \dots > \mu_n^{\rho_1} = \mu_n^{+7}.$$

Let us check this and accumulate more information on relevant cardinal arithmetic before turning to the density numbers.

Assume for simplification of the notation that n = 2. For the first forcing $Q_{\alpha,n}$, a coherent sequence $\vec{E}_2 = \langle E_2(\beta, \gamma) \mid \beta \in \text{dom}(\vec{E}_2), \gamma < \rho_1 \rangle$ of (β, β^{+7}) -extenders is used with $\text{dom}(\vec{E}_2) \subseteq \mu_2 + 1 \setminus \mu_1^{++}, \mu_2 \in \text{dom}(\vec{E}_2)$.

The following was shown in [6]:

Lemma 2.1 In a generic extension by $Q_{\alpha,2}$ the following hold:

- 1. $cof(\mu_2) = \rho_1$,
- 2. μ_2 is a strong limit cardinal, in particular $\mu_2^{\tau} = \mu_2$, for every $\tau < \rho_1$,
- 3. $\mu_2^{\rho_1} = 2^{\mu_2} = \mu_2^{+7}$,
- 4. $Q_{\alpha,2}$ satisfies $\mu_2^{++} c.c.$ and preserves all cardinals,
- 5. Magidor sequences for measures of the extenders $\langle E(\mu_2, \gamma), \gamma < \rho_1 \rangle$ form a scale mod bounded in the product of $\langle \mu_{2i}^{+7} | i < \rho_1 \rangle$ of the length μ_2^{+7} , where $\langle \mu_{2i} | i < \rho_1 \rangle$ is the Magidor sequence (a club in μ_2) for the normal measures.

Assume that the preparation for $Q_{\alpha,2}$ was done below μ_1 (or its strongness was indestructible under such forcings, as in [1].²

Work in $V^{P_{\alpha}*Q_{\alpha,2}}$. Pick a coherent sequence of extenders for our next extender based Magidor forcing $Q_{\alpha,1}$. $\vec{E_1} = \langle E_1(\beta,\gamma) \mid \beta \in \operatorname{dom}(\vec{E_1}), \gamma < \rho_2 \rangle$ of $(\beta, g(\beta)^{+14})$ -extenders is used with $\operatorname{dom}(\vec{E_1}) \subseteq \mu_1 + 1 \setminus |P_{\alpha}|^{++}, \mu_1 \in \operatorname{dom}(\vec{E_1}), g : \mu_1 \to \mu_1$ represents μ_2 in the ultrapower by $E_1(\mu_1,\gamma)$, for every $\gamma < \rho_2$. In particular, over μ_1 itself, $E_1(\mu_1,\gamma)$'s are (μ_1, μ_2^{+14}) -extenders.

Force with the extender based Magidor forcing with \vec{E}_1 .

By [6], as in 2.1, we have the following:

Lemma 2.2 In a generic extension by $Q_{\alpha,1}$ the following hold:

- 1. $cof(\mu_1) = \rho_2$,
- 2. μ_1 is a strong limit cardinal, in particular $\mu_1^{\tau} = \mu_1$, for every $\tau < \rho_2$,
- 3. $\mu_1^{\rho_2} = 2^{\mu_1} = \mu_2^{+14}$,
- 4. $Q_{\alpha,1}$ satisfies $\mu_1^{++} c.c.$ and preserves all cardinals,
- 5. Magidor sequences for measures of the extenders $\langle E(\mu_1, \gamma), \gamma < \rho_2 \rangle$ form a scale mod bounded in the product of $\langle g(\mu_{1i})^{+14} | i < \rho_2 \rangle$ of the length μ_2^{+14} , where $\langle \mu_{1i} | i < \rho_2 \rangle$ is the Magidor sequence (a club in μ_1) for the normal measures.

²Actually we need it to be strong up to μ_2^{+15} only.

Note only that since the lengthes of the extenders are above $2^{\mu_2} = \mu_2^{+7}$, we still have μ_1 -closure of the supports of the extenders used in the extender based Magidor forcing here. It would not be the case, if instead (μ_1, δ) -extenders were used with $\delta < \mu_2^{+7}$.

The next lemma provides an additional information on cardinal arithmetic in a generic extension by $Q_{\alpha,1}$.

Denote $V^{P_{\alpha}*Q_{\alpha,2}}$ by V_1 .

Lemma 2.3 In $V_1^{Q_{\alpha,1}}$ the following hold:

- 1. $\mu_2^{\rho_1} = \mu_2^{+7}$,
- 2. for every $\zeta < \rho_1, \ \mu_2^{\zeta} = \mu_2,$
- 3. for every $\delta < \mu_2$, $\delta^{\rho_1} < \mu_2$.

Proof. Let us prove that $\mu_2^{\rho_1} = \mu_2^{+7}$. Two other claims are similar.

Note first that every set of ordinals X in $V_1^{Q_{\alpha,1}}$ can be covered by a set $Y \in V_1$ of cardinality $|X| + \mu_1$. It follows by μ_1^{++} -c.c. of the forcing and the fact that $(\mu_1^+)^{V_1}$ is preserved, by 2.2(4).

By 2.2(2), $\mu_1^{\rho_1} = \mu_1$, in $V_1^{Q_{\alpha,1}}$. Hence,

$$\mu_2^{+7} \le \mu_2^{\rho_1} \le (\mu_2^{\mu_1})^{V_1} \cdot \mu_1^{\rho_1} = (\mu_2^{\mu_1})^{V_1} \cdot \mu_1 = (\mu_2^{\rho_1})^{V_1} = \mu_2^{+7}.$$

So, we are done. \Box

Lemma 2.4 In a generic extension by $Q_{\alpha,1}$ scales over μ_2 are preserved.

Proof. It follows easily, since by 2.2(4), $Q_{\alpha,1}$ satisfies μ_1^{++} -c.c.

Let us turn to the density numbers now.

Lemma 2.5 In a generic extension by $Q_{\alpha,1}$ we have $D(\mu_1, \rho_2) = \overline{D}(\mu_1, \rho_2) = \mu_1^{\rho_2} = \mu_2^{+14}$.

Proof. By 2.2, μ_1 is a strong limit cardinal of cofinality ρ_2 in a generic extension by $Q_{\alpha,1}$ and $\mu_1^{\rho_2} = \mu_1^{+14} = 2^{\mu_1}$. By [5], then $D(\mu_1, \rho_2) = \overline{D}(\mu_1, \rho_2)$. Clearly, $\overline{D}(\mu_1, \rho_2) \leq \mu_1^{\rho_2}$. But since, by 2.2(5), there is scale mod bounded of the length $\mu_1^{\rho_2}$, there must be an equality.

Lemma 2.6 In a generic extension by $Q_{\alpha,1}$ we have $D(\mu_2, \rho_1) = \overline{D}(\mu_2, \rho_1) = \mu_2^{\rho_1} = \mu_2^{+7}$.

Proof. First note that $D(\mu_2, \rho_1) = \overline{D}(\mu_2, \rho_1)$, since $\operatorname{cof}(\mu_2) = \rho_1$ and for every $\delta < \mu_2, \delta^{\rho_1} < \mu_2$, by 2.3. Now, due to the existence of a scale (2.1(5)), $\overline{D}(\mu_2, \rho_1) \ge \mu_2^{+7}$, but, by 2.3, μ_2^{+7} is $\mu_2^{\rho_1}$ of the extension. Clearly, $\overline{D}(\mu_2, \rho_1) \le \mu_2^{\rho_1}$, and so we are done.

Lemma 2.7 In a generic extension by $Q_{\alpha,1}$ we have $D(\mu_2, \rho_2) = \underline{D}(\mu_2, \rho_2) = \mu_2^{\rho_2} = \mu_1^{\rho_2} = \mu_2^{+14} = 2^{\mu_2}.$

Proof. By Lemmas 2.2,2.5 we have $\mu_2^{\rho_2} = \mu_1^{\rho_2} = \mu_2^{+14} = 2^{\mu_2}$. Clearly, $\mu_2^{\rho_2} \ge D(\mu_2, \rho_2) \ge \underline{D}(\mu_2, \rho_2) \ge D(\mu_1, \rho_2)$. Now, by Lemma 2.5, $D(\mu_1, \rho_2) = \mu_2^{+14}$, and so we are done.

This completes the definition of Q_{α} and the inductive construction. Let now $G \subseteq P_{\eta}$ generic. The next lemma follows from η -c.c. of the forcing (recall Easton support).

Lemma 2.8 η remains an inaccessible cardinal in V[G].

Finally we combining everything together.

Theorem 2.9 The model $V_{\eta}[G]$ satisfies the following:

- 1. ZFC,
- 2. for every finite set $\rho_1 < ... < \rho_n$ of regular cardinals, for every ξ , there are $\mu_1 < ... < \mu_n$ such that
 - (a) $\mu_1 > \xi$,
 - (b) $\operatorname{cof}(\mu_1) = \rho_n, \operatorname{cof}(\mu_2) = \rho_{n-1}, ..., \operatorname{cof}(\mu_n) = \rho_1,$
 - (c) $\mu_1^{\rho_n} = D(\mu_1, \rho_n) = \overline{D}(\mu_1, \rho_n) > \mu_2^{\rho_{n-1}} = D(\mu_2, \rho_{n-1}) = \overline{D}(\mu_2, \rho_{n-1}) > \dots > \mu_n^{\rho_1} = D(\mu_n, \rho_1) = \overline{D}(\mu_n, \rho_1) > \mu_n,$

(d)
$$\mu_n < \mu_n^{\rho_1} = D(\mu_n, \rho_1) < \mu_n^{\rho_2} = D(\mu_n, \rho_2) < \dots < \mu_n^{\rho_n} = D(\mu_n, \rho_n)$$

Proof. Follows from the construction using the previous lemmas. \Box

3 Further analysis

Let us continue to analyze the cardinal arithmetic of V[G] in order to compute $D(\mu_2, \mu)$'s for singular μ 's as well.

We return to the stage α of the construction and continue to deal with the forcings $Q_{\alpha,2}$ followed by $Q_{\alpha,1}$ in $V^{P_{\alpha}}$.

Lemma 3.1 In a generic extension by $Q_{\alpha,2}$, we have $D(\mu_2, \rho) = \mu_2$, for every $\rho < \mu_2$ such that $\operatorname{cof}(\rho) \neq \rho_1$.

Proof. Suppose that $\rho < \mu_2$ is such that $\operatorname{cof}(\rho) \neq \rho_1$. Then $D(\mu_2, \rho) = \underline{D}(\mu_2, \rho)$, since by [5], $D(\mu_2, \rho) = \underline{D}(\mu_2, \rho) + \overline{D}(\mu_2, \rho)$ and $\overline{D}(\mu_2, \rho) = 0$, as $\operatorname{cof}(\rho) \neq \rho_1 = \operatorname{cof}(\mu_2)$. Now, since μ_2 is a strong limit cardinal in $V^{P_\alpha * Q_{\alpha,2}}$, we must have $\underline{D}(\mu_2, \rho) = \mu_2$.

Let us deal now with singular ρ 's of cofinality ρ_1 .

Lemma 3.2 In a generic extension by $Q_{\alpha,2}$, we have $D(\mu_2, \rho) = \mu_2^{\rho_1} = \mu_2^{+7}$, for every $\rho < \mu_2$ of cofinality ρ_1 .

Proof. Suppose that $\rho < \mu_2$ has cofinality ρ_1 . By [5],

$$D(\mu_2, \rho) = \underline{D}(\mu_2, \rho) + \overline{D}(\mu_2, \rho).$$

 μ_2 is a strong limit cardinal in $V^{P_{\alpha}*Q_{\alpha,2}}$, hence $\underline{D}(\mu_2, \rho) = \mu_2$. Let us argue that $\overline{D}(\mu_2, \rho) = \mu_2^{\rho_1}$.

Consider the Magidor sequence $\langle \mu_{2i} | i < \rho_1 \rangle$. It is a club in μ_2 . We have

$$D(\mu_{2i},\xi) \le 2^{\mu_{2i}} = \mu_{2i}^{+7} < \mu_2,$$

for every $i < \rho_1, \xi \leq \mu_{2i}$. **Claim 3.2.1.** $\overline{D}(\mu_2, \rho) \leq \mu_2^{+7}$. *Proof.* Let $\mathcal{P}(\mu_{2i}) = \langle Z_{i,\nu} \mid \nu < \mu_{2i}^{+7} \rangle$.

 Set

$$E = \{ X \in [\mu_2]^{\rho} \mid \exists h \in \prod_{i < \rho_1} \mu_{2i}^{+7} (X = \bigcup_{i < \rho_1} Z_{i,h(i)}) \}$$

Clearly, $|E| = 2^{\mu_2} = \mu_2^{+7}$ and E is dense in $\langle [\mu_2]^{\rho}, \subseteq \rangle$. \Box of the claim. Claim 3.2.2. $\overline{D}(\mu_2, \rho) \ge \mu_2^{+7}$.

Proof. Suppose otherwise. Fix some D dense in $\langle [\mu_2]^{\rho}, \subseteq \rangle$ of cardinality less than μ_2^{+7} . Let

 $\langle h_j \mid j < \mu_1^{+7} \rangle$ be a scale in $\prod_{i < \rho_1} \mu_{2i}^{+7}$ (mod bounded), which exists by 2.1(5).

Define, for every $X \in D$, a function $\chi_X \in \prod_{i < \rho_1} \mu_{2i}^{+7}$ as follows:

 $\chi_X(i) = \sup(X \cap \mu_{2i}^{+7}), \text{ if } \rho < \mu_{2i}^{+7} \text{ and } 0 \text{ otherwise.}$

There is $j^* < \mu_1^{+7}$ such that for every $j, j^* \leq j < \mu_1^{+7}$ and for every $X \in D$ we have $h_j(i) > \chi_X(i)$, for all but boundedly many *i*'s. Without loss of generality we can assume that $h_{j^*}(i) \geq \mu_{2i}$, for every $i < \rho_1$

Recall that $cof(\rho) = \rho_1$. Fix a witnessing cofinal sequence $\langle \rho(i) | i < \rho_1 \rangle$.

Define a set Y to be the union of disjoint intervals $[h_{j^*}(i), h_{j^*}(i) + \rho(i)], i < \rho_1$. Then $Y \in [\mu_2]^{\rho}$, but there is no $X \in D$ which is a subset of Y. Thus, if $X \subseteq Y, |X| = \rho$, then $X \cap [h_{j^*}(i), h_{j^*}(i) + \rho(i)] \neq \emptyset$ for ρ_1 many *i*'s, but once $X \cap [h_{j^*}(i), h_{j^*}(i) + \rho(i)] \neq \emptyset$, we must to have $\chi_X(i) \ge h_{j^*}(i)$. Which is possible to have only for less than ρ_1 -many *i*'s. Contradiction.

 \Box of the claim.

Not that actually, by Claim 3.2.2 above, $\overline{D}(\mu_2, \rho) \ge \mu_2^{+7}$ whenever $\langle h_j \mid j < \mu_1^{+7} \rangle$ is a scale in $\prod_{i < \rho_1} \mu_{2i}^{+7}$ (mod bounded).

Hence, μ_1^{++} -c.c. of $Q_{\alpha,2}$ implies the following:

Lemma 3.3 In $V^{P_{\alpha}*Q_{\alpha,2}*Q_{\alpha,1}}$, $\overline{D}(\mu_2, \rho) \ge \mu_2^{+7}$, for every $\rho < \mu_2$ of cofinality ρ_1 .

The following lemma is completely analogues to 3.2

Lemma 3.4 In $V^{P_{\alpha}*Q_{\alpha,2}*Q_{\alpha,1}}$, we have $D(\mu_1, \rho) = \mu_1^{\rho_2} = \mu_2^{+17}$, for every $\rho < \mu_1$ of cofinality ρ_2 .

Return to the main theorem 2.9. We can add now an additional property that $V_{\eta}[G]$ satisfies:

For every finite set of cardinals F (not necessary regular) there are arbitrary large cardinals $\mu \neq \min(\{D(\mu, \theta) \mid \theta \in F\})$.

Just given finite set of cardinals $F = \{\theta_1, ..., \theta_m\}$ below η . Consider the finite set of regular cardinals $F' := \{cof(\theta_1), ..., cof(\theta_1)\}$. Let $F' = F_{\nu}$, for some $\nu < \eta$. Now pick some $\alpha < \eta$, such that

1. $|P_{\alpha}| > \max(F)$,

2. $f(\alpha) = (\nu, \xi_{\alpha})$, for some $\xi_{\alpha} < \eta$.

Then all members of the finite sequence of strongs used in the definition of Q_{α} will be above max(F). Let μ be the largest strong used there. By the construction (namely 2.9(d)) and 3.4, we will have $\mu \neq \min(\{D(\mu, \theta) \mid \theta \in F\})$.

References

- M. Gitik and S. Shelah, On certain indestructibility of strong cardinals and a question of Hajnal, Archive Math. Logic 28(1)(1989), 35-42.
- [2] M. Gitik, Some results on the nonstationary ideal, Israel Journal of Math.,92(1995),pp.61-112.
- [3] M. Gitik, Prikry type forcings, in Handbook of Set Theory, Foreman, Kanamori eds., Springer 2010, vol.2, pp.1351-1447
- [4] M. Kojman, Splitting families of sets in ZFC, Adv. Math.269(2015),707-725.
- [5] M. Kojman, On the arithmetic of density,
- [6] C. Merimovich, Extender based Magidor-Radin forcing, Israel Journal of Math., 182(1)(2011), pp.439-480.