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The preparation forcing P ′ of [2] Section 1 is κ++-strategically closed by Lemma 1.1.19.

We would like to examine the reasons for lack of closure and directed closure of this forcing.

1 The first reason for a non–closure.

Let us first point out that the forcing P ′ is ω1-closed.

Proposition 1.1 P ′ is ω1-closed.

Proof. Let 〈pn | n < ω〉 be an increasing sequence of conditions in P ′. Assume that for each

n < ω we have

pn = 〈〈A0κ+

n , A1κ+

n , Cκ+

n 〉, A1κ++

n 〉.
Arrange by induction that A0κ+

n ∈ Cκ+

n+1(A
0κ+

n+1), for every n < ω. Note that at each stage

only finitely many switches are needed for this. Now we just take unions. Set

B0κ+

=
⋃
n<ω

A0κ+

n ,

B1κ+

=
⋃
n<ω

A1κ+

n ∪ {B0κ+},

Dκ+

=
⋃
n<ω

Cκ+

n ∪ {〈B0κ+

, {B0κ+} ∪ {Cκ+

n | n < ω}〉}

and

B1κ++

=
⋃
n<ω

B1κ++

n ∪ {sup
⋃
n<ω

B1κ++

n }.

Pick A0κ+

ω to be a model of cardinality κ+ such that
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1. κA0κ+

ω ⊆ A0κ+

ω ,

2. B0κ+
, B1κ+

, B1κ++
, Dκ+ ∈ A0κ+

ω .

Set

A1κ+

ω = B1κ+ ∪ {A0κ+

ω }, Cκ+

ω = Dκ+ ∪ {〈A0κ+

ω , Dκ+

(B0κ+

) ∪ {A0κ+

ω }〉}
and

A1κ++

ω = B1κ++ ∪ {sup(A0κ+

ω ∩ κ+3)}.
Then

pω = 〈〈A0κ+

ω , A1κ+

ω , Cκ+

ω 〉, A1κ++

ω 〉
will a condition in P ′ stronger than every pn.

¤
The of the top models is formally required in the definition of P ′ in order to have the

largest model of cardinality κ+ to be closed under κ-sequences. It will be convenient, in

the next proposition to deal with pω having the top model removed. Let us denote B0κ+
by

A0κ+
(pω), B1κ+

by A1κ+
(pω), Dκ+

by Cκ+
(pω) and B1κ++

by A1κ++
(pω).

Proposition 1.2 P ′ is not ω2-closed.

Proof. We construct an increasing sequence of conditions 〈pα | α < ω1〉 of length ω1 without

upper bound.

Let α < ω1 and suppose that 〈pβ | β < α〉 is defined. Define pα. If α is not a limit

of limit ordinals, then we use 1.1 to form pα for such limit α. Let for a successor α, pα

be an extension of pα−1 which has at least ω1 many splitting points B from its central

piste above sup(A0κ+
(pα−1)) such that if B0, B1 are the immediate predecessors of B with

B0 ∈ Cκ+
(pα)(A0κ+

(pα)), then A0κ+
(pα−1) is in Cκ+

(pα)(B1).

Assume now that α is a limit of limit ordinals.

Let 〈αn | n < ω〉 a fixed in advance cofinal sequence in α with α0 = 0 consisting of limit

ordinals.

Define p′α to be the upper bound of 〈pβ | β < α〉 defined as in 1.1. Let us define pα by

changing Cκ+
(p′α) as follows.

We leave all A0κ+
(pαn) inside Cκ+

(pα).

Pick a splitting point B ∈ Cκ+
(pα0)(A

0κ+
(pα0)). Let B0, B1 be its immediate predecessors

with B0 ∈ Cκ+
(pα0)(A

0κ+
(pα0)). Define Cκ+

(pα)(A0κ+
(pα0)) by switching from B0 to B1.
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Let now n, 0 < n < ω. Consider Cκ+
(pαn)(A0κ+

(pαn)) in the interval between A0κ+
(pαn−1)

and A0κ+
(pαn). Pick a splitting point B ∈ Cκ+

(pαn)(A0κ+
(pαn)) in this interval with imme-

diate predecessors B0, B1 such that

1. B0 ∈ Cκ+
(pαn)(A0κ+

(pαn))

2. B1 6∈ Cκ+
(pβ)(A0κ+

(pβ)), for every β ≤ αn.

Note that this is possible since we required to have at least ℵ1 many splitting points at each

successor stage and αn is countable.

Define Cκ+
(pα)(A0κ+

(pαn)) by switching from B0 to B1.

This completes the definition of the sequence 〈pα | α < ω1〉.
Let us argue that there is no p ∈ P ′ such that p ≥ pα, for every α < ω1.

Suppose otherwise. Let p be such a condition. Set

C := {α < ω1 | α is a limit of limit ordinals}.

For every α ∈ C let f(α) be the least β < α such that Cκ+
(p)(A0κ+

(pα)) transforms into

Cκ+
(pα)(A0κ+

(pα)) by switches below A0κ+
(pβ). Recall that only finitely many switches are

required to transform Cκ+
(p)(A0κ+

(pα)) into Cκ+
(pα)(A0κ+

(pα)), by the definition of the

order on P ′, and hence there must be such β.

Find a stationary S ⊆ C and β∗ < ω1 such that f(α) = β∗, for every β ∈ S. Pick α ∈ S

which is a limit point of S. Let 〈γn | n < ω〉 be cofinal in α sequence of elements of S. Then

Cκ+
(pα)(A0κ+

(pγn)) and Cκ+
(pγn)(A0κ+

(pγn)) agree on the final segment from A0κ+
(pβ∗) up,

for each n < ω. But this contradicts the choice of Cκ+
(pα)(A0κ+

(pα)).

¤
We would like to use now the above reason of non-closure in order to construct a square

like principle which is inconsistent with a supercompact cardinal.

Theorem 1.3 The gap 3 preparation forcing P ′ of [2],chapter 1 adds a weak form of ¤≤κ+

κ++ .

Let G(P ′) be a generic subset of P ′.
Introduce few notions.

Definition 1.4 A limit ordinal ξ < κ+3 is called good iff there is 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 ∈
G(P ′) such that

1. ξ ∈ A0κ+
,
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2. ξ ∈ A1κ++
,

3. cof(ξ) ≤ κ+,

4. there is A ∈ A1κ+
such that

(a) ξ ∈ A,

(b) A is an immediate successor of a limit model in Cκ+
(A).

Denote this model by A−.

(c) For every E ∈ Cκ+
(A) \ {A}, ξ 6∈ A,

(d) A− ∩ ξ is unbounded in ξ,

(e) E ∩ ξ is bounded in ξ, for every E ∈ Cκ+
(A) \ {A,A−}.

Lemma 1.5 Let ξ be a good ordinal and 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 ∈ G(P ′) be a condition

witnessing this. Let A ∈ A1κ+
be such that

1. ξ ∈ A,

2. for every B ∈ A1κ+
with B $ A, ξ 6∈ B.

Then A satisfies (4) of Definition 1.4. In addition, the sequence 〈ξ∩E | E ∈ Cκ+
(A)\{A,A−}

does not depend on A.

Proof. Clearly, A is a successor model. Let A∗ be a model witnessing (4) of Definition 1.4.

Claim 1 There is no B ∈ A1κ+ ∩ A∗ with ξ ∈ B.

Proof. Suppose otherwise. Then there is a piste from A∗ to B. But A∗ is the immediate

successor of A∗− in Cκ+
(A∗). Hence it should go via A∗−. Which is impossible since ξ ∈

B \ A∗−.

¤ of the claim.

Use now the intersection property for A,A∗. Then, by the claim and the property (2) of A,

for some η ∈ A, η∗ ∈ A∗,

A ∩ A∗ = A ∩ η = A∗ ∩ η∗.

Then otp(A) = otp(A∗) and hence Cκ+
(A) and Cκ+

(A∗) have the same order type. In

particular, A is an immediate successor of a limit model. Also structures

〈A,Cκ+

(A), η,∈,⊆ 〉, 〈A∗, Cκ+

(A∗), η∗,∈,⊆ 〉
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are isomorphic with the isomorphism which is identity over the common part. Then A

satisfies (4) of Definition 1.4. In addition we obtain that the sequences 〈E ∩ ξ | E ∈
Cκ+

(A) \ {A}〉 and 〈E ∩ ξ | E ∈ Cκ+
(A∗) \ {A∗}〉 are the same.

¤

Lemma 1.6 A limit of ≤ κ+ good ordinals is a good ordinal.

Proof. Let 〈ξi | i < δ ≤ κ+〉 be an increasing sequence of good ordinals and ξ =
⋃

i<δ ξi.

Consider a piste from A0κ+
to ξ. Let A be the terminal model of this piste. Then A cannot

be a limit model and also it cannot be an immediate successor of a non-limit model by the

previous lemma, as ξ is a limit of good ordinals. Denote by A− the immediate predecessor

of A. Consider Cκ+
(A) \ {A,A−}. Then ξ is not a member of any of the elements of this

set. Moreover, if E ∈ Cκ+
(A) \ {A,A−}, then E ∩ ξ is bounded in ξ. Otherwise let E ∩ ξ

is unbounded in ξ. Let E+ be the immediate successor of E in Cκ+
(A). We have ξ 6∈ E+

but there are ordinals ≥ ξ in E+, for example sup(E). Let η be the least such ordinal.

Then cof(η) > κ+, by elementarity of E+. So E ∩ η ⊆ ξ. But E ∩ η ∈ E+, hence also

ξ = sup(E ∩ η) ∈ E+. Contradiction.

Now, Cκ+
(A) \ {A,A−} witness goodness of ξ.

¤

Corollary 1.7 The set of good ordinals is a κ+–club.

Now we are ready to prove the theorem. Denote by

C := {α < κ+3 | α is a good ordinal }.

We will define a partial square sequence 〈Cα | α ∈ C〉 over C. This by standard argument

allows to extend it to

{α < κ+3 | cof(α) < κ++}.
Proceed as follows. If α is a good ordinal then pick a model A witnessing this and set

Cα(p) = {sup(E ∩ α) | E ∈ Cκ+

(A−) \ {A−}},

where p ∈ G(P ′) and A ∈ A1κ+
(p).

Now if we have p, q ∈ G(P ′) with A ∈ A1κ+
(p), A1κ+

(q) then Cκ+
(p)(A−) and Cκ+

(q)(A−)

may differ only on an initial segment and both sets have the same order type, since we can

move from Cκ+
(p) to Cκ+

(q) using finitely many switches.
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Let us pick for every good α a condition pα ∈ G(P ′) with a witnessing Aα ∈ A1κ+
(pα)

and set

Cα := Cα(pα).

Lemma 1.8 Let α be a good ordinal and β is a limit point of Cα, then we will have a

following type of coherency:

1. Cα ∩ β and Cβ have a common final segment,

2. otp(Cα ∩ β) = otp(Cβ).

Proof. It follows since Cβ(pα) = Cα ∩ β (the coherency for good α’s with same p follows

by Lemma 1.5) and Cβ(pα), Cβ(pβ) = Cβ have a common final segment and the same order

type.

¤
Using ideas from Cummings, Foreman, Magidor [1] it is possible to show that this type of

a square is weaker than ¤κ++ (at least assuming the consistency of a supercompact cardinal).

If cof(α) = κ++ and α is a limit point of A1κ++
, for an element of G(P ′) then set

Cα = {sup(E∩α) | E ∈ Cκ+

(A), A ∈ A1κ+

, α ∈ A for some 〈〈A0κ+

, A1κ+

, Cκ+〉, A1κ++〉 ∈ G(P ′)}.

Carmi Merimovich [4] showed that such defined Cα’s provide a partial ¤Cofκ++

κ++ . This

type of a square lives well with a supercompact cardinals.

2 New definition.

Let us define a new partial order (actually a pre-order) on P ′ which will allows to eliminate

the first reason of non-closure.

Definition 2.1 Let p = 〈〈A0κ+
(p), A1κ+

(p), Cκ+
(p)〉, A1κ++

(p)〉,
q = 〈〈A0κ+

(q), A1κ+
(q), Cκ+

(q)〉, A1κ++
(q)〉 be conditions in P ′. Define p ≥new q iff there is

D such that

1. 〈〈A0κ+
(p), A1κ+

(p), D〉, A1κ++
(p)〉 ∈ P ′,

2. A0κ+
(q) ∈ D(A0κ+

(p)),

3. D(A0κ+
(q)) = Cκ+

(q)(A0κ+
(q)).
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Remark 2.2 Note that any two conditions 〈〈A0κ+
, A1κ+

, Cκ+〉, A1κ++〉 and

〈〈A0κ+
, A1κ+

, Dκ+〉, A1κ++〉 are ≤new–equivalent. They were equivalent according to the order

(pre-order) ≤ only if it was possible to change Cκ+
to Dκ+

by finitely many switches. With

≤new infinitely many of them may be applied.

Proposition 2.3 Let η < κ++ and 〈pα | α ≤ η < κ++〉 be a ≤new–increasing sequence of

elements of P ′. Suppose that for each limit α < η the set
⋃

β<α A0κ+
(pβ) is in A1κ+

(pα).

Then there is p ∈ P ′, p ≥new pα, for every α < η.

Proof. Use 〈A0κ+
(pα) | α < η〉 together with 〈⋃β<α A0κ+

(pβ) | α < η, α is a limit ordinal 〉
in order to form Cκ+

(p), where p is the obvious upper bound of pα’s without the pistes.

¤

3 Additional reason for a non-closure.

There is one more reason for non-closure. It has to do with chains of models inside a condition

with their union not inside.

Let us describe this type of situation.

Let 〈pn | n < ω〉 be an increasing sequence of conditions of P ′. There are potentially two

ways to extend it. The first (and one which is always available, and which was used above

in 1.1) is to take the union of A0κ+
(pn)’s and then to extend this to a condition. The second

(which is not always possible) is like this: there is p ∈ P ′ such that

1. p ≥ pn, for all n < ω,

2.
⋃

n<ω A0κ+
(pn) 6∈ A1κ+

(p).

Proposition 3.1 Let 〈pα | α < ω1〉 be an increasing sequence of elements of P ′ such that

for every limit α < ω1,
⋃

β<α A0κ+
(pβ) 6∈ A1κ+

(pα). Then there is no p ∈ P ′ with p ≥ pα, for

every α < ω1 and
⋃

α<ω1
A0κ+

(pα) ∈ A1κ+
(p).

Proof. Suppose otherwise. Let p be an upper bound and
⋃

α<ω1
A0κ+

(pα) ∈ A1κ+
(p). Denote⋃

α<ω1
A0κ+

(pα) by A. Let us argue that for every X ∈ A ∩ A1κ+
(p) there is α < ω1

with X ∈ A0κ+
(pα). Consider η = sup(X ∩ κ+3). Then η ∈ A, and hence for some α,

η ∈ A0κ+
(pα). But cof(η) ≤ κ+. So A0κ+

(pα) is unbounded in η. By intersection property,

then X ⊆ A0κ+
(pα). But η ∈ A0κ+

(pα) \X, hence X ∈ A0κ+
(pα).
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It follows that {⋃β<γ A0κ+
(pβ) | γ < ω1} is club in A ∩ A1κ+

(p). So it must intersect

Cκ+
(p). Contradiction.

¤

4 Absence of directed closure.

If we have countably many conditions such that any finite family of them is compatible, then

the ω1-closure (1.1) implies the existence of an upper bound.

But suppose now that we have ω1 many conditions 〈pnα | n < ω, α < ω1〉 such that for every

α,

1. A0κ+
(pαn+1) ⊃ A0κ+

(pαn),

2. A0κ+
(pα+1n+1) ⊃ A0κ+

(pαn),

3.
⋃

n<ω A0κ+
(pα+1n) +

⋃
n<ω A0κ+

(pαn).

It is impossible to find an upper bound for 〈pnα | n < ω, α < ω1〉 without adding⋃
n<ω A0κ+

(pαn) to the central piste for unboundedly many α’s, which is not allowed.

5 Off-piste version of the preparation forcing.

In [?] Merimovich used a variation of the Velleman simplified morass forcing [5] as the

preparation forcing for gap 3. The advantage of using it is a directed closure of this forcing.

Here we would like to present off-piste version of the preparation forcing for higher gaps.

Absence of pistes will provide a directed closure. Unfortunately the resulting structure lacks

of the intersection property for gaps 4 and above, and so it is unclear how to implement it

into the final forcing.

Let us deal with gap 4 case the treatment of higher gaps is similar.

We will have three types of models - of size κ+, of size κ++ and of size κ+3 (ordi-

nals). Denote as usual the corresponding sets accumulating this models inside a condition

by A1κ+
, A1κ++

, A1κ+3
. A1κ+3

is a closed set of ordinals of size at most κ+3. A1κ++
is defined

as in [?]. Let us define A1κ+
.

Definition 5.1 A1κ+
is a set of at most κ+ models of size κ+ such that the following holds:

1. there is the largest model A0κ+
,
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2. for every A ∈ A1κ+
the following holds:

(a) either there is a largest α ∈ A ∩ A1κ+3
or sup(A ∩ κ+4) is a limit point of A1κ+3

,

(b) either there is a largest (under the inclusion) model (A)κ++ ∈ A ∩ A1κ++
or

A ∩ A1κ++
is directed,

(c) either A ∩ A1κ+
is directed or A has immediate predecessors and if A′ is an

immediate predecessor of A then either

i. there is an immediate predecessor A0 of A and A,A0, A
′ form a ∆-system

triple;

or

ii. there is A0 ∈ A ∩ A1κ+
(which need not be an immediate predecessor of A)

and A′ = πF0F1 [A0], where F0, F1 ∈ A ∩ A1κ++
are of a same order type.

Let us argue that the intersection property even in its weakest form can break down in

the present setting.

Example.

Suppose that A ∈ A1κ+
, the largest model (A)κ++ ∈ A ∩ A1κ++

exists and it is a limit point

of A1κ++
(limit means here that (A)κ++ ∩ A1κ++

is directed or equivalently of a limit rank).

Assume that there is no increasing sequence of elements of (A)κ++ ∩ A1κ++
which union is

(A)κ++ .

Note that existence of a limit model X ∈ (A)κ++ which is not a limit of an increasing

sequence of elements of (A)κ++ is forced upon us, as in 4, if we like to have directed closure

and not only a closure.

Assume that the rank of (A)κ++ is some µ < κ+3 of cofinality κ++.

Suppose that the only model in A ∩ A1κ++
that includes B is (A)κ++ .

Consider

A ∩ (A)κ++ =
⋃

(A ∩ A1κ++

) \ {(A)κ++}.
Set Z =

⋃
(A ∩ A1κ++

). If Z ∈ A1κ++
, then use the intersection property between B and Z.

Suppose Z 6∈ A1κ++
. Pick Y ∈ (A)κ++ ∈ A ∩ A1κ++

, Y ⊃ Z of the smallest rank (it must be

sup(A ∩ µ)).

If B ∈ (A)κ++ ∈ A ∩ A1κ++
is a model of rank δ, for some δ, µ > δ ≥ sup(A ∩ µ). Consider

Y ∩B. Then there is ξ ∈ Y ∩ A1κ+3
such that

Y ∩B = Y ∩ ξ.
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Hence

A ∩B = A ∩ Y ∩B = A ∩ (A)κ++ ∩ ξ.

But if the rank of B is small, then B can be an element of Y \Z which does not include

Z, and even the rank of B may be in A. If in addition no element of Z includes B ∩Z, then

the intersection property between A and B will break down.

Let us construct an example having such B. Fix a continuous chain of elementary

submodels 〈Mi | i ≤ κ++ + 1〉 each of size κ+3, Mi ∩ κ+4 = µi and κ++>Mi+1 ⊆ Mi+1.

Let X be an elementary submodel of Mκ+++1 of size κ++ such that 〈µi | i ≤ κ++〉 ∈ X.

For each i < κ++ let Xi ∈ Mi+1 be a reflection of X to Mi+1 over X ∩Mi.

Add models of size κ++ which include X0, X and then reflect it down to every i, 0 < i < κ++.

Continue in a similar fashion and extend the family into directed one. Then pick a model

which includes it and again reflect down. Proceed κ++ + 1 many stages. Let E be the final

model of the rank κ++. Through all the models from the constructed family of models of

size κ++ which have ordinals ≥ µκ++ but keep E (in particular, X is out).

The resulting family will be our A1κ++
. Let A1κ+3

be the set {Mi | i ≤ κ++}. Let A = A0κ+
be

an elementary submodel of Mκ+++1 of size κ+ with A1κ++
and A1κ+3

inside. Let A∩κ++ = η.

Then sup(A ∩ µκ++) = µη. Set B = Xη. The pair A,B will fail to have the intersection

property as it was explained above.
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