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Abstract

It is shown that under GCH every poset preserves its cofinality in any cofinality
preserving extension. On the other hand, starting with ω measurable cardinals, a model
with a partial ordered set which can change its cofinality in a cofinality preserving
extension is constructed.

1 Introduction

Let P = 〈P,¹ 〉 be a partially ordered set and A ⊆ P . We denote by cof(P) the cofinality

of P , i.e. min{|S| | S ⊆ P, ∀a ∈ P∃b ∈ S a ¹ b} and by cofP(A) the outer cofinality of A

in P , i.e. min{|S| | S ⊆ P, ∀a ∈ A∃b ∈ S a ¹ b}.
Let W be an extension of V , i.e. W ⊇ V and they have the same ordinals. It is called

a cofinality preserving extension if every regular cardinal of V remains such in W . Clearly

that if W is a cofinality preserving extension of V , then it preserves cofinality of ordinals

and linear ordered sets.

A natural question that was raised by S. Watson, A. Dow and appears as Problem 5.8 on

A. Miller list [3] asks:

whether a cofinality preserving extension always preserves cofinalities of partially ordered

sets.

We address here this question. It is shown (Theorem 2.7) that an affirmative answer follows

from GCH or even from the assumption ∀κ 2κ < κ+ω. In the last section, starting with

ω measurable cardinals, we force a partially ordered set which changes its cofinality in a

cofinality preserving extension.

∗We like to thank to Assaf Rinot for pointing our attention to the problem of changing cofinality of poset
and his remarks and corrections. We are grateful to the referee of the paper for his long list of corrections
and requests for clarification of the exposition. The author was partially supported by ISF Grant 234/08.
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Definition 1.1 Let P = 〈P,¹ 〉 be a partially ordered set (further poset).

1. P is called a cofinality changeable poset if there is a cofinality preserving extension W

such that

(cof(P))V 6= (cof(P))W .

2. P is called an outer cofinality changeable poset if there is a cofinality preserving exten-

sion W such that for some A ⊆ P

(cofP(A))V 6= (cofP(A))W ).

3. P is called an unboundedly outer cofinality changeable poset if there is a cofinality

preserving extension W such that for every λ < |P | there is A ⊆ P of outer cofinality

above λ such that

(cofP(A))V 6= (cofP(A))W ).

Taking the negations we define a cofinality preserving poset, an outer cofinality preserving

poset and an unboundedly outer cofinality preserving poset.

Clearly (1) → (3) → (2).

2 The strength and GCH type assumptions.

Let us start with the following simple observation:

Proposition 2.1 Suppose that there is an outer cofinality changeable poset. Then there is

an inner model with a measurable cardinal.

Proof. Let P = 〈P,¹ 〉 be an outer cofinality changeable poset. Suppose |P | = κ. Without

loss of generality we can assume that P = κ. Pick a cofinality preserving extension W and

A ⊆ κ, A ∈ V such that (cofP(A))V 6= (cofP(A))W ). Then there is S ∈ W,S ⊆ κ such that

1. for every τ ∈ A there is ν ∈ S with τ ¹ ν

2. (cofP(A))V > |S|.

Note that if X ⊇ S, then for every τ ∈ A there is ν ∈ X with τ ¹ ν. This means

that any X ∈ V which covers S has cardinality above those of S. Remember that W is

cofinality preserving extension, hence KW - the core model computed in W must be the same

2



as KV -the one computed in V . Just any disagreement between KW and KV will imply in

turn that this two models have completely different structure of cardinals, they will disagree

about regularity of cardinals, about successors of singular cardinals etc. This in turn will

imply that V and W disagree about their cardinals, since by [1], [4] KW computes correctly

successors of singular in W cardinals and the same is true about KV and V . So we must to

have KV = KW .

Now, by the Dodd-Jensen Covering Lemma [1] there is an inner model a measurable cardinal.

¤

Remark 2.2 Note that the argument of 2.1 implies that if V = K or at least every mea-

surable cardinal of K is regular in V (where K is the core model), then there are at least

ω measurable cardinals in K. We refer to [1], [4] for the relevant stuff on Core Models and

Covering Lemmas.

Proposition 2.3 Suppose that κ is the least possible cardinality of a changeable cofinality

poset then

1. κ is singular in V

2. κ is a measurable or a limit of measurable cardinals in an inner model

3. the cofinality of a witnessing poset is κ.

Proof. Let P = 〈κ,¹ 〉 be such poset of the smallest possible cardinality. Suppose that

cof(P ) = λ in V and cof(P ) = η < λ in a cofinality preserving extension W of V . Pick in

W a cofinal subset S ⊆ κ of P of the size η.

Let A ∈ V, A ⊆ κ be of the smallest size including S. Then, in V , |A| ≥ λ. Moreover, the

inner cofinality of A (i.e. cof(〈A,A2∩ ¹ 〉)) is at least λ, since clearly A is cofinal in P .

Suppose for a moment that κ has a cofinality above η in V and hence also in W . Then,

for some α < κ we will have S ⊆ α. Hence |A| < κ. Consider 〈A,A2∩ ¹ 〉. This is a

poset of cardinality below κ. Its cofinality is at least λ in V and η < λ in W . So we have a

contradiction to the minimality of κ.

Hence cof(κ) ≤ η and every set A in V which covers S must have cardinality at least κ.

This implies the conclusions 1 and 2. For 2 note that if κ is not a measurable in the core

model and measurable cardinals of it are bounded in κ by some δ < κ, then S can be covered

by a subset of A ∈ V of cardinality δ.
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Let us prove 3 now. Suppose that cof(P ) < κ in V . Let X be a subset of P witnessing

this. Consider a poset P ′ = 〈X,¹ ∩X2〉. We claim that P ′ changes its cofinality in W , as

well. Thus let S ∈ W be cofinal in P . For each ν ∈ S pick ν ′ ∈ X with ν ¹ ν ′ (it is possible

since X is cofinal in P ). Let S ′ be the set consisting of all this ν ′’s. Then, S ′ ⊆ X, S ′ cofinal

in X and |S ′| ≤ |S|.
Which contradicts the minimality of κ.

¤

Proposition 2.4 Assume that ℵω is a strong limit cardinal. Then every poset P = 〈P,¹ 〉
and for every A ⊆ P with |A| ≤ ℵω the outer cofinality of A cannot be changed in any

cofinality preserving extension.

In particular, ℵω is a strong limit cardinal implies that every poset of cardinality at most ℵω

is outer cofinality preserving and hence cofinality preserving.

Proof. Suppose otherwise. Let P = 〈P,¹ 〉 be a poset A ⊆ P of cardinality at most ℵω, W

be a cofinality preserving extension of V such that

(cofP(A))W < (cofP(A))V .

Clearly, (cofP(A))V ≤ |A| ≤ ℵω, and hence (cofP(A))W < ℵω. Let (cofP(A))W = ℵk∗ , for

some k∗ < ω. Pick S ⊆ P of cardinality ℵk∗ cofinal for A. Pick in V an enumeration

(possibly with repetitions) {aα | α < ℵω} of A. For each n < ω we set

An = {aα | α < ℵn}.

Fix n < ω.

Claim 1 (cofP(An))V ≤ ℵk∗ .

Proof. For each s ∈ S set

As
n = {a ∈ An | a ¹ s}.

Clearly, every As
n is in V and

An =
⋃
s∈S

As
n,

since S is cofinal for An. But note that the sequence 〈As
n | s ∈ S〉 need not be in V . We

have

Z := {As
n | s ∈ S} ⊆ PV (An).
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It is a subset of PV (An) consisting of at most ℵk∗ elements. But |An| ≤ ℵn.

Let us argue that there is Y ⊆ PV (An), Y ∈ V, |Y | ≤ ℵk∗ such that Y ⊇ {As
n | s ∈ S}.

Thus, |PV (An)|V < ℵω, since ℵω is a strong limit cardinal in V . Let |PV (An)|V = ℵt, for

some t < ω. Fix

F : PV (An) ←→ ℵt, F ∈ V.

Set Z0 = F ′′Z. Clearly, it’s enough to find some Z∗ ∈ V, |Z∗|V ≤ ℵk∗ such that Z∗ ⊇ Z0.

If t ≤ k∗, then just take Z∗ = ℵt. Suppose that t > k∗. Then there is η0 < ℵt such

that Z0 ⊆ η0, since ℵt is a regular cardinal in W . Find t1 < t such that |η0| = ℵt1 . Let

F1 : η0 ←→ ℵt1 be a witnessing function in V . Set Z1 = F ′′
1 Z0. Clearly, it’s enough to find

some Z∗ ∈ V, |Z∗|V ≤ ℵk∗ such that Z∗ ⊇ Z1, since then F−1
1

′′Z∗ ∈ V will be a desired cover

of Z0. If t1 ≤ k∗, then just take Z∗ = ℵt1 . If t1 > k∗, then there is η1 < ℵt1 such that

Z1 ⊆ η1, since ℵt1 is a regular cardinal in W . Continue the process. After finitely many

steps we must drop below k∗ which in turn will provide a cover.

By shrink Y in V further if necessary we can assume that for every X ∈ Y there is t ∈ P

such that x ¹ t, for every x ∈ X. Working in V , we pick for each X ∈ Y an element aX ∈ P

such that x ¹ aX , for every x ∈ X.

Consider now the set

{aX | X ∈ Y }.
Clearly, it is in V , is cofinal for An and has cardinality at most ℵk∗ . So we are done.

¤ of the claim.

Now, work in V and for each n < ω pick En to be a cofinal for An subset of P of

cardinality at most ℵk∗ . Then

E =
⋃
n<ω

En

is in V , is cofinal for A and |E| ≤ ℵk∗ . Contradiction.

¤
Actually, the proof above provides a bit more information. Thus, the following holds:

Proposition 2.5 Let W be a cofinality preserving extension of V and κ a cardinal which

is singular strong limit in V . Assume that for some δ, cof(κ) ≤ δ < κ the following form of

covering holds between V and W :

∀µ, δ ≤ µ < κ ([µ]≤δ)V is unbounded in ([µ]≤δ)W .

Then for every poset P = 〈P,¹ 〉 ∈ V and A ⊆ P of cardinality at most κ we must have

(cofP(A))V ≥ δ implies (cofP(A))W ≥ δ.
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The proposition 2.6 allows to gain an additional strength in a strong limit case.

Proposition 2.6 Let κ be a strong limit singular cardinal. Suppose that P is an unboundedly

outer cofinality changeable poset of cardinality κ. Then, in K, κ is a limit of measurable

cardinals.

Proof. Suppose that measurable cardinals of K are bounded in κ by some δ < κ. Then for

any W with KW = K we will have by [1],[4]

∀µ, δ ≤ µ < κ ([µ]≤δ)K is unbounded in ([µ]≤δ)W .

Now the previous proposition applies.

¤

Theorem 2.7 Suppose that GCH holds (or even for each λ 2λ < λ+ω). Then there is no

a cofinality changeable poset.

Proof. Suppose otherwise. Let κ be the least cardinal on which there is a cofinality changeable

poset. Let P = 〈κ,¹ 〉 be such poset. Then, by 2.3, κ is singular and cof(P) = κ.

Suppose that W is a cofinality preserving extension of V with (cof(P))W = η < κ. Pick

some S = {ηi | i < η} ∈ W witnessing the cofinality.

Lemma 2.8 Let A ⊆ κ be a set with cof(|A|) > η. Then, in V , cofP(A) < |A|.

Proof. For each i < η we consider a set

Ai = {τ ∈ A | τ ¹ ηi}.

Note that each Ai is in V just by its definition. So, X = {Ai | i < η} ⊆ P(A)V . By the

assumption, in V we have |P(A)| = |A|+n, for some n < ω. Now, using regularity of each of

the cardinals |A|+, |A|++, ..., |A|+n and cof(|A|) > η it is easy to find in V a set Y such that

1. |Y | < |A|

2. Y ⊇ X

3. Y ⊆ P(A).
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Consider (again in V ) the following set:

Y ∗ = {B ∈ Y | ∃ν∀τ ∈ B τ ¹ ν}.

Then Y ∗ still includes X, since each element of X has such property. Remember that S is

cofinal. In particular, for each τ ∈ A there is i < η such that τ ¹ ηi and, hence τ ∈ Ai.

Then, in V , the following holds:

(*) for each τ ∈ A there is B ∈ Y ∗ with τ ∈ B.

Now working in V we pick for each B ∈ Y ∗ some ν(B) such that τ ¹ ν(B), for each

τ ∈ B. Set

T = {ν(B) | B ∈ Y ∗}.
Then T ∈ V , |T | ≤ |Y ∗| < |A| and by (*) we have that for each τ ∈ A there is ν ∈ T with

τ ¹ ν. Hence, T witnesses cofP(A) < |A|.
¤ of the lemma.

Work in V . Let us prove that for each A ⊆ κ (cofP(A))V ≤ η, by induction on |A|.
If |A| ≤ η then this is trivial. Suppose that the statement is true for each cardinal less than

ρ. Let us prove it for ρ. Let A ⊆ κ of cardinality ρ. If ρ = µ+, for some µ, then by Lemma

2.8 we have cofP(A) < |A| = ρ. Suppose that ρ is a limit cardinal. If cof(ρ) > η, then again

by Lemma 2.8 we have cofP(A) < |A| = ρ. Let finally ρ be a limit cardinal of cofinality

at most η. Pick a cofinal in ρ sequence 〈ρi | i < η〉. We present A as a union of sets Ai,

i < η such that |Ai| = ρi. Apply the induction to each of Ai’s. We find Ti of cardinality η

witnessing cofP(Ai) ≤ η. Set T =
⋃

i<η Ti. Then |T | = η and T witnesses cofP(A) ≤ η. This

completes the induction.

In particular, we obtain that in V , cof(P) ≤ η. Contradiction.

¤

3 Consistency results on outer cofinality.

Our aim will be to show that it is possible to change outer cofinality of many subsets of a

poset in a cofinality preserving extension.

Theorem 3.1 1. Suppose GCH and there are ω measurable cardinals then there is an

outer cofinality changeable poset.

2. Suppose GCH and there are ω2 measurable cardinals then there is an unboundedly outer

cofinality changeable poset.
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Proof. Let us prove (2). Suppose that κ0 < κ1 < ... < κn... (n < ω) is an increasing

sequence of cardinals such that for each n < ω

• there is an increasing sequence of measurable cardinals 〈κnm | m < ω〉 with limit κn

Assume that κn < κn+1,0 for each n < ω. Let κ =
⋃

n<ω κn. We fix a normal ultrafilter

Unm over κnm for each n,m < ω. Fix in addition a scale 〈fnα | κn ≤ α < κ+
n 〉 of functions

in
∏

m<ω κnm (mod finite) such that for every g ∈ ∏
m<ω κnm there is α, κn ≤ α < κ+

n with

fnα(m) > g(m), for all m < ω.

Let 0 < n < ω, ν, ν ′ ∈ [κ+
n−1, κn0) and α ∈ [κn, κ+

n ). Set

α ¹n ν iff fnα(0) ≤ ν

and

ν ¹n ν ′ iff ν ≤ ν ′.

Let n,m < ω, 0 < m, ν, ν ′ ∈ [κnm−1, κnm) and α ∈ [κn, κ
+
n ). Set

α ¹n ν iff fnα(m) ≤ ν

and

ν ¹n ν ′ iff ν ≤ ν ′.

Set

P =
⋃
n<ω

[κn, κ+
n ) ∪

⋃
n,m<ω

(κnm, κn,m+1) = [κ00, κ)

and

¹=
⋃
n<ω

¹n .

Let P = 〈P,¹ 〉.

Lemma 3.2 cof(〈P,¹ 〉) = κ.

Proof. Just note that inside each of the intervals (κnm, κn,m+1) we have ≺=< and

cofP((κnm, κn,m+1)) = κn,m+1.

¤
The next lemma follows from the definition of the partial order ¹.

Lemma 3.3 For each n < ω,

cofP([κn, κ
+
n )) = κn0
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Force now a new ω sequence to each of
∏

m<ω κnm using the Magidor iteration of the

length ω the Diagonal Prikry Forcings with 〈Unm | m < ω〉, n < ω. We refer to [5], [2] for

the relevant stuff on Prikry type forcings.

Let W be a resulting extension. Then V and W agree about cofinalities of all ordinals.

Denote by bn the generic Prikry sequence in
∏

m<ω κnm.

Lemma 3.4 For every n < ω, the set bn witnesses (cofP([κn, κ
+
n )))W = ℵ0

Proof. Fix n < ω. For each α ∈ [κn, κn+1), we have

fnα(m) < bn(m)

for all but finitely many m’s. Pick some such m. Then α ≺ bn(m).

¤ of the lemma.

So, for each n < ω, the set [κn, κ+
n )) changes its outer cofinality from κn0 to ω. The outer

cofinality of every interval (κnm, κnm+1) and hence those of P remains unchanged.

¤
If V = K or at least every measurable cardinal of K is regular in V , then the assumptions

of the theorem above are optimal by 2.2.

Let us show now how to construct outer cofinality changeable posets allowing V to differ

essentially from K. The assumptions used below will be optimal by 2.1.

Theorem 3.5 Suppose GCH. Let κ be a measurable cardinal. Then in a cardinals and GCH

preserving extension there is a poset of cardinality κ+ which is outer cofinality changeable.

Proof. Let U be a normal ultrafilter over κ. Force with PU - the Prikry with U . Let G ⊆ PU

be generic and 〈κn | n < ω〉 be the Prikry sequence derived from G. Assume that κ0 ≥ ℵ1.

Consider 〈κ2n | n < ω〉, i.e. the subsequence consisting of all even members of the original

sequence. It is still a Prikry sequence, by the Mathias criterion of genericity for the Prikry

forcing.

Set V1 = V [〈κ2n | n < ω〉]. We define in V1 a poset 〈P,¹ 〉 and A ⊆ P which will

change its outer cofinality to ω in V [G]. The construction will be similar to those of 3.1 and

〈κ2n+1 | n < ω〉 will be a new cofinal set for A.

Using GCH in V1, we pick a scale 〈fα | α < κ+〉 of functions in
∏

n<ω κ2n (mod finite)

such that for every g ∈ ∏
m<ω κ2n there is α, κ ≤ α < κ+ with fα(m) > g(m), for all m < ω.

Let ν, ν ′ < κ0 and α ∈ [κ, κ+). Set

α ¹ ν iff fα(0) ≤ ν
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and

ν ¹ ν ′ iff ν ≤ ν ′.

Let m, 0 < m < ω, ν, ν ′ ∈ [κ2(m−1), κ2m) and α ∈ [κ, κ+). Set

α ¹ ν iff fα(m) ≤ ν

and

ν ¹ ν ′ iff ν ≤ ν ′.

Set P = κ+ and P = 〈P,¹ 〉.

Lemma 3.6 In V1

cof(〈P,¹ 〉) = κ.

Proof. Just note that inside each of the intervals [κ2m, κ2(m+1)) we have ≺=< and

cofP([κm, κ2(m+1))) = κ2(m+1).

¤
The next lemma follows from the definition of the partial order ¹.

Lemma 3.7 In V1

cofP([κ, κ+)) = κ0

The following lemma is standard.

Lemma 3.8 Let g ∈ ∏
m<ω κ2m be a function in V1. Then there is hg : [κ]<ω → κ, hg ∈ V

such that for every m < ω, we have g(m) = hg(0, κ0, ..., κ2(m−1)).

Now we turn to V [G].

Lemma 3.9 Let g ∈ ∏
m<ω κ2m be a function in V1. Then 〈κ2m+1 | m < ω〉 eventually

dominates g.

Proof. Just pick hg as in Lemma 3.8 and argue that in V , the empty condition in the Prikry

forcing forces

”∃m0∀m ≥ m0 hg(0, κ0, ..., κ2(m−1)) < κ2m−1“.

¤
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Now, for each α ∈ [κ, κ+), we have

fα(m) < κ2m−1,

for all but finitely many m < ω. Pick some such m. Then α ≺ κ2m−1. Hence A = [κ, κ+)

changes its outer cofinality to ω in V [G].

¤

Remark 3.10 It is easy to modify the construction above in order to produce a set A of

outer cofinality κ that changes it to ω. Thus, we just split the interval [κ, κ+) into ω sets

〈Si | i < ω〉 of cardinality κ+. Set α ¹ ν, for α ∈ Si, as it was defined above, but only with

m ≥ i.

Similar, combining constructions of 3.5 and 3.1(2), it is possible to show the following.

Theorem 3.11 Suppose GCH and there are ω measurable cardinals. Let κ be a limit of ω

measurable cardinals. Then in a cardinals and GCH preserving extension there is a poset of

cardinality κ which is an unboundedly outer cofinality changeable poset.

Let us sketch an argument for getting down to ℵω+1 for outer cofinality changeable

posets. Similar ideas work for unboundedly outer cofinality changeable posets, but with

ℵω+1 replaced by ℵω2 .

Suppose first that κ is a limit of measurable cardinals 〈κn | n < ω〉. Let Un be a normal

ultrafilter over κn for each n < ω. Use the product of the Levy collapses to turn κ0 into ℵ1,

κ1 into ℵ3, κ2 into ℵ5 etc. Then κ will become ℵω. Define a poset P = 〈P,¹ 〉 as above

(those for 3.1(1)). Finally, use Un’s and the closure of corresponding collapses in order to

add a diagonal Prikry sequence preserving all the cardinals. It will witness that the outer

cofinality of [ℵω,ℵω+1) is ω.

A construction with a single measurable is a bit less direct. Thus, let κ be a measurable

cardinal and U a normal measure over κ. The basic idea will be to turn the even members

of a Prikry sequence into ℵn’s and than to add the odd members to the model as witness

for outer cofinality ω of [ℵω,ℵω+1). It should be done accurately in order to avoid further

collapses.

Define the forcing as follows.

Definition 3.12 The forcing PU consists of all sequences

〈〈ν0, ν1, ..., ν2n−1, ν2n〉, 〈g0, g2, ..., g2n〉, T, F, f〉
such that
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1. T is tree with the root 〈ν0, ν1, ..., ν2n−1, ν2n〉 splitting all the time above the root into

sets in U ,

2. g0 ∈ Col(ω, < ν0),

3. g2k ∈ Col(ν+
2(k−1), < ν2k), for each k, 1 ≤ k ≤ n,

4. f ∈ Col(ν+
2n, < κ)),

5. F (~ρ) ∈ Col(ρ+
2m, < κ), if for some m,n < m < ω, ~ρ is from the level 2m of T , and

F (~ρ) ∈ Col(ρ+
2m, < κ), if ~ρ is from the level 2m + 1 of T ,

6. for every m,n < m < ω, if ~ρ, ~ρ′ are from the same level 2m of T and ρ2m = ρ′2m, then

F (~ρ) = F (~ρ′),

7. for every m,n < m < ω, if ~ρ, ~ρ′ are from the same level 2m + 1 of T and ρ2m =

ρ′2m, ρ2m+1 = ρ′2m+1, then F (~ρ) = F (~ρ′).

Define the forcing order ≤ and the direct extension order ≤∗.

Definition 3.13 Let p = 〈〈ν0, ν1, ..., ν2n−1, ν2n〉, 〈g0, g2, ..., g2n〉, T, F, f〉,
p′ = 〈〈ν ′0, ν ′1, ..., ν ′2n′−1, ν

′
2n′〉, 〈g′0, g2, ..., g

′
2n′〉, T ′, F ′, f ′〉 ∈ PU . Then p ≥∗ p′ iff

1. n = n′,

2. νk = ν ′k, for every k ≤ 2n,

3. g2k ⊇ g2k′ , for every k ≤ n,

4. T ⊆ T ′,

5. f ⊇ f ′,

6. F (~ρ) ⊇ F ′(~ρ), for every ~ρ ∈ T .

Definition 3.14 Let p = 〈〈ν0, ν1, ..., ν2n−1, ν2n〉, 〈g0, g2, ..., g2n〉, T, F, f〉,
p′ = 〈〈ν ′0, ν ′1, ..., ν ′2n′−1, ν

′
2n′〉, 〈g′0, g2, ..., g

′
2n′〉, T ′, F ′, f ′〉 ∈ PU . Then p ≥ p′ iff

1. n ≥ n′,

2. T ⊆ T ′,
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3. the sequence 〈ν0, ν1, ..., ν2n−1, ν2n〉 end extends the sequence 〈ν ′0, ν ′1, ..., ν ′2n′−1, ν
′
2n′〉 and

the new elements come from T ′,

4. F (~ρ) ⊇ F ′(~ρ), for every ~ρ ∈ T ,

5. g2k ⊇ g′2k, for every k ≤ n′,

6. g2n′ ⊇ f ′, if n > n′,

7. g2k ⊇ F ′(〈ν0, ν1, ..., ν2k〉) ∪ F ′(〈ν0, ν1, ..., ν2k, ν2k+1〉), for each k, n′ < k ≤ n,

8. f ⊇ F ′(〈ν0, ν1, ..., ν2n−1, ν2n〉).

Then 〈PU ,≤,≤∗ 〉 is a Prikry type forcing notion.

It turns even members of the Prikry sequence into ℵn’s (n > 0), κ will be ℵω and all the

cardinals above κ will be preserved. Thus the cardinals above κ+ are preserved due to κ++-

c.c. of the forcing. κ+ is preserved since otherwise it would change its cofinality to some

δ < κ, which is impossible by the standard arguments, see [2] for example.

We define now a projection Peven of PU .

Definition 3.15 Let p = 〈〈ν0, ν1, ..., ν2n−1, ν2n〉, 〈g0, g2, ..., g2n〉, T, F, f〉 ∈ PU . Set

π(p) = 〈〈ν0, ν2, ..., ν2n〉, 〈g0, g2, ..., g2n〉, T ′, F ′, f ′〉,

where

1. f ′ = g2n ∪ f ,

2. T ′ is the subtree of T consisting of points from all even levels 2m,n < m < ω of T

which are limits of of ordinals from the level 2m− 1 of T ,

3. F ′ is the restriction of F to the even levels of T which appear in T ′.

Note that 〈Peven,≤,≤∗ 〉 is just the standard forcing which simultaneously changes the

cofinality of κ to ω and turns the elements of the Prikry sequence into ℵn’s.

Lemma 3.16 The function π defined in 3.15 is a projection of the forcing 〈PU ,≤ 〉 onto

〈Peven,≤ 〉.
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Proof. Let p = 〈〈ν0, ν1, ..., ν2n−1, ν2n〉, 〈g0, g2, ..., g2n〉, T, F, f〉 ∈ PU and

q = 〈〈ν0, ν2, ..., ν2i〉, 〈g0, g2, ..., g2i〉, S, H, h〉 be an extension of π(p) in Peven. We need to find

r ≥ p in P whose projection to Peven is stronger than q. It is easy using the definition of π to

put ordinals from T between elements of 〈ν2n+2, .., ν2i〉. Similar we add levels from T between

those of S. Let T1 be a resulting tree. Shrink it if necessary, such that for any two successive

elements ~ρ_τ and ~ρ_τaν, with ~ρ_τ from an even level, we have ν > sup(dom(H(~ρ_τ).

Now, we can put together F and H over such tree. This produces r ∈ PU as desired.

¤
Let now G be a generic subset of PU , Geven be its projection to Peven. Then Geven is a

generic subset of Peven by 3.16. Set V1 = V [Geven]. Clearly, κ is ℵω in V1 and W = V [G] is

a cofinality preserving extension of V1 by the forcing PU/Geven. Denote by 〈κn | n < ω〉 the

Prikry sequence added by G. Then 〈κ2m | m < ω〉 is the Prikry sequence produced by Geven.

The following lemma is analogous to Lemma 3.9.

Lemma 3.17 Let g ∈ ∏
m<ω κ2m be a function in V1. Then 〈κ2m+1 | m < ω〉 dominates g.

Work in V1 and define a poset P = 〈P,¹ 〉 as in 3.5. Then A = [ℵω,ℵω+1) changes its

outer cofinality to ω in W , as witnessed by {κ2m+1 | m < ω}.

4 The main consistency result.

In this section our aim will be to construct a model which has a changeable cofinality poset.

Assume GCH. Let 〈κn | 0 < n < ω〉 be an increasing sequence of measurable cardinals

with limit κ. For each n, 0 < n < ω fix a normal ultrafilter Un over κn.

We would like first to force a partial order over κ.

Definition 4.1 Q consists of sequences q = 〈qn | n < ω〉 so that

1. q0 = 〈a0(q),¹q,0 〉 and, for each n, 0 < n < ω, qn = 〈an(q),>q,n〉 such that

(a) an(q) ⊆ κ, for each n < ω,

(b) |an(q)| ≤ κn, for each n, 1 ≤ n < ω,

(c) |a0(q)| < ℵ0,

(d) ¹q,0 is a partial order on a0(q),

(e) for every n, 0 < n < ω we have >q,n ⊆ [an(q)]2 is a binary relation on an(q).

We do not require it to be a partial order etc. No limitations are put on >q,n.
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2. n < m implies an(q) ⊆ am(q).

3. Let α, β < κ and n, 1 ≤ n < ω be the least such that α < κ+
n . Then

α ≺q,0 β implies that

• if k, 1 ≤ k < ω is the least such that β < κ+
k , then k ≥ n,

• 〈α, β〉 6∈ >q,n.

Define the forcing order on Q as follows.

Definition 4.2 Let p, q ∈ Q. Set p ≥Q q iff for each n < ω

1. an(p) ⊇ an(q)

2. ¹p,0 ∩[a0(q)]
2 =¹q,0

3. >p,n ∩ [an(q)]2 = >q,n

For each n < ω let Q>n consists of all 〈pm | ω > m > n〉 such that for some 〈pk | k ≤ n〉
we have 〈pi | i < ω〉 ∈ Q.

Let G>n be a generic subset of Q>n. Define Q≤n to be the set of all sequences 〈pk | k ≤ n〉
such that for some 〈pm | ω > m > n〉 ∈ G>n we have 〈pi | i < ω〉 ∈ Q.

The next lemma is immediate.

Lemma 4.3 For each n < ω

1. the forcing Q>n is κ+
n+1-closed,

2. the forcing Q≤n satisfies κ++
n -c.c. in V Q>n,

3. Q ' Q>n ∗Q≤n.

Let G be a generic subset of Q. Work in V [G].

Set

¹=
⋃
{¹q,0| q ∈ G}.

Define P = 〈κ,¹ 〉.

Lemma 4.4 Let A ∈ V be a subset of κ+
n of cardinality κ+

n , for some n, 0 < n < ω. Then

cofP(A) = κ+
n .
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Proof. Suppose otherwise. Let B be a set of cardinality κn witnessing this. Using 4.3, we

can find such B ∈ V .

Work in V . Let q ∈ Q. Extend it to p with B ⊆ an(p). Then |an(p)| = κn. Pick some

α ∈ A \ (an(p) ∪ κn). Note that α 6∈ a0(p), since a0(p) ⊆ an(p). Extend p to r by adding to

it 〈α, β〉 ∈ >r,n for each β ∈ an(p).

Then, r will force in Q that α is not ≺ below any element of B. Thus, otherwise there will

be t ≥ r and β ∈ B so that β ∈ a0(t) and α ≺t,0 β. By Definition 4.1(3), then 〈α, β〉 6∈ >t,n,

which is impossible, since t ≥ r and 〈α, β〉 ∈ >r,n.

¤
In particular, the lemma above implies the following:

Lemma 4.5 cof(P) = κ.

Let us turn now to the fixed normal ultrafilters Un over κn’s.

Clearly they will not be anymore ultrafilters in V [G] and it is impossible to extend them

to normal ultrafilters there since 2ℵ0 > κ. But still Un’s turn to be good enough for our

purposes.

Let, for each n, 1 ≤ n < ω,

jn : V → Mn ' κnV/Un

be the canonical elementary embedding (in V ).

We will also consider iterated ultrapowers. Thus, for any n, 0 < n < ω, U≤n denotes the

ultrafilter over κ1 × ...× κn which is the product U1 × ...× Un. Let

j≤n : V → M≤n ' κ1×...×κnV/U≤n

be the canonical elementary embedding (in V ).

For every n,m, 0 < m < n < ω, let j≤m,≤n : M≤m → M≤n be the induced embedding.

Denote also by j≤0 the identity map, j≤n by j≤0,≤n and V by M≤0.

For each n, 0 < n < ω, and p ∈ j≤n(Q) let fp : κ1 × ... × κn → Q be a function which

represents p in M≤n. If 1 ≤ m < n and η ∈ κ1 × ...× κm then let fp,η : κm+1 × ...× κn → Q

be defined as follows:

fp,η(ν) = fp(η
_ν).

Then j≤m,≤n(fp,〈κ1,...,κm〉)(κm+1, ..., κn) = j≤n(fp)(〈κ1, ..., κn〉) = p.

Fix n, 1 ≤ n < ω. Denote by Q∗
<n the following set:

{p ∈ j≤n(Q) | ∃q ∈ Q≥n p = 〈p0, ..., pn−1〉_j≤n(q)}.
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I.e. it is the set of all elements p of j≤n(Q) such that 〈pn, pn+1, ...〉 is an image of an element

of Q≥n.

Recall that by 4.3(1), the forcing Q≥n is κ+
n -closed. Hence, it preserves the measurability

of κn, as well as all κm’s with 1 ≤ m ≤ n. Moreover, if G(Q≥n) is a generic subset of Q≥n,

then

G(j≤n(Q≥n)) = {t ∈ j≤n(Q≥n) | ∃q ∈ G(Q≥n) j≤n(q) ≥ t}
will be M≤n-generic subset of j≤n(Q≥n). Thus, if D ∈ M≤n is a dense open subset of

j≤n(Q≥n), then there will be fD which represents D such that for every 〈α1, ..., αn〉 ∈ κ1 ×
...× κn, fD(α1, ..., αn) is a dense open subset of Q≥n. Consider

E =
⋂

〈α1,...,αn〉∈κ1×...×κn

fD(α1, ..., αn).

It is a dense open subset of Q≥n by the closure of Q≥n. Pick some q ∈ E ∩ G(Q≥n). Then

j≤n(q) ∈ D and we are done.

Define now explicitly a projection π≤l,≤n from the forcing Q∗
<n to j≤l(Q), for each l < n.

This projection will be defined on a dense subset of Q∗
<n, rather than on Q∗

<n.

Definition 4.6 An element p of Q∗
<n is called separated iff for every β ∈ a0(p) there is β∗

such that

• j≤n(β∗) ∈ a0(p),

• let n(β) be the least l, 1 ≤ l < ω with β < j≤n(κ+
l ). Then n(β) = n(j≤n(β∗)).

• (γ, β) ∈ >p,m iff (γ, j≤n(β∗)) ∈ >p,m, for every γ ∈ am(p), m, 1 ≤ m ≤ n(β),

• (β, γ) ∈ >p,m iff (j≤n,(β
∗), γ) ∈ >p,m, for every γ ∈ am(p), m, 1 ≤ m ≤ n(β),

• γ ≺p,0 β implies γ ≺p,0 j≤n(β∗), for every γ ∈ a0(p),

• β ≺p,0 γ implies j≤n(β∗) ≺p,0 γ, for every γ ∈ a0(p).

Lemma 4.7 The set of separated conditions is dense in Q∗
<n.

Proof. Let q ∈ Q∗
<n. We construct a separated condition p ≥ q.

Let β ∈ a0(q). Pick some β∗ such that j≤n(β∗) ∈ j′′≤nκ
+
n(β) \ (an(β)(q) ∪ j≤n(κn(β))). Such β∗

exists since the set j′′≤nκ
+
m is unbounded in j≤n(κ+

m) = (j≤n(κm)+)M≤n , for any m, 1 ≤ m < ω,

and |an(β)(q)| ≤ j≤n(κn(β)).
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Extend q to p by adding β∗’s for each β ∈ a0(q) as follows.

Fix β ∈ a0(q). For each m,n(β) < m < ω, we add j≤n(β∗) to am(q), if it was not already

there without making any new commitments about >q,m.

Suppose now that 1 ≤ m ≤ n(β). Again we add j≤n(β∗) to am(q). Note that am(q) ⊆
an(β)(q), and hence j≤n(β∗) 6∈ am(q). Let γ ∈ am(q). We set

(γ, j≤n(β∗)) ∈ >p,m iff (γ, β) ∈ >q,m,

and

(j≤n,(β
∗), γ) ∈ >p,m iff (β, γ) ∈ >q,m.

Finally let m = 0. We add j≤n(β∗) to a0(q). Let γ ∈ a0(q). Set

γ ≺p,0 j≤n(β∗) iff γ ≺q,0 β,

and

j≤n(β∗) ≺p,0 γ iff β ≺q,0 γ.

Note that the choice of >p,m allows us to define ¹p,0 this way.

Now we preform the above construction inductively running on all β’s in a0(q).

¤
Denote by Q∗∗

<n the set of all separated elements of Q∗
<n.

Suppose that p = 〈pk | k < ω〉 ∈ Q∗∗
<n. Set for every l < n

π≤l,≤n(p) = 〈j−1
≤l,≤n”pm | m < ω〉.

Lemma 4.8 For each l < n, π≤l,≤n is a projection map.

Proof. Let p ∈ Q∗∗
<n and q = 〈qk | k < ω〉 ≥j≤lQ π≤l,≤n(p). Consider 〈j≤l,≤n

′′qk | k < ω〉.
We need to extend to a condition r ∈ Q∗

<n stronger than p. Set rk = (j≤l,≤n
′′qk) ∪ pk, for

each k, 0 < k < ω. Set a0(r) = (j≤l,≤n
′′a0(q))∪ a0(p). Note that j≤l,≤n

′′a0(q) = j≤l,≤n(a0(q)),

since a0(q) is finite. Define ¹r,0 to be the transitive of (j≤l,≤n(≺q,0))∪ ¹p,0, i.e.

α ¹r,0 β iff

1. α, β ∈ a0(p) and α ¹p,0 β, or

2. α, β ∈ j≤l,≤n(a0(q)) and j−1
≤l,≤n(α) ¹q,0 j−1

≤l,≤n(β), or

3. α ∈ j≤l,≤n(a0(q)) \ a0(p), β ∈ a0(p) \ j≤l,≤n(a0(q)) and there is γ ∈ a0(p)∩ j≤l,≤n(a0(q))

such that j−1
≤l,≤n(α) ¹a0(q) j−1

≤l,≤n(γ), γ ¹a0(p) β, or
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4. β ∈ j≤l,≤n(a0(q)) \ a0(p), α ∈ a0(p) \ j≤l,≤n(a0(q)) and there is γ ∈ a0(p)∩ j≤l,≤n(a0(q))

such that j−1
≤l,≤n(γ) ¹a0(q) j−1

≤l,≤n(β), α ¹a0(p) γ.

Note that the requirement (3) of Definition 4.1 is satisfied. Thus, suppose that α ¹r,0 β.

We need to check that 〈α, β〉 6∈ >r,n(α). We may assume that one of α, β is the image of an

element of a0(q) \ a0(π≤l,≤n(p)) and the other is in a0(p) \ j′′≤l,≤na0(p).

Suppose first that α ∈ j′′≤l,≤na0(q) \ a0(p) and β ∈ a0(p) \ j′′≤l,≤na0(p). There must be γ such

that j≤l,≤n(γ) ¹p,0 β and j−1
≤l,≤n(α) ¹q,0 γ. Turn to j≤n(β∗). We must have j≤l,≤n(γ) ¹p,0

j≤n(β∗), since p is separated. Hence, j−1
≤l,≤n(α) ¹q,0 j≤l(β

∗). Then, 〈j−1
≤l,≤n(α), j≤l(β

∗)〉 6∈
>q,n(α) and n(α) ≤ n(β∗). Finally, since p is separated, 〈α, β〉 ∈ >p,n(α) would imply that

〈α, j≤n(β∗)〉 ∈ >p,n(α) as well, which is impossible.

Suppose now β ∈ j′′≤l,≤na0(q) \ a0(p) and α ∈ a0(p) \ j′′≤l,≤na0(p). There must be γ such

that j≤l,≤n(γ) ºp,0 α and γ ¹q,0 j−1
≤l,≤n(β). Consider j≤n(α∗). We must have j≤l,≤n(γ) ºp,0

j≤n(α∗), since p is separated. Hence, j−1
≤l,≤n(β) ºq,0 j≤l(α

∗). Then, 〈j≤l(α
∗), j−1

≤l,≤n(β)〉 6∈
>q,n(α) and n(α) = n(α∗). Finally, since p is separated, 〈α, β〉 ∈ >p,n(α) would imply that

〈j≤n(α∗), β〉 ∈ >p,n(α) as well, which is impossible.

¤

Lemma 4.9 Let n < m < ω, α < κ+
n . Then the set

{β < κm | α ≺ β}

is Um-positive (in V [G]).

Proof. Suppose otherwise. Then there is Y ∈ Um such that α 6¹ β, for every β ∈ Y .

Work in V . Pick q ∈ Q forcing this statement. Let k, 0 < k ≤ n be the least such that

α < κ+
k .

Consider in Mm the condition jm(q). Then κm ∈ jm(κm)\jm(
⋃

i≤k aq,i), since |⋃i≤k aq,i| <
κm. Extend jm(q) to p as follows. Add α = jm(α) to ajm(q),i for each i ≤ k, if it was not

already there. If α 6∈ aq,0, then we set α ≺p,0 κm. Note that 〈α, κm〉 6∈ >p,k, even if α ∈ ak(p),

since κm is new. If α ∈ aq,0, then let us set γ ≺p,0 κm, for each γ ∈ aq,0 such that γ ¹q,0 α.

Note that, if γ ¹q,0 α, then either γ < ω1 or γ ≥ ω1 and then γ < κ+
k+1, by 4.1(3). So

〈γ, κm〉 6∈ >p,i, for each i ≤ k, even if γ ∈ ai(p), since κm is new.

Then, in Mm,

p ≥ jm(q) and p‖ jm(Q)α = jm(α) ≺ κm.
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But Y ∈ Um implies κm ∈ jm(Y ). Hence we have in Mm an element of jm(Y ) which is above

jm(α). Then, by the elementarity, there is an element of Y which is above α. Contradiction.

¤
Similar and unfortunately, the following holds as well.

Lemma 4.10 Let n < m < ω, α < κ+
n . Then the set

{β < κm | α ⊥ β}

is Um-positive.

Remark 4.11 Note that the proof of Lemma 4.9 provides a bit more information. Thus, if

r = jm(q) and α < κ+
n does not belong to aq,0, then r can be extended to a condition p by

either adding α ≺p,0 κm or α ⊥p,0 κm. Just Definition 4.1 puts no restrictions here.

Let us define now a forcing P similar to the diagonal Prikry forcing. Instead of sets of

measure one positive sets will be used. Also a small addition will be made in order to insure

that a countable cofinal subset will be added to P .

Definition 4.12 A sequence ~p = 〈p(0), p(1), ..., p(n), ...〉 will be called a good sequence iff

1. p(0) ∈ Q.

For every l, n, l < n < ω the following hold:

2. p(n) ∈ Q∗∗
<n,

3. π≤l,≤n(p(n)) ≤ p(l),

4. j≤l,≤n(p(l)) ≤ p(n),

5. there is n∗ < ω such that for every n ≥ n∗ we have a0(p(n)) = j′′≤n∗,≤na0(p(n∗)),

6. If α ∈ an(α)(p(l)), then for each k < ω big enough

j≤l,≤k(α) ∈ an(α)(p(k)) implies 〈j≤l,≤k(α), κk〉 6∈ >p(k),n(α),

where n(α) is the least n, 1 ≤ n < ω such that α < κ+
n .

Lemma 4.13 Let 〈p(n) | n < ω〉 be a good sequence. Then here are functions 〈fp(n) | 0 <

n < ω〉 such that
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1. for every n, 0 < n < ω, [fp(n)]U≤n
= p(n),

2. for every m, 1 ≤ m < ω and every sequence ~ν = 〈ν1, ..., νm〉 the sequence

〈fp(m)(~ν), [fp(m+1),~ν ]Um+1 , ..., [fp(k),~ν ]Um+1×...×Uk
, ... | m < k < ω〉

satisfies Definition 4.12 only the second member is in Mm+1 instead of M1, etc.

Proof. Note that for every m, 1 ≤ m < ω, the sequence 〈p(m + 1), p(m + 2), ..., p(n), ... |
m + 1 ≤ n < ω〉 ∈ M≤m. Just for each n, 1 ≤ n < ω we have p(n) ∈ M≤n, and given

m, 1 ≤ m < n < ω, M≤n ' M
j≤n(κm+1)×...×j≤n(κn)
≤m /j≤n(Um+1 × ...× Un).

If fp(n) represents p(n) in M≤n, i.e. [fp(n)]U1×...×Un , or equivalently j≤n(fp(n))(κ1, ..., κn) =

p(n), then

j≤m,≤n((j≤m(fp(n)))〈κ1,...,κm〉)(κm+1, ..., κn) = p(n).

Now the elementarity of the embeddings provides the desired conclusion.

¤
Given a good sequence ~p = 〈p(0), p(1), ..., p(n), ...〉 with p(0) ∈ G. We would like to

associate to it a tree T (~p) ⊆ [κ]<ω.

Define it level by level. Thus

SucT (~p)(〈〉) = {ν < κ1 | fp(1)(ν) ∈ G},

where fp(1) : κ1 → Q is the function given by Lemma 4.13 which represents p(1) in M1 = M≤1.

Suppose that the level k of the tree is defined and η = 〈η1, ..., ηk〉 is on this level. Set

SucT (~p)(η) = {ν < κk+1 | fp(k+1)(η
_ν) ∈ G},

where fp(k+1) : κ1× ...×κk×κk+1 → Q is the function given by Lemma 4.13 which represents

p(1) in M≤k+1.

The next lemma shows that such trees are wide.

Lemma 4.14 Let ~p = 〈p(0), p(1), ..., p(n), ...〉 be a good sequence with p(0) ∈ G and T (~p) be

the associated tree. Then for each η ∈ T (~p) the set SucT (~p)(η) is U|η|+1-positive.

Proof. We show the statement by induction on levels.

Let us prove first that SucT (~p)(〈〉) ∈ U+
1 . Suppose otherwise. Then there is A ∈ U1 such that

for every ν ∈ A we have fp(1)(ν) 6∈ G. Consider (in V ) the following set

D = {q ∈ Q | ∃ν ∈ A q ≥ fp(1)(ν) or ∀ν ∈ A q, fp(1)(ν) are incompatible }.
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Clearly, D is a dense subset of Q. So, G ∩ D 6= ∅. Pick some q ∈ G ∩ D, q ≥ p(0). Then

q is incompatible with each fp(1)(ν), ν ∈ A. Hence j1(q) is incompatible with p(1). This

contradicts Definition 4.12(3), since the projection of p(1) to Q is weaker than p(0).

Suppose now that η ∈ T (~p), η 6= 〈〉. Let us show that the set SucT (~p)(η) is U|η|+1-positive.

Suppose otherwise. Then there is A ∈ U|η|+1 such that for every ν ∈ A we have fp(|η|+1)(η
_ν) 6∈

G. Note that fp(|η|)(η) ∈ G by the definition of T (~p). Consider (in V ) the following set

D = {q ∈ Q | ∃ν ∈ A q ≥ fp,η(ν) or ∀ν ∈ A q, fp,η(ν) are incompatible }.

Clearly, D is a dense subset of Q. So, G∩D 6= ∅. Pick some q ∈ G∩D, q ≥ fp(|η|)(η). Then

q is incompatible with each fp,η(ν), ν ∈ A. Hence j|η|+1(q) is incompatible with [fp,η]U|η|+1
.

This contradicts Lemma 4.13, Definition 4.12(3), since the projection of [fp,η]U|η|+1
to Q is

weaker than fp(|η|)(η).

Definition 4.15 We call a tree T ⊆ [κ]<ω a good tree iff there is a good sequence ~p such

that T = T (~p).

If T is a good tree and η ∈ T , then denote by Tη the set

{η′ ∈ T | η′ ≥T η}.

We call such Tη’s good trees with trunk η.

Let be T a good tree, as witnessed by a good sequence ~p = 〈p(0), p(1), ..., p(n), ...〉, and η ∈ T

be a point from a level m. Consider the sequence

〈fp(m)(η), [fp(m+1),η]Um+1 , ..., [fp(n),η]Um+1×...×Un , ...〉.

Denote it by

~pη = 〈fp(m)(η), p(m + 1)η, ..., p(n)η, ...〉.
We call it a good sequence for Tη.

Definition 4.16 Let ~p = 〈p(n) | n < ω〉, ~q = 〈q(n) | n < ω〉 be good sequences. We set

~p ≥ ~q iff p(n) ≥ q(n), for each n < ω.

Definition 4.17 The forcing notion P consists of all pairs 〈η, T 〉 such that

1. η = 〈η1, ..., ηn〉 for some n < ω and η1 < κ1 < η2 < κ2 < ... < κn−1 < ηn < κn

2. T is a good tree with the trunk η.
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Definition 4.18 Let 〈η, T (~p)〉, 〈η′, T ′(~p′)〉 ∈ P . Set 〈η, T (~p)〉 ≤ 〈η′, T ′(~p′)〉 iff

1. η′ ∈ T (~p),

2. η′ is an end extension of η,

3. T ′(~p′) ⊆ T (~p),

4. ~pη′ ≤ ~p′.

Definition 4.19 Let 〈η, T 〉, 〈η′, T ′〉 ∈ P . Set 〈η, T 〉 ≤∗ 〈η′, T ′〉 iff

1. 〈η, T 〉 ≤ 〈η′, T ′〉,

2. η = η′.

Lemma 4.20 Let 〈p(0), p(1), ..., p(n), ... | n < ω〉 be a good sequence and q′(0) ≥ p(0). Then

there are 〈q(0), q(1), ..., q(n), ... | n < ω〉 such that

1. q(0) ≥ q′(0),

2. 〈q(0), q(1), ..., q(n), ... | n < ω〉 is a good sequence,

3. for each n < ω, q(n) ≥ p(n),

Proof. Combine j≤n(q′(0)) with p(n), for each n < ω, and turn the results into separated

conditions. Let us argue that (6) of Definition 4.12 can be easily satisfied. Thus, we need

to take care of α’s in a0(q
′(0)) \ a0(p(0)) such that j≤l(α) does not appear in an(α)(p(l)), for

1 ≤ l < ω. Given such α, we consider k’s above n(α). Then j≤k(α) 6∈ an(α)(p(k)). But then

we are free to set

〈j≤k(α), κk〉 6∈ >q(k),n(α).

Denote the result for each n < ω, by q(n). By the construction we have q(n) ≥ p(n).

¤
The following is a slightly more general statement with a similar proof.

Lemma 4.21 Let 〈p(0), p(1), ..., p(n), ... | n < ω〉 be a good sequence, l < ω and q′(m) ≥
p(m), for every m ≤ l. Then there are 〈q(0), ..., q(n), ... | n < ω〉 such that

1. q(0) = q′(0),

2. q(m) ≥ q′(m), for every m ≤ l,
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3. 〈q(0), q(1), ..., q(n), ... | n < ω〉 is a good sequence,

4. for each n < ω, q(n) ≥ p(n).

Force with 〈P,≤ 〉. Let 〈η1, ..., ηn, ...〉 be a generic sequence.

Lemma 4.22 The sequence 〈η1, ..., ηn, ...〉 is cofinal in P.

Proof. Work in V . Let ~p = 〈p(0), p(1), ..., p(n), ... | n < ω〉 be a good sequence and α < κ.

We may assume that α ∈ a0(p(0)), just otherwise extend ~p and add α.

Recall that a0(p(0)) is finite. So there are only finitely many elements of a0(p(0)) below α

in the order ¹p(0),0. Let 〈αi | i ≤ i∗〉 be an enumeration of all these elements with αi∗ = α.

By Definition 4.12 (6) there is k∗ < ω such that for every k, k∗ ≤ k < ω, i ≤ i∗

〈j≤k(αi), κk〉 6∈ >p(k),n(αi).

Use now (5) of Definition 4.12 and find n∗ < ω such that for every n ≥ n∗ we have a0(p(n)) =

j′′≤n∗,≤na0(p(n∗)).

Pick any k, k∗ + n∗ ≤ k < ω. Consider a0(p(k)). By Definition 4.12, j≤k(αi) ∈ a0(p(k)), for

every i ≤ i∗, but κk 6∈ a0(p(k)), since κk 6∈ j′′≤n∗,≤kκk, as the critical point of jk with k > n∗.

On the other hand we have 〈j≤k(αi), κk〉 6∈ >p(k),n(αi). Hence it is possible to extend p(k) to

some q(k) by adding κk to each am(p(k)) ( m < ω) and setting

j≤κk
(αi) ≺q(k),0 κk,

for each i ≤ i∗. Finally we find a good sequence above ~p which accommodates q(k) using

4.20, 4.21.

¤
The main issue now will be to show that the forcing P preserves cofinalities or which is

equivalent here- preserves cardinals.

Lemma 4.23 The forcing Q ∗ 〈P∼,≤,≤∗ 〉 satisfies the Prikry Property, i.e. for every state-

ment σ and 〈p, 〈η, T∼〉〉 ∈ Q ∗ P∼ there are q, R∼ such that

• p ≤Q q,

• q‖ Q〈η, T∼〉 ≤
∗ 〈η, R∼〉

• 〈q, 〈η, R∼〉〉‖σ
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Proof. Let σ be a statement and 〈〈p, 〈η, T∼〉〉 ∈ Q ∗ P∼. Suppose for simplicity that η is the

empty sequence.

Let ~p = 〈p(0), p(1), ..., p(n), ...〉 be a good sequence with T (~p) = T and p(0) ≥ p.

For each ν < κ1 we define by induction a sequence ~r(ν) = 〈r(1, ν), r(2, ν), ..., r(n, ν), ... | 1 ≤
n < ω〉 by induction as follows.

Suppose that for each ν ′ < ν the sequence ~r(ν ′) is defined. Define ~r(ν).

Case 1. ν = ν ′ + 1.

Consider first the sequence ~r∗(ν ′) = 〈r∗(1, ν ′), ..., r∗(n, ν ′)... | 1 ≤ n < ω〉 which is obtained

from ~r(ν ′) as follows:

• for each 1 ≤ k < ω, let (r∗(k, ν ′))0 = j≤k
′′p(k)0;

• for each k,m < ω, 1 ≤ k, m let (r∗(k, ν ′))m = (r(k, ν ′))m.

Set

~r(ν) = ~r∗(ν ′),

unless there is a good sequence 〈r′(n) | n < ω〉 such that

• 〈r′(n) | n < ω〉 ≥ ~r∗(ν ′),

• r′(1)〈ν〉‖ Q(〈ν, T∼(〈r′(2)〈ν〉, ..., r′(n)〈ν〉, ... | 2 ≤ n < ω〉)〉‖σ).

In this case let ~r(ν) be such a sequence.

Case 2. ν is a limit ordinal.

Then we define first a sequence ~r∗(ν) as follows:

• for each 1 ≤ k < ω, let (r∗(k, ν))0 = j≤k
′′p(k)0;

• for each k,m < ω, 1 ≤ k, m let (r∗(k, ν))m =
⋃

ν′<ν(r(k, ν ′))m.

Set

~r(ν) = ~r∗(ν),

unless there is a good sequence 〈r′(n) | n < ω〉 such that

• 〈r′(n) | n < ω〉 ≥ ~r∗(ν),

• r′(1)〈ν〉‖ Q(〈ν, T∼(〈r′(2)〈ν〉, ..., r′(n)〈ν〉, ... | 2 ≤ n < ω〉)〉‖σ).

In this case let ~r(ν) be such a sequence.

Define ~r∗(κ1) as in Case 2 above. Let ν < κ1. Denote by ~r∗(κ1)
_ν the sequence

〈~r∗(κ1)
_ν(n) | 1 ≤ n〉 such that
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• for each 1 ≤ k < ω, (~r∗(κ1)
_ν(k))0 = r(k, ν)0;

• for each k,m < ω, 1 ≤ k, m let (~r∗(κ1)
_ν(k))m = (r∗(k, κ1))m.

Now we have the following:

for each ν < κ1, if there is a good sequence 〈r′(n) | n < ω〉 such that

• 〈r′(n) | n < ω〉 ≥ ~r∗(κ1)
_ν,

and

• r′(1)〈ν〉‖ Q(〈ν, T∼(〈r′(2)〈ν〉, ..., r′(n)〈ν〉, ... | 2 ≤ n < ω〉)〉‖σ),

then

~r∗(κ1)
_ν(1))〈ν〉‖ Q(〈ν, T∼(〈~r∗(κ1)

_ν(2)〈ν〉, ..., ~r∗(κ1)
_ν(n)〈ν〉, ... | 2 ≤ n < ω〉)〉‖σ).

This defines a splitting of κ1 into three sets. By shrinking to a set in U1, if necessary, we

assume that every ν < κ1 is in the same part of the partition.

Suppose that we are in the situation in which σ is forced by every ν < κ1. Define then a

good sequence ~q = 〈q(n) | n < ω〉 which is above ~p and forces σ, i.e.

q(0)‖ Q(〈〈〉, T (~q)〉‖ σ).

Thus,

• for each m, 1 ≤ m < ω set q(1)m = j1((r∗(1, κ1))m),

• (q(0))0 = π≤0,≤1
′′[〈r(1, ν)0 | ν < κ1〉]U1 ;

• for each 1 ≤ k < ω, (q(k))0 = π≤k,≤k+1
′′[〈r(k + 1, ν)0 | ν < κ1〉]U1 ;

• for each k,m < ω, 1 ≤ k, m let q(k + 1)m = j1((r∗(k, κ1))m).

If σ is not decided a set of ν’s in U1, then we proceed similar, but deal with pairs

〈ν1, ν2〉 ∈ κ1 × κ2, triples 〈ν1, ν2, ν3〉 ∈ κ1 × κ2 × κ3 etc., instead of ν ∈ κ1. At certain

level a decision about σ will be made and then we will be able to go back down and the

contradiction will be derived.

¤
Our final goal will be to show that the forcing with P over V [G] preserves cofinalities.

The usual Prikry argument does not work here directly due to the lack of closure (beyond

ℵ1). The idea will be to redo the proof of the Prikry property while splitting Q into Q>n

and Q≤n, such that Q>n has enough closure and Q≤n satisfies enough chain condition.

Let us start by showing that all cardinals below κ1 (and then also κ1 are preserved.
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Lemma 4.24 〈P,≤ 〉 preserves all the cardinals below κ1.

Proof. Work in V with Q ∗ P . Let µ < λ < κ1 be cardinals, λ a regular cardinal and let h∼
be a Q ∗ P name of a function from µ to λ, as forced by the weakest condition.

Let ~p be a good sequence. As in Lemma 4.23 we find a good sequence ~q00 ≥ ~p and δ00 < λ

such that

q(0)00‖ Q(〈〈〉, T (~q00〉‖ h∼(0) = δ00).

Note that λ < κ1 and so the number of possible values for h∼ is bounded in κ1. Hence on the

set in U1 we will have the same value.

One can try now to do the same with h∼(1). But as a result ~q00 may increase. If we continue

further and go through all h∼(n), then due to the luck of closure of Q≤0 (recall that conditions

there are just finite) there may be no single condition stronger than all the constructed in

the process.

Let us instead continue to deal with h∼(0) and find ~q0 ≥ ~p and δ0 such that

• q(0)0‖ Q(〈〈〉, T (~q0〉‖ h∼(0) ≤ δ0).

• q(k)0
0 = p(k)0, for each k < ω

It is not hard to do just using (5) of Definition 4.12 and c.c.c. of Q≤0 and its images.

Just run the argument of 4.23 enough (< ω1) times.

Now, with ~q0 and δ0 we continue to h∼(1). Define similar ~q1 and δ1 so that

• ~q1 ≥ ~q0,

• q(0)1‖ Q(〈〈〉, T (~q1〉‖ h∼(1) ≤ δ1),

• q(k)1
0 = p(k)0, for each k < ω

Continue and define for each m < ω, ~qm and δm so that

• ~qm ≥ ~qm−1,

• q(0)m‖ Q(〈〈〉, T (~qm〉‖ h∼(m) ≤ δm),

• q(k)m
0 = p(k)0, for each k < ω

Finally, we can now put all this ~qm’s together. There is a good sequence ~q such that

• ~q ≥ ~qm, for every m < ω,
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• q(0)‖ Q(〈〈〉, T (~q〉‖ h∼(m) ≤ δm), for every m < ω.

So we constructed a condition above ~p which bounds h∼ by
⋃

m<ω δm < λ.

¤

Lemma 4.25 The forcing 〈P,≤ 〉 preserves all the cofinalities of ordinals.

Proof. It is enough to show that each regular cardinal λ < κ is preserved. If λ ≤ κ1, then

this is done above in Lemma 4.24. Assume that λ > κ1. Pick n, 2 ≤ n < ω to be the least

such that λ < κn.

Let µ < λ. Let h∼ be a Q ∗ P name of a function from µ to λ, as forced by the weakest

condition.

We make a non-direct extension first - just pick some 〈ν1, ..., νn−1〉 ∈ κ1× ...×κn−1 and work

above them. This way we will left only with ultafilters which are at least κn-complete.

Now we can repeat the proof of 4.24 only instead of c.c.c. we will use κ++
n−1-c.c. of the relevant

forcing. Note that κ++
n−1 < κn, so we have enough completeness to run the argument.

¤

5 Cofinality changeable poset over ℵω.

It is possible using same ideas to construct a cofinality changeable poset over ℵω. Thus use

the product of the Levy collapses to turn κ1 into ℵ3, κ2 into ℵ6,...,κn into ℵ3m,.... Then force

with Q as above and add a poset P . The filters generated by Un’s can be used to produce a

Prikry sequence cofinal in P . The proof that all the cardinals are preserved is similar to the

argument above, only instead of sets in Un’s we shrink now to Un-positive ones.
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