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Abstract

We deal with some questions related to ��compact cardinals.

1 Introduction

De�nition 1.1 � is �-compact cardinal i� every � complete �lter over � can be extended

to a ��complete ultra�lter over �.

Clearly, if � is 2�-supercompact or even 2�-strongly compact, then it is �-compact.

In [7] W. Mitchell asked whether o(�) = �++ is su�cient for model with a �-compact

cardinal. It was answered negatively in [1]. It was shown there that at least a strong

cardinal is required. Here we will somewhat improve this result and also will address some

related questions raised in [1].

2 An application to distributive forcing notion.

Let us argue �rst that �-compact cardinal generates an extender suitable for Extender Based

Prikry forcing.

Theorem 2.1 Let � be a �-compact cardinal. Then there is an extender E over � such that

1. �ME � M , where iE : V ! ME ' Ult(V;E) is the corresponding elementary embed-

ding,

2. every � complete �lter over � can be extended to a ��complete ultra�lter over � of the

form E�, for some � < iE(�), where E� = fX � � j � 2 iE(X)g.

�The work was partially supported by ISF grant no. 58/14
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Proof. Let � = (22
�

)+. Let

hW� j � < �i

be a list of all ��complete non-principle ultra�lters over � (with repetitions). Then for every

��complete non-principle �lter U over � there is � < � such that U � W�.

It is enough to construct an extender E with ultrapower closed under ��sequences which

has all W�'s among its measures.

The construction is similar to those from [1].

Denote by P�+(�) the set fa � � j jaj � �g. For every � < �+ let f� : �! � be a canonical

function representing � . We shall de�ne a ��complete ultra�lter Ua concentrating over the

set Xa = fh�� j � < fotp(a)(�0)i j �� < �; �1 < �2 ! ��1 < ��2g for a 2 P�+(�). Once b � a,

Ub will be obtained from Ua, as follows. Let hai j i < otp(a)i be the increasing enumeration

of a. Then for some increasing sequence hij j j < otp(b)i; b = haij j j < otp(b)i. Project

Ua to the coordinates hij j j < otp(b)i. Let �ab be such a projection. Then Ub, will be the

set of f�00ab(X) j X 2 Uag. Let us turn to the de�nition of Ua's. Fix some enumeration

ha� j � < �++i of P�+(�). For every � < �++, set Uf�g = W�.

Suppose now that

1. for every � < �, a ��complete ultra�lter Ua� is de�ned;

2. for every b 2 P�+(�), if for some  < �, b � a, then Ub is de�ned and it is the

projection of Ua by �ab.

Let us de�ne Ua� . The only nontrivial case is when there is no  < � such that a � a�.

De�ne then �rst a ��complete �lter U concentrating over Xopt(a�). Set X 2 U i� for some

 < �, some b � a� \ a there exists Xb 2 Eb, such that X = ��1a�b
00Xb. Using the inductive

assumptions (l), (2) and the commutativity of the projection function �cd, it is not hard to

see that a so-de�ned U is a ��complete �lter. Let Ua� be a ��complete ultra�lter extending

U . For every b � a�, if Ub is still not de�ned, de�ne it to be the projection of Ua� by �a�b.

This completes the construction of hUa� j � < �i.

Let Na be the ultrapower of V by Ua and ia : V ! Na, the canonical embedding. The

projection �ab induces the elementary embedding iba : Nb ! Na. hNa; iab j a � b; a; b 2

P�+(�)i forms a directed system, where N; = V and i;a = ia. The direct limit of this system

is well-founded and closed under ��sequences. Let E be the derived extender. Then it is as

desired.

�

Let us now use such an extender E to de�ne a variation Extender Based Prikry forcing.

2



Theorem 2.2 Assume GCH. Let � be a ��compact cardinal. Then there is a cardinal

preserving extension in which for every ��distributive forcing notion Q 2 V of cardinality

� there is a V�generic subset.

Remark 2.3 Note that it is easy to obtain such generics once � is a �+�strongly compact

cardinal, but �+ is collapsed in the extension.

Proof. Fix an extender E given by 2.1. We assumed GCH, so E can be picked to be an

extender over � of the length �++.

Let Q be ��distributive forcing notion of cardinality �. Replace by an isomorphic one over

�.

Consider the �lter FQ of its dense open subsets. Then FQ is a ��complete �lter over �.

Hence, for some � < �++, FQ � E�. Denote the least such � by �Q.

It is possible to force now with Extender E based Prikry forcing in the Merimovich style [6]

or, after an additional forcing turning E into a P-point, with the original extender based

Prikry forcing, as in [3]. This will produce Prikry sequences for each FQ as above, i.e.

sequences hqn j n < !i such that for every dense open D � Q, qn 2 D, for all but �nitely

many n's.

However, it is not enough to produce a generic subset of Q, since such qn's need not be

compatible.

Let us modify slightly the extender based forcing used, in order to overcome this di�culty.

Denote by Qq, for every q 2 Q, the set

fq0 2 Q j q0 � qg:

Then Qq is a ��distributive forcing notion of cardinality � as well. So, FQq is de�ned. In

addition, for every D 2 FQ, the set

fq0 2 Q j q0 � q and q0 2 Dg

is in FQq .

Without loss of generality we can assume that each Q under the consideration is nowhere

atomic forcing notion. Then, for every A � Q; jAj < �, there is a dense open D � Q with

A \D = ;. Just for each q 2 A consider

Dq = fq
0 2 Q j q0 > q or q0 , qg:

Then every Dq is a dense open and
T
q2ADq is a dense open disjoint from A:
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A typical condition p in the extender based Prikry forcing with E is of the form

hhp j  2 supp(p)i; hpmc; T pii:

The support of p, supp(p) is a subset of �++ of cardinality � �, � 2 supp(p). The

maximal coordinate mc = mc(p) is an ordinal � < �++ which is above (in the order �E of

the extender) every � 2 supp(p). Each p;  2 supp(p) and pmc is a �nite increasing sequence

of ordinals. They are initial segments of the Prikry sequences for 's and mc respectively.

The set T p is responsible for potential extensions.

Let us make the following changes:

1. if for some Q, �Q 2 supp(p)[fmc(p)g, then for every q 2 Q, �Qq 2 supp(p)[fmc(p)g,

as well;

2. p�Q is increasing also in the order of Q;

3. once extending a condition p, p�Q extends by a member of a set of measure one for

E�Q
max(p

�Q )

instead of a member of a set of measure one for E�Q .

The basic properties of the forcing remain valid after this changes.

The last condition insures that the generic !�sequences growing over a coordinate �Q will

be increasing in the order of Q, and so will generate a V�generic subset of Q.

�

3 Strength of ��compact cardinals.

It was shown in [1] that an inner model with a strong cardinal is a lower bounds on a strength

of ��compact cardinals. Here we would like to improve this lower bound.

Theorem 3.1 Suppose � is ��compact then there is a inner model with a Woodin cardinal

Proof. Suppose otherwise. Then by Jensen-Steel [5], the core model K exists.

De�ne

E := (E�
@0)

K = f� < � j (cf(�))K = !g

and let

F0 = (Cub � E)K :

Then F0 is a normal �lter on � in K.
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Let, in V ,

F = fX � � j 9A 2 F0(A � X)g:

Lemma 3.2 F is a �-complete �lter in V .

Proof. By [5], K satis�es GCH, in particular, 2� = �+. So, in K, there is a sequence

hA� j � < �+i such that

1. A� 2 Cub� � E, for every � < � < �+,

2. A� �
� A� (i.e. jA�nA�j < �) for every � < � < �+,

3. 8A 2 Cub� � E there is � < �+ such that A� � A.

Now,work in V . We have, by [5], (�+)K = �+:

Let

hX� j � < �i

be the sequence of members of F for some � < �. Let us show that

\
�<�

X� 2 F :

For each � < � there is A 2 (Cub� � E)
K such that X� � A. Then there is �� < �+ such

that A�� �
� A. Pick �� < � with A � A��n�� . Then,

X� � A��n�� :

Let

�� = sup(f�� j � < �g) < �+

and

�� = sup(f�� j � < �g) < �+:

Then for all � < � we have

A�� �
� A�� :

Pick �� < � such that A��n�� � A�� . Set

�� = sup�<��� < �:
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Then

A��nmax(��; ��) � X� ;

for each � < �. Clearly,

A��nmax(��; ��) 2 F :

Hence,

\
�<�

X� 2 F :

� of the lemma.

There is a F� � F that is a �-complete ultra�lter, since � is a ��compact cardinal.

Consider

i� : V �!M ' V �=F �:

Let ~i = i � K: By R. Schindler [8], ~i is an iterated ultrapower along the co�nal branch of an

iteration tree.

Let � = [id]F�

Claim 1 � can not be of the form ��, where �� is one of the images of � along

the iteration ~i.

Proof. Just otherwise, � will be regular in (K)M , but � 2 ~i(E).

� of the claim.

So, � is not one of ��'s. Then, unless there is an extender involved of a super-strong

type, there will be n < !; f : [�]n ! �; generators �1 < ::: < �n < � such that

~i(f)(�1; :::; �n) � �:

Consider in K the following set

C = f� < � j 8a1; :::; an 2 [�]<!f(a1; :::; an) < �g:

Then, C is a club. Hence, C 2 F0 � F . So, � 2 i(C) = ~i(C), which is impossible.

Contradiction.

�
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4 Some weakening.

Let us consider the following natural weakening of ��compactness:

De�nition 4.1 � is weakly ��compact i� for every stationary S � �, the �lter Cub � S

can be extended to a � complete ultra�lter over �.

Let us recall the following notion:

De�nition 4.2 (Mitchell) Let hU(�; �) j � < �i be a sequence of measures over �. We say

�� < � is a weak repeat point for the sequence i� for every A 2 U(�; ��) there is some  < ��

such that A 2 U(�; ).

Note that under GCH, the �rst weak repeat point is an ordinal of co�nality �+, above

�+ and below �++.

The next lemma is well known and likely is due to W. Mitchell.

Lemma 4.3 Let
!

U= hU(�; �) j � � �; � 2 dom(
!

U)&� < o
!

U (�)i be a coherent sequence

� 2 dom(U), � = maxdom(U). Suppose that �� < o
!

U (�) is the �rst weak repeat point

for hU(�; �) j � < o
!

U (�)i. Then there is a sequence hA� j � < ��i such that for every

�0 6= � < ��, A� 2 U(�; �)nU(�; �
0).

Proof. Let � < ��. Then there is B� 2 U(�; �) such that for every  < �,

B� 62 U(�; ):

Consider

X� = f� < � j 8� < o
!

U (�)(B� \ � 62 U(�; �))g:

Then X� 2 U(�; �), since by coherence

M�;� j= 8� < oi�(
!

U )(�) = �(i�;�(B�) \ �) = B� 62 U(�; �)):

It follows that � 2 i�;�(X�) and then X� 2 U(�; �), where

i�;� := iU(�;�) : V �!M�;� ' V �=U(�; �):

Take A� = B� \ X�. Then A� 2 U(�; �), A� 62 U(�; ) for every  < �, but, also, we

can check that A� 2 U(�; ) for � <  < o
!

U (�).
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Thus, if A� 2 U(�; ); � <  < o
!

U (�), then � 2 i�;(X�) and, consequently,

M�; j= 8� <  (i�;(B� \ �) = B� \ � 62 U(�; �) );

but � <  and B� 2 U(�; �)

�

Theorem 4.4 Suppose that � is a weakly ��compact, then there is a weak repeat point for

the coherent sequence of measures over � in the core model K.

Proof. Pick be a normal measure W over �.

Let

i : V  !M ' V �=W:

Let ~i = i � K. Then

~i : K �! (K)M

is an iterate of K.

Let U(�; �) be the �rst measure used in ~i.

Assume that there is no repeat point over � in K. Then there will be a set A� 2 K,

A� 2 U(�; �) such that

8� 6= � (A� 62 U(�; �)):

Lemma 4.5 Suppose that B � A�, B 2 K and B 62 U(�; �). Then, in V , B is non-

stationary.

Proof. Suppose otherwise. Then there is B � A�,B 2 K,B 62 U(�; �) stationary in V .

Work in V . Let F := Cub� � B.

By the assumption, there is a �-complete ultra�lter F � over � such that F � � F .

Let

i� : V �!M ' V=F �

and

i� � K = ~i� : K �! (K)M
�

:

Then ~i� it is an iterate ultrapower of K. Let

� = [id]F � :

Then � 2 i�(B) = ~i�(B), also, for every C � � club in K, � 2 i�(C)
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Claim 2 � can not be any of the images �� of � obtained during the iteration ~i�.

Proof. Suppose otherwise. Then there is � such that � = ��. Write i�� � i<� = ~i� where

� = �� = critc(i��). So there is  < o(K)M
�

(��) such that U(��; ) is used in the iteration.

Then � 2 ~i�(B) implies i<�(B) 2 U(��; ). But

K j= 8� < o(�)
�
B 62 U(�; �)

�
:

Then by elementarity of i<�, we have that

i<�(B) 62 U(��; ):

Contradiction.

� of the claim.

So, � is not an image of � during the iteration. Then there are f : [�]n �! � and

��1 ; :::; ��n < � such that

~i�(f)(��1 ; :::; ��n) � �:

Consider

C := f� 2 � j 8�1; ::; �n < � f(�1; :::; �n) < �g:

Then C is a club in �, C 2 K, but � 2 ~i�(C). Contradiction.

� of the lemma.

Let us conclude now the proof of the theorem.

Notice that Cub � A� 2M , since (P(�))V = (P(�))M . By the lemma, it follows that

(P(�))K \ Cub � A� = U(�; �) 2M;

this is a contradiction since U(�; �) coheres with KM and is in M (it implies that it is in

KM by its maximality) but is not in KM .

�

Remark 4.6 1. The above proof actually shows that non of U(�; �)'s with � below a

weak repeat point can be extended to a normal ��complete ultra�lter and every stationary

X � �;X 2 K must have measure one in one of the measures over � in K.

2. If we assume that only the following:

for every stationary A � �;A 2 K the �lter Cub � A extends to a ��complete ultra�lter,

then the argument goes through and the conclusion will be the same.
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The next result is strengthening a bit the previous one.

Theorem 4.7 Suppose that for every A � �;A 2 K such that A \ Regular is stationary,

the �lter generated by (Cub� � A \ Regular)
K extends to a ��complete ultra�lter. Then

there is a repeat point for the coherent sequence of measures over � in the core model K.

Proof. Proceed as in 4.4. Let W be a normal measure over �.

Let

i : V  !M ' V �=W:

Consider ~i = i � K. Then

~i : K �! (K)M

is an iterate of K.

Let U(�; �) be the �rst measure used in ~i.

Assume that there is no repeat point over � in K. Then there will be a set A� 2 K,

A� 2 U(�; �) such that

8� 6= � (A� 62 U(�; �)):

Some of the elements of A� may be singular in V , still A\Regular is stationary since A 2 W

and W is a normal measure.

The following analog of Lemma 4.5:

Lemma 4.8 Suppose that B � A�, B 2 K and B 62 U(�; �). Then, in V , B \ Regular is

non-stationary.

Proof. Suppose otherwise. Then there is B � A�,B 2 K,B 62 U(�; �) stationary in V .

Work in V .

Let F be the �lter generated by (Cub� � B)
K , i.e.

F = fX � � j (9C 2 K a club )(X � B \ C)g:

By the assumption, there is a �-complete ultra�lter F � over � such that F � � F .

Continue now exactly as in Lemma 4.5. Note that the club C de�ned there at the �nal

stage is in K, hence � 2 ~i�(C). Contradiction.

� of the lemma.
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Let us conclude now the proof of the theorem.

Notice that Cub� � A� \ Regular 2 M , since V and M agree about regularity of cardinals

below � (just � is the critical point) and (P(�))V = (P(�))M . By the lemma, it follows that

(P(�))K \ (Cub � A� \Regular) = U(�; �) 2M;

this is a contradiction since U(�; �) coheres with KM and is in M (it implies that it is in

KM by its maximality) but is not in KM .

�

5 Forcing constructions-regular cardinals.

In this section we would like to provide an upper bound on consistency strength of a weakly

��compact cardinal � and weaker properties considered in the previous section.

Let us start with the following observation.

Theorem 5.1 Suppose that there is a weak repeat point over � in the core model. Then

there is a co�nality preserving extension in which for every X � �;X 2 K stationary and

consisting of regular cardinals, the �lter generated (Cub� � X)K extends to a ��complete

ultra�lter. However there is X � �;X 2 K stationary and consisting of regular cardinals,

such that the �lter Cub� � X does not extend to a ��complete ultra�lter.

Proof. Let
~U = hU(�; �) j � � �i

be a coherent sequence of measures over � in K, o(�) = �+1 and � is the least weak repeat

point for ~U . It is well known (see for example [2]) that then cof(�) = �+ and for every

X 2 U(�; �) the set

f� < � j X 2 U(�; �)g

is unbounded in �. Denote by F� the following set:

fX � � j 9 < �8�( � � < � �! X 2 U(�; �))g:

Then it is a ��copmplete �lter over � and U(�; �) � F�; since otherwise there will

be a set Y 2 F� n U(�; �). But, then � n Y 2 U(�; �), which is impossible, since the set

f� < � j � n Y 2 U(�; �)g is unbounded in �.
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De�ne now a Backward Easton iteration

hP�; Q
�
� j � � �; � � �+ 1i:

Suppose that � < �+ 1 and P� is de�ned. De�ne Q
�
�. Set Q

�
� to be a trivial forcing unless

o(�) > 0 is a limit ordinal.

Once o(�) > 0 and it is a limit ordinal, then let Q
�
� be the less than ��support iteration of

the standard forcing notion for adding a club into X [ Singular, for every X � � such that

for some  < �,

X 2
\

��<o(�)

U(�; �):

Now, the elementary embedding i� : K ! K� ' K�=U(�; �) extends, but non of i� for

� < �. However, we will extend the embeddings by U(�; �)�U(�; �), for � < �. This way it

will be insured that for each X � � \ Regular;X 2 K which is stationary in the extension

there will be a ��complete ultra�lter including (Cub� � X)K . Such ultra�lter will be an

extension of U(�; �)� U(�; �) with X 2 U(�; �).

Let G(P�) �G(Q�) be a generic subset of P� �Q
�
�.

Lemma 5.2 The elementary embedding

i� : K ! K� ' K�=U(�; �)

extends to an elementary embedding

i�� : K[G(P�) �G(Q�)]! K�[G(Pi�(�) �G(Qi�(�))];

for some K��generic subsets G(Pi�(�) �G(Qi�(�)) of i�(P� �Q�
�).

Proof. Note that F� 2M� by the coherency of the sequence ~U . The club subsets are added

over � to X [ Singular, for every X 2 F�. But each X like this is necessary in U(�; �).

So i� extends in a standard way. Note that the adding of singulars provides enough closure

in order to construct a master condition sequence.

� of the lemma.

Let

i�� : K ! K�;� ' K�2=U(�; �)� U(�; �)

be the elementary embedding corresponding to U(�; �)� U(�; �), where � < �.

Then, similar to 5.2, we obtain the following:
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Lemma 5.3 Let � < �. Then the elementary embedding

i�� : K ! K��

extends to an elementary embedding

i��� : K[G(P�) �G(Q�)]! K��[G(Pi�(�) �G(Qi�(�))];

for some K���generic subsets G(Pi��(�) �G(Qi��(�)) of i��(P� �Q�
�).

Suppose now that X � � \ Regular;X 2 K is stationary in the extension. Then there

is � < � such that X 2 U(�; �). Hence,

� 2 i�(X) and i�(�) 2 i��(X):

Also, if C � �;C 2 K is a club, then

� 2 i�(C) and i�(�) 2 i��(C):

Consider now in K[G(P�) �G(Q�)] the following ��complete ultra�lter:

U� := fY � � j i�(�) 2 i
�
��(Y )g:

Then

(Cub � X)K � U�:

It remains to give an example of a stationary (in the extension) set X � �\Regular;X 2

K such that the �lter Cub� � X does not extend to a ��complete ultra�lter.

Let X be any F��positive set in K which does not belong to U(�; �).

Suppose that the �lter Cub� � X extends to a ��complete ultra�lter W . Consider

iW : K[G(P�) �G(Q�)]!MW ' K[G(P�) �G(Q�)]
�=W:

Let

� = [id]W and ~i = iW � K:

Then

~i : K ! KMW :

The forcing used was co�nality preserving forcing. Then, also, KMW and MW agree on

co�nality of ordinals. In addition, MW is closed under ��sequences of its elements, as an

ultrapower by a ��complete ultra�lter. Hence, ~i is �nite iterated ultrapower of K.

It follows, as in 4.5, that � is � or one its images in this iteration.
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Claim 3 � 6= �.

Proof. Suppose otherwise. Then W is normal. The iteration ~i starts with a normal measure

U(�; �), for some � � � = o(�)� 1, and W � U(�; �). But X 62 U(�; �), hence � < �. Recall

that � is the �rst weak repeat point. So, there is A� 2 U(�; �) which does not belong to

any other U(�; �0) with �0 6= �. Then the forcing Q� adds a club C disjoint with A�. Hence,

C 2 W , but also X \ A� 2 U(�; �) � W . Contradiction.

� of the claim.

So, � 6= �. In addition,W 6� U(�; �). Hence there is � < � such that � is the critical point

of the iteration at a step where an image of U(�; �) was applied. Then W � U(�; �), but

such possibility was already ruled out in the claim above. Hence we obtain a contradiction.

In order to �nish the proof, we need to show that the set X as above remains stationary.

Suppose otherwise. Then the forcing Q� over K[G(P�)] adds a club C disjoint to X. Recall

that Q� is a < ��support iteration of forcings of cardinality � of the length �+. So, there

� < �+ such that already Q� � � adds C.

Pick now � < � such that

1. X 2 U(�; �),

2. for every �0; � � �0 < �, for every Y 2 U(�; �0) there is no forcing shooting a club

through Y in the iteration Q� � �.

This is possible since cof(�) = �+ and X 2 U(�; �) for unboundedly many � < �. But, the

elementary embedding

i� : K ! K� ' K�=U(�; �)

extends to an elementary embedding

i�� : K[G(P�) � (G(Q� � �)]! K�[G(Pi�(�) �G(Qi�(�))];

as in Lemma 5.2. This is clearly impossible, since we will have that both

� 2 i�(X) = i��(X) and � 2 i��(C):

Contradiction. So, we are done.

�

Let us deal now with an other �lter and extend the previous result to �lters of the form

Cub� � X where X is as in 5.1.
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Theorem 5.4 Suppose that there is a weak repeat point over � in the core model. Then

there is a co�nality preserving extension in which for every X � �;X 2 K stationary and

consisting of regular cardinals, the �lter Cub� � X extends to a ��complete ultra�lter.

Proof. Let
~U = hU(�; �) j � � �i

be a coherent sequence of measures over � in K, o(�) = �+1 and � is the least weak repeat

point for ~U . It is well known (see for example [2]) that then cof(�) = �+ and for every

X 2 U(�; �) the set

f� < � j X 2 U(�; �)g

is unbounded in �. Denote by G� the �lter
\
�<�

U(�; �):

We have \
�<�

U(�; �) =
\
���

U(�; �) and U(�; �) �
\
���

U(�; �);

since � is a weak repeat point.

De�ne a Backward Easton iteration

hP�; Q
�
� j � � �; � � �+ 1i:

Suppose that � < �+ 1 and P� is de�ned. De�ne Q
�
�. Set Q

�
� to be a trivial forcing unless

o(�) > 0 is a limit ordinal.

Once o(�) > 0 and it is a limit ordinal, then let Q
�
� be the less than ��support iteration of

the standard forcing notion for adding a club into X [ Singular, for every X � � such that

X 2
\

�<o(�)

U(�; �):

Let G(P�) �G(Q�) be a generic subset of P� �Q
�
�.

The proof of the next lemma is the same as those of 5.2.

Lemma 5.5 The elementary embedding

i� : K ! K� ' K�=U(�; �)

extends to an elementary embedding

i�� : K[G(P�) �G(Q�)]! K�[G(Pi�(�)) �G(Qi�(�))];

for some K��generic subsets G(Pi�(�)) �G(Qi�(�)) of i�(P� �Q�
�).
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Let � < �: Consider

i�� : K ! K�;� ' K�2=U(�; �)� U(�; �)

the elementary embedding corresponding to U(�; �)� U(�; �). It can be written also as

K �!i� K� �!
k�� K�;�;

where k�� is the canonical embedding of K� into its ultrapower by i�(U(�; �)).

Similar to 5.2, we have the following:

Lemma 5.6 Let � < �. Then the elementary embedding

i�� : K ! K��

extends to an elementary embedding

i��� : K[G(P�) �G(Q�)]! K��[G(Pi�(�)) �G(Qi�(�))];

for some K���generic subsets G(Pi��(�)) �G(Qi��(�)) of i��(P� �Q�
�).

Let us argue that in the present situation also k��, and so, the all diagram extends.

Lemma 5.7 Let � < �. Then the diagram

K �!i� K� �!
k�� K�;�

extends to

K[G(P�) �G(Q�)] �!
i�� K�[G(Pi�(�)) �G(Qi�(�))] �!

k��� K��[G(Pi��(�)) �G(Qi��(�))];

for some K���generic subsets G(Pi��(�)) �G(Qi��(�)) of i��(P� �Q�
�).

Proof. The new point here is that the forcing Qi�(�) used at i�(�) over K�[G(Pi�(�)] shoots

clubs only to sets which belong to

i�(G�) =
\

�<i�(�)

U(i�(�); �):

In particular, every subset of i�(�) into which Qi�(�) shoots a club belongs to U(i�(�); i�(�)):

Also,

i�(�) 2 k��(X) i� X 2 U(i�(�); i�(�)):

Hence, we can add i�(�) to k��
00C = C and keep it a condition in Qi��(�), for every generic

(i.e. in G(Qi�(�))) club C � i�(�). So, k�� extends as well as the diagram.

� of the lemma.
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Lemma 5.8 Let � < � and

i��� : K[G(P�) �G(Q�)]! K��[G(Pi�(�) �G(Qi�(�))];

be as in the previous lemma (5.7). Then for every club C � � in K[G(P�)�G(Q�)], we have

i�(�) 2 i
�
��(C):

Proof. By Lemma 5.7,

i��� = k��� � i
�
�:

The critical point of k��� is i�(�) and i��(C) is unbounded in i�(�). Hence,

i�(�) 2 k
�
��(i

�
�(C)) = i���(C):

� of the lemma.

Suppose now that X � � \ Regular;X 2 K is stationary in the extension. Then there

is � < � such that X 2 U(�; �). Hence,

� 2 i�(X) and i�(�) 2 i��(X):

Also, if C � � is a club, then, by Lemma 5.8,

i�(�) 2 i
�
��(C):

Consider now in K[G(P�) �G(Q�)] the following ��complete ultra�lter:

U� := fY � � j i�(�) 2 i
�
��(Y )g:

Then

Cub � X � U�:

�

Remark 5.9 It is possible to show that in K[G(P�) �G(Q�)],

U�(�; �) := fY � � j � 2 i��(Y )g

is the only normal measure and each U�, with � < �, is a non-normal Q�point measure.
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Let us now remove the restriction X 2 K from the previous theorem.

Theorem 5.10 Suppose that there is a weak repeat point over � in the core model. Then

there is a co�nality preserving extension in which for every stationary X � � consisting of

regular cardinals, the �lter Cub� � X extends to a ��complete ultra�lter.

Proof. We proceed as in 5.4.

Let
~U = hU(�; �) j � � �i

be a coherent sequence of measures over � in K, o(�) = �+1 and � is the least weak repeat

point for ~U . It is well known (see for example [2]) that then cof(�) = �+ and for every

X 2 U(�; �) the set

f� < � j X 2 U(�; �)g

is unbounded in �. Denote by G� the �lter

\
�<�

U(�; �):

We have \
�<�

U(�; �) =
\
���

U(�; �) and U(�; �) �
\
���

U(�; �);

since � is a weak repeat point.

Let us �rst continue further as in 5.4. So, we de�ne a Backward Easton iteration

hP�; Q
�
� j � � �; � � �+ 1i:

Let G(P�) �G(Q�) be a generic subset of P� �Q
�
�.

Suppose now that X � � is stationary in V [G(P�) � G(Q�)] which consists of regular

cardinals.

Consider �rst extensions of

i� : V !M� ' V �=U(�; �):

If there are condition p 2 G(P�) �G(Q
�
�) and q

�
2 i�(P� �Q

�
�)=P� �Q

�
� such that

(p; q
�
)  � 2 i�(X�

);
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then X will belong to a normal ultra�lter which extends U(�; �).

Suppose that this is not the case.

Then, there is p 2 G(P�) �G(Q
�
�) such that

(p; 0�)  � 62 i�(X�
):

We can alter the name X
�

of X such that for every � < �, if a condition (s; t�) 2 P�+1 is

incompatible with f(�), then

(��; (s; t�)) 62 X�
;

where f is a function which represents (p; 0�) in M�. So, using such name, we will have

0Pi�(�)+1  � 62 i�(X�
):

Set

Y� = f� < � j 0P�+1  � 62 X
�
g:

Then Y� 2 U(�; �) and, in V [G(P�) �G(Q
�
�)],

Y� \X = ;:

Now, let us do a similar thing for every � < �.

Consider

i�� : V !M�;� ' V �2=U(�; �)� U(�; �)

the elementary embedding corresponding to U(�; �)� U(�; �). It can be written as

V �!i� M� �!
k�� M�;�;

where k�� is the canonical embedding of M� into its ultrapower by i�(U(�; �)).

By Lemma 5.6, the elementary embedding

i�� : V !M��

extends to an elementary embedding

i��� : V [G(P�) �G(Q�)]!M��[G(Pi�(�)) �G(Qi�(�))];

for some M���generic subsets G(Pi��(�)) �G(Qi��(�)) of i��(P� �Q�
�). Also, k�� extends to

k��� : M�[G(Pi�(�)) �G(Qi�(�))]!M��[G(Pi��(�)) �G(Qi��(�))];
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for some M���generic subsets G(Pi��(�)) � G(Qi��(�)) of i��(P� � Q�
�). If there are condition

p = (r; s�) 2 G(P�) �G(Q�
�) and q

�
2 i��(P� �Q

�
�)=P� �Q

�
� which extends i�

00 s� and such that

(p; q
�
)  i�(�) 2 i��(X�

);

then X will belong to a normal ultra�lter which extends U(�; �).

Suppose that it is not the case. Then there is a condition p = (r; s�) 2 G(P�) �G(Q�
�) such

that for every q
�
2 i��(P� �Q

�
�)=P� �Q

�
� which extends i�

00 s�, we have

(p; q
�
)  i�(�) 62 i��(X�

):

Consider

i� : V !M� ' V �=U(�; �):

Claim In M�,

(p; 0�)  � 62 i�(X�
):

Proof. Suppose otherwise. Then there is some t� 2 i�(P� �Q�
�)=P� �Q

�
�, t� � i�

00 s� such that

(p; t�)  � 2 i�(X�
):

We would like to use now the elementary embedding

��� : M� !M��

which is de�ned as follows:

���(i�(g)(�)) = (i��(g))(i�(�)):

Apply ��� to (p; t�). Then, by elementarity, in M��;

(p; ���( t�))  � 2 ���(i�(X�
)) = i��(X�

):

The condition t� � i�
00 s� translates into ���( t�) � i�

00 s�. But this is impossible.

Contradiction.

� of the claim.

Now, as above with �, we can alter the name X
�

and �nd Y� 2 U(�; �) such that in

V [G(P�) �G(Q
�
�)],

Y� \X = ;:
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Set Y =
S
��� Y�. Then Y \X = ; and for every � � �, Y � Y� 2 U(�; �).

Hence, if Y 2 V then a club was added to Y [ Singular.

We have 2� = �+ and the forcing P�+1 satis�es �
+�c.c., hence, there is a sequence

hZ� j � � �i 2 V

such that Z� 2 U(�; �) and jZ� \Xj < �.

However this does not guarantee that there will be a set in F� =
T
�<� U(�; �) disjoint with

X.

In order to deal with this problem, let us modify the forcing a bit: if at some stage of the

iteration a set X as above appears, then let us force a club disjoint to it.

Such modi�ed version shares the properties of the original forcing, but in the �nal extension

there will be no stationary sets X as above and so for every stationary set S consisting of

regular cardinals the �lter Cub� � S extends to a ��complete ultra�lter.

�

6 Forcing constructions-singular cardinals.

Let us extend now the previous results in order to include stationary sets consisting of

singular ordinals as well.

Theorem 6.1 Suppose that there is a weak repeat point over � in the core model. Then

there is cardinal preserving extension in which for every X � �;X 2 K stationary, the �lter

Cub� � X extends to a ��complete ultra�lter.

Proof. Let
~U = hU(�; �) j � � �; o(�) > 0; � < o(�)i

be a coherent sequence of measures in K. Assume that o(�) = �+ 1 and � is the least weak

repeat point for

hU(�; �) j � � �i

.

Force with Easton iteration of Prikry-Magidor forcings and change co�nality of each

� < � such that o(�) > 0 and cof(o(�)) < �+. This way �'s below � with cof(o(�)) = �+

remain measurable.
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Let V = K and denote the generic extension above V1 = V [G].

Fix an extension U1(�; �) of U(�; �) in V1. Let

i1� : V1 = V [G]!M1
� = ~M�[ ~G]

be the corresponding embedding. Note that ~M� is notM�, but rather its iterated ultrapower.

Consider the set R� of all possible extensions of U(�; �) in M1
� or equivalently in ~M�[G], for

every � < �. Set

R(�) =
[
�<�

R�:

Lemma 6.2 Let X 2 U1(�; �). Then X 2 W , for some normal measure W 2 R(�).

Proof. It is enough to proof the statement for sets of the form

Xp := f� < � j p � �_fp(�) 2 Gg;

where p 2 ~G and fp represents (mod U1(�; �)) the part of p above �.

Clearly there are many W 2 R with Xp 2 W .

� of the lemma.

De�ne now over V1 a Backward Easton iteration

hP�; Q
�
� j � � �; � � �+ 1i:

Suppose that � < �+ 1 and P� is de�ned. De�ne Q
�
�. Suppose �rst that � < �. Set Q

�
� to

be a trivial forcing unless in K, cof(o(�)) = �+.

Once it is, then let Q
�
� be the less than ��support iteration of the standard forcing notion

for adding a club into X, for every X � � such that

X 2
\
R(�);

where R(�) is is the intersection of all ��complete ultra�lters over � in V1, i.e. of all

extensions of U(�; �); � < o(�).

Note that such Q� preserves cardinals (and co�nality), since we have here closed chunks of

Magidor sequences of arbitrary length below �.

If � = �, then let Q
�
� be the less than ��support iteration of the standard forcing notion

for adding a club into X, for every X � � such that

X 2
\
R(�):

22



Again, such Q� preserves cardinals (and co�nality), since we have here closed chunks of

Magidor sequences of arbitrary length below �.

Let G(P�) �G(Q�) be a generic subset of P� �Q
�
�.

It is natural now to try to extend the elementary embedding

i1� : V1 = V [G]!M1
� = ~M�[ ~G]:

However, the forcing Q� seems to have not enough closure for this. So, instead of dealing

directly with i1�, let us choose an other embedding.

Consider in V the sequence

hU(�; �) j � < �+i:

The �rst forcing turns it into a Rudin-Keisler increasing. More precisely, there is a sequence

hU1(�; �) j � < �+i

in V1 (i.e. before forcing clubs) of extensions which is a Rudin-Keisler increasing. Also, there

is such a sequence consisting of elements of R(�). Let

hU1(�; �) j � < �+i

be such a sequence.

Consider now the following sequence

hU1(�; �)� U1(�; �) j � < �+i:

It is still a Rudin-Keisler increasing. Let

i�� : V1 !M�
�

be the corresponding embedding into its direct limit. Then M�
� is closed under ��sequences

of its elements and its core model, which we denote by K�
� , is a further iteration of ~M� which

uses measures from

i1�(hU1(�; �) j � < �+i):

We claim that the embedding i�� extends.

Lemma 6.3 The elementary embedding

i�� : V1 !M�
�
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extends to an elementary embedding

i��� : V1[G(P�) �G(Q�)]!M�
� [G(Pi�(�)) �G(Qi�(�))];

for some M�
��generic subsets G(Pi�(�)) �G(Qi�(�)) of i

�
�(P� �Q�

�).

Proof. The proof is rather standard and similar to those of Lemma 5.5. The new point here

is to use the critical points measures

i1�(hU1(�; �) j � < �+i)

in order to proceed �+�many steps in the process of constructing of a master condition

sequence.

� of the lemma.

Let � < �: Consider

i�� : K ! K�;� ' K�2=U(�; �)� U(�; �)

the elementary embedding corresponding to U(�; �)� U(�; �). It can be written also as

K �!i� K� �!
k�� K�;�;

where k�� is the canonical embedding of K� into its ultrapower by i�(U(�; �)).

Now, instead of extending this diagram directly, as in 5.4, let us add a Rudin -Keisler

increasing sequences of the length �+ to both � and �.

Proceed as follows. Let U1(�; �) be an extension in V1 of U(�; �) which belongs to R(�).

Let

i1� : V1 = V [G]!M1
� = ~M�[ ~G�]

be the corresponding elementary embedding.

Let

hU1(�; �) j � < �+i

be as above. We will use

hU1(�; �)� U1(�; �) j � < �+i;

its elementary embedding

i�� : V1 !M�
�

and an extension

i��� : V1[G(P�) �G(Q�)]!M�
� [G(Pi�(�)) �G(Qi�(�))];
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given by Lemma 6.3.

Add U1(�; �) in the following fashion. Consider

hU1(�; �)� U1(�; �)� U1(�; �)� U1(�; �) j � < �+i:

It is still Rudin-Keisler increasing. Let

i��� : V1 !M�
��

be its elementary embedding into the direct limit.

It can be written also as

V1 �!
i�� M�

� �!
k��� M�

��;

where k��� is the canonical embedding of M�
� into its ultrapower by the system

i��(hU1(�; �)� U1(�; �) j � < �+i):

Then the following analog of Lemma 5.7 holds:

Lemma 6.4 Let � < �. Then the diagram

V1 �!
i�� M�

� �!
k��� M�

�;�

extends to

V1[G(P�) �G(Q�)] �!
i��� M�

� [G(Pi��(�)) �G(Qi��(�))] �!
k���� M�

��[G(Pi���(�)) �G(Qi�
��
(�))];

for some M�
���generic subsets G(Pi�

��
(�)) �G(Qi�

��
(�)) of i

�
��(P� �Q�

�).

Proof. The proof just combines the arguments of 5.7 and 6.3.

� of the lemma.

Lemma 6.5 Let � < � and

i���� : V1[G(P�) �G(Q�)]!M�
��[G(Pi�(�) �G(Qi�(�))];

be as in the previous lemma (6.4). Then for every club C � � in V1[G(P�)�G(Q�)], we have

i��(�) 2 i
��
��(C):
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Proof. By Lemma 6.4,

i���� = k���� � i
��
� :

The critical point of k���� is i
�
�(�) and i��� (C) is unbounded in i��(�). Hence,

i��(�) 2 k
��
��(i

��
� (C)) = i����(C):

� of the lemma.

Suppose now that X � �;X 2 K is stationary in the �nal extension V1[G(P�) �G(Q�)].

Then there is � < � such that X 2 U(�; �). Hence,

� 2 i�(X) and i��(�) 2 i
��
��(X):

Also, if C � � is a club, then, by Lemma 6.5,

i��(�) 2 i
��
��(C):

Consider now in V1[G(P�) �G(Q�)] the following ��complete ultra�lter:

U� := fY � � j i��(�) 2 i
��
��(Y )g:

Then

Cub � X � U�:

�

In order to deal with arbitrary stationary sets which may be not in K, combine the

previous construction (6.1) with one of 5.10. We obtain the following:

Theorem 6.6 Suppose that there is a weak repeat point over � in the core model. Then there

is cardinal preserving extension in which for every X � � stationary, the �lter Cub� � X

extends to a ��complete ultra�lter.

7 Open problems.

Let us conclude with the following questions.

Question 1. What is the exact consistency strength of a ��compact cardinal �?

We think that it should be somewhere beyond a superstrong.
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Question 2. What is the exact consistency strength of the following statement:

every normal ��complete �lter over a cardinal � extends to a ��complete ultra�lter?

By previous results at least a weak repeat is needed. But may be the upper bound is

below o(�) = �++?
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