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Abstract

We construct a model of ZF in which there is a measurable cardinal but there is no
normal ultrafilter over it.

1 Introduction

Let U be a κ-complete non-trivial ultrafilter over κ and f : κ → κ a function that represents

κ in the ultrapower by U . Then

{X ⊆ κ | f−1”X ∈ U}

is a normal ultrafilter over κ, by a classical result of Scott, Keisler and Tarski. The axiom of

choice is used to find such f . M. Spector [4] by forcing over AD type model showed in ZF

alone the above need not be true.

Ralf Schindler asked us the following question:

(ZF) Suppose κ is a measurable cardinal. Is there a normal ultrafilter over κ?

According to Arthur Apter this question was asked in mid seventies.

The purpose of this paper is to provide a negative answer. We show the following:

Theorem 1.1 Let V be a ZFC model of GCH+ there is a measurable cardinal κ. Then there

is a symmetric submodel of a generic extension N which satisfies ZF+ κ is a measurable,

but there is no normal ultrafilter over κ.

∗We like to thank to Ralf Schindler for asking us the question and to Arthur Apter for providing a related
historical information. We are grateful to the referee of the paper for his suggestions and for a comprehensive
list of corrections. The work was partly supported by ISF Grant 234/08
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2 A basic model

We start with a ZFC model with a measurable cardinal κ. Assume GCH. Fix a normal

ultrafilter U over κ. Let jU : V → MU be the corresponding elementary embedding.

Define an Easton support iteration ⟨Pα, Q∼β | α ≤ κ + 1, β ≤ κ⟩ by induction as follows.

Suppose Pα is defined and α < κ. Set Qα to be a trivial forcing unless α is an inaccessible

cardinal in which case Qα will be Qα1 ∗ Qα2 ∗ Qα3, where Qα1 is the Cohen forcing over α

which adds a function fα : α → ω, i.e.

Cohen(α) = {t | |t| < α, t is a partial function from α to ω}.

Let Gα be a generic subset and set fα =
∪

Gα.

Set Sαn = {ν < α | fα(ν) = n}, for every n < ω. Then each Sαn is a stationary subset of α.

Qα2 will be an atomic forcing which picks nα < ω

Finaly Qα3 is a trivial forcing if nα = 0 and if nα > 0, then Qα3 is the product of forcings

Qn
α, n < nα, where for every n < ω Qn

α is a forcing adding a club into α \ Sαn, i.e.

Qn
α = {c ⊆ α | |c| < α, c is closed and c ∩ Sαn = ∅},

ordered by end-extension.

If α = κ then let Qα be just Cohen(κ).

We will consider further Sκn, Q
n
κ, n < ω, which are defined exactly as Sαn and Qn

α above.

Let us point out the following:

Lemma 2.1 For every α ≤ κ+ 1, Qα has a dense α-closed subset (in V Pα).

Proof. Set

Dα = {⟨t,m, c0, ..., cm−1⟩ ∈ Qα | t ∈ Cohen(α),m < ω, ci ∈ Qi
α,

for every i < m,max(c0) = max(c1) = ... = max(cm−1) = dom(t)}.

It is dense in Qα and α-closed.

�
Let G(Pκ+1) be a generic subset of Pκ+1.

Lemma 2.2 κ remains measurable in V [G(Pκ+1)]. Moreover U and jU extend, i.e. there

is a normal ultrafilter U∗ ⊇ U over κ in V [G(Pκ+1)] such that jU∗ ⊇ jU , where jU∗ is the

corresponding elementary embedding.
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Proof. Consider jU(Pκ+1) in MU . At the stage κ the forcing Qκ = Qκ1 ∗ Qκ2 ∗ Qκ3 should

be used. Recall that Qκ1 is Cohen(κ) and we forced with it on the V –side. Now, Qκ2 is an

atomic forcing that picks a natural number nκ. We are free to pick any value. Let us take

nκ = 0. Then Qκ3 will be a trivial forcing. It is easy now to produce M–generic object for

the rest of jU(Pκ+1) and then to extend the elementary embedding jU .

�.

A bit more general statement is true as well:

Lemma 2.3 Let n, 0 < n < ω. Consider
∏

i<n Q
i
κ in V [G(Pκ+1)]. Let H be its generic

subset. Then κ remains measurable in V [G(Pκ+1)][H], moreover the ultrafilter U and its

embedding jU extend there.

Proof. Proceed as in the previous lemma only set nκ = n. Then Qκ3 =
∏

i<nQ
i
κ and we

have a generic object H for this forcing. It is easy now to produce M–generic object for the

rest of jU(Pκ+1) and then to extend the elementary embedding jU .

�.

Now in V [G(Pκ+1)] consider the following (disastrous) forcing.

Let P will be a finite support product of Qi
κ, i < ω.

Clearly the forcing with P turns all Sκn’s into non-stationary and so collapses κ to ω.

Fortunately we are interested in a symmetric submodel.

3 Symmetric submodel

We refer to classical books T. Jech [3], [2] as excellent references for constructions of sym-

metric models. Define a group G of automorphisms of P . It will be induced by a group

of automorphisms G(Qi
κ) of Qi

κ. Let c, d ∈ Qi
κ with max(c) = max(d). Define πcd be the

function such that πcd(e) = d∪(e\max(c)), for every e ≥ c, πcd(e) = c∪(e\max(c)) for every

e ≥ d and if e is incompatible with both c, d, then let πcd(e) = e. Let G(Qi
κ) be generated by

such πcd and let G be the group generated using elements of G(Qi
κ)’s for finitely many i’s.

Let F be the filter on G generated by fix(s), s ⊆ ω finite, where fix(s)= {π ∈ G | ∀n ∈
s, π � {n} = id}.

Pick a generic subsetG(P) of P . LetN be the symmetric submodel of V [G(Pκ+1)][G(P)].1

Lemma 3.1 κ remains a regular cardinal in N .

1N = {iG(P)(x∼) | x∼ ∈HS}, where HS is the class of all hereditarily symmetric P-names and a name x∼ is
symmetric if symG(x∼) := {π ∈ G | π(x∼) = x∼} ∈ F .
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Proof. Let h ∈ N be a function from some λ < κ to κ. Fix a hereditarily symmetric

P-name h∼ of h. Let s be a finite subset of ω such that sym(h∼) ⊇ fix(s). Pick a condition

⟨c0, ..., cm−1⟩ ∈ G(P) which forces “h∼ : λ → κ”. Without loss of generality assume that

m > n.

We claim now that h ∈ V [G(Pκ+1)][G(P) ∩
∏

i<mQi
κ].

Let p ≥ ⟨c0, ..., cm−1⟩, α < λ, β < κ and p  h∼(α) = β.

Claim 1 p � m  h∼(α) = β.

Proof. Suppose otherwise. Then there are q ∈ calP, q � m ≥ p � m and β′ ̸= β such that

q  h∼(α) = β′. Extend p, q to conditions p∗ = ⟨e0, ..., ek⟩, q∗ = ⟨d0, ..., dk⟩ such that

1. p∗ � n = p � n,

2. q∗ � n = q � n,

3. max(ei) = max(di), for every i, n ≤ i < k.

We apply now the combination π of the automorphisms πeidi for all i, n ≤ i < k. Then

π ∈fix(s), and so π(h∼) = h∼. Hence π(p∗)  h∼(α) = β, but π(p∗) is compatible with q∗ ≥ q

and q  h∼(α) = β′. Contradiction.

� of the claim.

Now, granted h ∈ V [G(Pκ+1)][G(P) ∩
∏

i<m Qi
κ], we apply Lemma 2.3. It follows that

rng(h) is bounded in κ, since κ is a measurable and so a regular in V [G(Pκ+1)][G(P) ∩∏
i<m Qi

κ].

�

Lemma 3.2 For every n < ω, the set Sκn is non-stationary in N .

Proof. Let n < ω. Consider Cκn :=
∪
(G(P) ∩ Qn

κ). This is a club disjoint from Sκn. It is

easy to find a name C∼κn of Cκn which is a hereditarily symmetric and sym(C∼κn) ⊇fix({n}).
Hence Cκn ∈ N and so Sκn is non-stationary there.

�

Lemma 3.3 The filter Cubκ is not σ-complete in N .

Proof. Follows from Lemma 3.2.

�
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Remark 3.4 Note that intersection of less than κ many clubs in κ is always a club. The

point here is that we cannot choose in N a sequence of clubs ⟨Cn | n < ω⟩ such that

Cn ∩ Sκn = ∅.

Lemma 3.5 In N there are no normal filters on κ.

Proof. The generic Cohen function fκ : κ → ω splits κ into ω non-stationary sets, by

Lemma 3.2. So if W is a normal filter over κ in N , then the regressive function fκ should

be constant on a W -positive set A. Then A ⊆ Sκn for some n. Hence Sκn is positive for W .

But there is a club Cn which is disjoint to Sκn. Define g : Sκn \min(Cn) + 1 → κ by setting

g(ν) = max(Cn ∩ ν). Then g is a regressive function on a set in W which is constant only

on bounded subsets of κ. Hence W cannot be normal.

�

Lemma 3.6 If X ∈ N , X ⊆ κ, then X ∈ V [G(Pκ+1)][⟨Cn | n ∈ fix(X)⟩].

Proof. The proof basically repeats the argument of Lemma 3.1.

�

4 Moving ultrafilters

We would like to explore Lemma 2.3 and produce various ultrafilters inside intermediate

models. The main idea will be to use not only U, jU and their extensions but rather extensions

of Un, jUn eventually increasing n.

In order to give more intuition let us consider the situation in the initial model V [G(Pκ+1)].

We have the Cohen function fκ there and in order to extend U the value j(f
∼κ)(κ) = f

∼j(κ)(κ)

should be decided, where j := jU . Suppose that we set it to be 0. Let U(0) be a resulting

extension of U . Then Sκ0 will be in U(0).

At the next stage the forcing Q0
κ is used. It adds a club disjoint with the set Sκ0. How do

we extend U(0) now? Is possible at all? The problem is that κ ∈ Sj(κ)0, since fj(κ)(κ) = 0.

On the other hand, we forced a club disjoint with Sκ0. So κ is its limit point of it, and hence

κ should be in the image of the club under any elementary embedding. This means that

there is no way to extend j in such forcing extension. However, it is still possible to extend

U(0) once giving up normality. Proceed as follows. Replace j : V → M by the embedding

j2 := jU2 : V → M2 ≃ V κ2
/U2. Denote j(κ) by κ1 and j2(κ) by κ2. There is an embedding

of M to M2 which moves κ to κ1 and κ1 to κ2. It will be used in order to extend U(0). We
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move to κ1 and set j2(f∼κ)(κ1) = 0. Now, in order to accumulate the club disjoint with Sκ0,

also set j2(f∼κ)(κ) = 1. Note that then κ ̸∈ Sκ20 which allows us to add κ to the club disjoint

with Sκ20. This way we will be able to extend j2 and to produce an extension U(1) of U(0).

At the next stage Q1
κ is used resulting non stationarity of Sκ1 which was in the normal ul-

trafilter Rudin-Keisler below U(1). So again in order to extend U(1) we move U3, j3 and

replace κ, κ1 by κ1, κ2, etc.

The problem will persists at the ω-th stage in ZFC setting, but here for ZF model there will

be no ω-th stage.

Turn now to a formal realization of the idea above.

Denote for every n, 0 < n < ω, by jn : V → Mk ≃ V κn
/Un the elementary embedding into

n-th iterated ultrapower of V by U . Let κn = jn(κ).

First let us extend U to two normal ultrafilter U(0, 0), U(0, 1) over κ in V [G(Pκ+1)].

Proceed as follows. Let i = 0, 1. Pick in V [G(Pκ+1)] an M -generic subset Gi(Pj(κ)+1) of

j(Pκ+1) such that

1. Gi(Pj(κ)+1) � κ+1 = G(Pκ+1), where by Gi(Pj(κ)+1) � κ+1 we mean the restriction of

Gi(Pj(κ)+1) to Pκ+1,

2. f i
j(κ) � κ = fκ,

3. f i
j(κ)(κ) = i,

4. G0(Pj(κ)+1) � j(κ) = G1(Pj(κ)+1) � j(κ),

5. f 0
j(κ), f

1
j(κ) agree about all the values except the one of κ.

Then the embedding j extends to j0,i : V [G(Pκ+1)] → M [Gi(Pj(κ)+1)]. Set

U(0, i) = {X ⊆ κ | κ ∈ j0,i(X)}.

It is not hard to see that M [Gi(Pj(κ)+1)] ≃ V [G(Pκ+1)]
κ/U(0, i). Also, M [G0(Pj(κ)+1)] =

M [G1(Pj(κ)+1)], U(0, 0), U(0, 1) are normal ultrafilters, Sκ0 ∈ U(0, 0),Sκ1 ∈ U(0, 1), and so

Sκ0 ̸∈ U(0, 1).

Force now (over V [G(Pκ+1)]) with Q0
κ. Let Cκ0 be a generic club. Then Cκ0 is disjoint

from Sκ0. So U(0, 0) cannot be extended to a normal ultrafilter in V [G(Pκ+1)][Cκ0]. Let us

give up the normality and extend it to a κ-complete ultrafilter.

Work in V [G(Pκ+1)]. Consider U(0, 1)×U(0, 0). It is a κ-complete ultrafilter in V [G(Pκ+1)].

Let j10 : V [G(Pκ+1)] → M∗ be its ultrapower embedding. It is obtained by first taking the
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ultrapower of V [G(Pκ+1)] by U(0, 1) and then taking the ultrapower by the image of U(0, 0).

Then j10 ⊇ j2 and M∗ = M2[G(Pj2(κ)+1)] for M2-generic subset G(Pj2(κ)+1) of Pj2(κ)+1. It is

not hard to see that

1. G(Pj2(κ)+1) � κ1 + 1 = G1(Pj(κ)+1),

2. U(0, 1) = {X ⊆ κ | κ ∈ j10(X)},

3. U(0, 0) = {X ⊆ κ | κ1 ∈ j10(X)}

4. fj2(κ)(κ) = 1,

5. fj2(κ)(κ1) = 0.

Now given fj2(κ)(κ) = 1, it is easy to extend the embedding j10 to an embedding

j1 : V [G(Pκ+1)][Cκ0] → M [G(Pj2(κ)+1)][Cj2(κ)0].

Just let Cj2(κ)0 � κ+ 1 = Cκ0 ∪ {κ} and the first point of Cj2(κ)0 above κ be above κ1. This

works because one needs to have that κ ∈ Cj2(κ)0 and κ1 ̸∈ Cj2(κ)0.

Set

U(1) = {X ⊆ κ | κ1 ∈ j1(X)}.

Then, clearly U(1) will be a κ-complete ultrafilter in V [G(Pκ+1)][Cκ0] which extends U(0, 0).

Clearly U(1) will not be normal and its projection (it will be the function ξ 7→ max(Cκ0∩ξ))

to the normal one will extend U(0, 1). Actually the ultrapower embedding by U(1) will be

j1, since κ is definable from κ1 now as the maximal element of the club Cj2(κ)0 below κ1 and

Cj2(κ)0 is in the range of the embedding j1.

Now force with Q1
κ over V [G(Pκ+1)][Cκ0]. Let Cκ1 be a generic club disjoint from Sκ1. The

embedding j1 cannot be extended anymore, but the filter U(1) can. Use j3. Namely define

U(0, 2) as U(0, 0), U(0, 1) but only set the value of fj3(κ)(κ) = 2. U(0, 2) extends smoothly to

a normal ultrafilter in V [G(Pκ+1)][Cκ0]. Denote an extension by U(1, 2). Consider U(1, 2)×
U(1). The arguments as above allow to extend U(1) in V [G(Pκ+1)][Cκ0][Cκ1] to a κ-complete

ultrafilter. Its embedding will extend j3 and the identity function will represent κ2 in the

ultrapower.

Continue in a similar fashion for each n < ω.

The sequence ⟨U(n) | n < ω⟩ is increasing (under the inclusion), but functions that

represent κ form a decreasing sequence. Namely, id represents κ mod U(0). But mod U(1)
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it represents κ1 and ξ 7→ max(Cκ0 ∩ ξ) represents κ. Next, mod U(2), id represents κ2,

ξ 7→ max(Cκ0 ∩ ξ) represents κ1 and ξ 7→ max(Cκ1 ∩ ξ) represents κ, etc.

We would like to have
∪

n<ω U(n) to be in a symmetric model. Unfortunately the group

of automorphisms of the previous section does not allow this. In order to achieve the goal

we will change the construction in the next section. Still it will be based on the same ideas.

5 New approach

Iterate with Easton support the atomic forcing that picks for each inaccessible ν < κ a

natural number nν < ω. Let ⟨nν | ν is an inaccessible below κ⟩ be a generic object. Set

V1 = V [⟨nν | ν is an inaccessible below κ⟩]. Over V1 iterate with Easton support Cohen(ν)

for each inaccessible ν ≤ κ. Denote by fν : ν → ω a Cohen(ν)–generic function produced

by such iteration. Set V2 = V1[⟨fν | ν ≤ κ⟩].
Define now forcings P k

α over V2, for each k, 1 ≤ k < ω, α ≤ κ + 1. P k
α will Easton support

iteration of the length α of forcings Qνk for ν < α, where Qνk is a trivial forcing unless ν is

a Mahlo and nν ≥ k. In the later case Qνk is the forcing for adding a club of ν disjoint to

Sνk−1 = {γ < ν | fν(γ) = k − 1} by initial segments.

Let P be defined over V2 as P =
∏

1≤k<ω P
k
κ .

We will need some general facts about supports of conditions used here.

Let λ be an ordinal. A subset a of λ will be called an Easton support set or simply a support

iff for every regular (or every inaccessible) δ ≤ λ, |a ∩ δ| < δ.

Lemma 5.1 Suppose that ⟨Rα | α ≤ λ⟩ is an iteration such that for every ζ < λ

1. Rζ satisfies ζ+-c.c.,

2. Rλ/Rζ+1 does not add new ζ-sequences of ordinals.

Let Gλ be a generic subset of Rλ and a ⊆ λ be a support in V [Gλ]. Then there is b ⊇ a in

V which is a support.

Proof. Let us show by induction on α ≤ λ that a∩ α can be covered by a support set which

is in V .

Suppose first that α is not a limit of regular cardinals. Then let δ < α be the largest

cardinal (unless α < ω which is trivial). Apply the induction to a∩ δ and find a covering set

b′ ∈ V such that a ∩ δ ⊆ b′ ⊆ δ. Now b := b′ ∪ (α \ δ) will be as desired.
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Let us assume now that α is an inaccessible cardinal. Then sup(a) < α, since a is a

support. Apply the induction to sup(a).

Let us turn to the remaining and the principal case of a limit singular cardinal α. Denote

the cofinality of α by η. Pick a cofinal sequence ⟨αi | i < η⟩. Apply induction and for each

i < η find a set bi ∈ V such that bi ⊂ αi, bi ⊇ a ∩ αi and bi is a support. The sequence

⟨bi | i < η⟩ belongs to V [Gη+1] (where Gη+1 is the restriction of Gλ to Rη+1), by the first

item of the statement of the lemma. Use η+-c.c. of Rη+1 to find in V a sequence ⟨b′i | i < η⟩
such that b′i ⊆ bi and |b′i| = |bi| + η. Consider a ∩ η. By induction there is a covering set

a∗ ∈ V such that a ∩ η ⊆ a∗ ⊆ η. Set now b = ((
∪

i<η b
′
i) \ η) ∪ a∗. It is as desired.

�

Lemma 5.2 The forcing P preserves all the cardinals.

Proof. Clearly P preserves all the cardinals above κ, since |P | = κ. κ is preserved since P

satisfies κ-c.c.

Let η < κ be a regular cardinal. Let us show that it is preserved. We would like to split

P into a product of two forcings one below η which satisfies η-c.c. and an other above η

which is η-closed. Note however that each of the components P k
κ is an iteration so it does

not break into a product. But let us replace P k
κ by P k

η × A(P k
η , P∼

k
>η), where A(P k

η , P∼
k
>η) is

a term space forcing, i.e.

A(P k
η , P∼

k
>η) consists of canonical P

k
η -names of elements of P∼

k
>η and the ordering given by

σ∼ ≤A(Pk
η , P∼k

>η)
τ∼ ⇔ ∥ Pk

η
σ∼ ≤P∼k

>η
τ∼.

We refer to Section 22 , pp.865-868 of J. Cummings chapter in Handbook of Set theory [1]

for details on Termspace Forcing. The basic property of this forcing is the following:

Let Gη be P k
η generic over V2 and H be A(P k

η , P∼
k
>η)-generic over V2. Set I = {iGη(τ∼) | τ∼ ∈

H}. Then I is iGη(P∼
k
>η) = P k

>η-generic over V2[G>η].

So it is enough to show that the forcing P>η :=
∏

k<ω A(P
k
η , P∼

k
>η) is nice enough to preserve

η. We argue that the Cohen forcing above η combined with it will have a dense η-closed

subset.

Denote by V ′
2 the model V1[⟨fν | ν < η⟩]. Let Cohen<η denotes the iteration of the Cohen

forcings which adds ⟨fν | ν < η⟩ and Cohen≥η be the iteration of the Cohen forcings adding

the rest of the sequence ⟨fν | κ ≥ ν ≥ η⟩. Clearly, Pη :=
∏

k<ω P
k
η is defined in V ′

2 . Also Pη

satisfies η-c.c.

Work in V ′
2 . Let p be in Cohen≥η and p

∼
be a Cohen<η–name of it. By supp(p), a support

of p, we mean a support set a of ordinals in the interval [η, κ) such that pα = ∅, for every
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α ∈ [η, κ) \ a, where pα is the α-th coordinate of p. Note that since |Cohen<η| ≤ η the

requirements of Lemma 5.1 are trivially satisfied and so it is possible always to extend p
∼

to

a Cohen<η–name of a condition which has a support in V1 (or even in V ).

Let now τ∼ ∈ A(P k
η , P∼

k
>η). Extend it to a condition τ∼

′ ∈ A(P k
η , P∼

k
>η) such that a support

τ∼
′ (where again by a support of τ∼

′ we mean a support set a of ordinals < κ such that on

coordinates ν ∈ κ \ a we have ∥ Pk
η
τ∼
′(ν) = ∅) is in V ′

2 (or even in V1 or further down in V ).

It is possible since |P k
η | ≤ η and Cohen≥η satisfies the requirements of Lemma 5.1.

Now we will proceed similar to Lemma 2.1 and define

a dense η-closed subset of Cohen≥η ∗ A(P k
η , P∼

k
>η).

Let Dk be a subset of Cohen≥η ∗A(P k
η , P∼

k
>η) which consists of all pairs (p

∼
, σ∼) such that

1. supp(p
∼
) ∈ V ,

2. supp(σ∼) ∈ V and p
∼

decides it,

3. supp(σ∼) ⊆ supp(p
∼
),

4. p
∼

decides max(σ∼(ν)) for each ν ∈ supp(σ∼) and

the decided value includes the set {α ∈ dom(p
∼ν) | p

∼ν(α) = k − 1}, where p
∼ν is the

ν–th coordinate of p
∼
, i.e. the one that constructs a Cohen function fν .

It is not hard to see that such Dk is dense. Just start with any ( q
∼
, ρ
∼
) ∈ Cohen≥η ∗

A(P k
η , P∼

k
>η) extend it first to some ( q

∼
′, ρ
∼

′) which satisfies items 1-3 above. In order to

satisfy 4, let us recall that Qk
α is trivial unless α is Mahlo and the iteration of Cohen forcings

Cohen<α up to a Mahlo cardinal α satisfies α–c.c. So we can proceed inductively dealing

with coordinates ν in supp(ρ
∼

′) extending first q
∼

′ (only on coordinates ≥ ν) in order to

decide max(ρ
∼

′(ν)) and then, if necessary, to increase this maximum extending ρ
∼

′(ν). This

procedure will construct a condition (p
∼
, σ∼) ∈ Dk which is stronger than ( q

∼
, ρ
∼
).

Now, as in Lemma 2.1, Dk is η-closed.

Finally let

D = {⟨p
∼
, ⟨σ∼k | k < ω⟩⟩ ∈ Cohen≥η ∗ P>η | ∀k < ω (p

∼
, σ∼k) ∈ Dk}.

The arguments as above show that D is a dense η-closed subset of Cohen≥η ∗ P>η. Hence

the forcing Cohen≥η ∗ P>η does not collapse η and we are done.

�
The next two lemmas are analogs of Lemmas 2.2 and 2.3.
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Lemma 5.3 The forcing P preserves measurability of κ.

Proof. Consider the image of the forcing in MU . At the stage κ we need first to pick a

natural number nκ. There are no limitation of its choice. Let us take nκ = 0. Then proceed

as in 2.2 only apply the arguments of 5.2 above κ in order to construct a master condition

sequence.

�
Given nκ > 0, we can continue P naturally over κ just forcing nκ–relevant

clubs Cκ0, ..., Cκnκ−1. Namely we force with (
∏

1≤k≤nκ
P k
κ+1) × (

∏
nκ<k<ω P

k
κ ). Cκk will be

Qκk–generic clubs disjoint to the sets Sκk = {γ < κ | fκ(γ) = k−1}, for every k, 1 ≤ k ≤ nκ.

Lemma 5.4 κ remains measurable in V2[G(P )][Cκ0, ..., Cκnκ−1] for any n = nκ > 0,

where G(P ) is a generic subset of P .

Proof. Construct a master conditions sequence using the arguments of Lemma 5.2. It is used

here that for every l the forcing P l
κ+1 is an iteration. Namely we need that Cκ,l is an initial

segment of Cjl(κ),l, where jl is the elementary embedding of U l.

Let ⟨ r∼α | α < κ+⟩ be such a sequence of conditions in Cohen>κ ∗ (
∏

l<ω A(P
l
κ+1, P∼

l
>κ+1)).

The ultrafilter U(n) is defined as follows:

X ∈ U(n) iff there are α < κ+, p ∈ G(Cohen≤κ), q ∈ G(P ) and s0 ∈ Cκ0, ..., snκ−1 ∈ Cκnκ−1

such that

(p, q, ⟨s0, ..., snκ−1⟩, r∼α)∥ κnk
∈ jnk

(X∼).

�
Let U(n) be the ultrafilter on κ in V2[G(P )][Cκ0, ..., Cκnκ−1] defined using Lemma 5.4 as

in the previous section.

Note that a projection of U(n) projects to a normal ultrafilter by the function

ν 7→ max(Cκn∩ν), since in the ultrapower κ is the largest point of Cjn(κ),n below [id]U(n) = κn.

Denote max(Cκn ∩ ν) by ν0

Let X ∈ U(n). Then, as in the previous lemma, we have α < κ+, p ∈ G(Cohen≤κ),

q ∈ G(P ) and s0 ∈ Cκ0, ..., snκ−1 ∈ Cκnκ−1 such that

(p, q, ⟨s0, ..., snκ−1⟩, r∼α)∥ κnk
∈ jnk

(X∼).

Consider

11



X∗ = {ν < κ | nν0 = nκ, p ∈ G(Cohen≤ν0), q ∈ G(P � ν0),

s0 ∈ G(Qν01), ..., snκ−1 ∈ G(Qν0nκ
), hα(ν)G(P �ν0+1) ∈ G(P>ν0)},

where hα is a fixed function with [hα]U(n) = α and for a forcing notion R,

G(R) denotes its generic subset, P>ν0 denotes P/G(P � ν0 + 1).

Then X belongs to U(n) iff X∗ belongs to it.

6 Automorphisms

Let k, 1 ≤ k < ω. We arrange automorphisms not only of the component over κ but rather

over all of P k
κ+1. Thus let c, d ∈ Qκk. Assume that they are in V2, otherwise just force with

an initial segment of P k
κ+1 to decide c, d. Assume also that max(c) = max(d). Set πcd(c) = d.

Replace c by d in every condition stronger than c . Do this not only over κ but on a final

segment below (in Qνk’s).

Turn now to a formal definition of Gk, for a fixed k, 1 ≤ k < ω.

Let us first specify a dense subset of P k
κ+1 over which automorphisms will be defined. Set

D = {⟨p
∼ν | ν ≤ κ⟩ ∈ P k

κ+1 | ⟨max(p
∼ν) | ν ≤ κ, p

∼ν ̸= 0Qνk
⟩ and otp(p

∼κ) are decided and are in V2}.2

Lemma 6.1 The set D is dense in P k
κ+1.

Proof. Let q = ⟨ q
∼ν | ν ≤ κ⟩ ∈ P k

κ+1. The forcing P k
ν satisfies ν–c.c. for every ν ≤ κ. Hence

we can find αν < ν such that fν(αν) ̸= k − 1 and 0Pk
ν
∥ αν > max( q

∼ν). Set p
∼ν = q

∼ν ∪ {αν}.
Then p = ⟨p

∼ν | ν ≤ κ⟩ will be a condition stronger than q and in D.

�
Let p = ⟨p

∼ν | ν ≤ κ⟩, q = ⟨ q
∼ν | ν ≤ κ⟩ ∈ D be so that

1. p � κ := ⟨p
∼ν | ν < κ⟩ = q � κ := ⟨ q

∼ν | ν < κ⟩,

2. p
∼κ is not empty,

3. q
∼κ is not empty,

4. otp(p
∼κ) = otp( q

∼κ)

5. max(p
∼κ) = max( q

∼κ).

2Recall that we work over V2 and p∼ν ’s are P k
ν -names.
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Denote by η the least ordinal below κ such that for every ν, η ≤ ν < κ the ν-th coordinate

p
∼ν of p (and hence also of q) is 0Qνk

, i.e. supports of p � κ = ⟨p
∼ν | ν < κ⟩ and q � κ = ⟨ q

∼ν |
ν < κ⟩ are contained in η. Recall that the direct limit is used over κ, and so such η exists.

We have p � η = q � η. Let δ = max(p
∼κ) = max( q

∼κ). We can assume, using the κ-c.c. of

P k
κ , that p

∼κ, q∼κ are P k
η –names. Denote them by c∼ and d∼ respectively. We can assume by

increasing η if necessary that δ < η.

Define an automorphism πpq for such p and q.

Consider a Mahlo cardinal ν such that η ≤ ν ≤ κ and fκ � ν = fν . Let G(P k
ν ) be a generic

subset of P k
ν with p � η ∈ G(P k

ν ) � η. Define an automorphism πpqν of a dense subset of Qνk

which consists of rν with max(rν) ≥ max(c). If rν ≥Qνk
c then let πpqν(rν) = (rν \ c) ∪ d. If

rν ≥Qνk
d then let πpqν(rν) = (rν \ d)∪ c. Note that the assumption fκ � ν = fν implies that

both c and d are in Qνk, and so it makes sense to compare them with other elements of Qνk.

If rν is incompatible with c and with d, then set πpqν(rν) = rν .

Let π∼pqν be a P k
ν -name of such πpqν .

We are ready now to define πpq. Let r = ⟨ r∼ν | ν ≤ κ⟩ ∈ D. Suppose that for each

ν, η ≤ ν ≤ κ we have 0Pk
ν
∥ r∼ν ∈ Q

∼νk. If r ≥ p or r ≥ q, then set πpq(r) = s iff s = ⟨ s∼ν | ν ≤ κ⟩
is such that

1. s∼ν = r∼ν , for every ν < η,

2. if ν, η ≤ ν ≤ κ, then s∼ν is a canonical name of πpqν(rν).

If r is incompatible with p and with q, then let πpq(r) = r.

Let us check that such defined automorphism πpq does what is intended.

Let G be a generic subset of P k
κ+1 with p ∈ G. Denote G � Qνk by G(ν). Then πpq

transforms G into another P k
κ+1 generic set H. Let H(ν) = H � Qνk.

Lemma 6.2 c ∈ G(ν) iff d ∈ H(ν), for every ν, η ≤ ν ≤ κ.

Proof. Induction on ν. G(ν) remains generic over V2[H � ν], since V2[H � ν] = V2[G � ν]

and this is because πpq � ν is an automorphism of P k
ν . Now πpqν moves G(ν) to H(ν), by its

definition.

�
Denote by Gk the group of automorphisms of generated by such πpq’s.

Let G be the group of automorphisms of
∏

1≤k<ω P
k
κ+1 =

∏
1≤k<ω(P

k
κ ∗Qκk) generated by

⟨Gk | k < ω⟩, i.e. π ∈ G iff π = ⟨π0, ..., πk, ... | k < ω⟩ and there is a finite a ⊆ ω such that

for every k ∈ ω \ a the automorphism πk ∈ Gk is the identity.
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For every finite a ⊆ ω consider fix(a) := {π ∈ G | ∀k ∈ a, πk is the identity }. Let F be

the filter on G generated by {fix(a) | a ⊆ ω finite }.
Let N be a corresponding symmetric submodel.

The lemmas 3.1, 3.2, 3.3 are still valued here.

Such defined group of automorphisms will insure eventually that the set (filter)

{X∗ | X ∈
∪
n<ω

U(n)}

is in N , where X∗’s are as defined at the end of the previous section.

Note that if X ∈ U(n) there is no need in elements of the master sequence ⟨ r∼α | α < κ+⟩
to witness this, i.e. there are p ∈ G(Cohen≤κ), q ∈ G(P ) and s0 ∈ Cκ0, ..., snκ−1 ∈ Cκnκ−1

such that

(p, q, ⟨s0, ..., snκ−1⟩, ∅)∥ κnk
∈ jnk

(X∼),

then images of corresponding X∼
∗ under automorphisms of G will include final segments X∗

and so will remain inside U(n).

Unfortunately sets which correspond to the master conditions sequence are still problem-

atic. Namely, let α < κ+ and hα be a function which represents r∼α in the ultrapower. Then

the set

{ν | hα(ν)G(P �ν0+1) ∈ G(P>ν0)}

is in
∪

n<ω U(n), but images of it under automorphisms of G, which change G(Qνk)’s for

unboundedly many ν’s, may take it out.

In what follows we deal with this problem by redefining the master condition sequence

and making it more symmetric.

Assume for simplicity that n = 0 and redefine a master condition sequence for U(0). In

a general case only notation are more complicated.

Fix some k, 1 ≤ k < ω. Work in M ′[G(P k
κ )], where M ′ is the ultrapower of V2 by a normal

ultrafilter which extends U and which embedding extends jU . We have there the forcing

Qκk ∗ R∼, where R is the continuation of j(P k
κ ) above κ.

Fix a list ⟨D∼α | α < κ+⟩ of all dense open subsets of R∼ which are in M ′. Assume that already

the weakest condition of P k
κ ∗Qκk forces this.

Let us construct first r∼0 an element of D∼0 which will be the first element of the the

master condition ⟨ r∼α | α < κ+⟩ sequence chosen in a special way.

Pick first a Qκk-name q
∼

such that ∅∥ Qκk
q
∼

∈ D∼0.
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Consider the following maximal antichain in Qκk:

A = {{β} | β < κ, {β} ∈ Qκk}.

Let α = min(A), i.e. α = min{ν < κ | fκ(ν) ̸= k − 1}. Set

q
∼

α0 = {(c, a∼) ∈ q
∼

| c is compatible with (i.e. an end extension of or an initial segment of) {α}}.

Let β is the least in A \ {α}. Consider an automorphism παβ of Qκk which switches {α} and

{β}. Actually the corresponding π{α}{β} will be a member of Gk, but let us deal only with

its main relevant here part which acts over Qκk. Thus let παβ({α}) = {β}, παβ({β}) = {α}
and then for every c ∈ Qκk stronger than {α} (or {β}) with max(c) > α, β set παβ(c) =

{β} ∪ c \ (max(α, β) + 1) (or παβ(c) = {α} ∪ c \ (max(α, β) + 1)). On elements incompatible

with both {α}, {β} let it be the identity.

παβ defines naturally the automorphism of R∼ which is a set of Qκk-names. Denote it by παβ as

well in order not to overcomplicate the notation. Consider παβ( q∼
α0). In general {β} does not

force “παβ( q∼
α0) ∈ D∼0”. Extend παβ( q∼

α0) to a condition q
∼

β1 such that {β}∥ Qκk
q
∼

β1 ∈ D∼0.

Now move q
∼

β1 back to α using π−1
αβ . Denote the result by q

∼
α1. Note that {α}∥ Qκk

q
∼

α0 ≤ q
∼

α1,

since παγ is an automorphism on R∼ as well.

Let now γ be the least in A \ {α, β}. Consider an automorphism παγ of Qκk which switches

{α} and {γ}. Extend παγ( q∼
α1) to a condition q

∼
γ2 such that {γ}∥ Qκk

q
∼

γ2 ∈ D∼0. Move q
∼

γ2

back to α using π−1
αγ . Denote the result by q

∼
α2. Set q

∼
β2 to be παβ( q∼

α2).

Continue further in the same fashion. At limit stages we use the Cohen part to provide

a needed degree of completeness, as it was done in Lemma 5.2. At the final stage we will

have q
∼

δκ’s for every δ < κ with {δ} ∈ A. Set q
∼

δ = q
∼

δκ. The following will hold:

1. {δ}∥ Qκk
q
∼

δ ∈ D∼0

2. πδδ′( q∼
δ) = q

∼
δ′ .

Now we combine q
∼

δ’s together into a single Qκk–name of an element of R∼. Set q
∼
(1) =

{ q
∼

δ | {δ} ∈ A}. Then, by the construction, the following holds:

(∗)1 ∅∥ Qκk
q
∼
(1) ∈ D∼0 and for every δ, δ′ ∈ A, πδδ′( q∼

(1)) = q
∼
(1).

Proceed by induction and define q
∼
(τ) for every τ, 1 < τ ≤ κ.

If τ is a limit ordinal, then combine first the names ⟨ q
∼
(µ) | µ < τ⟩ together into one

name

q
∼

′(τ) = { t∼ | ∃µ < τ, t∼ ∈ q
∼
(µ)}.
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Then q
∼
(τ) is obtained from q

∼
′(τ) by adding maximums whenever it is necessary (thus, for

example it may happen that for some c ∈ Qκk and an increasing sequence ⟨ρi | i < ξ⟩ the

pairs (c, ρ̌i) appear in q
∼
(µ)’s, we add (setting the right value of the corresponding Cohen

function first) (c, ρ̌ξ), where ρξ =
∪

i<ξ ρi).

If τ < κ, then we continue and define q
∼
(τ + 1), in order to take care of automorphisms

which involve switching between closed subsets of κ of order type τ + 1.

Set

Aτ+1 = {c ∈ Qκk | the order type of c is τ + 1}.

It is a maximal antichain. Fix some well ordering on Aτ+1. Let c be the least element of

Aτ+1. Set q
∼

c0 to be

{(e, a∼) ∈ q
∼
(τ) | e is compatible with (i.e. an end extension of or an initial segment of) c}.

Let d be the least member of Aτ+1 \ {c} in the fixed well ordering. Consider πcd( q∼
c0). Let

q
∼

d1 be its extension such that {d}∥ Qκk
q
∼

d1 ∈ D∼0. Now move q
∼

d1 back to c using π−1
cd . Denote

the result by q
∼

c1.

Continue in the same fashion by induction and go through all elements of Aτ+1. At the final

stage we will have q
∼

eκ’s for every e ∈ Aτ+1. Set q
∼

e = q
∼

eκ. The following will hold:

1. e∥ Qκk
q
∼

e ∈ D∼0

2. for every e, e′ ∈ Aτ+1, πee′( q∼
e) = q

∼
e′ .

Combine q
∼

e’s together. Set q
∼
(τ + 1) = { q

∼
e | e ∈ Aτ+1}.

Then, by the construction, the following holds:

(∗)τ+1 ∅∥ Qκk
q
∼
(1) ∈ D∼0 and for every e, e′ ∈ Aτ+1, πee′( q∼

(τ + 1)) = q
∼
(τ + 1).

We obtain the desired condition r∼0 at the final stage κ. Just set r∼0 = q
∼
(κ).

Then we will have the following, since (∗)τ+1 holds, for τ < κ:

(∗)κ ∅∥ Qκk
r∼0 ∈ D∼0 and for every e, e′ ∈ Qκk of a same order type, πee′( r∼0) = r∼0.

The next lemma states a crucial property of the above construction.

Lemma 6.3 Let C ⊆ Qκk be generic, c ∈ C, c′ ∈ Qκk have the same order type. Let

C ′ = π′′
cc′C. Assume that G(R∼) is R-generic (interpretations of R∼ with C or with C ′ are the

same) with ( r∼0)C inside and let G′(R∼) = πcd”G(R∼). Then ( r∼0)C′ ∈ G′(R∼).
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Proof. It was arranged at the stage otp(c) that πcc′( q∼
c) = q

∼
c′ . Hence πcc′({ q∼

c, q
∼

c′}) =

{ q
∼

c′ , q
∼

c}. Clearly, { q
∼

c, q
∼

c′}C = ( q
∼

c)C and { q
∼

c, q
∼

c′}C′ = ( q
∼

c′)C′ .

Further in the process of construction of r∼0 this symmetry above c and c′ remains which

guarantees ( r∼0)C′ ∈ G′(R∼).

�
Now we define r∼1 starting with r∼0 and using D∼1 instead of D∼0. Continue in the same

fashion and define r∼α, for every α < κ+. This defines a desired master condition sequence.

Finally use this new master condition sequences to redefine U(n)’n. The next lemma

concludes the argument.

Lemma 6.4
∪

n<ω U∼(n) is a symmetric name, and hence
∪

n<ω U(n) ∈ N .

Proof. Let n < ω and X∼ be a name of an element of U(n). Replace X by X∗ defined at the

end of the previous section. Then automorphisms of G do not effect final segments of X∗.

This means that U(n) remains unchanged.

�.

7 A related question.

Note that V N
κ does not satisfy AC. So the following question looks natural:

Question. Is it possible to have a model of ZF with a measurable cardinal κ without a

normal measure but such that Vκ satisfies AC?
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