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The preparation forcing P’ of [2] Section 1 is k™ -strategically closed by Lemma 1.1.19.

We would like to examine the reasons for lack of closure and directed closure of this forcing.

1 The first reason for a non—closure.
Let us first point out that the forcing P’ is w;-closed.
Proposition 1.1 P’ is w;-closed.

Proof. Let (p, | n < w) be an increasing sequence of conditions in P’. Assume that for each

n < w we have
Pn = <<A91H+’ A711H+7 CZ+>7 A71‘L’€++>'

Arrange by induction that A%" € C% (A%, for every n < w. Note that at each stage

only finitely many switches are needed for this. Now we just take unions. Set

BOK)+ — U AOH+’

n<w

B1N+ _ U Aqlln*' U {BO/{"}’

nw
D =G u{(B™ (B Yu{Cy | n<wh)}
nw

and
BT = U B}l”H U {sup U B}LHH}.

n<w n<w

Pick A% to be a model of cardinality x* such that



1 AT C AT

+ + ++ + +
2. B, BT BT Drt e A0

Set
AT = BT U LAY}, C = DT U{(AYT, DT (BT ) U {AYT 1)}
and
AT = BT {sup(A%T N k).
Then

P = (A% AT Oty AT

will a condition in P’ stronger than every p,.
OJ

The of the top models is formally required in the definition of P’ in order to have the
largest model of cardinality ™ to be closed under k-sequences. It will be convenient, in
the next proposition to deal with p,, having the top model removed. Let us denote B%" by
A" (p,), B by A (p,), D" by C*" (p,) and B by A™" (p,,).

Proposition 1.2 P’ is not ws-closed.

Proof. We construct an increasing sequence of conditions (p, | @ < wi) of length w; without
upper bound.

Let @ < wy and suppose that (ps | § < «) is defined. Define p,. If a is not a limit
of limit ordinals, then we use 1.1 to form p, for such limit «. Let for a successor «a, pg,
be an extension of p,_; which has at least w; many splitting points B from its central
piste above sup(A% " (p,_1)) such that if By, By are the immediate predecessors of B with
By € C% (pa) (A% (pa)), then A% (p,_y) is in C*" (py)(By).

Assume now that « is a limit of limit ordinals.

Let (v, | n < w) a fixed in advance cofinal sequence in o with ag = 0 consisting of limit
ordinals.

Define p[, to be the upper bound of (pg | f < «) defined as in 1.1. Let us define p, by
changing C*" (p/,) as follows.

We leave all A% (p,, ) inside C*" (py,).

Pick a splitting point B € C*" (pa, ) (A% (pa,)). Let By, By be its immediate predecessors
with By € C*" (Pay ) (A% (pa,)). Define C*" (py) (A% (py,)) by switching from By to By.



Let now n,0 < n < w. Consider C*" (pq,, ) (A% (pa,)) in the interval between A% (p,, _,)
and A% (p,, ). Pick a splitting point B € C*' (pa, )(A%" (pa,)) in this interval with imme-
diate predecessors By, B such that

1. By € C%" (pa, ) (A" (pa,))
2. Bi & C*" (pg)(A™ (py)), for every 5 < au,.

Note that this is possible since we required to have at least N; many splitting points at each
successor stage and «,, is countable.
Define C*" (pa) (A% (pa,)) by switching from By to B;.

This completes the definition of the sequence (p, | @ < wy).

Let us argue that there is no p € P’ such that p > p,, for every a < ws.

Suppose otherwise. Let p be such a condition. Set
C :={a < w; | ais a limit of limit ordinals}.

For every a € C let f(a) be the least 3 < a such that C*" (p)(A%" (p,)) transforms into
C*" (pa) (A% (pa)) by switches below A% (ps). Recall that only finitely many switches are
required to transform C*" (p)(A%" (pa)) into C*" (pa)(A%" (ps)), by the definition of the
order on P’, and hence there must be such S.
Find a stationary S C C' and * < w; such that f(a) = (%, for every f € S. Pick a € §
which is a limit point of S. Let (v, | n < w) be cofinal in a sequence of elements of S. Then
O™ (pa) (A% (py,)) and C*" (p,, ) (A% (p,,)) agree on the final segment from A% (pg.) up,
for each n < w. But this contradicts the choice of C*" (pa)(A%" (pa)).
O

We would like to use now the above reason of non-closure in order to construct a square

like principle which is inconsistent with a supercompact cardinal.

<kt

Theorem 1.3 The gap 3 preparation forcing P of [2],chapter 1 adds a weak form of TI-F, .

Let G(P’) be a generic subset of P’.

Introduce few notions.

Definition 1.4 A limit ordinal ¢ < x*3 is called good iff thereis ((A%" A" C+") AW™) €
G(P’) such that

1. £ € A%



2. Ee AT
3. cof(§) < k™,
4. there is A € A*" such that

(a) £ €A,

(b) A is an immediate successor of a limit model in C*" (A).
Denote this model by A~.

(c) For every E € C*"(A)\ {A}, € & A,
(d) A= N¢ is unbounded in &,
(e) ENE is bounded in &, for every E € C*'(A)\ {A, A~}

Lemma 1.5 Let € be a good ordinal and (A% A" C"") A" € G(P') be a condition
witnessing this. Let A € AY" be such that

1. £ € A,
2. for every B € A" with B GA £¢B.
Then A satisfies (4) of Definition 1.4. In addition, the sequence (ENE | E € C* (A)\{A, A~}

does not depend on A.

Proof. Clearly, A is a successor model. Let A* be a model witnessing (4) of Definition 1.4.
Claim 1 There is no B € A" N A* with ¢ € B.

Proof. Suppose otherwise. Then there is a piste from A* to B. But A* is the immediate
successor of A*~ in C”+(A*). Hence it should go via A*~. Which is impossible since £ €
B\ A*.
[ of the claim.
Use now the intersection property for A, A*. Then, by the claim and the property (2) of A,
for some n € A, n* € A*,

ANA*=Ann=A"Nn".
Then otp(A) = otp(A*) and hence C* (A) and C*"(A*) have the same order type. In

particular, A is an immediate successor of a limit model. Also structures
(A, 07" (4),n,€,C ), (A7, 0" (AN), 1, €,C)

4



are isomorphic with the isomorphism which is identity over the common part. Then A
satisfies (4) of Definition 1.4. In addition we obtain that the sequences (EN¢ | E €
C* (A)\ {A}) and (ENE| E € CF (A%) \ {A*}) are the same.

O

Lemma 1.6 A limit of < k' good ordinals is a good ordinal.

Proof. Let (& | i < 0 < ') be an increasing sequence of good ordinals and § = (J,_; &-
Consider a piste from A% to &. Let A be the terminal model of this piste. Then A cannot
be a limit model and also it cannot be an immediate successor of a non-limit model by the
previous lemma, as £ is a limit of good ordinals. Denote by A~ the immediate predecessor
of A. Consider C*" (A)\ {4, A~}. Then ¢ is not a member of any of the elements of this
set. Moreover, if E € C* (A) \ {4, A"}, then E N ¢ is bounded in &. Otherwise let £ N ¢
is unbounded in ¢. Let E* be the immediate successor of E in C*' (A). We have & ¢ E*
but there are ordinals > ¢ in ET, for example sup(F). Let n be the least such ordinal.
Then cof(n) > T, by elementarity of ET. So ENn C & But ENn € ET, hence also
¢ =sup(ENn) € ET. Contradiction.

Now, C*"(A) \ {A, A~} witness goodness of ¢.

O

Corollary 1.7 The set of good ordinals is a k™ —club.

Now we are ready to prove the theorem. Denote by
C :={a < k™| ais agood ordinal }.

We will define a partial square sequence (C,, | @ € C) over C. This by standard argument
allows to extend it to

{a < k™| cof(a) < k1T

Proceed as follows. If « is a good ordinal then pick a model A witnessing this and set
Calp) = {sup(ENa) | E€ C*' (A7) \ {A7}},

where p € G(P') and A € A" (p).
Now if we have p, ¢ € G(P') with A € A" (p), A" (¢) then C*" (p)(A~) and C*" (¢)(A™)
may differ only on an initial segment and both sets have the same order type, since we can

move from C*" (p) to C*"(¢) using finitely many switches.



Let us pick for every good a a condition p, € G(P') with a witnessing A, € A" (pa)

and set
Co = Cu(pa)-

Lemma 1.8 Let o be a good ordinal and (5 is a limit point of C,, then we will have a

following type of coherency:
1. Cy N B and Cz have a common final segment,

2. otp(Cy N B) = otp(Cp).

Proof. 1t follows since Cyz(ps) = C, N B (the coherency for good a’s with same p follows
by Lemma 1.5) and Cs(p,), Cs(pg) = Cs have a common final segment and the same order

type.
0]

Using ideas from Cummings, Foreman, Magidor [1] it is possible to show that this type of
a square is weaker than [J,++ (at least assuming the consistency of a supercompact cardinal).

If cof(a) = K+ and « is a limit point of A", for an element of G(P’) then set

C, = {sup(Ena) | E € C*"(A),A e A" o € A for some (A% A" "), A e G(P)}.

CofrtTt

Carmi Merimovich [4] showed that such defined C,’s provide a partial OO 74" . This

type of a square lives well with a supercompact cardinals.

2 New definition.

Let us define a new partial order (actually a pre-order) on P’ which will allows to eliminate

the first reason of non-closure.

Definition 2.1 Let p = ((A%" (p), A™" (p), C*" (p)), A" (p)),
q = ((A""(q), A" (¢),C*" (q)), A" (¢)) be conditions in P’. Define p >,y ¢ iff there is
D such that

1. ((A%"(p), A" (p), D), A" (p)) € P,
2. A% (q) € D(A"" (p)),

3. D(A™" (q)) = C*" (q)(A™" (q)).



Remark 2.2 Note that any two conditions ((A%", A" C*"), A" and

(A% AT DR AT are <. -equivalent. They were equivalent according to the order
(pre-order) < only if it was possible to change C*" to D*" by finitely many switches. With
<new infinitely many of them may be applied.

Proposition 2.3 Let n < k1 and (po | @« < n < kTT) be a <,ep—increasing sequence of
elements of P'. Suppose that for each limit o < n the set J,_, AOT (pg) is in A (pa).
Then there is p € P', p >new Pa, for every a <.

Proof. Use (A% (pa) | v < 1) together with (U, A% (ps) | @ <, is a limit ordinal )
in order to form C*" (p), where p is the obvious upper bound of p,’s without the pistes.
O

3 Additional reason for a non-closure.

There is one more reason for non-closure. It has to do with chains of models inside a condition
with their union not inside.
Let us describe this type of situation.

Let (p, | n < w) be an increasing sequence of conditions of P’. There are potentially two
ways to extend it. The first (and one which is always available, and which was used above
in 1.1) is to take the union of A% (p,)’s and then to extend this to a condition. The second

(which is not always possible) is like this: there is p € P’ such that

1. p>py, forall n < w,

2‘ Un<w A0H+ (pn) ¢ A1H+ (p)

Proposition 3.1 Let (p, | @ < wi) be an increasing sequence of elements of P’ such that
for every limit o < wi, Uz, A0sT (pg) & A" (pa). Then there is no p € P’ with p > pq, for

every a < wy and |J,,_, A% (pa) € A% (p).

a<wi

Proof. Suppose otherwise. Let p be an upper bound and {J,_, A% (p,) € A" (p). Denote
Uaco, A% (pa) by A. Let us argue that for every X € AN A" (p) there is a < w
with X € A%"(p,). Consider n = sup(X N x*™3). Then n € A, and hence for some «,
ne A% (pa). But cof(n) < kT. So A%"(p,) is unbounded in 7. By intersection property,

then X C A%" (p,). But € A% (p,)\ X, hence X € A% (p,).



It follows that {{s., A% (pg) | v < wi} is club in AN A¥ (p). So it must intersect
C*" (p). Contradiction.
U

4  Absence of directed closure.

If we have countably many conditions such that any finite family of them is compatible, then
the wy-closure (1.1) implies the existence of an upper bound.
But suppose now that we have w; many conditions (p,. | n < w,a < wy) such that for every

a?
1. A% (pom-i-l) ) AT (pom)a
2. A0H+ (pa+1n+1) D AOHJF (pom)a

3‘ Un<w AOHJF (poz+ln) ;—S Un<w AOR+ (pom)-

It is impossible to find an upper bound for (p,, | n < w,a < wp) without adding

Un<w A% (pan) to the central piste for unboundedly many a’s, which is not allowed.

5 Off-piste version of the preparation forcing.

In [?] Merimovich used a variation of the Velleman simplified morass forcing [5] as the
preparation forcing for gap 3. The advantage of using it is a directed closure of this forcing.
Here we would like to present off-piste version of the preparation forcing for higher gaps.
Absence of pistes will provide a directed closure. Unfortunately the resulting structure lacks
of the intersection property for gaps 4 and above, and so it is unclear how to implement it
into the final forcing.

Let us deal with gap 4 case the treatment of higher gaps is similar.

We will have three types of models - of size x*, of size k™ and of size k™ (ordi-
nals). Denote as usual the corresponding sets accumulating this models inside a condition
by AT AW AT AT g g closed set of ordinals of size at most k3. A" is defined

as in [?]. Let us define A"

Definition 5.1 A" is a set of at most x* models of size kT such that the following holds:

1. there is the largest model A%,



2. for every A € A" the following holds:

(a) either there is a largest & € AN A" or sup(A N x™) is a limit point of A"

(b) either there is a largest (under the inclusion) model (A).++ € AN A% " or
AN A% g directed,

(c) either A N A" is directed or A has immediate predecessors and if A’ is an

immediate predecessor of A then either

i. there is an immediate predecessor Ay of A and A, Ay, A’ form a A-system
triple;
or

ii. there is Ay € AN A" (which need not be an immediate predecessor of A)

and A’ = 7y, p, [Ag], where Fy, Fy € AN A" are of a same order type.

Let us argue that the intersection property even in its weakest form can break down in
the present setting.
Example.
Suppose that A € A" the largest model (A),++ € AN A™ " exists and it is a limit point
of A" (limit means here that (A).++ N A" is directed or equivalently of a limit rank).
Assume that there is no increasing sequence of elements of (A),++ N A*" " which union is
(A) -+
Note that existence of a limit model X € (A),++ which is not a limit of an increasing
sequence of elements of (A),++ is forced upon us, as in 4, if we like to have directed closure
and not only a closure.

Assume that the rank of (A),++ is some pu < k™ of cofinality x¥.
Suppose that the only model in AN A" that includes B is (A)++.

Consider

AN (A) s = [ JAN AT\ {(A) 4}

Set Z =J(ANAY™). If Z € A" then use the intersection property between B and Z.
Suppose Z &€ A" Pick Y € (A),++ € ANAY Y D Z of the smallest rank (it must be

sup(A (1 1),
If Be (A).++ € AN A" is a model of rank 4, for some &, p > & > sup(A N p). Consider

Y N B. Then there is £ € Y N A*" such that

YNB=YnC.



Hence
ANB=ANYNB=AN(A)++NE.

But if the rank of B is small, then B can be an element of Y\ Z which does not include
7, and even the rank of B may be in A. If in addition no element of Z includes BN Z, then
the intersection property between A and B will break down.

Let us construct an example having such B. Fix a continuous chain of elementary
submodels (M; | i < skt + 1) each of size x*3, M; N k™ = u; and S M © M.
Let X be an elementary submodel of M,++; of size ™" such that (u; |i < k*T) € X.

For each i < k*1 let X; € M, be a reflection of X to M, over X N M;.

Add models of size k™ which include X, X and then reflect it down to every 7,0 < 7 < k™.
Continue in a similar fashion and extend the family into directed one. Then pick a model
which includes it and again reflect down. Proceed st + 1 many stages. Let E be the final
model of the rank x**. Through all the models from the constructed family of models of
size k™1 which have ordinals > p,++ but keep E (in particular, X is out).

The resulting family will be our A" ", Let A" be the set {M; | i < k**}. Let A = A% be
an elementary submodel of M,++ 1 of size k* with A% and A*"* inside. Let AN+t = 1.
Then sup(A N pg++) = py. Set B = X,,. The pair A, B will fail to have the intersection

property as it was explained above.
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