On κ -compact cardinals.

Moti Gitik*

February 25, 2016

Abstract

We deal with some questions related to κ -compact cardinals.

1 Introduction

related questions raised in [1].

Definition 1.1 κ is κ -compact cardinal iff every κ complete filter over κ can be extended to a κ -complete ultrafilter over κ .

Clearly, if κ is 2^{κ} -supercompact or even 2^{κ} -strongly compact, then it is κ -compact. In [7] W. Mitchell asked whether $o(\kappa) = \kappa^{++}$ is sufficient for model with a κ -compact cardinal. It was answered negatively in [1]. It was shown there that at least a strong cardinal is required. Here we will somewhat improve this result and also will address some

2 An application to distributive forcing notion.

Let us argue first that κ -compact cardinal generates an extender suitable for Extender Based Prikry forcing.

Theorem 2.1 Let κ be a κ -compact cardinal. Then there is an extender E over κ such that

- 1. ${}^{\kappa}M_E \subseteq M$, where $i_E : V \to M_E \simeq Ult(V, E)$ is the corresponding elementary embedding,
- 2. every κ complete filter over κ can be extended to a κ -complete ultrafilter over κ of the form E_{ξ} , for some $\xi < i_E(\kappa)$, where $E_{\xi} = \{X \subseteq \kappa \mid \xi \in i_E(X)\}$.

^{*}The work was partially supported by ISF grant no. 58/14

Proof. Let $\lambda = (2^{2^{\kappa}})^+$. Let

$$\langle W_{\alpha} \mid \alpha < \lambda \rangle$$

be a list of all κ -complete non-principle ultrafilters over κ (with repetitions). Then for every κ -complete non-principle filter U over κ there is $\alpha < \lambda$ such that $U \subseteq W_{\alpha}$.

It is enough to construct an extender E with ultrapower closed under κ -sequences which has all W_{α} 's among its measures.

The construction is similar to those from [1].

Denote by $\mathcal{P}_{\kappa^+}(\lambda)$ the set $\{a \subseteq \lambda \mid |a| \leq \kappa\}$. For every $\tau < \kappa^+$ let $f_\tau : \kappa \to \kappa$ be a canonical function representing τ . We shall define a κ -complete ultrafilter U_a concentrating over the set $X_a = \{\langle \alpha_{\nu} \mid \nu < f_{otp(a)}(\alpha_0) \rangle \mid \alpha_{\nu} < \kappa, \nu_1 < \nu_2 \to \alpha_{\nu_1} < \alpha_{\nu_2}\}$ for $a \in \mathcal{P}_{\kappa^+}(\lambda)$. Once $b \subseteq a$, U_b will be obtained from U_a , as follows. Let $\langle a_i \mid i < otp(a) \rangle$ be the increasing enumeration of a. Then for some increasing sequence $\langle i_j \mid j < otp(b) \rangle$, $b = \langle a_{i_j} \mid j < otp(b) \rangle$. Project U_a to the coordinates $\langle i_j \mid j < otp(b) \rangle$. Let π_{ab} be such a projection. Then U_b , will be the set of $\{\pi''_{ab}(X) \mid X \in U_a\}$. Let us turn to the definition of U_a 's. Fix some enumeration $\langle a_{\alpha} \mid \alpha < \kappa^{++} \rangle$ of $\mathcal{P}_{\kappa^+}(\lambda)$. For every $\alpha < \kappa^{++}$, set $U_{\{\alpha\}} = W_{\alpha}$.

- 1. for every $\beta < \alpha$, a κ -complete ultrafilter $U_{a_{\beta}}$ is defined;
- 2. for every $b \in \mathcal{P}_{\kappa^+}(\lambda)$, if for some $\gamma < \alpha$, $b \subseteq a_{\gamma}$, then U_b is defined and it is the projection of $U_{a_{\gamma}}$ by $\pi_{a_{\gamma}b}$.

Let us define $U_{a_{\alpha}}$. The only nontrivial case is when there is no $\gamma < \alpha$ such that $a_{\gamma} \supseteq a_{\alpha}$. Define then first a κ -complete filter U concentrating over $X_{opt(a_{\alpha})}$. Set $X \in U$ iff for some $\gamma < \alpha$, some $b \subseteq a_{\alpha} \cap a_{\gamma}$ there exists $X_b \in E_b$, such that $X = \pi_{a_{\alpha}b}^{-1} X_b$. Using the inductive assumptions (1), (2) and the commutativity of the projection function π_{cd} , it is not hard to see that a so-defined U is a κ -complete filter. Let $U_{a_{\alpha}}$ be a κ -complete ultrafilter extending U. For every $b \subseteq a_{\alpha}$, if U_b is still not defined, define it to be the projection of $U_{a_{\alpha}}$ by $\pi_{a_{\alpha}b}$. This completes the construction of $\langle U_{a_{\alpha}} \mid \alpha < \lambda \rangle$.

Let N_a be the ultrapower of V by U_a and $i_a : V \to N_a$, the canonical embedding. The projection π_{ab} induces the elementary embedding $i_{ba} : N_b \to N_a$. $\langle N_a, i_{ab} | a \subseteq b, a, b \in \mathcal{P}_{\kappa^+}(\lambda) \rangle$ forms a directed system, where $N_{\emptyset} = V$ and $i_{\emptyset a} = i_a$. The direct limit of this system is well-founded and closed under κ -sequences. Let E be the derived extender. Then it is as desired.

Let us now use such an extender E to define a variation Extender Based Prikry forcing.

Theorem 2.2 Assume GCH. Let κ be a κ -compact cardinal. Then there is a cardinal preserving extension in which for every κ -distributive forcing notion $Q \in V$ of cardinality κ there is a V-generic subset.

Remark 2.3 Note that it is easy to obtain such generics once κ is a κ^+ -strongly compact cardinal, but κ^+ is collapsed in the extension.

Proof. Fix an extender E given by 2.1. We assumed GCH, so E can be picked to be an extender over κ of the length κ^{++} .

Let Q be κ -distributive forcing notion of cardinality κ . Replace by an isomorphic one over κ .

Consider the filter F_Q of its dense open subsets. Then F_Q is a κ -complete filter over κ . Hence, for some $\eta < \kappa^{++}$, $F_Q \subseteq E_{\eta}$. Denote the least such η by η_Q .

It is possible to force now with Extender E based Prikry forcing in the Merimovich style [6] or, after an additional forcing turning E into a P-point, with the original extender based Prikry forcing, as in [3]. This will produce Prikry sequences for each F_Q as above, i.e. sequences $\langle q_n \mid n < \omega \rangle$ such that for every dense open $D \subseteq Q$, $q_n \in D$, for all but finitely many n's.

However, it is not enough to produce a generic subset of Q, since such q_n 's need not be compatible.

Let us modify slightly the extender based forcing used, in order to overcome this difficulty.

Denote by Q_q , for every $q \in Q$, the set

$$\{q' \in Q \mid q' \ge q\}.$$

Then Q_q is a κ -distributive forcing notion of cardinality κ as well. So, F_{Q_q} is defined. In addition, for every $D \in F_Q$, the set

$$\{q' \in Q \mid q' \ge q \text{ and } q' \in D\}$$

is in F_{Q_q} .

Without loss of generality we can assume that each Q under the consideration is nowhere atomic forcing notion. Then, for every $A \subseteq Q$, $|A| < \kappa$, there is a dense open $D \subseteq Q$ with $A \cap D = \emptyset$. Just for each $q \in A$ consider

$$D_q = \{q' \in Q \mid q' > q \text{ or } q' \not\parallel q\}.$$

Then every D_q is a dense open and $\bigcap_{q \in A} D_q$ is a dense open disjoint from A.

A typical condition p in the extender based Prikry forcing with E is of the form

$$\langle \langle p^{\gamma} \mid \gamma \in supp(p) \rangle, \langle p^{mc}, T^{p} \rangle \rangle.$$

The support of p, supp(p) is a subset of κ^{++} of cardinality $\leq \kappa, \kappa \in supp(p)$. The maximal coordinate mc = mc(p) is an ordinal $\alpha < \kappa^{++}$ which is above (in the order \leq_E of the extender) every $\beta \in supp(p)$. Each $p^{\gamma}, \gamma \in supp(p)$ and p^{mc} is a finite increasing sequence of ordinals. They are initial segments of the Prikry sequences for γ 's and mc respectively. The set T^p is responsible for potential extensions.

Let us make the following changes:

- 1. if for some Q, $\eta_Q \in supp(p) \cup \{mc(p)\}$, then for every $q \in Q$, $\eta_{Q_q} \in supp(p) \cup \{mc(p)\}$, as well;
- 2. p^{η_Q} is increasing also in the order of Q;
- 3. once extending a condition p, p^{η_Q} extends by a member of a set of measure one for $E_{\eta_{Q_{\max(p^{\eta_Q})}}}$ instead of a member of a set of measure one for E_{η_Q} .

The basic properties of the forcing remain valid after this changes.

The last condition insures that the generic ω -sequences growing over a coordinate η_Q will be increasing in the order of Q, and so will generate a V-generic subset of Q.

3 Strength of κ -compact cardinals.

It was shown in [1] that an inner model with a strong cardinal is a lower bounds on a strength of κ -compact cardinals. Here we would like to improve this lower bound.

Theorem 3.1 Suppose κ is κ -compact then there is a inner model with a Woodin cardinal

Proof. Suppose otherwise. Then by Jensen-Steel [5], the core model K exists. Define

$$E := (E_{\aleph_0}^{\kappa})^K = \{\nu < \kappa \mid (cf(\nu))^K = \omega\}$$

and let

 $F_0 = (Cub \upharpoonright E)^K.$

Then F_0 is a normal filter on κ in K.

Let, in V,

$$\mathcal{F} = \{ X \subseteq \kappa \mid \exists A \in F_0(A \subseteq X) \}.$$

Lemma 3.2 \mathcal{F} is a κ -complete filter in V.

Proof. By [5], K satisfies GCH, in particular, $2^{\kappa} = \kappa^+$. So, in K, there is a sequence $\langle A_{\alpha} \mid \alpha < \kappa^+ \rangle$ such that

- 1. $A_{\alpha} \in Cub_{\kappa} \upharpoonright E$, for every $\beta < \alpha < \kappa^+$,
- 2. $A_{\alpha} \subseteq^* A_{\beta}$ (i.e. $|A_{\alpha} \setminus A_{\beta}| < \kappa$) for every $\beta < \alpha < \kappa^+$,
- 3. $\forall A \in Cub_{\kappa} \upharpoonright E$ there is $\alpha < \kappa^+$ such that $A_{\alpha} \subseteq A$.

Now, work in V. We have, by [5], $(\kappa^+)^K = \kappa^+.$ Let

$$\langle X_\tau \mid \tau < \delta \rangle$$

be the sequence of members of \mathcal{F} for some $\delta < \kappa$. Let us show that

$$\bigcap_{\tau<\delta}X_{\delta}\in\mathcal{F}.$$

For each $\tau < \delta$ there is $A \in (Cub_{\kappa} \upharpoonright E)^{K}$ such that $X_{\tau} \supseteq A$. Then there is $\alpha_{\tau} < \kappa^{+}$ such that $A_{\alpha_{\tau}} \subseteq^{*} A$. Pick $\rho_{\tau} < \kappa$ with $A \supseteq A_{\alpha_{\tau}} \setminus \rho_{\tau}$. Then,

$$X_{\tau} \supseteq A_{\alpha_{\tau}} \backslash \rho_{\tau}.$$

Let

$$\rho^* = \sup(\{\rho_\tau \mid \tau < \delta\}) < \kappa^+$$

and

$$\alpha^* = \sup(\{\alpha_\tau \mid \tau < \delta\}) < \kappa^+.$$

Then for all $\tau < \delta$ we have

$$A_{\alpha^*} \subseteq^* A_{\alpha_\tau}.$$

Pick $\xi_{\tau} < \kappa$ such that $A_{\alpha^*} \setminus \xi_{\tau} \subseteq A_{\alpha_{\tau}}$. Set

$$\xi^* = \sup_{\tau < \delta} \xi_\tau < \kappa.$$

Then

$$A_{\alpha^*} \setminus \max(\rho^*, \xi^*) \subseteq X_{\tau},$$

for each $\tau < \delta$. Clearly,

$$A_{\alpha^*} \setminus \max(\rho^*, \xi^*) \in \mathcal{F}.$$

Hence,

$$\bigcap_{\tau<\delta}X_{\tau}\in\mathcal{F}.$$

 \Box of the lemma.

There is a $\mathcal{F}^* \supseteq \mathcal{F}$ that is a κ -complete ultrafilter, since κ is a κ -compact cardinal. Consider

$$i^*: V \longrightarrow M \simeq V^{\kappa}/F^*.$$

Let $\tilde{i} = i \upharpoonright K$. By R. Schindler [8], \tilde{i} is an iterated ultrapower along the cofinal branch of an iteration tree.

Let $\delta = [id]_{\mathcal{F}^*}$

Claim 1 δ can not be of the form κ_{α} , where κ_{α} is one of the images of κ along the iteration \tilde{i} .

Proof. Just otherwise, δ will be regular in $(K)^M$, but $\delta \in \tilde{i}(E)$. \Box of the claim.

So, δ is not one of κ_{α} 's. Then, unless there is an extender involved of a super-strong type, there will be $n < \omega, f : [\kappa]^n \to \kappa$, generators $\mu_1 < \ldots < \mu_n < \delta$ such that

$$\tilde{i}(f)(\mu_1,...,\mu_n) \ge \delta.$$

Consider in K the following set

$$C = \{\nu < \kappa \mid \forall a_1, ..., a_n \in [\nu]^{<\omega} f(a_1, ..., a_n) < \nu\}.$$

Then, C is a club. Hence, $C \in F_0 \subseteq \mathcal{F}$. So, $\delta \in i(C) = \tilde{i}(C)$, which is impossible. Contradiction.

4 Some weakening.

Let us consider the following natural weakening of κ -compactness:

Definition 4.1 κ is weakly κ -compact iff for every stationary $S \subseteq \kappa$, the filter $Cub \upharpoonright S$ can be extended to a κ complete ultrafilter over κ .

Let us recall the following notion:

Definition 4.2 (Mitchell) Let $\langle U(\kappa,\beta) | \beta < \rho \rangle$ be a sequence of measures over κ . We say $\beta^* < \rho$ is a weak repeat point for the sequence iff for every $A \in U(\kappa,\beta^*)$ there is some $\gamma < \beta^*$ such that $A \in U(\kappa,\gamma)$.

Note that under GCH, the first weak repeat point is an ordinal of cofinality κ^+ , above κ^+ and below κ^{++} .

The next lemma is well known and likely is due to W. Mitchell.

Lemma 4.3 Let $\vec{U} = \langle U(\alpha, \beta) \mid \alpha \leq \kappa, \alpha \in dom(\vec{U})\&\beta < o^{\vec{U}}(\alpha) \rangle$ be a coherent sequence $\kappa \in dom(U), \ \kappa = maxdom(U).$ Suppose that $\beta^* < o^{\vec{U}}(\kappa)$ is the first weak repeat point for $\langle U(\kappa, \beta) \mid \beta < o^{\vec{U}}(\kappa) \rangle$. Then there is a sequence $\langle A_{\beta} \mid \beta < \beta^* \rangle$ such that for every $\beta' \neq \beta < \beta^*, \ A_{\beta} \in U(\kappa, \beta) \setminus U(\kappa, \beta').$

Proof. Let $\beta < \beta^*$. Then there is $B_{\beta} \in U(\kappa, \beta)$ such that for every $\gamma < \beta$,

$$B_{\beta} \notin U(\kappa, \gamma).$$

Consider

$$X_{\beta} = \{ \nu < \kappa \mid \forall \xi < o^{\vec{U}}(\nu) (B_{\beta} \cap \nu \notin U(\nu, \xi)) \}.$$

Then $X_{\beta} \in U(\kappa, \beta)$, since by coherence

$$M_{\kappa,\beta} \models \forall \xi < o^{i_{\beta}(\vec{U})}(\kappa) = \beta(i_{\kappa,\beta}(B_{\beta}) \cap \kappa) = B_{\beta} \notin U(\kappa,\xi)).$$

It follows that $\kappa \in i_{\kappa,\beta}(X_{\beta})$ and then $X_{\beta} \in U(\kappa,\beta)$, where

$$i_{\kappa,\beta} := i_{U(\kappa,\beta)} : V \longrightarrow M_{\kappa,\beta} \simeq V^{\kappa}/U(\kappa,\beta).$$

Take $A_{\beta} = B_{\beta} \cap X_{\beta}$. Then $A_{\beta} \in U(\kappa, \beta)$, $A_{\beta} \notin U(\kappa, \gamma)$ for every $\gamma < \beta$, but, also, we can check that $A_{\beta} \in U(\kappa, \gamma)$ for $\beta < \gamma < o^{\vec{U}}(\kappa)$.

Thus, if $A_{\beta} \in U(\kappa, \gamma), \beta < \gamma < o^{\vec{U}}(\kappa)$, then $\kappa \in i_{\kappa,\gamma}(X_{\beta})$ and, consequently,

$$M_{\kappa,\gamma} \models \forall \xi < \gamma \ (i_{\kappa,\gamma}(B_{\beta} \cap \kappa) = B_{\beta} \cap \kappa \notin U(\kappa,\xi) \),$$

but $\beta < \gamma$ and $B_{\beta} \in U(\kappa, \beta)$

Theorem 4.4 Suppose that κ is a weakly κ -compact, then there is a weak repeat point for the coherent sequence of measures over κ in the core model K.

Proof. Pick be a normal measure W over κ . Let

$$i: V \longleftrightarrow M \simeq V^{\kappa}/W$$

Let $\tilde{i} = i \upharpoonright K$. Then

$$\tilde{i}: K \longrightarrow (K)^M$$

is an iterate of K.

Let $U(\kappa, \eta)$ be the first measure used in \tilde{i} .

Assume that there is no repeat point over κ in K. Then there will be a set $A_{\eta} \in K$, $A_{\eta} \in U(\kappa, \eta)$ such that

$$\forall \xi \neq \eta \ (A_\eta \notin U(\kappa, \xi)).$$

Lemma 4.5 Suppose that $B \subseteq A_{\eta}$, $B \in K$ and $B \notin U(\kappa, \eta)$. Then, in V, B is non-stationary.

Proof. Suppose otherwise. Then there is $B \subseteq A_{\eta}, B \in K, B \notin U(\kappa, \eta)$ stationary in V. Work in V. Let $F := Cub_{\kappa} \upharpoonright B$.

By the assumption, there is a κ -complete ultrafilter F^* over κ such that $F^* \supseteq F$. Let

$$i^*: V \longrightarrow M \simeq V/F$$

and

$$i^* \upharpoonright K = \tilde{i}^* : K \longrightarrow (K)^{M^*}.$$

Then \tilde{i}^* it is an iterate ultrapower of K. Let

$$\delta = [id]_{F^*}.$$

Then $\delta \in i^*(B) = \tilde{i}^*(B)$, also, for every $C \subseteq \kappa$ club in $K, \delta \in i^*(C)$

Claim 2 δ can not be any of the images κ_{α} of κ obtained during the iteration \tilde{i}^* .

Proof. Suppose otherwise. Then there is α such that $\delta = \kappa_{\alpha}$. Write $i_{\geq \delta} \circ i_{<\delta} = \tilde{i}^*$ where $\delta = \kappa_{\alpha} = critc(i_{\geq \delta})$. So there is $\gamma < o^{(K)^{M^*}}(\kappa_{\alpha})$ such that $U(\kappa_{\alpha}, \gamma)$ is used in the iteration. Then $\delta \in \tilde{i}^*(B)$ implies $i_{<\delta}(B) \in U(\kappa_{\alpha}, \gamma)$. But

$$K \models \forall \xi < o(\kappa) \left(B \notin U(\kappa, \xi) \right).$$

Then by elementarity of $i_{<\delta}$, we have that

$$i_{<\delta}(B) \notin U(\kappa_{\alpha}, \gamma).$$

Contradiction.

 \Box of the claim.

So, δ is not an image of κ during the iteration. Then there are $f : [\kappa]^n \longrightarrow \kappa$ and $\kappa_{\alpha_1}, \ldots, \kappa_{\alpha_n} < \delta$ such that

$$\tilde{i}^*(f)(\kappa_{\alpha_1},...,\kappa_{\alpha_n}) \ge \delta.$$

Consider

$$C := \{ \nu \in \kappa \mid \forall \rho_1, ..., \rho_n < \nu \ f(\rho_1, ..., \rho_n) < \nu \}.$$

Then C is a club in $\kappa, C \in K$, but $\delta \in \tilde{i}^*(C)$. Contradiction. \Box of the lemma.

Let us conclude now the proof of the theorem. Notice that $Cub \upharpoonright A_{\eta} \in M$, since $(\mathcal{P}(\kappa))^{V} = (\mathcal{P}(\kappa))^{M}$. By the lemma, it follows that

$$(\mathcal{P}(\kappa))^K \cap Cub \restriction A_\eta = U(\kappa, \eta) \in M,$$

this is a contradiction since $U(\kappa, \eta)$ coheres with K^M and is in M (it implies that it is in K^M by its maximality) but is not in K^M .

Remark 4.6 1. The above proof actually shows that non of $U(\kappa, \eta)$'s with η below a weak repeat point can be extended to a normal κ -complete ultrafilter and every stationary $X \subseteq \kappa, X \in K$ must have measure one in one of the measures over κ in K.

2. If we assume that only the following:

for every stationary $A \subseteq \kappa, A \in K$ the filter $Cub \upharpoonright A$ extends to a κ -complete ultrafilter, then the argument goes through and the conclusion will be the same.

The next result is strengthening a bit the previous one.

Theorem 4.7 Suppose that for every $A \subseteq \kappa, A \in K$ such that $A \cap Regular$ is stationary, the filter generated by $(Cub_{\kappa} \upharpoonright A \cap Regular)^{K}$ extends to a κ -complete ultrafilter. Then there is a repeat point for the coherent sequence of measures over κ in the core model K.

Proof. Proceed as in 4.4. Let W be a normal measure over κ . Let

$$i: V \longleftrightarrow M \simeq V^{\kappa}/W$$

Consider $\tilde{i} = i \upharpoonright K$. Then

 $\tilde{i}: K \longrightarrow (K)^M$

is an iterate of K.

Let $U(\kappa, \eta)$ be the first measure used in \tilde{i} .

Assume that there is no repeat point over κ in K. Then there will be a set $A_{\eta} \in K$, $A_{\eta} \in U(\kappa, \eta)$ such that

$$\forall \xi \neq \eta \ (A_\eta \notin U(\kappa, \xi)).$$

Some of the elements of A_{η} may be singular in V, still $A \cap Regular$ is stationary since $A \in W$ and W is a normal measure.

The following analog of Lemma 4.5:

Lemma 4.8 Suppose that $B \subseteq A_{\eta}$, $B \in K$ and $B \notin U(\kappa, \eta)$. Then, in $V, B \cap Regular$ is non-stationary.

Proof. Suppose otherwise. Then there is $B \subseteq A_{\eta}, B \in K, B \notin U(\kappa, \eta)$ stationary in V. Work in V.

Let F be the filter generated by $(Cub_{\kappa} \upharpoonright B)^{K}$, i.e.

$$F = \{ X \subseteq \kappa \mid (\exists C \in K \text{ a club }) (X \supseteq B \cap C) \}.$$

By the assumption, there is a κ -complete ultrafilter F^* over κ such that $F^* \supseteq F$.

Continue now exactly as in Lemma 4.5. Note that the club C defined there at the final stage is in K, hence $\delta \in \tilde{i}^*(C)$. Contradiction. \Box of the lemma. Let us conclude now the proof of the theorem.

Notice that $Cub_{\kappa} \upharpoonright A_{\eta} \cap Regular \in M$, since V and M agree about regularity of cardinals below κ (just κ is the critical point) and $(\mathcal{P}(\kappa))^{V} = (\mathcal{P}(\kappa))^{M}$. By the lemma, it follows that

$$(\mathcal{P}(\kappa))^K \cap (Cub \upharpoonright A_\eta \cap Regular) = U(\kappa, \eta) \in M,$$

this is a contradiction since $U(\kappa, \eta)$ coheres with K^M and is in M (it implies that it is in K^M by its maximality) but is not in K^M .

5 Forcing constructions-regular cardinals.

In this section we would like to provide an upper bound on consistency strength of a weakly κ -compact cardinal κ and weaker properties considered in the previous section. Let us start with the following observation.

Theorem 5.1 Suppose that there is a weak repeat point over κ in the core model. Then there is a cofinality preserving extension in which for every $X \subseteq \kappa, X \in K$ stationary and consisting of regular cardinals, the filter generated $(Cub_{\kappa} \upharpoonright X)^{K}$ extends to a κ -complete ultrafilter. However there is $X \subseteq \kappa, X \in K$ stationary and consisting of regular cardinals, such that the filter $Cub_{\kappa} \upharpoonright X$ does not extend to a κ -complete ultrafilter.

Proof. Let

$$\vec{U} = \langle U(\kappa, \alpha) \mid \alpha \le \eta \rangle$$

be a coherent sequence of measures over κ in K, $o(\kappa) = \eta + 1$ and η is the least weak repeat point for \vec{U} . It is well known (see for example [2]) that then $cof(\eta) = \kappa^+$ and for every $X \in U(\kappa, \eta)$ the set

$$\{\xi < \eta \mid X \in U(\kappa, \xi)\}$$

is unbounded in η . Denote by \mathcal{F}_{η} the following set:

$$\{X \subseteq \kappa \mid \exists \gamma < \eta \forall \beta (\gamma \le \beta < \eta \longrightarrow X \in U(\kappa, \beta))\}.$$

Then it is a κ -copmplete filter over κ and $U(\kappa, \eta) \supseteq \mathcal{F}_{\eta}$, since otherwise there will be a set $Y \in \mathcal{F}_{\eta} \setminus U(\kappa, \eta)$. But, then $\kappa \setminus Y \in U(\kappa, \eta)$, which is impossible, since the set $\{\xi < \eta \mid \kappa \setminus Y \in U(\kappa, \xi)\}$ is unbounded in η . Define now a Backward Easton iteration

$$\langle P_{\alpha}, Q_{\beta} \mid \beta \leq \kappa, \alpha \leq \kappa + 1 \rangle.$$

Suppose that $\alpha < \kappa + 1$ and P_{α} is defined. Define Q_{α} . Set Q_{α} to be a trivial forcing unless $o(\alpha) > 0$ is a limit ordinal.

Once $o(\alpha) > 0$ and it is a limit ordinal, then let Q_{α} be the less than α -support iteration of the standard forcing notion for adding a club into $X \cup Singular$, for every $X \subseteq \alpha$ such that for some $\gamma < \alpha$,

$$X \in \bigcap_{\gamma \le \beta < o(\alpha)} U(\alpha, \beta).$$

Now, the elementary embedding $i_{\eta} : K \to K_{\eta} \simeq K^{\kappa}/U(\kappa, \eta)$ extends, but non of i_{ξ} for $\xi < \eta$. However, we will extend the embeddings by $U(\kappa, \eta) \times U(\kappa, \xi)$, for $\xi < \eta$. This way it will be insured that for each $X \subseteq \kappa \cap Regular, X \in K$ which is stationary in the extension there will be a κ -complete ultrafilter including $(Cub_{\kappa} \upharpoonright X)^{K}$. Such ultrafilter will be an extension of $U(\kappa, \eta) \times U(\kappa, \xi)$ with $X \in U(\kappa, \xi)$.

Let $G(P_{\kappa}) * G(Q_{\kappa})$ be a generic subset of $P_{\kappa} * Q_{\kappa}$.

Lemma 5.2 The elementary embedding

$$i_{\eta}: K \to K_{\eta} \simeq K^{\kappa}/U(\kappa, \eta)$$

extends to an elementary embedding

$$i_{\eta}^*: K[G(P_{\kappa}) * G(Q_{\kappa})] \to K_{\eta}[G(P_{i_{\eta}(\kappa)} * G(Q_{i_{\eta}(\kappa)})],$$

for some K_{η} -generic subsets $G(P_{i_{\eta}(\kappa)} * G(Q_{i_{\eta}(\kappa)}))$ of $i_{\eta}(P_{\kappa} * Q_{\kappa})$.

Proof. Note that $\mathcal{F}_{\eta} \in M_{\eta}$ by the coherency of the sequence \vec{U} . The club subsets are added over κ to $X \cup Singular$, for every $X \in \mathcal{F}_{\eta}$. But each X like this is necessary in $U(\kappa, \eta)$. So i_{η} extends in a standard way. Note that the adding of singulars provides enough closure in order to construct a master condition sequence.

 \Box of the lemma.

Let

$$i_{\eta\xi}: K \to K_{\eta,\xi} \simeq K^{\kappa^2} / U(\kappa,\eta) \times U(\kappa,\xi)$$

be the elementary embedding corresponding to $U(\kappa, \eta) \times U(\kappa, \xi)$, where $\xi < \eta$. Then, similar to 5.2, we obtain the following: **Lemma 5.3** Let $\xi < \eta$. Then the elementary embedding

$$i_{\eta\xi}: K \to K_{\eta\xi}$$

extends to an elementary embedding

$$i_{\eta\xi}^* : K[G(P_{\kappa}) * G(Q_{\kappa})] \to K_{\eta\xi}[G(P_{i_{\eta}(\kappa)} * G(Q_{i_{\eta}(\kappa)})],$$

for some $K_{\eta\xi}$ -generic subsets $G(P_{i_{\eta\xi}(\kappa)} * G(Q_{i_{\eta\xi}(\kappa)}))$ of $i_{\eta\xi}(P_{\kappa} * Q_{\kappa})$.

Suppose now that $X \subseteq \kappa \cap Regular, X \in K$ is stationary in the extension. Then there is $\xi < \eta$ such that $X \in U(\kappa, \xi)$. Hence,

$$\kappa \in i_{\xi}(X)$$
 and $i_{\eta}(\kappa) \in i_{\eta\xi}(X)$.

Also, if $C \subseteq \kappa, C \in K$ is a club, then

$$\kappa \in i_{\xi}(C) \text{ and } i_{\eta}(\kappa) \in i_{\eta\xi}(C).$$

Consider now in $K[G(P_{\kappa}) * G(Q_{\kappa})]$ the following κ -complete ultrafilter:

$$U_{\xi} := \{ Y \subseteq \kappa \mid i_{\eta}(\kappa) \in i_{\eta\xi}^*(Y) \}.$$

Then

$$(Cub \upharpoonright X)^K \subseteq U_{\xi}.$$

It remains to give an example of a stationary (in the extension) set $X \subseteq \kappa \cap Regular, X \in K$ such that the filter $Cub_{\kappa} \upharpoonright X$ does not extend to a κ -complete ultrafilter. Let X be any \mathcal{F}_{η} -positive set in K which does not belong to $U(\kappa, \eta)$. Suppose that the filter $Cub_{\kappa} \upharpoonright X$ extends to a κ -complete ultrafilter W. Consider

$$i_W : K[G(P_\kappa) * G(Q_\kappa)] \to M_W \simeq K[G(P_\kappa) * G(Q_\kappa)]^{\kappa} / W.$$

Let

 $\delta = [id]_W$ and $\tilde{i} = i_W \upharpoonright K$.

Then

 $\tilde{i}: K \to K^{M_W}.$

The forcing used was cofinality preserving forcing. Then, also, K^{M_W} and M_W agree on cofinality of ordinals. In addition, M_W is closed under κ -sequences of its elements, as an ultrapower by a κ -complete ultrafilter. Hence, \tilde{i} is finite iterated ultrapower of K. It follows, as in 4.5, that δ is κ or one its images in this iteration.

Claim 3 $\delta \neq \kappa$.

Proof. Suppose otherwise. Then W is normal. The iteration i starts with a normal measure $U(\kappa,\xi)$, for some $\xi \leq \eta = o(\kappa) - 1$, and $W \supseteq U(\kappa,\xi)$. But $X \notin U(\kappa,\eta)$, hence $\xi < \eta$. Recall that η is the first weak repeat point. So, there is $A_{\xi} \in U(\kappa,\xi)$ which does not belong to any other $U(\kappa,\xi')$ with $\xi' \neq \xi$. Then the forcing Q_{κ} adds a club C disjoint with A_{ξ} . Hence, $C \in W$, but also $X \cap A_{\xi} \in U(\kappa,\xi) \subseteq W$. Contradiction.

 \Box of the claim.

So, $\delta \neq \kappa$. In addition, $W \not\supseteq U(\kappa, \eta)$. Hence there is $\xi < \eta$ such that δ is the critical point of the iteration at a step where an image of $U(\kappa, \xi)$ was applied. Then $W \supseteq U(\kappa, \xi)$, but such possibility was already ruled out in the claim above. Hence we obtain a contradiction.

In order to finish the proof, we need to show that the set X as above remains stationary. Suppose otherwise. Then the forcing Q_{κ} over $K[G(P_{\kappa})]$ adds a club C disjoint to X. Recall that Q_{κ} is a $< \kappa$ -support iteration of forcings of cardinality κ of the length κ^+ . So, there $\beta < \kappa^+$ such that already $Q_{\kappa} \upharpoonright \beta$ adds C.

Pick now $\rho < \eta$ such that

- 1. $X \in U(\kappa, \rho)$,
- 2. for every $\rho', \rho \leq \rho' < \eta$, for every $Y \in U(\kappa, \rho')$ there is no forcing shooting a club through Y in the iteration $Q_{\kappa} \upharpoonright \beta$.

This is possible since $cof(\eta) = \kappa^+$ and $X \in U(\kappa, \zeta)$ for unboundedly many $\zeta < \eta$. But, the elementary embedding

$$i_{\rho}: K \to K_{\rho} \simeq K^{\kappa}/U(\kappa, \rho)$$

extends to an elementary embedding

$$i_{\rho}^{*}: K[G(P_{\kappa}) * (G(Q_{\kappa} \upharpoonright \rho)] \to K_{\eta}[G(P_{i_{\rho}(\kappa)} * G(Q_{i_{\rho}(\kappa)})]$$

as in Lemma 5.2. This is clearly impossible, since we will have that both

$$\kappa \in i_{\rho}(X) = i_{\rho}^*(X)$$
 and $\kappa \in i_{\rho}^*(C)$.

Contradiction. So, we are done.

Let us deal now with an other filter and extend the previous result to filters of the form $Cub_{\kappa} \upharpoonright X$ where X is as in 5.1.

Theorem 5.4 Suppose that there is a weak repeat point over κ in the core model. Then there is a cofinality preserving extension in which for every $X \subseteq \kappa, X \in K$ stationary and consisting of regular cardinals, the filter $Cub_{\kappa} \upharpoonright X$ extends to a κ -complete ultrafilter.

Proof. Let

$$\vec{U} = \langle U(\kappa, \alpha) \mid \alpha \le \eta \rangle$$

be a coherent sequence of measures over κ in K, $o(\kappa) = \eta + 1$ and η is the least weak repeat point for \vec{U} . It is well known (see for example [2]) that then $cof(\eta) = \kappa^+$ and for every $X \in U(\kappa, \eta)$ the set

$$\{\xi < \eta \mid X \in U(\kappa, \xi)\}$$

is unbounded in η . Denote by \mathcal{G}_{η} the filter

$$\bigcap_{\alpha < \eta} U(\kappa, \alpha).$$

We have

$$\bigcap_{\alpha < \eta} U(\kappa, \alpha) = \bigcap_{\alpha \leq \eta} U(\kappa, \alpha) \text{ and } U(\kappa, \eta) \supseteq \bigcap_{\alpha \leq \eta} U(\kappa, \alpha)$$

since η is a weak repeat point.

Define a Backward Easton iteration

$$\langle P_{\alpha}, Q_{\beta} \mid \beta \leq \kappa, \alpha \leq \kappa + 1 \rangle.$$

Suppose that $\alpha < \kappa + 1$ and P_{α} is defined. Define Q_{α} . Set Q_{α} to be a trivial forcing unless $o(\alpha) > 0$ is a limit ordinal.

Once $o(\alpha) > 0$ and it is a limit ordinal, then let Q_{α} be the less than α -support iteration of the standard forcing notion for adding a club into $X \cup Singular$, for every $X \subseteq \alpha$ such that

$$X \in \bigcap_{\beta < o(\alpha)} U(\alpha, \beta).$$

Let $G(P_{\kappa}) * G(Q_{\kappa})$ be a generic subset of $P_{\kappa} * Q_{\kappa}$.

The proof of the next lemma is the same as those of 5.2.

Lemma 5.5 The elementary embedding

$$i_{\eta}: K \to K_{\eta} \simeq K^{\kappa}/U(\kappa, \eta)$$

extends to an elementary embedding

$$i_{\eta}^*: K[G(P_{\kappa}) * G(Q_{\kappa})] \to K_{\eta}[G(P_{i_{\eta}(\kappa)}) * G(Q_{i_{\eta}(\kappa)})],$$

for some K_{η} -generic subsets $G(P_{i_{\eta}(\kappa)}) * G(Q_{i_{\eta}(\kappa)})$ of $i_{\eta}(P_{\kappa} * Q_{\kappa})$.

Let $\xi < \eta$. Consider

$$i_{\eta\xi}: K \to K_{\eta,\xi} \simeq K^{\kappa^2}/U(\kappa,\eta) \times U(\kappa,\xi)$$

the elementary embedding corresponding to $U(\kappa, \eta) \times U(\kappa, \xi)$. It can be written also as

$$K \longrightarrow^{i_{\eta}} K_{\eta} \longrightarrow^{k_{\eta\xi}} K_{\eta,\xi},$$

where $k_{\eta\xi}$ is the canonical embedding of K_{η} into its ultrapower by $i_{\eta}(U(\kappa,\xi))$.

Similar to 5.2, we have the following:

Lemma 5.6 Let $\xi < \eta$. Then the elementary embedding

$$i_{\eta\xi}: K \to K_{\eta\xi}$$

extends to an elementary embedding

$$i_{\eta\xi}^*: K[G(P_{\kappa}) * G(Q_{\kappa})] \to K_{\eta\xi}[G(P_{i_{\eta}(\kappa)}) * G(Q_{i_{\eta}(\kappa)})]$$

for some $K_{\eta\xi}$ -generic subsets $G(P_{i_{\eta\xi}(\kappa)}) * G(Q_{i_{\eta\xi}(\kappa)})$ of $i_{\eta\xi}(P_{\kappa} * Q_{\kappa})$.

Let us argue that in the present situation also $k_{\eta\xi}$, and so, the all diagram extends.

Lemma 5.7 Let $\xi < \eta$. Then the diagram

$$K \longrightarrow^{i_{\eta}} K_{\eta} \longrightarrow^{k_{\eta}\xi} K_{\eta,\xi}$$

extends to

$$K[G(P_{\kappa}) * G(Q_{\kappa})] \longrightarrow^{i_{\eta}^{*}} K_{\eta}[G(P_{i_{\eta}(\kappa)}) * G(Q_{i_{\eta}(\kappa)})] \longrightarrow^{k_{\eta\xi}^{*}} K_{\eta\xi}[G(P_{i_{\eta\xi}(\kappa)}) * G(Q_{i_{\eta\xi}(\kappa)})]$$

for some $K_{\eta\xi}$ -generic subsets $G(P_{i_{\eta\xi}(\kappa)}) * G(Q_{i_{\eta\xi}(\kappa)})$ of $i_{\eta\xi}(P_{\kappa} * Q_{\kappa})$.

Proof. The new point here is that the forcing $Q_{i_{\eta}(\kappa)}$ used at $i_{\eta}(\kappa)$ over $K_{\eta}[G(P_{i_{\eta}(\kappa)}]$ shoots clubs only to sets which belong to

$$i_{\eta}(\mathcal{G}_{\eta}) = \bigcap_{\alpha < i_{\eta}(\eta)} U(i_{\eta}(\kappa), \alpha).$$

In particular, every subset of $i_{\eta}(\kappa)$ into which $Q_{i_{\eta}(\kappa)}$ shoots a club belongs to $U(i_{\eta}(\kappa), i_{\eta}(\xi))$. Also,

$$i_{\eta}(\kappa) \in k_{\eta\xi}(X)$$
 iff $X \in U(i_{\eta}(\kappa), i_{\eta}(\xi)).$

Hence, we can add $i_{\eta}(\kappa)$ to $k_{\eta\xi}''C = C$ and keep it a condition in $Q_{i_{\eta\xi}(\kappa)}$, for every generic (i.e. in $G(Q_{i_{\eta}(\kappa)})$) club $C \subseteq i_{\eta}(\kappa)$. So, $k_{\eta\xi}$ extends as well as the diagram. \Box of the lemma. **Lemma 5.8** Let $\xi < \eta$ and

$$i_{\eta\xi}^*: K[G(P_{\kappa}) * G(Q_{\kappa})] \to K_{\eta\xi}[G(P_{i_{\eta}(\kappa)} * G(Q_{i_{\eta}(\kappa)})],$$

be as in the previous lemma (5.7). Then for every club $C \subseteq \kappa$ in $K[G(P_{\kappa}) * G(Q_{\kappa})]$, we have

$$i_{\eta}(\kappa) \in i^*_{\eta\xi}(C).$$

Proof. By Lemma 5.7,

$$i_{\eta\xi}^* = k_{\eta\xi}^* \circ i_{\eta}^*$$

The critical point of $k_{\eta\xi}^*$ is $i_{\eta}(\kappa)$ and $i_{\eta}^*(C)$ is unbounded in $i_{\eta}(\kappa)$. Hence,

$$i_{\eta}(\kappa) \in k_{\eta\xi}^*(i_{\eta}^*(C)) = i_{\eta\xi}^*(C).$$

 \Box of the lemma.

Suppose now that $X \subseteq \kappa \cap Regular, X \in K$ is stationary in the extension. Then there is $\xi < \eta$ such that $X \in U(\kappa, \xi)$. Hence,

$$\kappa \in i_{\xi}(X)$$
 and $i_{\eta}(\kappa) \in i_{\eta\xi}(X)$.

Also, if $C \subseteq \kappa$ is a club, then, by Lemma 5.8,

$$i_{\eta}(\kappa) \in i^*_{\eta\xi}(C).$$

Consider now in $K[G(P_{\kappa}) * G(Q_{\kappa})]$ the following κ -complete ultrafilter:

$$U_{\xi} := \{ Y \subseteq \kappa \mid i_{\eta}(\kappa) \in i_{\eta\xi}^*(Y) \}.$$

Then

$$Cub \upharpoonright X \subseteq U_{\xi}.$$

Remark 5.9 It is possible to show that in $K[G(P_{\kappa}) * G(Q_{\kappa})]$,

$$U^*(\kappa,\eta) := \{Y \subseteq \kappa \mid \kappa \in i^*_\eta(Y)\}$$

is the only normal measure and each U_{ξ} , with $\xi < \eta$, is a non-normal Q-point measure.

Let us now remove the restriction $X \in K$ from the previous theorem.

Theorem 5.10 Suppose that there is a weak repeat point over κ in the core model. Then there is a cofinality preserving extension in which for every stationary $X \subseteq \kappa$ consisting of regular cardinals, the filter $Cub_{\kappa} \upharpoonright X$ extends to a κ -complete ultrafilter.

Proof. We proceed as in 5.4. Let

$$\vec{U} = \langle U(\kappa, \alpha) \mid \alpha \le \eta \rangle$$

be a coherent sequence of measures over κ in K, $o(\kappa) = \eta + 1$ and η is the least weak repeat point for \vec{U} . It is well known (see for example [2]) that then $cof(\eta) = \kappa^+$ and for every $X \in U(\kappa, \eta)$ the set

$$\{\xi < \eta \mid X \in U(\kappa, \xi)\}$$

is unbounded in η . Denote by \mathcal{G}_{η} the filter

$$\bigcap_{\alpha < \eta} U(\kappa, \alpha)$$

We have

$$\bigcap_{\alpha < \eta} U(\kappa, \alpha) = \bigcap_{\alpha \le \eta} U(\kappa, \alpha) \text{ and } U(\kappa, \eta) \supseteq \bigcap_{\alpha \le \eta} U(\kappa, \alpha),$$

since η is a weak repeat point.

Let us first continue further as in 5.4. So, we define a Backward Easton iteration

$$\langle P_{\alpha}, Q_{\beta} \mid \beta \leq \kappa, \alpha \leq \kappa + 1 \rangle.$$

Let $G(P_{\kappa}) * G(Q_{\kappa})$ be a generic subset of $P_{\kappa} * Q_{\kappa}$.

Suppose now that $X \subseteq \kappa$ is stationary in $V[G(P_{\kappa}) * G(Q_{\kappa})]$ which consists of regular cardinals.

Consider first extensions of

$$i_{\eta}: V \to M_{\eta} \simeq V^{\kappa}/U(\kappa, \eta).$$

If there are condition $p \in G(P_{\kappa}) * G(Q_{\kappa})$ and $q \in i_{\eta}(P_{\kappa} * Q_{\kappa})/P_{\kappa} * Q_{\kappa}$ such that

$$(p, \underline{q}) \Vdash \kappa \in i_{\eta}(\underline{X}),$$

then X will belong to a normal ultrafilter which extends $U(\kappa, \eta)$.

Suppose that this is not the case.

Then, there is $p \in G(P_{\kappa}) * G(Q_{\kappa})$ such that

$$(p, \underline{0}) \Vdash \eta \notin i_{\eta}(\underline{X}).$$

We can alter the name X of X such that for every $\nu < \kappa$, if a condition $(s, \underline{t}) \in P_{\kappa+1}$ is incompatible with $f(\nu)$, then

$$(\check{\nu}, (s, \underbrace{t})) \notin X,$$

where f is a function which represents (p, 0) in M_{η} . So, using such name, we will have

$$0_{P_{i_{\eta}(\kappa)+1}} \Vdash \eta \notin i_{\eta}(X)$$

 Set

$$Y_{\eta} = \{ \nu < \kappa \mid 0_{P_{\kappa+1}} \Vdash \nu \notin X \}.$$

Then $Y_{\eta} \in U(\kappa, \eta)$ and, in $V[G(P_{\kappa}) * G(Q_{\kappa})]$,

$$Y_{\eta} \cap X = \emptyset.$$

Now, let us do a similar thing for every $\xi < \eta$. Consider

$$i_{\eta\xi}: V \to M_{\eta,\xi} \simeq V^{\kappa^2} / U(\kappa,\eta) \times U(\kappa,\xi)$$

the elementary embedding corresponding to $U(\kappa, \eta) \times U(\kappa, \xi)$. It can be written as

$$V \longrightarrow^{i_{\eta}} M_{\eta} \longrightarrow^{k_{\eta\xi}} M_{\eta,\xi},$$

where $k_{\eta\xi}$ is the canonical embedding of M_{η} into its ultrapower by $i_{\eta}(U(\kappa,\xi))$. By Lemma 5.6, the elementary embedding

$$i_{\eta\xi}: V \to M_{\eta\xi}$$

extends to an elementary embedding

$$i_{\eta\xi}^*: V[G(P_{\kappa}) * G(Q_{\kappa})] \to M_{\eta\xi}[G(P_{i_{\eta}(\kappa)}) * G(Q_{i_{\eta}(\kappa)})],$$

for some $M_{\eta\xi}$ -generic subsets $G(P_{i_{\eta\xi}(\kappa)}) * G(Q_{i_{\eta\xi}(\kappa)})$ of $i_{\eta\xi}(P_{\kappa} * Q_{\kappa})$. Also, $k_{\eta\xi}$ extends to

$$k_{\eta\xi}^*: M_{\eta}[G(P_{i_{\eta}(\kappa)}) * G(Q_{i_{\eta}(\kappa)})] \to M_{\eta\xi}[G(P_{i_{\eta\xi}(\kappa)}) * G(Q_{i_{\eta\xi}(\kappa)})]$$

for some $M_{\eta\xi}$ -generic subsets $G(P_{i_{\eta\xi}(\kappa)}) * G(Q_{i_{\eta\xi}(\kappa)})$ of $i_{\eta\xi}(P_{\kappa} * Q_{\kappa})$. If there are condition $p = (r, \underline{s}) \in G(P_{\kappa}) * G(Q_{\kappa})$ and $\underline{q} \in i_{\eta\xi}(P_{\kappa} * Q_{\kappa})/P_{\kappa} * Q_{\kappa}$ which extends $i_{\eta}'' \underline{s}$ and such that

$$(p, q) \Vdash i_{\eta}(\kappa) \in i_{\eta\xi}(X)$$

then X will belong to a normal ultrafilter which extends $U(\kappa, \xi)$. Suppose that it is not the case. Then there is a condition $p = (r, \underline{s}) \in G(P_{\kappa}) * G(Q_{\kappa})$ such that for every $\underline{q} \in i_{\eta\xi}(P_{\kappa} * Q_{\kappa})/P_{\kappa} * Q_{\kappa}$ which extends $i_{\eta}'' \underline{s}$, we have

$$(p, q) \Vdash i_{\eta}(\kappa) \notin i_{\eta\xi}(X).$$

Consider

$$i_{\xi}: V \to M_{\xi} \simeq V^{\kappa}/U(\kappa, \xi).$$

Claim In M_{ξ} ,

$$(p, \underline{0}) \Vdash \kappa \notin i_{\xi}(X).$$

Proof. Suppose otherwise. Then there is some $t \in i_{\xi}(P_{\kappa} * Q_{\kappa})/P_{\kappa} * Q_{\kappa}, t \geq i_{\xi}'' s$ such that

 $(p, \underline{t}) \Vdash \kappa \in i_{\xi}(\underline{X}).$

We would like to use now the elementary embedding

$$\sigma_{\xi\eta}: M_{\xi} \to M_{\eta\xi}$$

which is defined as follows:

$$\sigma_{\xi\eta}(i_{\xi}(g)(\kappa)) = (i_{\eta\xi}(g))(i_{\eta}(\kappa)).$$

Apply $\sigma_{\xi\eta}$ to (p, t). Then, by elementarity, in $M_{\eta\xi}$,

$$(p, \sigma_{\xi\eta}(\underline{t})) \Vdash \kappa \in \sigma_{\xi\eta}(i_{\xi}(\underline{X})) = i_{\eta\xi}(\underline{X}).$$

The condition $\underline{t} \geq i_{\xi}'' \underline{s}$ translates into $\sigma_{\xi\eta}(\underline{t}) \geq i_{\eta}'' \underline{s}$. But this is impossible. Contradiction.

 \Box of the claim.

Now, as above with η , we can alter the name X and find $Y_{\xi} \in U(\kappa, \xi)$ such that in $V[G(P_{\kappa}) * G(Q_{\kappa})],$

$$Y_{\xi} \cap X = \emptyset.$$

Set $Y = \bigcup_{\xi \leq \eta} Y_{\xi}$. Then $Y \cap X = \emptyset$ and for every $\xi \leq \eta, Y \supseteq Y_{\xi} \in U(\kappa, \xi)$. Hence, if $Y \in V$ then a club was added to $Y \cup Singular$.

We have $2^{\kappa} = \kappa^+$ and the forcing $P_{\kappa+1}$ satisfies κ^+ -c.c., hence, there is a sequence

$$\langle Z_{\xi} \mid \xi \le \eta \rangle \in V$$

such that $Z_{\xi} \in U(\kappa, \xi)$ and $|Z_{\xi} \cap X| < \kappa$.

However this does not guarantee that there will be a set in $\mathcal{F}_{\eta} = \bigcap_{\xi < \eta} U(\kappa, \xi)$ disjoint with X.

In order to deal with this problem, let us modify the forcing a bit: if at some stage of the iteration a set X as above appears, then let us force a club disjoint to it.

Such modified version shares the properties of the original forcing, but in the final extension there will be no stationary sets X as above and so for every stationary set S consisting of regular cardinals the filter $Cub_{\kappa} \upharpoonright S$ extends to a κ -complete ultrafilter.

6 Forcing constructions-singular cardinals.

Let us extend now the previous results in order to include stationary sets consisting of singular ordinals as well.

Theorem 6.1 Suppose that there is a weak repeat point over κ in the core model. Then there is cardinal preserving extension in which for every $X \subseteq \kappa, X \in K$ stationary, the filter $Cub_{\kappa} \upharpoonright X$ extends to a κ -complete ultrafilter.

Proof. Let

$$\vec{U} = \langle U(\nu, \alpha) \mid \nu \le \kappa, o(\nu) > 0, \alpha < o(\nu) \rangle$$

be a coherent sequence of measures in K. Assume that $o(\kappa) = \eta + 1$ and η is the least weak repeat point for

$$\langle U(\kappa, \alpha) \mid \alpha \le \eta \rangle$$

Force with Easton iteration of Prikry-Magidor forcings and change cofinality of each $\nu < \kappa$ such that $o(\nu) > 0$ and $cof(o(\nu)) < \nu^+$. This way ν 's below κ with $cof(o(\nu)) = \nu^+$ remain measurable.

Let V = K and denote the generic extension above $V_1 = V[G]$. Fix an extension $U_1(\kappa, \eta)$ of $U(\kappa, \eta)$ in V_1 . Let

$$i^1_\eta: V_1 = V[G] \to M^1_\eta = \tilde{M}_\eta[\tilde{G}]$$

be the corresponding embedding. Note that \tilde{M}_{η} is not M_{η} , but rather its iterated ultrapower. Consider the set \mathcal{R}_{ξ} of all possible extensions of $U(\kappa, \xi)$ in M_{η}^{1} or equivalently in $\tilde{M}_{\eta}[G]$, for every $\xi < \eta$. Set

$$\mathcal{R}(\eta) = igcup_{\xi < \eta} \mathcal{R}_{\xi}$$

Lemma 6.2 Let $X \in U_1(\kappa, \eta)$. Then $X \in W$, for some normal measure $W \in \mathcal{R}(\eta)$.

Proof. It is enough to proof the statement for sets of the form

$$X_p := \{ \nu < \kappa \mid p \upharpoonright \nu^{\frown} f_p(\nu) \in G \},\$$

where $p \in \tilde{G}$ and f_p represents (mod $U_1(\kappa, \eta)$) the part of p above κ . Clearly there are many $W \in \mathcal{R}$ with $X_p \in W$. \Box of the lemma.

Define now over V_1 a Backward Easton iteration

$$\langle P_{\alpha}, Q_{\beta} \mid \beta \leq \kappa, \alpha \leq \kappa + 1 \rangle.$$

Suppose that $\alpha < \kappa + 1$ and P_{α} is defined. Define Q_{α} . Suppose first that $\alpha < \kappa$. Set Q_{α} to be a trivial forcing unless in K, $\operatorname{cof}(o(\alpha)) = \kappa^+$.

Once it is, then let Q_{α} be the less than α -support iteration of the standard forcing notion for adding a club into X, for every $X \subseteq \alpha$ such that

$$X \in \bigcap \mathcal{R}(\alpha),$$

where $\mathcal{R}(\alpha)$ is is the intersection of all α -complete ultrafilters over α in V_1 , i.e. of all extensions of $U(\alpha, \beta), \beta < o(\alpha)$.

Note that such Q_{α} preserves cardinals (and cofinality), since we have here closed chunks of Magidor sequences of arbitrary length below α .

If $\alpha = \kappa$, then let Q_{α} be the less than α -support iteration of the standard forcing notion for adding a club into X, for every $X \subseteq \alpha$ such that

$$X \in \bigcap \mathcal{R}(\eta).$$

Again, such Q_{κ} preserves cardinals (and cofinality), since we have here closed chunks of Magidor sequences of arbitrary length below κ .

Let $G(P_{\kappa}) * G(Q_{\kappa})$ be a generic subset of $P_{\kappa} * Q_{\kappa}$.

It is natural now to try to extend the elementary embedding

$$i_{\eta}^1: V_1 = V[G] \to M_{\eta}^1 = \tilde{M}_{\eta}[\tilde{G}].$$

However, the forcing Q_{κ} seems to have not enough closure for this. So, instead of dealing directly with i_{η}^{1} , let us choose an other embedding.

Consider in V the sequence

$$\langle U(\kappa,\beta) \mid \beta < \kappa^+ \rangle.$$

The first forcing turns it into a Rudin-Keisler increasing. More precisely, there is a sequence

$$\langle U_1(\kappa,\beta) \mid \beta < \kappa^+ \rangle$$

in V_1 (i.e. before forcing clubs) of extensions which is a Rudin-Keisler increasing. Also, there is such a sequence consisting of elements of $\mathcal{R}(\eta)$. Let

$$\langle U_1(\kappa,\beta) \mid \beta < \kappa^+ \rangle$$

be such a sequence.

Consider now the following sequence

$$\langle U_1(\kappa,\eta) \times U_1(\kappa,\beta) \mid \beta < \kappa^+ \rangle.$$

It is still a Rudin-Keisler increasing. Let

$$i_{\eta}^*: V_1 \to M_{\eta}^*$$

be the corresponding embedding into its direct limit. Then M_{η}^* is closed under κ -sequences of its elements and its core model, which we denote by K_{η}^* , is a further iteration of \tilde{M}_{η} which uses measures from

$$i_n^1(\langle U_1(\kappa,\beta) \mid \beta < \kappa^+ \rangle).$$

We claim that the embedding i_{η}^* extends.

Lemma 6.3 The elementary embedding

$$i_{\eta}^*: V_1 \to M_{\eta}^*$$

extends to an elementary embedding

$$i_{\eta}^{**}: V_1[G(P_{\kappa}) * G(Q_{\kappa})] \to M_{\eta}^*[G(P_{i_{\eta}(\kappa)}) * G(Q_{i_{\eta}(\kappa)})],$$

for some M_{η}^* -generic subsets $G(P_{i_{\eta}(\kappa)}) * G(Q_{i_{\eta}(\kappa)})$ of $i_{\eta}^*(P_{\kappa} * Q_{\kappa})$.

Proof. The proof is rather standard and similar to those of Lemma 5.5. The new point here is to use the critical points measures

$$i_{\eta}^{1}(\langle U_{1}(\kappa,\beta) \mid \beta < \kappa^{+} \rangle)$$

in order to proceed κ^+ -many steps in the process of constructing of a master condition sequence.

 \Box of the lemma.

Let $\xi < \eta$. Consider

$$i_{\eta\xi}: K \to K_{\eta,\xi} \simeq K^{\kappa^2}/U(\kappa,\eta) \times U(\kappa,\xi)$$

the elementary embedding corresponding to $U(\kappa, \eta) \times U(\kappa, \xi)$. It can be written also as

$$K \longrightarrow^{i_{\eta}} K_{\eta} \longrightarrow^{k_{\eta\xi}} K_{\eta,\xi},$$

where $k_{\eta\xi}$ is the canonical embedding of K_{η} into its ultrapower by $i_{\eta}(U(\kappa,\xi))$.

Now, instead of extending this diagram directly, as in 5.4, let us add a Rudin -Keisler increasing sequences of the length κ^+ to both η and ξ .

Proceed as follows. Let $U_1(\kappa,\xi)$ be an extension in V_1 of $U(\kappa,\xi)$ which belongs to $\mathcal{R}(\eta)$. Let

$$i^1_{\xi}: V_1 = V[G] \to M^1_{\xi} = \tilde{M}_{\xi}[\tilde{G}_{\xi}]$$

be the corresponding elementary embedding. Let

$$\langle U_1(\kappa,\beta) \mid \beta < \kappa^+ \rangle$$

be as above. We will use

$$\langle U_1(\kappa,\eta) \times U_1(\kappa,\beta) \mid \beta < \kappa^+ \rangle,$$

its elementary embedding

$$i^*_\eta: V_1 \to M^*_\eta$$

and an extension

$$i_{\eta}^{**}: V_1[G(P_{\kappa}) * G(Q_{\kappa})] \to M_{\eta}^*[G(P_{i_{\eta}(\kappa)}) * G(Q_{i_{\eta}(\kappa)})]$$

given by Lemma 6.3.

Add $U_1(\kappa,\xi)$ in the following fashion. Consider

$$\langle U_1(\kappa,\eta) \times U_1(\kappa,\beta) \times U_1(\kappa,\xi) \times U_1(\kappa,\beta) \mid \beta < \kappa^+ \rangle.$$

It is still Rudin-Keisler increasing. Let

$$i_{\eta\xi}^*: V_1 \to M_{\eta\xi}^*$$

be its elementary embedding into the direct limit.

It can be written also as

$$V_1 \longrightarrow^{i^*_{\eta}} M^*_{\eta} \longrightarrow^{k^*_{\eta\xi}} M^*_{\eta\xi},$$

where $k_{\eta\xi}^*$ is the canonical embedding of M_{η}^* into its ultrapower by the system

$$i_{\eta}^{*}(\langle U_{1}(\kappa,\xi) \times U_{1}(\kappa,\beta) \mid \beta < \kappa^{+} \rangle).$$

Then the following analog of Lemma 5.7 holds:

Lemma 6.4 Let $\xi < \eta$. Then the diagram

$$V_1 \longrightarrow^{i_\eta^*} M_\eta^* \longrightarrow^{k_{\eta\xi}^*} M_{\eta,\xi}^*$$

extends to

$$V_1[G(P_{\kappa}) * G(Q_{\kappa})] \longrightarrow^{i_{\eta^*}^{**}} M_{\eta}^*[G(P_{i_{\eta}(\kappa)}) * G(Q_{i_{\eta^*}(\kappa)})] \longrightarrow^{k_{\eta^*}^{**}} M_{\eta\xi}^*[G(P_{i_{\eta\xi}(\kappa)}) * G(Q_{i_{\eta\xi}(\kappa)})],$$

for some $M^*_{\eta\xi}$ -generic subsets $G(P_{i^*_{\eta\xi}(\kappa)}) * G(Q_{i^*_{\eta\xi}(\kappa)})$ of $i^*_{\eta\xi}(P_{\kappa} * Q_{\kappa})$.

Proof. The proof just combines the arguments of 5.7 and 6.3. \Box of the lemma.

Lemma 6.5 Let $\xi < \eta$ and

$$i_{\eta\xi}^{**}: V_1[G(P_\kappa) * G(Q_\kappa)] \to M_{\eta\xi}^*[G(P_{i_\eta(\kappa)} * G(Q_{i_\eta(\kappa)})]$$

be as in the previous lemma (6.4). Then for every club $C \subseteq \kappa$ in $V_1[G(P_{\kappa}) * G(Q_{\kappa})]$, we have

$$i^*_{\eta}(\kappa) \in i^{**}_{\eta\xi}(C).$$

Proof. By Lemma 6.4,

$$i_{\eta\xi}^{**} = k_{\eta\xi}^{**} \circ i_{\eta}^{**}.$$

The critical point of $k_{\eta\xi}^{**}$ is $i_{\eta}^{*}(\kappa)$ and $i_{\eta}^{**}(C)$ is unbounded in $i_{\eta}^{*}(\kappa)$. Hence,

$$i_{\eta}^{*}(\kappa) \in k_{\eta\xi}^{**}(i_{\eta}^{**}(C)) = i_{\eta\xi}^{**}(C).$$

 \Box of the lemma.

Suppose now that $X \subseteq \kappa, X \in K$ is stationary in the final extension $V_1[G(P_{\kappa}) * G(Q_{\kappa})]$. Then there is $\xi < \eta$ such that $X \in U(\kappa, \xi)$. Hence,

$$\kappa \in i_{\xi}(X) \text{ and } i^*_{\eta}(\kappa) \in i^{**}_{\eta\xi}(X).$$

Also, if $C \subseteq \kappa$ is a club, then, by Lemma 6.5,

$$i_{\eta}^*(\kappa) \in i_{\eta\xi}^{**}(C).$$

Consider now in $V_1[G(P_{\kappa}) * G(Q_{\kappa})]$ the following κ -complete ultrafilter:

$$U_{\xi} := \{ Y \subseteq \kappa \mid i_{\eta}^*(\kappa) \in i_{\eta\xi}^{**}(Y) \}.$$

Then

 $Cub \upharpoonright X \subseteq U_{\xi}.$

In order to deal with arbitrary stationary sets which may be not in K, combine the previous construction (6.1) with one of 5.10. We obtain the following:

Theorem 6.6 Suppose that there is a weak repeat point over κ in the core model. Then there is cardinal preserving extension in which for every $X \subseteq \kappa$ stationary, the filter $Cub_{\kappa} \upharpoonright X$ extends to a κ -complete ultrafilter.

7 Open problems.

Let us conclude with the following questions.

Question 1. What is the exact consistency strength of a κ -compact cardinal κ ? We think that it should be somewhere beyond a superstrong.

Question 2. What is the exact consistency strength of the following statement: every normal κ -complete filter over a cardinal κ extends to a κ -complete ultrafilter?

By previous results at least a weak repeat is needed. But may be the upper bound is below $o(\kappa) = \kappa^{++}$?

References

- [1] M. Gitik, On measurable cardinals violating the continuum hypothesis, Annals of Pure and Applied Logic 63(1993), pp. 227-240.
- [2] M. Gitik, Some results on the nonstationary ideal, Israel Journal of Math.,92(1995),pp.61-112.
- [3] M. Gitik, Prikry type forcings, in Handbook of Set Theory, Foreman, Kanamori eds., Springer 2010, vol.2, pp.1351-1447
- [4] M. Gitik, The negation of SCH from $o(\kappa) = \kappa^{++}$, Annals of Pure and Applied Logic Volume 43, Issue 3,1989,pp. 209-234.
- [5] R. Jensen and J. Steel, K without the measurable, Journal of Symbolic Logic Volume 78, Issue 3 (2013),pp. 708-734.
- [6] C. Merimovich, Prikry on Extenders, Revisited. Israel Journal of Mathematics, Volume 160, Issue 2, August 2007, pp. 253-280.
- [7] W. Mitchell, Hypermeasurable cardinals, in: M. Boffa, D van Dalen and K. McAloon, eds.,Logic Colloquium 78 (North Holland, Amsterdam, 1979), pp.303-317.
- [8] R. Schindler, Iterates of the Core Model, Journal of Symbolic Logic Volume 71, Issue 1 (2006),pp. 241-251.