Remarks on non-closure of the preparation forcing of [2] and an off-piste version of it.

Moti Gitik

September 20, 2011

The preparation forcing \mathcal{P}' of [2] Section 1 is κ^{++} -strategically closed by Lemma 1.1.19. We would like to examine the reasons for lack of closure and directed closure of this forcing.

1 The first reason for a non-closure.

Let us first point out that the forcing \mathcal{P}' is ω_1 -closed.

Proposition 1.1 \mathcal{P}' is ω_1 -closed.

Proof. Let $\langle p_n \mid n < \omega \rangle$ be an increasing sequence of conditions in \mathcal{P}' . Assume that for each $n < \omega$ we have

$$p_n = \langle \langle A_n^{0\kappa^+}, A_n^{1\kappa^+}, C_n^{\kappa^+} \rangle, A_n^{1\kappa^{++}} \rangle.$$

Arrange by induction that $A_n^{0\kappa^+} \in C_{n+1}^{\kappa^+}(A_{n+1}^{0\kappa^+})$, for every $n < \omega$. Note that at each stage only finitely many switches are needed for this. Now we just take unions. Set

$$B^{0\kappa^{+}} = \bigcup_{n < \omega} A_{n}^{0\kappa^{+}},$$
$$B^{1\kappa^{+}} = \bigcup_{n < \omega} A_{n}^{1\kappa^{+}} \cup \{B^{0\kappa^{+}}\},$$
$$D^{\kappa^{+}} = \bigcup_{n < \omega} C_{n}^{\kappa^{+}} \cup \{\langle B^{0\kappa^{+}}, \{B^{0\kappa^{+}}\} \cup \{C_{n}^{\kappa^{+}} \mid n < \omega\}\rangle\}$$

and

$$B^{1\kappa^{++}} = \bigcup_{n < \omega} B_n^{1\kappa^{++}} \cup \{ \sup \bigcup_{n < \omega} B_n^{1\kappa^{++}} \}.$$

Pick $A^{0\kappa^+}_{\omega}$ to be a model of cardinality κ^+ such that

1.
$${}^{\kappa}A^{0\kappa^{+}}_{\omega} \subseteq A^{0\kappa^{+}}_{\omega},$$

2. $B^{0\kappa^{+}}, B^{1\kappa^{+}}, B^{1\kappa^{++}}, D^{\kappa^{+}} \in A^{0\kappa^{+}}_{\omega}$

Set

$$A_{\omega}^{1\kappa^{+}} = B^{1\kappa^{+}} \cup \{A_{\omega}^{0\kappa^{+}}\}, C_{\omega}^{\kappa^{+}} = D^{\kappa^{+}} \cup \{\langle A_{\omega}^{0\kappa^{+}}, D^{\kappa^{+}}(B^{0\kappa^{+}}) \cup \{A_{\omega}^{0\kappa^{+}}\}\rangle\}$$

and

$$A_{\omega}^{1\kappa^{++}} = B^{1\kappa^{++}} \cup \{ \sup(A_{\omega}^{0\kappa^{+}} \cap \kappa^{+3}) \}.$$

Then

$$p_{\omega} = \langle \langle A_{\omega}^{0\kappa^{+}}, A_{\omega}^{1\kappa^{+}}, C_{\omega}^{\kappa^{+}} \rangle, A_{\omega}^{1\kappa^{++}} \rangle$$

will a condition in \mathcal{P}' stronger than every p_n .

The of the top models is formally required in the definition of \mathcal{P}' in order to have the largest model of cardinality κ^+ to be closed under κ -sequences. It will be convenient, in the next proposition to deal with p_{ω} having the top model removed. Let us denote $B^{0\kappa^+}$ by $A^{0\kappa^+}(p_{\omega}), B^{1\kappa^+}$ by $A^{1\kappa^+}(p_{\omega}), D^{\kappa^+}$ by $C^{\kappa^+}(p_{\omega})$ and $B^{1\kappa^{++}}$ by $A^{1\kappa^{++}}(p_{\omega})$.

Proposition 1.2 \mathcal{P}' is not ω_2 -closed.

Proof. We construct an increasing sequence of conditions $\langle p_{\alpha} \mid \alpha < \omega_1 \rangle$ of length ω_1 without upper bound.

Let $\alpha < \omega_1$ and suppose that $\langle p_\beta \mid \beta < \alpha \rangle$ is defined. Define p_α . If α is not a limit of limit ordinals, then we use 1.1 to form p_α for such limit α . Let for a successor α , p_α be an extension of $p_{\alpha-1}$ which has at least ω_1 many splitting points B from its central piste above $\sup(A^{0\kappa^+}(p_{\alpha-1}))$ such that if B_0, B_1 are the immediate predecessors of B with $B_0 \in C^{\kappa^+}(p_\alpha)(A^{0\kappa^+}(p_\alpha))$, then $A^{0\kappa^+}(p_{\alpha-1})$ is in $C^{\kappa^+}(p_\alpha)(B_1)$.

Assume now that α is a limit of limit ordinals.

Let $\langle \alpha_n \mid n < \omega \rangle$ a fixed in advance cofinal sequence in α with $\alpha_0 = 0$ consisting of limit ordinals.

Define p'_{α} to be the upper bound of $\langle p_{\beta} | \beta < \alpha \rangle$ defined as in 1.1. Let us define p_{α} by changing $C^{\kappa^+}(p'_{\alpha})$ as follows.

We leave all $A^{0\kappa^+}(p_{\alpha_n})$ inside $C^{\kappa^+}(p_{\alpha})$.

Pick a splitting point $B \in C^{\kappa^+}(p_{\alpha_0})(A^{0\kappa^+}(p_{\alpha_0}))$. Let B_0, B_1 be its immediate predecessors with $B_0 \in C^{\kappa^+}(p_{\alpha_0})(A^{0\kappa^+}(p_{\alpha_0}))$. Define $C^{\kappa^+}(p_{\alpha})(A^{0\kappa^+}(p_{\alpha_0}))$ by switching from B_0 to B_1 . Let now $n, 0 < n < \omega$. Consider $C^{\kappa^+}(p_{\alpha_n})(A^{0\kappa^+}(p_{\alpha_n}))$ in the interval between $A^{0\kappa^+}(p_{\alpha_{n-1}})$ and $A^{0\kappa^+}(p_{\alpha_n})$. Pick a splitting point $B \in C^{\kappa^+}(p_{\alpha_n})(A^{0\kappa^+}(p_{\alpha_n}))$ in this interval with immediate predecessors B_0, B_1 such that

1. $B_0 \in C^{\kappa^+}(p_{\alpha_n})(A^{0\kappa^+}(p_{\alpha_n}))$

2.
$$B_1 \notin C^{\kappa^+}(p_\beta)(A^{0\kappa^+}(p_\beta))$$
, for every $\beta \leq \alpha_n$.

Note that this is possible since we required to have at least \aleph_1 many splitting points at each successor stage and α_n is countable.

Define $C^{\kappa^+}(p_{\alpha})(A^{0\kappa^+}(p_{\alpha_n}))$ by switching from B_0 to B_1 .

This completes the definition of the sequence $\langle p_{\alpha} \mid \alpha < \omega_1 \rangle$.

Let us argue that there is no $p \in \mathcal{P}'$ such that $p \ge p_{\alpha}$, for every $\alpha < \omega_1$. Suppose otherwise. Let p be such a condition. Set

 $C := \{ \alpha < \omega_1 \mid \alpha \text{ is a limit of limit ordinals} \}.$

For every $\alpha \in C$ let $f(\alpha)$ be the least $\beta < \alpha$ such that $C^{\kappa^+}(p)(A^{0\kappa^+}(p_\alpha))$ transforms into $C^{\kappa^+}(p_\alpha)(A^{0\kappa^+}(p_\alpha))$ by switches below $A^{0\kappa^+}(p_\beta)$. Recall that only finitely many switches are required to transform $C^{\kappa^+}(p)(A^{0\kappa^+}(p_\alpha))$ into $C^{\kappa^+}(p_\alpha)(A^{0\kappa^+}(p_\alpha))$, by the definition of the order on \mathcal{P}' , and hence there must be such β .

Find a stationary $S \subseteq C$ and $\beta^* < \omega_1$ such that $f(\alpha) = \beta^*$, for every $\beta \in S$. Pick $\alpha \in S$ which is a limit point of S. Let $\langle \gamma_n | n < \omega \rangle$ be cofinal in α sequence of elements of S. Then $C^{\kappa^+}(p_{\alpha})(A^{0\kappa^+}(p_{\gamma_n}))$ and $C^{\kappa^+}(p_{\gamma_n})(A^{0\kappa^+}(p_{\gamma_n}))$ agree on the final segment from $A^{0\kappa^+}(p_{\beta^*})$ up, for each $n < \omega$. But this contradicts the choice of $C^{\kappa^+}(p_{\alpha})(A^{0\kappa^+}(p_{\alpha}))$.

We would like to use now the above reason of non-closure in order to construct a square like principle which is inconsistent with a supercompact cardinal.

Theorem 1.3 The gap 3 preparation forcing \mathcal{P}' of [2], chapter 1 adds a weak form of $\Box_{\kappa^{++}}^{\leq \kappa^{+}}$.

Let $G(\mathcal{P}')$ be a generic subset of \mathcal{P}' . Introduce few notions.

Definition 1.4 A limit ordinal $\xi < \kappa^{+3}$ is called *good* iff there is $\langle \langle A^{0\kappa^+}, A^{1\kappa^+}, C^{\kappa^+} \rangle, A^{1\kappa^{++}} \rangle \in G(\mathcal{P}')$ such that

1. $\xi \in A^{0\kappa^+}$,

- 2. $\xi \in A^{1\kappa^{++}}$,
- 3. $\operatorname{cof}(\xi) \le \kappa^+$,
- 4. there is $A \in A^{1\kappa^+}$ such that
 - (a) $\xi \in A$,
 - (b) A is an immediate successor of a limit model in $C^{\kappa^+}(A)$. Denote this model by A^- .
 - (c) For every $E \in C^{\kappa^+}(A) \setminus \{A\}, \xi \notin A$,
 - (d) $A^- \cap \xi$ is unbounded in ξ ,
 - (e) $E \cap \xi$ is bounded in ξ , for every $E \in C^{\kappa^+}(A) \setminus \{A, A^-\}$.

Lemma 1.5 Let ξ be a good ordinal and $\langle \langle A^{0\kappa^+}, A^{1\kappa^+}, C^{\kappa^+} \rangle, A^{1\kappa^{++}} \rangle \in G(\mathcal{P}')$ be a condition witnessing this. Let $A \in A^{1\kappa^+}$ be such that

- 1. $\xi \in A$,
- 2. for every $B \in A^{1\kappa^+}$ with $B \subsetneqq A, \xi \notin B$.

Then A satisfies (4) of Definition 1.4. In addition, the sequence $\langle \xi \cap E \mid E \in C^{\kappa^+}(A) \setminus \{A, A^-\}$ does not depend on A.

Proof. Clearly, A is a successor model. Let A^* be a model witnessing (4) of Definition 1.4.

Claim 1 There is no $B \in A^{1\kappa^+} \cap A^*$ with $\xi \in B$.

Proof. Suppose otherwise. Then there is a piste from A^* to B. But A^* is the immediate successor of A^{*-} in $C^{\kappa^+}(A^*)$. Hence it should go via A^{*-} . Which is impossible since $\xi \in B \setminus A^{*-}$.

 \Box of the claim.

Use now the intersection property for A, A^* . Then, by the claim and the property (2) of A, for some $\eta \in A, \eta^* \in A^*$,

$$A \cap A^* = A \cap \eta = A^* \cap \eta^*.$$

Then $otp(A) = otp(A^*)$ and hence $C^{\kappa^+}(A)$ and $C^{\kappa^+}(A^*)$ have the same order type. In particular, A is an immediate successor of a limit model. Also structures

$$\langle A, C^{\kappa^+}(A), \eta, \in, \subseteq \rangle, \langle A^*, C^{\kappa^+}(A^*), \eta^*, \in, \subseteq \rangle$$

are isomorphic with the isomorphism which is identity over the common part. Then A satisfies (4) of Definition 1.4. In addition we obtain that the sequences $\langle E \cap \xi | E \in C^{\kappa^+}(A) \setminus \{A\}\rangle$ and $\langle E \cap \xi | E \in C^{\kappa^+}(A^*) \setminus \{A^*\}\rangle$ are the same. \Box

Lemma 1.6 A limit of $\leq \kappa^+$ good ordinals is a good ordinal.

Proof. Let $\langle \xi_i \mid i < \delta \leq \kappa^+ \rangle$ be an increasing sequence of good ordinals and $\xi = \bigcup_{i < \delta} \xi_i$. Consider a piste from $A^{0\kappa^+}$ to ξ . Let A be the terminal model of this piste. Then A cannot be a limit model and also it cannot be an immediate successor of a non-limit model by the previous lemma, as ξ is a limit of good ordinals. Denote by A^- the immediate predecessor of A. Consider $C^{\kappa^+}(A) \setminus \{A, A^-\}$. Then ξ is not a member of any of the elements of this set. Moreover, if $E \in C^{\kappa^+}(A) \setminus \{A, A^-\}$, then $E \cap \xi$ is bounded in ξ . Otherwise let $E \cap \xi$ is unbounded in ξ . Let E^+ be the immediate successor of E in $C^{\kappa^+}(A)$. We have $\xi \notin E^+$ but there are ordinals $\geq \xi$ in E^+ , for example $\sup(E)$. Let η be the least such ordinal. Then $cof(\eta) > \kappa^+$, by elementarity of E^+ . So $E \cap \eta \subseteq \xi$. But $E \cap \eta \in E^+$, hence also $\xi = \sup(E \cap \eta) \in E^+$. Contradiction. Now, $C^{\kappa^+}(A) \setminus \{A, A^-\}$ witness goodness of ξ .

Corollary 1.7 The set of good ordinals is a κ^+ -club.

Now we are ready to prove the theorem. Denote by

$$C := \{ \alpha < \kappa^{+3} \mid \alpha \text{ is a good ordinal } \}.$$

We will define a partial square sequence $\langle C_{\alpha} \mid \alpha \in C \rangle$ over C. This by standard argument allows to extend it to

$$\{\alpha < \kappa^{+3} \mid \operatorname{cof}(\alpha) < \kappa^{++}\}.$$

Proceed as follows. If α is a good ordinal then pick a model A witnessing this and set

$$C_{\alpha}(p) = \{ \sup(E \cap \alpha) \mid E \in C^{\kappa^+}(A^-) \setminus \{A^-\} \},\$$

where $p \in G(\mathcal{P}')$ and $A \in A^{1\kappa^+}(p)$.

Now if we have $p, q \in G(\mathcal{P}')$ with $A \in A^{1\kappa^+}(p), A^{1\kappa^+}(q)$ then $C^{\kappa^+}(p)(A^-)$ and $C^{\kappa^+}(q)(A^-)$ may differ only on an initial segment and both sets have the same order type, since we can move from $C^{\kappa^+}(p)$ to $C^{\kappa^+}(q)$ using finitely many switches. Let us pick for every good α a condition $p_{\alpha} \in G(\mathcal{P}')$ with a witnessing $A_{\alpha} \in A^{1\kappa^+}(p_{\alpha})$ and set

$$C_{\alpha} := C_{\alpha}(p_{\alpha}).$$

Lemma 1.8 Let α be a good ordinal and β is a limit point of C_{α} , then we will have a following type of coherency:

- 1. $C_{\alpha} \cap \beta$ and C_{β} have a common final segment,
- 2. $otp(C_{\alpha} \cap \beta) = otp(C_{\beta}).$

Proof. It follows since $C_{\beta}(p_{\alpha}) = C_{\alpha} \cap \beta$ (the coherency for good α 's with same p follows by Lemma 1.5) and $C_{\beta}(p_{\alpha}), C_{\beta}(p_{\beta}) = C_{\beta}$ have a common final segment and the same order type.

Using ideas from Cummings, Foreman, Magidor [1] it is possible to show that this type of a square is weaker than $\Box_{\kappa^{++}}$ (at least assuming the consistency of a supercompact cardinal).

If $\operatorname{cof}(\alpha) = \kappa^{++}$ and α is a limit point of $A^{1\kappa^{++}}$, for an element of $G(\mathcal{P}')$ then set

$$C_{\alpha} = \{ \sup(E \cap \alpha) \mid E \in C^{\kappa^+}(A), A \in A^{1\kappa^+}, \alpha \in A \text{ for some } \langle \langle A^{0\kappa^+}, A^{1\kappa^+}, C^{\kappa^+} \rangle, A^{1\kappa^{++}} \rangle \in G(\mathcal{P}') \}$$

Carmi Merimovich [4] showed that such defined C_{α} 's provide a partial $\Box_{\kappa^{++}}^{Cof\kappa^{++}}$. This type of a square lives well with a supercompact cardinals.

2 New definition.

Let us define a new partial order (actually a pre-order) on \mathcal{P}' which will allows to eliminate the first reason of non-closure.

Definition 2.1 Let $p = \langle \langle A^{0\kappa^+}(p), A^{1\kappa^+}(p), C^{\kappa^+}(p) \rangle, A^{1\kappa^{++}}(p) \rangle$, $q = \langle \langle A^{0\kappa^+}(q), A^{1\kappa^+}(q), C^{\kappa^+}(q) \rangle, A^{1\kappa^{++}}(q) \rangle$ be conditions in \mathcal{P}' . Define $p \geq_{new} q$ iff there is D such that

1. $\langle \langle A^{0\kappa^+}(p), A^{1\kappa^+}(p), D \rangle, A^{1\kappa^{++}}(p) \rangle \in \mathcal{P}',$

2.
$$A^{0\kappa^+}(q) \in D(A^{0\kappa^+}(p)),$$

3. $D(A^{0\kappa^+}(q)) = C^{\kappa^+}(q)(A^{0\kappa^+}(q)).$

Remark 2.2 Note that any two conditions $\langle \langle A^{0\kappa^+}, A^{1\kappa^+}, C^{\kappa^+} \rangle, A^{1\kappa^{++}} \rangle$ and

 $\langle \langle A^{0\kappa^+}, A^{1\kappa^+}, D^{\kappa^+} \rangle, A^{1\kappa^{++}} \rangle$ are \leq_{new} -equivalent. They were equivalent according to the order (pre-order) \leq only if it was possible to change C^{κ^+} to D^{κ^+} by finitely many switches. With \leq_{new} infinitely many of them may be applied.

Proposition 2.3 Let $\eta < \kappa^{++}$ and $\langle p_{\alpha} \mid \alpha \leq \eta < \kappa^{++} \rangle$ be a \leq_{new} -increasing sequence of elements of \mathcal{P}' . Suppose that for each limit $\alpha < \eta$ the set $\bigcup_{\beta < \alpha} A^{0\kappa^+}(p_{\beta})$ is in $A^{1\kappa^+}(p_{\alpha})$. Then there is $p \in \mathcal{P}'$, $p \geq_{new} p_{\alpha}$, for every $\alpha < \eta$.

Proof. Use $\langle A^{0\kappa^+}(p_\alpha) | \alpha < \eta \rangle$ together with $\langle \bigcup_{\beta < \alpha} A^{0\kappa^+}(p_\beta) | \alpha < \eta, \alpha$ is a limit ordinal \rangle in order to form $C^{\kappa^+}(p)$, where p is the obvious upper bound of p_α 's without the pistes. \Box

3 Additional reason for a non-closure.

There is one more reason for non-closure. It has to do with chains of models inside a condition with their union not inside.

Let us describe this type of situation.

Let $\langle p_n \mid n < \omega \rangle$ be an increasing sequence of conditions of \mathcal{P}' . There are potentially two ways to extend it. The first (and one which is always available, and which was used above in 1.1) is to take the union of $A^{0\kappa^+}(p_n)$'s and then to extend this to a condition. The second (which is not always possible) is like this: there is $p \in \mathcal{P}'$ such that

- 1. $p \ge p_n$, for all $n < \omega$,
- 2. $\bigcup_{n < \omega} A^{0\kappa^+}(p_n) \not\in A^{1\kappa^+}(p).$

Proposition 3.1 Let $\langle p_{\alpha} \mid \alpha < \omega_1 \rangle$ be an increasing sequence of elements of \mathcal{P}' such that for every limit $\alpha < \omega_1$, $\bigcup_{\beta < \alpha} A^{0\kappa^+}(p_{\beta}) \notin A^{1\kappa^+}(p_{\alpha})$. Then there is no $p \in \mathcal{P}'$ with $p \ge p_{\alpha}$, for every $\alpha < \omega_1$ and $\bigcup_{\alpha < \omega_1} A^{0\kappa^+}(p_{\alpha}) \in A^{1\kappa^+}(p)$.

Proof. Suppose otherwise. Let p be an upper bound and $\bigcup_{\alpha < \omega_1} A^{0\kappa^+}(p_\alpha) \in A^{1\kappa^+}(p)$. Denote $\bigcup_{\alpha < \omega_1} A^{0\kappa^+}(p_\alpha)$ by A. Let us argue that for every $X \in A \cap A^{1\kappa^+}(p)$ there is $\alpha < \omega_1$ with $X \in A^{0\kappa^+}(p_\alpha)$. Consider $\eta = \sup(X \cap \kappa^{+3})$. Then $\eta \in A$, and hence for some α , $\eta \in A^{0\kappa^+}(p_\alpha)$. But $\operatorname{cof}(\eta) \leq \kappa^+$. So $A^{0\kappa^+}(p_\alpha)$ is unbounded in η . By intersection property, then $X \subseteq A^{0\kappa^+}(p_\alpha)$. But $\eta \in A^{0\kappa^+}(p_\alpha) \setminus X$, hence $X \in A^{0\kappa^+}(p_\alpha)$.

It follows that $\{\bigcup_{\beta < \gamma} A^{0\kappa^+}(p_\beta) \mid \gamma < \omega_1\}$ is club in $A \cap A^{1\kappa^+}(p)$. So it must intersect $C^{\kappa^+}(p)$. Contradiction.

4 Absence of directed closure.

If we have countably many conditions such that any finite family of them is compatible, then the ω_1 -closure (1.1) implies the existence of an upper bound.

But suppose now that we have ω_1 many conditions $\langle p_{n\alpha} | n < \omega, \alpha < \omega_1 \rangle$ such that for every α ,

1.
$$A^{0\kappa^+}(p_{\alpha n+1}) \supset A^{0\kappa^+}(p_{\alpha n}),$$

2.
$$A^{0\kappa^+}(p_{\alpha+1n+1}) \supset A^{0\kappa^+}(p_{\alpha n}),$$

3. $\bigcup_{n < \omega} A^{0\kappa^+}(p_{\alpha+1n}) \not\supseteq \bigcup_{n < \omega} A^{0\kappa^+}(p_{\alpha n}).$

It is impossible to find an upper bound for $\langle p_{n\alpha} | n < \omega, \alpha < \omega_1 \rangle$ without adding $\bigcup_{n < \omega} A^{0\kappa^+}(p_{\alpha n})$ to the central piste for unboundedly many α 's, which is not allowed.

5 Off-piste version of the preparation forcing.

In [?] Merimovich used a variation of the Velleman simplified morass forcing [5] as the preparation forcing for gap 3. The advantage of using it is a directed closure of this forcing. Here we would like to present off-piste version of the preparation forcing for higher gaps. Absence of pistes will provide a directed closure. Unfortunately the resulting structure lacks of the intersection property for gaps 4 and above, and so it is unclear how to implement it into the final forcing.

Let us deal with gap 4 case the treatment of higher gaps is similar.

We will have three types of models - of size κ^+ , of size κ^{++} and of size κ^{+3} (ordinals). Denote as usual the corresponding sets accumulating this models inside a condition by $A^{1\kappa^+}, A^{1\kappa^{++}}, A^{1\kappa^{+3}}$. $A^{1\kappa^{+3}}$ is a closed set of ordinals of size at most κ^{+3} . $A^{1\kappa^{++}}$ is defined as in [?]. Let us define $A^{1\kappa^+}$.

Definition 5.1 $A^{1\kappa^+}$ is a set of at most κ^+ models of size κ^+ such that the following holds:

1. there is the largest model $A^{0\kappa^+}$,

- 2. for every $A \in A^{1\kappa^+}$ the following holds:
 - (a) either there is a largest $\alpha \in A \cap A^{1\kappa^{+3}}$ or $\sup(A \cap \kappa^{+4})$ is a limit point of $A^{1\kappa^{+3}}$,
 - (b) either there is a largest (under the inclusion) model $(A)_{\kappa^{++}} \in A \cap A^{1\kappa^{++}}$ or $A \cap A^{1\kappa^{++}}$ is directed,
 - (c) either $A \cap A^{1\kappa^+}$ is directed or A has immediate predecessors and if A' is an immediate predecessor of A then either
 - i. there is an immediate predecessor A_0 of A and A, A_0, A' form a Δ -system triple; or
 - ii. there is $A_0 \in A \cap A^{1\kappa^+}$ (which need not be an immediate predecessor of A) and $A' = \pi_{F_0F_1}[A_0]$, where $F_0, F_1 \in A \cap A^{1\kappa^{++}}$ are of a same order type.

Let us argue that the intersection property even in its weakest form can break down in the present setting.

Example.

Suppose that $A \in A^{1\kappa^+}$, the largest model $(A)_{\kappa^{++}} \in A \cap A^{1\kappa^{++}}$ exists and it is a limit point of $A^{1\kappa^{++}}$ (limit means here that $(A)_{\kappa^{++}} \cap A^{1\kappa^{++}}$ is directed or equivalently of a limit rank). Assume that there is no increasing sequence of elements of $(A)_{\kappa^{++}} \cap A^{1\kappa^{++}}$ which union is $(A)_{\kappa^{++}}$.

Note that existence of a limit model $X \in (A)_{\kappa^{++}}$ which is not a limit of an increasing sequence of elements of $(A)_{\kappa^{++}}$ is forced upon us, as in 4, if we like to have directed closure and not only a closure.

Assume that the rank of $(A)_{\kappa^{++}}$ is some $\mu < \kappa^{+3}$ of cofinality κ^{++} . Suppose that the only model in $A \cap A^{1\kappa^{++}}$ that includes B is $(A)_{\kappa^{++}}$.

Consider

$$A \cap (A)_{\kappa^{++}} = \bigcup (A \cap A^{1\kappa^{++}}) \setminus \{(A)_{\kappa^{++}}\}$$

Set $Z = \bigcup (A \cap A^{1\kappa^{++}})$. If $Z \in A^{1\kappa^{++}}$, then use the intersection property between B and Z. Suppose $Z \notin A^{1\kappa^{++}}$. Pick $Y \in (A)_{\kappa^{++}} \in A \cap A^{1\kappa^{++}}$, $Y \supset Z$ of the smallest rank (it must be $\sup(A \cap \mu)$).

If $B \in (A)_{\kappa^{++}} \in A \cap A^{1\kappa^{++}}$ is a model of rank δ , for some δ , $\mu > \delta \ge \sup(A \cap \mu)$. Consider $Y \cap B$. Then there is $\xi \in Y \cap A^{1\kappa^{+3}}$ such that

$$Y \cap B = Y \cap \xi.$$

Hence

$$A \cap B = A \cap Y \cap B = A \cap (A)_{\kappa^{++}} \cap \xi.$$

But if the rank of B is small, then B can be an element of $Y \setminus Z$ which does not include Z, and even the rank of B may be in A. If in addition no element of Z includes $B \cap Z$, then the intersection property between A and B will break down.

Let us construct an example having such B. Fix a continuous chain of elementary submodels $\langle M_i \mid i \leq \kappa^{++} + 1 \rangle$ each of size κ^{+3} , $M_i \cap \kappa^{+4} = \mu_i$ and $\kappa^{++}M_{i+1} \subseteq M_{i+1}$. Let X be an elementary submodel of $M_{\kappa^{++}+1}$ of size κ^{++} such that $\langle \mu_i \mid i \leq \kappa^{++} \rangle \in X$. For each $i < \kappa^{++}$ let $X_i \in M_{i+1}$ be a reflection of X to M_{i+1} over $X \cap M_i$.

Add models of size κ^{++} which include X_0, X and then reflect it down to every $i, 0 < i < \kappa^{++}$. Continue in a similar fashion and extend the family into directed one. Then pick a model which includes it and again reflect down. Proceed $\kappa^{++} + 1$ many stages. Let E be the final model of the rank κ^{++} . Through all the models from the constructed family of models of size κ^{++} which have ordinals $\geq \mu_{\kappa^{++}}$ but keep E (in particular, X is out).

The resulting family will be our $A^{1\kappa^{++}}$. Let $A^{1\kappa^{+3}}$ be the set $\{M_i \mid i \leq \kappa^{++}\}$. Let $A = A^{0\kappa^+}$ be an elementary submodel of $M_{\kappa^{++}+1}$ of size κ^+ with $A^{1\kappa^{++}}$ and $A^{1\kappa^{+3}}$ inside. Let $A \cap \kappa^{++} = \eta$. Then $\sup(A \cap \mu_{\kappa^{++}}) = \mu_{\eta}$. Set $B = X_{\eta}$. The pair A, B will fail to have the intersection property as it was explained above.

References

- [1] J. Cummings, M. Foreman and M. Magidor, JML
- [2] M. Gitik, Short extenders forcings I, Chapter 1- Gap 3.
- [3] C. Merimovich,
- [4] C. Merimovich, The short extenders gap three forcing using a morass, Arch. Math. Logic, 2011
- [5] D. Velleman, Simplified morasses, JSL 49(1),257-271(1984)