Remarks on non-closure of the preparation forcing of [2] and an off-piste version of it.

Moti Gitik

September 20, 2011

The preparation forcing \mathcal{P}^{\prime} of [2] Section 1 is κ^{++}-strategically closed by Lemma 1.1.19. We would like to examine the reasons for lack of closure and directed closure of this forcing.

1 The first reason for a non-closure.

Let us first point out that the forcing \mathcal{P}^{\prime} is ω_{1}-closed.
Proposition 1.1 \mathcal{P}^{\prime} is ω_{1}-closed.
Proof. Let $\left\langle p_{n} \mid n<\omega\right\rangle$ be an increasing sequence of conditions in \mathcal{P}^{\prime}. Assume that for each $n<\omega$ we have

$$
p_{n}=\left\langle\left\langle A_{n}^{0 \kappa^{+}}, A_{n}^{1 \kappa^{+}}, C_{n}^{\kappa^{+}}\right\rangle, A_{n}^{1 \kappa^{++}}\right\rangle
$$

Arrange by induction that $A_{n}^{0 \kappa^{+}} \in C_{n+1}^{\kappa^{+}}\left(A_{n+1}^{0 \kappa^{+}}\right)$, for every $n<\omega$. Note that at each stage only finitely many switches are needed for this. Now we just take unions. Set

$$
\begin{gathered}
B^{0 \kappa^{+}}=\bigcup_{n<\omega} A_{n}^{0 \kappa^{+}}, \\
B^{1 \kappa^{+}}=\bigcup_{n<\omega} A_{n}^{1 \kappa^{+}} \cup\left\{B^{0 \kappa^{+}}\right\} \\
D^{\kappa^{+}}=\bigcup_{n<\omega} C_{n}^{\kappa^{+}} \cup\left\{\left\langle B^{0 \kappa^{+}},\left\{B^{0 \kappa^{+}}\right\} \cup\left\{C_{n}^{\kappa^{+}} \mid n<\omega\right\}\right\rangle\right\}
\end{gathered}
$$

and

$$
B^{1 \kappa^{++}}=\bigcup_{n<\omega} B_{n}^{1 \kappa^{++}} \cup\left\{\sup \bigcup_{n<\omega} B_{n}^{1 \kappa^{++}}\right\}
$$

Pick $A_{\omega}^{0 \kappa^{+}}$to be a model of cardinality κ^{+}such that

1. ${ }^{\kappa} A_{\omega}^{0 \kappa^{+}} \subseteq A_{\omega}^{0 \kappa^{+}}$,
2. $B^{0 \kappa^{+}}, B^{1 \kappa^{+}}, B^{1 \kappa^{++}}, D^{\kappa^{+}} \in A_{\omega}^{0 \kappa^{+}}$.

Set

$$
A_{\omega}^{1 \kappa^{+}}=B^{1 \kappa^{+}} \cup\left\{A_{\omega}^{0 \kappa^{+}}\right\}, C_{\omega}^{\kappa^{+}}=D^{\kappa^{+}} \cup\left\{\left\langle A_{\omega}^{0 \kappa^{+}}, D^{\kappa^{+}}\left(B^{0 \kappa^{+}}\right) \cup\left\{A_{\omega}^{0 \kappa^{+}}\right\}\right\rangle\right\}
$$

and

$$
A_{\omega}^{1 \kappa^{++}}=B^{1 \kappa^{++}} \cup\left\{\sup \left(A_{\omega}^{0 \kappa^{+}} \cap \kappa^{+3}\right)\right\} .
$$

Then

$$
p_{\omega}=\left\langle\left\langle A_{\omega}^{0 \kappa^{+}}, A_{\omega}^{1 \kappa^{+}}, C_{\omega}^{\kappa^{+}}\right\rangle, A_{\omega}^{1 \kappa^{++}}\right\rangle
$$

will a condition in \mathcal{P}^{\prime} stronger than every p_{n}.

The of the top models is formally required in the definition of \mathcal{P}^{\prime} in order to have the largest model of cardinality κ^{+}to be closed under κ-sequences. It will be convenient, in the next proposition to deal with p_{ω} having the top model removed. Let us denote $B^{0 \kappa^{+}}$by $A^{0 \kappa^{+}}\left(p_{\omega}\right), B^{1 \kappa^{+}}$by $A^{1 \kappa^{+}}\left(p_{\omega}\right), D^{\kappa^{+}}$by $C^{\kappa^{+}}\left(p_{\omega}\right)$ and $B^{1 \kappa^{++}}$by $A^{1 \kappa^{++}}\left(p_{\omega}\right)$.

Proposition $1.2 \mathcal{P}^{\prime}$ is not ω_{2}-closed.

Proof. We construct an increasing sequence of conditions $\left\langle p_{\alpha} \mid \alpha<\omega_{1}\right\rangle$ of length ω_{1} without upper bound.

Let $\alpha<\omega_{1}$ and suppose that $\left\langle p_{\beta} \mid \beta<\alpha\right\rangle$ is defined. Define p_{α}. If α is not a limit of limit ordinals, then we use 1.1 to form p_{α} for such limit α. Let for a successor α, p_{α} be an extension of $p_{\alpha-1}$ which has at least ω_{1} many splitting points B from its central piste above $\sup \left(A^{0 \kappa^{+}}\left(p_{\alpha-1}\right)\right)$ such that if B_{0}, B_{1} are the immediate predecessors of B with $B_{0} \in C^{\kappa^{+}}\left(p_{\alpha}\right)\left(A^{0 \kappa^{+}}\left(p_{\alpha}\right)\right)$, then $A^{0 \kappa^{+}}\left(p_{\alpha-1}\right)$ is in $C^{\kappa^{+}}\left(p_{\alpha}\right)\left(B_{1}\right)$.

Assume now that α is a limit of limit ordinals.
Let $\left\langle\alpha_{n} \mid n<\omega\right\rangle$ a fixed in advance cofinal sequence in α with $\alpha_{0}=0$ consisting of limit ordinals.

Define p_{α}^{\prime} to be the upper bound of $\left\langle p_{\beta} \mid \beta<\alpha\right\rangle$ defined as in 1.1. Let us define p_{α} by changing $C^{\kappa^{+}}\left(p_{\alpha}^{\prime}\right)$ as follows.

We leave all $A^{0 \kappa^{+}}\left(p_{\alpha_{n}}\right)$ inside $C^{\kappa^{+}}\left(p_{\alpha}\right)$.
Pick a splitting point $B \in C^{\kappa^{+}}\left(p_{\alpha_{0}}\right)\left(A^{\kappa^{+}}\left(p_{\alpha_{0}}\right)\right)$. Let B_{0}, B_{1} be its immediate predecessors with $B_{0} \in C^{\kappa^{+}}\left(p_{\alpha_{0}}\right)\left(A^{0 \kappa^{+}}\left(p_{\alpha_{0}}\right)\right)$. Define $C^{\kappa^{+}}\left(p_{\alpha}\right)\left(A^{0 \kappa^{+}}\left(p_{\alpha_{0}}\right)\right)$ by switching from B_{0} to B_{1}.

Let now $n, 0<n<\omega$. Consider $C^{\kappa^{+}}\left(p_{\alpha_{n}}\right)\left(A^{0 \kappa^{+}}\left(p_{\alpha_{n}}\right)\right)$ in the interval between $A^{0 \kappa^{+}}\left(p_{\alpha_{n-1}}\right)$ and $A^{0 \kappa^{+}}\left(p_{\alpha_{n}}\right)$. Pick a splitting point $B \in C^{\kappa^{+}}\left(p_{\alpha_{n}}\right)\left(A^{0 \kappa^{+}}\left(p_{\alpha_{n}}\right)\right)$ in this interval with immediate predecessors B_{0}, B_{1} such that

1. $B_{0} \in C^{\kappa^{+}}\left(p_{\alpha_{n}}\right)\left(A^{0 \kappa^{+}}\left(p_{\alpha_{n}}\right)\right)$
2. $B_{1} \notin C^{\kappa^{+}}\left(p_{\beta}\right)\left(A^{0 \kappa^{+}}\left(p_{\beta}\right)\right)$, for every $\beta \leq \alpha_{n}$.

Note that this is possible since we required to have at least \aleph_{1} many splitting points at each successor stage and α_{n} is countable.
Define $C^{\kappa^{+}}\left(p_{\alpha}\right)\left(A^{0 \kappa^{+}}\left(p_{\alpha_{n}}\right)\right)$ by switching from B_{0} to B_{1}.
This completes the definition of the sequence $\left\langle p_{\alpha} \mid \alpha<\omega_{1}\right\rangle$.
Let us argue that there is no $p \in \mathcal{P}^{\prime}$ such that $p \geq p_{\alpha}$, for every $\alpha<\omega_{1}$.
Suppose otherwise. Let p be such a condition. Set

$$
C:=\left\{\alpha<\omega_{1} \mid \alpha \text { is a limit of limit ordinals }\right\} .
$$

For every $\alpha \in C$ let $f(\alpha)$ be the least $\beta<\alpha$ such that $C^{\kappa^{+}}(p)\left(A^{0 \kappa^{+}}\left(p_{\alpha}\right)\right)$ transforms into $C^{\kappa^{+}}\left(p_{\alpha}\right)\left(A^{0 \kappa^{+}}\left(p_{\alpha}\right)\right)$ by switches below $A^{0 \kappa^{+}}\left(p_{\beta}\right)$. Recall that only finitely many switches are required to transform $C^{\kappa^{+}}(p)\left(A^{0 \kappa^{+}}\left(p_{\alpha}\right)\right)$ into $C^{\kappa^{+}}\left(p_{\alpha}\right)\left(A^{0 \kappa^{+}}\left(p_{\alpha}\right)\right)$, by the definition of the order on \mathcal{P}^{\prime}, and hence there must be such β.
Find a stationary $S \subseteq C$ and $\beta^{*}<\omega_{1}$ such that $f(\alpha)=\beta^{*}$, for every $\beta \in S$. Pick $\alpha \in S$ which is a limit point of S. Let $\left\langle\gamma_{n} \mid n<\omega\right\rangle$ be cofinal in α sequence of elements of S. Then $C^{\kappa^{+}}\left(p_{\alpha}\right)\left(A^{0 \kappa^{+}}\left(p_{\gamma_{n}}\right)\right)$ and $C^{\kappa^{+}}\left(p_{\gamma_{n}}\right)\left(A^{0 \kappa^{+}}\left(p_{\gamma_{n}}\right)\right)$ agree on the final segment from $A^{0 \kappa^{+}}\left(p_{\beta^{*}}\right)$ up, for each $n<\omega$. But this contradicts the choice of $C^{\kappa^{+}}\left(p_{\alpha}\right)\left(A^{0 \kappa^{+}}\left(p_{\alpha}\right)\right)$.

We would like to use now the above reason of non-closure in order to construct a square like principle which is inconsistent with a supercompact cardinal.

Theorem 1.3 The gap 3 preparation forcing \mathcal{P}^{\prime} of [2],chapter 1 adds a weak form of $\square_{\kappa^{+}}^{\leq \kappa^{+}}$.
Let $G\left(\mathcal{P}^{\prime}\right)$ be a generic subset of \mathcal{P}^{\prime}.
Introduce few notions.
Definition 1.4 A limit ordinal $\xi<\kappa^{+3}$ is called good iff there is $\left\langle\left\langle A^{0 \kappa^{+}}, A^{1 \kappa^{+}}, C^{\kappa^{+}}\right\rangle, A^{1 \kappa^{++}}\right\rangle \in$ $G\left(\mathcal{P}^{\prime}\right)$ such that

1. $\xi \in A^{0 \kappa^{+}}$,
2. $\xi \in A^{1 \kappa^{++}}$,
3. $\operatorname{cof}(\xi) \leq \kappa^{+}$,
4. there is $A \in A^{1 \kappa^{+}}$such that
(a) $\xi \in A$,
(b) A is an immediate successor of a limit model in $C^{\kappa^{+}}(A)$.

Denote this model by A^{-}.
(c) For every $E \in C^{\kappa^{+}}(A) \backslash\{A\}, \xi \notin A$,
(d) $A^{-} \cap \xi$ is unbounded in ξ,
(e) $E \cap \xi$ is bounded in ξ, for every $E \in C^{\kappa^{+}}(A) \backslash\left\{A, A^{-}\right\}$.

Lemma 1.5 Let ξ be a good ordinal and $\left\langle\left\langle A^{0 \kappa^{+}}, A^{1 \kappa^{+}}, C^{\kappa+}\right\rangle, A^{1 \kappa^{++}}\right\rangle \in G\left(\mathcal{P}^{\prime}\right)$ be a condition witnessing this. Let $A \in A^{1 \kappa^{+}}$be such that

1. $\xi \in A$,
2. for every $B \in A^{1 \kappa^{+}}$with $B \varsubsetneqq A, \xi \notin B$.

Then A satisfies (4) of Definition 1.4. In addition, the sequence $\langle\xi \cap E| E \in C^{\kappa^{+}}(A) \backslash\left\{A, A^{-}\right\}$ does not depend on A.

Proof. Clearly, A is a successor model. Let A^{*} be a model witnessing (4) of Definition 1.4.
Claim 1 There is no $B \in A^{1 \kappa^{+}} \cap A^{*}$ with $\xi \in B$.
Proof. Suppose otherwise. Then there is a piste from A^{*} to B. But A^{*} is the immediate successor of A^{*-} in $C^{\kappa^{+}}\left(A^{*}\right)$. Hence it should go via A^{*-}. Which is impossible since $\xi \in$ $B \backslash A^{*-}$.of the claim.
Use now the intersection property for A, A^{*}. Then, by the claim and the property (2) of A, for some $\eta \in A, \eta^{*} \in A^{*}$,

$$
A \cap A^{*}=A \cap \eta=A^{*} \cap \eta^{*}
$$

Then $\operatorname{otp}(A)=\operatorname{otp}\left(A^{*}\right)$ and hence $C^{\kappa^{+}}(A)$ and $C^{\kappa^{+}}\left(A^{*}\right)$ have the same order type. In particular, A is an immediate successor of a limit model. Also structures

$$
\left\langle A, C^{\kappa^{+}}(A), \eta, \in, \subseteq\right\rangle,\left\langle A^{*}, C^{\kappa^{+}}\left(A^{*}\right), \eta^{*}, \in, \subseteq\right\rangle
$$

are isomorphic with the isomorphism which is identity over the common part. Then A satisfies (4) of Definition 1.4. In addition we obtain that the sequences $\langle E \cap \xi| E \in$ $\left.C^{\kappa^{+}}(A) \backslash\{A\}\right\rangle$ and $\left\langle E \cap \xi \mid E \in C^{\kappa^{+}}\left(A^{*}\right) \backslash\left\{A^{*}\right\}\right\rangle$ are the same.

Lemma 1.6 A limit of $\leq \kappa^{+}$good ordinals is a good ordinal.

Proof. Let $\left\langle\xi_{i} \mid i<\delta \leq \kappa^{+}\right\rangle$be an increasing sequence of good ordinals and $\xi=\bigcup_{i<\delta} \xi_{i}$. Consider a piste from $A^{0 \kappa^{+}}$to ξ. Let A be the terminal model of this piste. Then A cannot be a limit model and also it cannot be an immediate successor of a non-limit model by the previous lemma, as ξ is a limit of good ordinals. Denote by A^{-}the immediate predecessor of A. Consider $C^{\kappa^{+}}(A) \backslash\left\{A, A^{-}\right\}$. Then ξ is not a member of any of the elements of this set. Moreover, if $E \in C^{\kappa^{+}}(A) \backslash\left\{A, A^{-}\right\}$, then $E \cap \xi$ is bounded in ξ. Otherwise let $E \cap \xi$ is unbounded in ξ. Let E^{+}be the immediate successor of E in $C^{\kappa+}(A)$. We have $\xi \notin E^{+}$ but there are ordinals $\geq \xi$ in E^{+}, for example $\sup (E)$. Let η be the least such ordinal. Then $\operatorname{cof}(\eta)>\kappa^{+}$, by elementarity of E^{+}. So $E \cap \eta \subseteq \xi$. But $E \cap \eta \in E^{+}$, hence also $\xi=\sup (E \cap \eta) \in E^{+}$. Contradiction.
Now, $C^{\kappa^{+}}(A) \backslash\left\{A, A^{-}\right\}$witness goodness of ξ.

Corollary 1.7 The set of good ordinals is a κ^{+}-club.
Now we are ready to prove the theorem. Denote by

$$
C:=\left\{\alpha<\kappa^{+3} \mid \alpha \text { is a good ordinal }\right\} .
$$

We will define a partial square sequence $\left\langle C_{\alpha} \mid \alpha \in C\right\rangle$ over C. This by standard argument allows to extend it to

$$
\left\{\alpha<\kappa^{+3} \mid \operatorname{cof}(\alpha)<\kappa^{++}\right\} .
$$

Proceed as follows. If α is a good ordinal then pick a model A witnessing this and set

$$
C_{\alpha}(p)=\left\{\sup (E \cap \alpha) \mid E \in C^{\kappa^{+}}\left(A^{-}\right) \backslash\left\{A^{-}\right\}\right\}
$$

where $p \in G\left(\mathcal{P}^{\prime}\right)$ and $A \in A^{1 \kappa^{+}}(p)$.
Now if we have $p, q \in G\left(\mathcal{P}^{\prime}\right)$ with $A \in A^{1 \kappa^{+}}(p), A^{1 \kappa^{+}}(q)$ then $C^{\kappa^{+}}(p)\left(A^{-}\right)$and $C^{\kappa^{+}}(q)\left(A^{-}\right)$ may differ only on an initial segment and both sets have the same order type, since we can move from $C^{\kappa^{+}}(p)$ to $C^{\kappa^{+}}(q)$ using finitely many switches.

Let us pick for every good α a condition $p_{\alpha} \in G\left(\mathcal{P}^{\prime}\right)$ with a witnessing $A_{\alpha} \in A^{1 \kappa^{+}}\left(p_{\alpha}\right)$ and set

$$
C_{\alpha}:=C_{\alpha}\left(p_{\alpha}\right) .
$$

Lemma 1.8 Let α be a good ordinal and β is a limit point of C_{α}, then we will have a following type of coherency:

1. $C_{\alpha} \cap \beta$ and C_{β} have a common final segment,
2. $\operatorname{otp}\left(C_{\alpha} \cap \beta\right)=\operatorname{otp}\left(C_{\beta}\right)$.

Proof. It follows since $C_{\beta}\left(p_{\alpha}\right)=C_{\alpha} \cap \beta$ (the coherency for good α 's with same p follows by Lemma 1.5) and $C_{\beta}\left(p_{\alpha}\right), C_{\beta}\left(p_{\beta}\right)=C_{\beta}$ have a common final segment and the same order type.

Using ideas from Cummings, Foreman, Magidor [1] it is possible to show that this type of a square is weaker than $\square_{\kappa^{++}}$(at least assuming the consistency of a supercompact cardinal).

If $\operatorname{cof}(\alpha)=\kappa^{++}$and α is a limit point of $A^{1 \kappa^{++}}$, for an element of $G\left(\mathcal{P}^{\prime}\right)$ then set $C_{\alpha}=\left\{\sup (E \cap \alpha) \mid E \in C^{\kappa^{+}}(A), A \in A^{1 \kappa^{+}}, \alpha \in A\right.$ for some $\left.\left\langle\left\langle A^{0 \kappa^{+}}, A^{1 \kappa^{+}}, C^{\kappa^{+}}\right\rangle, A^{1 \kappa^{++}}\right\rangle \in G\left(\mathcal{P}^{\prime}\right)\right\}$.

Carmi Merimovich [4] showed that such defined C_{α} 's provide a partial $\square_{\kappa^{++}}^{\text {Cof }}$. . This type of a square lives well with a supercompact cardinals.

2 New definition.

Let us define a new partial order (actually a pre-order) on \mathcal{P}^{\prime} which will allows to eliminate the first reason of non-closure.

Definition 2.1 Let $p=\left\langle\left\langle A^{0 \kappa^{+}}(p), A^{1 \kappa^{+}}(p), C^{\kappa^{+}}(p)\right\rangle, A^{1 \kappa^{++}}(p)\right\rangle$, $q=\left\langle\left\langle A^{0 \kappa^{+}}(q), A^{1 \kappa^{+}}(q), C^{\kappa^{+}}(q)\right\rangle, A^{1 \kappa^{++}}(q)\right\rangle$ be conditions in \mathcal{P}^{\prime}. Define $p \geq_{\text {new }} q$ iff there is D such that

1. $\left\langle\left\langle A^{0 \kappa^{+}}(p), A^{1 \kappa^{+}}(p), D\right\rangle, A^{1 \kappa^{++}}(p)\right\rangle \in \mathcal{P}^{\prime}$,
2. $A^{0 \kappa^{+}}(q) \in D\left(A^{0 \kappa^{+}}(p)\right)$,
3. $D\left(A^{0 \kappa^{+}}(q)\right)=C^{\kappa^{+}}(q)\left(A^{0 \kappa^{+}}(q)\right)$.

Remark 2.2 Note that any two conditions $\left\langle\left\langle A^{0 \kappa^{+}}, A^{1 \kappa^{+}}, C^{\kappa^{+}}\right\rangle, A^{1 \kappa^{++}}\right\rangle$and $\left\langle\left\langle A^{0 \kappa^{+}}, A^{1 \kappa^{+}}, D^{\kappa^{+}}\right\rangle, A^{1 \kappa^{++}}\right\rangle$are $\leq_{\text {new }}$ - equivalent. They were equivalent according to the order (pre-order) \leq only if it was possible to change $C^{\kappa^{+}}$to $D^{\kappa^{+}}$by finitely many switches. With $\leq_{\text {new }}$ infinitely many of them may be applied.

Proposition 2.3 Let $\eta<\kappa^{++}$and $\left\langle p_{\alpha} \mid \alpha \leq \eta<\kappa^{++}\right\rangle$be $a \leq_{\text {new }}$-increasing sequence of elements of \mathcal{P}^{\prime}. Suppose that for each limit $\alpha<\eta$ the set $\bigcup_{\beta<\alpha} A^{0 \kappa^{+}}\left(p_{\beta}\right)$ is in $A^{1 \kappa^{+}}\left(p_{\alpha}\right)$. Then there is $p \in \mathcal{P}^{\prime}, p \geq_{\text {new }} p_{\alpha}$, for every $\alpha<\eta$.

Proof. Use $\left\langle A^{0 \kappa^{+}}\left(p_{\alpha}\right) \mid \alpha<\eta\right\rangle$ together with $\left\langle\bigcup_{\beta<\alpha} A^{0 \kappa^{+}}\left(p_{\beta}\right)\right| \alpha<\eta, \alpha$ is a limit ordinal \rangle in order to form $C^{\kappa^{+}}(p)$, where p is the obvious upper bound of p_{α} 's without the pistes.

3 Additional reason for a non-closure.

There is one more reason for non-closure. It has to do with chains of models inside a condition with their union not inside.
Let us describe this type of situation.
Let $\left\langle p_{n} \mid n<\omega\right\rangle$ be an increasing sequence of conditions of \mathcal{P}^{\prime}. There are potentially two ways to extend it. The first (and one which is always available, and which was used above in 1.1) is to take the union of $A^{0 \kappa^{+}}\left(p_{n}\right)$'s and then to extend this to a condition. The second (which is not always possible) is like this: there is $p \in \mathcal{P}^{\prime}$ such that

1. $p \geq p_{n}$, for all $n<\omega$,
2. $\bigcup_{n<\omega} A^{0 \kappa^{+}}\left(p_{n}\right) \notin A^{1 \kappa^{+}}(p)$.

Proposition 3.1 Let $\left\langle p_{\alpha} \mid \alpha<\omega_{1}\right\rangle$ be an increasing sequence of elements of \mathcal{P}^{\prime} such that for every limit $\alpha<\omega_{1}, \bigcup_{\beta<\alpha} A^{0 \kappa^{+}}\left(p_{\beta}\right) \notin A^{1 \kappa^{+}}\left(p_{\alpha}\right)$. Then there is no $p \in \mathcal{P}^{\prime}$ with $p \geq p_{\alpha}$, for every $\alpha<\omega_{1}$ and $\bigcup_{\alpha<\omega_{1}} A^{0 \kappa^{+}}\left(p_{\alpha}\right) \in A^{1 \kappa^{+}}(p)$.

Proof. Suppose otherwise. Let p be an upper bound and $\bigcup_{\alpha<\omega_{1}} A^{0 \kappa^{+}}\left(p_{\alpha}\right) \in A^{1 \kappa^{+}}(p)$. Denote $\bigcup_{\alpha<\omega_{1}} A^{0 \kappa^{+}}\left(p_{\alpha}\right)$ by A. Let us argue that for every $X \in A \cap A^{1 \kappa^{+}}(p)$ there is $\alpha<\omega_{1}$ with $X \in A^{0 \kappa^{+}}\left(p_{\alpha}\right)$. Consider $\eta=\sup \left(X \cap \kappa^{+3}\right)$. Then $\eta \in A$, and hence for some α, $\eta \in A^{0 \kappa^{+}}\left(p_{\alpha}\right)$. But $\operatorname{cof}(\eta) \leq \kappa^{+}$. So $A^{0 \kappa^{+}}\left(p_{\alpha}\right)$ is unbounded in η. By intersection property, then $X \subseteq A^{0 \kappa^{+}}\left(p_{\alpha}\right)$. But $\eta \in A^{0 \kappa^{+}}\left(p_{\alpha}\right) \backslash X$, hence $X \in A^{0 \kappa^{+}}\left(p_{\alpha}\right)$.

It follows that $\left\{\bigcup_{\beta<\gamma} A^{0 \kappa^{+}}\left(p_{\beta}\right) \mid \gamma<\omega_{1}\right\}$ is club in $A \cap A^{1 \kappa^{+}}(p)$. So it must intersect $C^{\kappa^{+}}(p)$. Contradiction.

4 Absence of directed closure.

If we have countably many conditions such that any finite family of them is compatible, then the ω_{1}-closure (1.1) implies the existence of an upper bound.
But suppose now that we have ω_{1} many conditions $\left\langle p_{n \alpha} \mid n<\omega, \alpha<\omega_{1}\right\rangle$ such that for every α,

1. $A^{0 \kappa^{+}}\left(p_{\alpha n+1}\right) \supset A^{0 \kappa^{+}}\left(p_{\alpha n}\right)$,
2. $A^{0 \kappa^{+}}\left(p_{\alpha+1 n+1}\right) \supset A^{0 \kappa^{+}}\left(p_{\alpha n}\right)$,
3. $\bigcup_{n<\omega} A^{0 \kappa^{+}}\left(p_{\alpha+1 n}\right) \nsupseteq \bigcup_{n<\omega} A^{0 \kappa^{+}}\left(p_{\alpha n}\right)$.

It is impossible to find an upper bound for $\left\langle p_{n \alpha} \mid n<\omega, \alpha<\omega_{1}\right\rangle$ without adding $\bigcup_{n<\omega} A^{0 \kappa^{+}}\left(p_{\alpha n}\right)$ to the central piste for unboundedly many α 's, which is not allowed.

5 Off-piste version of the preparation forcing.

In [?] Merimovich used a variation of the Velleman simplified morass forcing [5] as the preparation forcing for gap 3. The advantage of using it is a directed closure of this forcing. Here we would like to present off-piste version of the preparation forcing for higher gaps. Absence of pistes will provide a directed closure. Unfortunately the resulting structure lacks of the intersection property for gaps 4 and above, and so it is unclear how to implement it into the final forcing.

Let us deal with gap 4 case the treatment of higher gaps is similar.
We will have three types of models - of size κ^{+}, of size κ^{++}and of size κ^{+3} (ordinals). Denote as usual the corresponding sets accumulating this models inside a condition by $A^{1 \kappa^{+}}, A^{1 \kappa^{++}}, A^{1 \kappa^{+3}} . A^{1 \kappa^{+3}}$ is a closed set of ordinals of size at most $\kappa^{+3} . A^{1 \kappa^{++}}$is defined as in [?]. Let us define $A^{1 \kappa^{+}}$.

Definition 5.1 $A^{1 \kappa^{+}}$is a set of at most κ^{+}models of size κ^{+}such that the following holds:

1. there is the largest model $A^{0 \kappa^{+}}$,
2. for every $A \in A^{1 \kappa^{+}}$the following holds:
(a) either there is a largest $\alpha \in A \cap A^{1 \kappa^{+3}}$ or $\sup \left(A \cap \kappa^{+4}\right)$ is a limit point of $A^{1 \kappa^{+3}}$,
(b) either there is a largest (under the inclusion) model $(A)_{\kappa^{++}} \in A \cap A^{1 \kappa^{++}}$or $A \cap A^{1 \kappa^{++}}$is directed,
(c) either $A \cap A^{1 \kappa^{+}}$is directed or A has immediate predecessors and if A^{\prime} is an immediate predecessor of A then either
i. there is an immediate predecessor A_{0} of A and A, A_{0}, A^{\prime} form a Δ-system triple;
or
ii. there is $A_{0} \in A \cap A^{1 \kappa^{+}}$(which need not be an immediate predecessor of A) and $A^{\prime}=\pi_{F_{0} F_{1}}\left[A_{0}\right]$, where $F_{0}, F_{1} \in A \cap A^{1 \kappa^{++}}$are of a same order type.

Let us argue that the intersection property even in its weakest form can break down in the present setting.

Example.

Suppose that $A \in A^{1 \kappa^{+}}$, the largest model $(A)_{\kappa^{++}} \in A \cap A^{1 \kappa^{++}}$exists and it is a limit point of $A^{1 \kappa^{++}}$(limit means here that $(A)_{\kappa^{++}} \cap A^{1 \kappa^{++}}$is directed or equivalently of a limit rank). Assume that there is no increasing sequence of elements of $(A)_{\kappa^{++}} \cap A^{1 \kappa^{++}}$which union is $(A)_{\kappa^{++}}$.
Note that existence of a limit model $X \in(A)_{\kappa^{++}}$which is not a limit of an increasing sequence of elements of $(A)_{\kappa^{++}}$is forced upon us, as in 4 , if we like to have directed closure and not only a closure.

Assume that the rank of $(A)_{\kappa^{++}}$is some $\mu<\kappa^{+3}$ of cofinality κ^{++}.
Suppose that the only model in $A \cap A^{1 \kappa^{++}}$that includes B is $(A)_{\kappa^{++}}$.
Consider

$$
A \cap(A)_{\kappa^{++}}=\bigcup\left(A \cap A^{1 \kappa^{++}}\right) \backslash\left\{(A)_{\kappa^{++}}\right\}
$$

Set $Z=\bigcup\left(A \cap A^{1 \kappa^{++}}\right)$. If $Z \in A^{1 \kappa^{++}}$, then use the intersection property between B and Z. Suppose $Z \notin A^{1 \kappa^{++}}$. Pick $Y \in(A)_{\kappa^{++}} \in A \cap A^{1 \kappa^{++}}, Y \supset Z$ of the smallest rank (it must be $\sup (A \cap \mu))$.
If $B \in(A)_{\kappa^{++}} \in A \cap A^{1 \kappa^{++}}$is a model of rank δ, for some $\delta, \mu>\delta \geq \sup (A \cap \mu)$. Consider $Y \cap B$. Then there is $\xi \in Y \cap A^{1 \kappa^{+3}}$ such that

$$
Y \cap B=Y \cap \xi
$$

Hence

$$
A \cap B=A \cap Y \cap B=A \cap(A)_{\kappa^{+}} \cap \xi
$$

But if the rank of B is small, then B can be an element of $Y \backslash Z$ which does not include Z, and even the rank of B may be in A. If in addition no element of Z includes $B \cap Z$, then the intersection property between A and B will break down.

Let us construct an example having such B. Fix a continuous chain of elementary submodels $\left\langle M_{i} \mid i \leq \kappa^{++}+1\right\rangle$ each of size $\kappa^{+3}, M_{i} \cap \kappa^{+4}=\mu_{i}$ and ${ }^{\kappa^{++}>} M_{i+1} \subseteq M_{i+1}$. Let X be an elementary submodel of $M_{\kappa^{++}+1}$ of size κ^{++}such that $\left\langle\mu_{i} \mid i \leq \kappa^{++}\right\rangle \in X$.
For each $i<\kappa^{++}$let $X_{i} \in M_{i+1}$ be a reflection of X to M_{i+1} over $X \cap M_{i}$.
Add models of size κ^{++}which include X_{0}, X and then reflect it down to every $i, 0<i<\kappa^{++}$. Continue in a similar fashion and extend the family into directed one. Then pick a model which includes it and again reflect down. Proceed $\kappa^{++}+1$ many stages. Let E be the final model of the rank κ^{++}. Through all the models from the constructed family of models of size κ^{++}which have ordinals $\geq \mu_{\kappa^{++}}$but keep E (in particular, X is out).
The resulting family will be our $A^{1 \kappa^{++}}$. Let $A^{1 \kappa^{+3}}$ be the set $\left\{M_{i} \mid i \leq \kappa^{++}\right\}$. Let $A=A^{0 \kappa^{+}}$be an elementary submodel of $M_{\kappa^{+++1}}$ of size κ^{+}with $A^{1 \kappa^{++}}$and $A^{1 \kappa^{+3}}$ inside. Let $A \cap \kappa^{++}=\eta$. Then $\sup \left(A \cap \mu_{\kappa^{++}}\right)=\mu_{\eta}$. Set $B=X_{\eta}$. The pair A, B will fail to have the intersection property as it was explained above.

References

[1] J. Cummings, M. Foreman and M. Magidor, JML
[2] M. Gitik, Short extenders forcings I, Chapter 1- Gap 3.
[3] C. Merimovich,
[4] C. Merimovich, The short extenders gap three forcing using a morass, Arch. Math. Logic, 2011
[5] D. Velleman, Simplified morasses, JSL 49(1),257-271(1984)

