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1 One difference between gap 3 and higher gaps

Let P ′(3) denotes the preparation forcing for the gap 3. Let G be a generic subset of P ′(3).

Consider

S = {A | ∃〈〈A0κ+

, A1κ+

, Cκ+〉, A1κ++〉 ∈ G A = A0κ+}.
It was shown that S is a stationary subset of [H(κ+3]≤κ+

. Let us point out in addition

the following:

Proposition 1.1 If A,B ∈ S and otp(A∩κ+3) = otp(B∩κ+3), then A and B are isomorphic

by an isomorphism which is an identity over A ∩B.

Proof. Induction on walks complexity.

¤
The purpose of this note will be to show that this proposition fails already in the gap 4

case.

Theorem 1.2 Let λ < µ be cardinals such that

1. µ is regular,

2. λ++ < µ,

3. 2λ = λ+,

4. for every δ, λ+ < δ < µ, δλ+
= δ.

Suppose that S is an unbounded subset of [H(µ)]λ.

Then there are A,B ∈ S with otp(A ∩ µ) = otp(B ∩ µ), but the isomorphism between A and

B is not the identity on A ∩B.

1



Proof. Suppose otherwise. Let S be an unbounded subset of [H(µ)]λ witnessing this.

Consider a sequence 〈Mα | α < µ〉 such that for every α < µ

1. 〈Mα,∈, <, Mα ∩ S〉 ≺ 〈H(µ),∈, <, S〉,

2. |Mα| = λ+,

3. Mα ⊇ λ+,

4. λMα ⊆ Mα,

5. β 6= α implies Mβ 6= Mα.

Form a ∆-system and shrink the sequence 〈Mα | α < µ〉 to a sequence 〈Mα | α ∈ Z〉 such

that for every α, β ∈ Z, α < β the following hold:

1. Mα ∩ α = Mβ ∩ β,

2. sup(Mα ∩ µ)β,

3. 〈Mα,∈, <, Mα ∩ S〉 ' 〈Mβ,∈, <, Mβ ∩ S〉 and the isomorphism is the identity on the

common part.

Fix some α 6= β in Z. Pick an ordinal τ ∈ Mα above sup(Mα ∩Mβ ∩ µ).

Now we use unboundedness S and find A ∈ S with τ, πMα,Mβ
(τ) ∈ A.

Consider A ∩ Mα. This set belongs to Mα, since Mα is closed under λ-sequences of its

elements. By elementarity it is possible to find Aα ∈ Mα such that

• Aα ⊇ Mα ∩ A,

• otp(Aα ∩ µ) = otp(A ∩ µ),

• Aα ∈ S.

Set Aβ = πMα,Mβ
(Aα). Then otp(Aα ∩ µ) = otp(Aβ ∩ µ) and Aβ ∈ S, by (3) above. Note

also that the isomorphism πAα,Aβ
is just πMα,Mβ

(Aα) ¹ Aα. By (1) above and the choice of τ

we have Aα ∩Aβ ∩ µ ⊆ Aα ∩ τ . Hence τ ′ := πAα,Aβ
(τ) 6= τ . But πAα,Aβ

(τ) = πMα,Mβ
(τ) and

the last component is in A. So, τ ′ ∈ A ∩ Aβ.

Now,

πA,Aβ
(τ) = πAα,Aβ

(πA,Aα(τ)).
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But τ ∈ A ∩ Aα, A, Aα ∈ S, so πA,Aα(τ) = τ . Then

πA,Aβ
(τ) = πAα,Aβ

(τ) = τ ′.

Which is impossible, since τ ′ ∈ A ∩ Aβ, A,Aβ ∈ S and τ 6= τ ′.

¤
Without GCH type assumptions it looks like the theorem above consistently fails. Thus

one can try to use a ”baby ” version of the arbitrary gap preparation forcing:

〈〈A0τ , A1τ 〉 | τ ∈ s〉,
with only requirement that models of the same order type are isomorphic over their inter-

section.

We do not know if for the gap 3 always there is S as in Proposition 1.1 (or even only

unbounded set like this). Our conjecture will be -no. On the other hand in L-like models it

may exist due to morass structures inside.

Note also that once we have such S, then it is quite hard to eliminate it. Cardinals should

be collapsed or change their cofinality.

2 The Preparation Forcing

We assume GCH. Fix two cardinals κ and θ such that κ < θ and θ is regular.

We define a set which is parallel to P ′′ of Gap 3, i.e. the set of central lines.

Definition 2.1 The set P ′′′ consists of sequences of the form 〈Cτ | τ ∈ s〉 such that

1. s is a closed set of cardinals from the interval [κ+, θ] satisfying the following:

(a) |s ∩ δ |< δ for each inaccessible δ ∈ [κ+, θ]

(b) κ+, θ ∈ s

(c) if ρ+ ∈ s and ρ ≥ κ+, then ρ ∈ s

(d) if ρ ∈ s is singular, then s is unbounded in ρ and ρ+ ∈ s.

If there is no inaccessible cardinals inside the interval [κ+, θ], then s can be taken to

be the set of all the cardinals of this interval.
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2. For every τ ∈ s, Cτ is a continuous closed chain of a length less than τ+ of elementary

submodels of 〈H(θ+),∈, <,⊆, κ〉 each of cardinality τ

such that

(a) for each element X ∈ Cτ we have X ∩ τ+ ∈ On and, hence X ⊇ τ ,

Further we shall denote otp(X ∩ θ+) by simply otp(X).

(b) If X ∈ Cτ and there is Y ∈ Cρ, Y ⊃ X, for some ρ ∈ s \ τ + 1, then there is

Y ∈ Cτ∗ , Y ⊃ X such that for each ρ ∈ s \ τ + 1 if Z ∈ Cρ and Z ⊃ X, then

Z ⊇ Y , where τ ∗ = min(s \ τ + 1).

(c) If X is a non-limit element of the chain Cτ then

i. Cτ ¹ X := {Y | Y ⊂ X,Y ∈ Cτ} ∈ X,

ii. cof(τ)>X ⊆ X,

iii. if for some ρ ∈ s, ρ > τ we have Y ∈ Cρ with sup(Y ) ≥ sup(X), then X ⊆ Y ,

iv. if for some ρ ∈ s, ρ > τ we have Y ∈ Cρ with sup(Y ) < sup(X), then there

are ρ′ ∈ (s \ ρ)∩X and Y ′ ∈ Cρ′ ∩X such that Y ′ ⊇ Y and Y ∩X = Y ′ ∩X.

Note that ρ′ = ρ, unless there are inaccessible cardinals.

v. If ξ ∈ (s \ τ + 1) ∩X and Cξ ∩X 6= ∅, then

⋃
{Y ∈ Cξ | Y ∈ X} ∈ X.

Denote this union by (X)ξ.

Note that if for some τ ∈ s, ξ ∈ s∩ τ and Z ∈ Cτ there is no ρ ∈ s\ τ, A ∈ Cξ

with (A)ρ defined and so that Z ⊆ (A)ρ, then Z ⊇ B for each B ∈ Cξ.

Since, if for some B ∈ Cξ we have sup(Z ∩ θ+) < sup(B ∩ θ+), then, by the

condition (iv) above, there are ρ ∈ s \ τ, Y ∈ Cρ ∩ B such that Z ⊆ Y and

Z ∩B = Y ∩B. So, (B)ρ exists and Z ⊆ (B)ρ.

vi. 〈Cξ ∩ (X)ξ | ξ ∈ s \ τ +1, (X)ξ is defined 〉 ∈ X. ?It implies the previous one.

3. If 〈ξj | j < i〉 is an increasing sequence of elements of s, ξ =
⋃

j<i ξj and 〈Xj | j < i〉 is

an increasing (under the inclusion) sequence such that Xj ∈ Cξj for each j < i, then

X =
⋃

j<i Xj is in Cξ.

The next set will be needed here in order to define a ∆-system type triple.
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Definition 2.2 The set P ′′ consists of all sequences of triples

〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s〉

such that for every τ ∈ s the following hold:

1. |A1τ | ≤ τ ,

2. A0τ ∈ A1τ ,

3. every X ∈ A1τ is either equal to A0τ or belongs to it,

4. Cτ : A1τ → P (A1τ ),

5. 〈Cτ (A0τ ) | τ ∈ s〉 ∈ P ′′′,

6. (Coherence)

if X, Y ∈ Cτ (A0τ ) and X ∈ Cτ (Y ), then Cτ (X) is an initial segment of Cτ (Y ) with X

being the largest element of it.

7. Let B ∈ Cτ (A0τ ) and s′ = {ρ ∈ s ∩ τ | ∃X ∈ Cρ(A0ρ) X ⊆ B}. For each ρ ∈ s′ let

Bρ be the largest element of Cρ(A0ρ) contained in B. Then

〈Cρ(Bρ) | ρ ∈ s′〉_〈Cτ (B)〉_〈Cξ(A0ξ) | ξ ∈ s \ τ + 1〉 ∈ P ′′′.

Now we define ∆-system type triples. The definition is more involved than those in the

gap 3 case. The basic reason is that instead of using a single central line consisting of ordinals

there, we may have here many other central lines. Over each of them ∆-system type triple

may appear (thus, for example for the gap 4: there will be ∆-system type triples for κ+

relatively to lines of models of cardinality κ++, and those of cardinality κ++ relatively to

lines of cardinality κ+3, i.e. ordinals). We define simultaneously also switching using the

induction on the rank of sets.

Definition 2.3 Suppose that p = 〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s〉 ∈ P ′′, F ∈ Cτ (A0τ ), for some

τ ∈ s, τ < θ and F0, F1 ∈ F . We say that the triple F0, F1, F is of ∆-system type iff

1. F0 is the immediate predecessor of F in Cτ (A0τ )

2. F1 ≺ F ,

3. if for some ρ ∈ s, ρ > τ we have Y ∈ Cρ(A0ρ) with sup(Y ) ≥ sup(F1), then F1 ⊆ Y ,
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4. if for some ρ ∈ s, ρ > τ we have Y ∈ Cρ(A0ρ) with sup(Y ) < sup(F1), then there are

ρ′ ∈ (s \ ρ) ∩ F1 and Y ′ ∈ Cρ′(A0ρ′) ∩ F1 such that Y ′ ⊇ Y and Y ∩ F1 = Y ′ ∩ F1.

Here we need to consider two possibilities: τ+ ∈ s or τ+ 6∈ s and then min(s \ τ + 1) is

an inaccessible cardinal. Let shall treat both possibilities similar. Denote min(s\τ +1)

by τ ∗. So τ ∗ is either τ+ or τ ∗ is an inaccessible.

5. There is Hi ∈ A1τ∗∩Fi which the maximal under inclusion, where i ∈ {0, 1}. Moreover

H0 ∈ Cτ∗(A0τ∗).

Note that we do not require that also H1 is in Cτ∗(A0τ∗). The reason is that, already

in the gap 4 case, H1 may correspond to some H ′
1 ∈ Cτ∗(A0τ∗) as a ∆-system triple,

but F1, πH′
1,H1

(F0) are not of a ∆-system type.

6. There are G0, G1 ∈ A1τ∗ ∩ F such that

(a) cof(G0 ∩ (τ ∗)+) = cof(G1 ∩ (τ ∗)+) = τ ∗,

(b) G0 ∈ F0 and G1 ∈ F1

(c) F0 ∩ F1 = F0 ∩G0 = F1 ∩G1,

(d) either G0 ∈ G1 or G1 ∈ G0,

(e) there is a switch of p \ τ + 1 := 〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s \ τ + 1〉 which involves

models only with supremums below max(sup(F0∩ θ+), sup(F1∩ θ+)) which leaves

H0 on the central line for τ ∗ and moves H1, G0, G1 to the central line. Moreover,

all the models involved in the switch are in F .

Here we use the induction on the ranks of sets.

Further let us call G0, G1 the witnessing models for F0, F1, F .

? May be add also H0, H1 and the models used in the switch.

The next condition will require more similarity:

7. (isomorphism condition)

the structures

〈F0,∈, <,⊆, κ, τ, Cτ (F0), 〈A1ρ ∩ F0 | ρ ∈ (s \ τ) ∩ F0〉, 〈Cρ ¹ A1ρ ∩ F0 | ρ ∈ s \ τ〉, fF0〉

and

〈F1,∈, <,⊆, κ, τ, Cτ (F1), 〈A1ρ ∩ F1 | ρ ∈ (s \ τ) ∩ F1〉, 〈Cρ ¹ A1ρ ∩ F1 | ρ ∈ s \ τ〉, fF1〉
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are isomorphic over F0 ∩ F1, i.e. the isomorphism πF0F1 between them is the identity

on F0 ∩ F1, where fF0 : τ ←→ F0, fF1 : τ ←→ F1 are some fixed in advance bijections.

In particular, we will have that otp(F0) = otp(F1) and F0 ∩ τ ∗ = F1 ∩ τ ∗.

Note that here we use Cρ ¹ A1ρ ∩Fi (i < 2). In the gap 3 case we had only A1κ++
, but

it was just an increasing sequence and so served as a replacement of Cκ++
as well.

8. ?For each ξ ∈ s, if X ∈ A1ξ (?or X ∈ Cξ(A0ξ)) and X ⊇ F0, F1, then X ⊇ F .

Define the switch q of p by F0, F1, F to be

〈〈A0ξ, A1ξ, Dξ〉 | ξ ∈ s〉,
where Dξ, for ξ ∈ s \ τ + 1 is determined by switching in p \ τ + 1 below max(sup(F0 ∩
θ+), sup(F1 ∩ θ+)) which turns Cτ∗(H1) into an initial segment of τ ∗-central line. Dτ (F ) =

Cτ (F1)
_F and Dτ (A0τ ) = Dτ (F )_〈X ∈ Cτ (A0τ ) | X ⊃ F 〉. The rest is defined in the

obvious fashion by taking images under isomorphisms πF0,F1 etc.

Further let denote such q by swt(p, F ).

Denote by swt(p,B1, . . . , Bn) the result of an application of the switch operation n-times:

pi+1 = swt(pi, Bi), for each 1 ≤ i ≤ n, where p1 = p and swt(p,B1, . . . , Bn) = pn+1.

Note that there is no ∆-system type triples in the cardinality θ.

Now we define the preparation forcing P ′.

Definition 2.4 The set P ′ consists of elements of the form

〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s〉

so that the following hold:

1. 〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s〉 ∈ P ′′,
We call Cτ (A0τ ) τ -central line of 〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s〉.
The following conditions describe a special way in which A1τ is generated from the

central line, for each τ ∈ s.

2. Let B ∈ A1τ . Then B ∈ Cτ (A0τ ) (i.e. it is on the central line) or there there is a finite

sequence w(B) of models in
⋃

ρ∈s\τ A1ρ that terminates with B. We call this sequence

a walk to B and define it recursively as follows.

7



If B ∈ Cτ (A0τ ), then w(B) = 〈B〉. If B 6∈ Cτ (A0τ ), then pick the least element

A ∈ Cτ (A0τ ) with B ∈ A. It will be the first element of the walk to B.

In general, suppose that the walk w(B) reaches a point A in A1τ and B 6∈ Cτ (A).

The following possible continuations are allowed. The walk to B terminates once B is

reached.

First Continuation.

There are models A0, A1 ∈ A ∩ A1τ such that

(a) the triple A0, A1, A is of a ∆-system type with respect to 〈〈A0ξ, A1ξ, Cξ〉 | ξ ∈ s\τ〉,
(b) A0 ∈ Cτ (A),

(c) B ∈ A1 ∪ {A1}.

Then we add A0, A1 and the models witnessing the ∆ system to w(B).

The walk continues from A1.

Second Continuation.

There are ρ ∈ s ∩ A, ρ > τ and F0, F1, F ∈ A1ρ ∩ A so that

(a) F0, F are on the central line relatively to A, i.e. once we make the switches along

the walk up to A which move A to the central line, then F0, F move their as well;

other way to state this: if Z is the largest model of A1ρ ∩A, then F0, F ∈ Cρ(Z).

In particular, if A is the first model of the walk or only the first continuation was

used on the way to A, then F0, F ∈ Cρ(A0ρ).

(b) the triple F0, F1, F is of a ∆-system type with respect to 〈〈A0ξ, A1ξ, Cξ〉 | ξ ∈ s\ρ〉
with witnessing pair of models G0, G1 in A,

(c) there is no η ∈ s \ τ and Z ∈ A1η such that F ∈ Z ∈ A.

This condition insures a kind of minimality of A above F .

(d) A− ∈ F0 and B ⊆ πF0,F1 [A
−], where A− denotes the immediate predecessor of A

in Cτ (A).

We add then F0, F1, F , models witnessing the ∆-system, A− and πF10,F11 [A
−] to w(B).

The walk continues from πF10,F11 [A
−].

In this case we use directly F0, F1 to move a model A− from Cτ (A) to one that contains

B. In other words a switch is preformed using models of cardinality above τ .
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If one does not care about GCH, then there is no need in additional possibility. The

further arguments work parallel to the gap 3 case. But already for the gap 4 (i.e. if

θ = κ+3), we will have 2κ++
= κ+4 in a generic extension by P ′.

Let us allow further possibilities in order to preserve GCH.

Third Continuation.

There are ρ ∈ s ∩ A, ρ > τ ,F0, F1, F ∈ A1ρ ∩ A, A0, A
′
0, A1 ∈ A ∩ A1τ so that

(a) F0, F1, F ∈ A1,

(b) F is on the central line relatively to A1, i.e. once we make the switches along

the walk up to A which move A to the central line, then F moves their as well;

other way to state this: if Z is the largest model of A1ρ ∩ A1, then F ∈ Cρ(Z).

In particular, if A is the first model of the walk or only the first continuation was

used on the way to A, then F ∈ Cρ(A0ρ).

(c) the triple F0, F1, F is of a ∆-system type with respect to 〈〈A0ξ, A1ξ, Cξ〉 | ξ ∈ s\ρ〉
with witnessing pair of models G0, G1 in A,

(d) A0, A1, A is of a ∆-system type,

(e) A0 ∩ A1 = A1 ∩ F0, i.e. F0 is one of the ∆-system witnesses.

(f) A′
0 = πF0,F1(A0),

(g) for every Z ∈ Cτ (A1) either F0, F1, F ∈ Z or Z ∈ F0 (and then in A0 ∩ A1),

(h) if M ∈ Cτ (A1) is the least with F ∈ M , then there is no η ∈ s \ τ and Z ∈ A1η

such that F ∈ Z ∈ M ,

(i) B ⊆ A′
0 \ (A0 ∪ A1).

We add then F0, F1, F, A0, A
′
0, A1, models witnessing the ∆-system to w(B).

The walk continues from A′
0.

Further we shall refer to models A0, A1 of the first continuation, A− of the second

and A0, A
′
0, A1 of the third as the immediate predecessors of A (?probably better: true

immediate predecessors). There may be other ∈-immediate predecessors of A which

can be generated in the last case below, but the most important will be the described

above.

Fourth Continuation.

There are A0, A1 ∈ A1τ ∩ A,ρ ∈ s ∩ A, ρ > τ , T0, T1, T ∈ A1ρ ∩ A such that
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(a) A0, A1, A are of a ∆-system type,

(b) A1 is above A0 in the ∆-system, i.e. if F0 ∈ A0, F1 ∈ A1 are the witnessing

models, then F0 ∈ F1 and so F1 ⊇ A0.

(c) T0, T1, T are of a ∆-system type,

(d) T0, T1, T ∈ A1,

(e) T0, T are on the central line relatively to A1, i.e. once we make the switches along

the walk up to A1 which move A1 to the central line, then T0, T move their as well;

other way to state this: if Z is the largest model of A1ρ∩A1, then T0, T ∈ Cρ(Z).

In particular, if A is the first model of the walk or only the first continuation was

used on the way to A, then F ∈ Cρ(A0ρ).

(f) for every Z ∈ Cτ (A1) either T0, T1, T ∈ Z or Z ∈ T0,

(g) if M ∈ Cτ (A1) is the least with F ∈ M , then there is no η ∈ s \ τ and Z ∈ A1η

such that F ∈ Z ∈ M ,

(h) A0 ∈ T0,

(i) B ⊆ πT0,T1(A0).

We add all the relevant models above, i.e. A0, A1, T0, T1, T, F0, F1, πT0,T1(A0) etc. to

w(B). Continue further from πT0,T1(A0).

This case formally speaking includes the third one. Thus, for example, let T0 =

F0, T1 = F1, for F ’s as in the third one and B = πF0,F1(A0) = A′
0. But note that here

T ’s need not be the witnesses of A0, A1, A, also they may be of a large cardinality than

those of the witnesses.

The next two conditions strengthen a bit the isomorphism condition (7) of Definition

2.3.

3. (isomorphism condition 1) Let F0, F1, F ∈ A1τ be of a ∆-system type and X ∈ A1τ .

Then X ∈ F0 iff πF0F1 [X] ∈ F1 ∩ A1τ .

4. (isomorphism condition 2) Let F0, F1, F ∈ A1τ be of a ∆-system type, F0, F ∈ Cτ (A0τ ).

If for some ξ ∈ s ∩ τ , A1ξ ∩ (F1 \ F0) 6= ∅, then F ∈ A0ξ and for each X ∈ Cξ(A0ξ)

either F0, F1, F ∈ X or X ∈ F0.

We require the following for such ξ:

• for every Y ∈ A1ξ, Y ∈ F0 iff πF0F1 [Y ] ∈ F1 ∩ A1ξ.
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The above condition is a new strong requirement which restricts largely the number

possibilities to move small models via ∆-system triples.

If one do not care about GCH, then we require the above only for Y ’s which are in the

least X ∈ Cξ(A0ξ) with F ∈ X. We do not move the rest of Y ’s from F0 to F1. Just

the lack of the third possibility in (2) prevents such moving. Here basically the place

where GCH breaks. Thus F0 and F1 will have different sets of elements of A1ξ inside.

5. Let F0, F1, F ∈ A1τ be of a ∆-system type, F0, F ∈ Cτ (A0τ ). Suppose that ξ ∈ s ∩ τ ,

(A0ξ)τ exists and (A0ξ)τ ⊇ F0. Let X ∈ Cξ(A0ξ) be the least with (X)τ ⊇ F0. Then

(X)τ ⊇ F .

The meaning of this condition is that it is impossible to have a small model in between

models of a ∆-system type of larger cardinality. It will not be very restrictive for our

further purposes, since we will be always able to increase first elements of P ′ by adding

models of cardinality τ at the top, and only then to make a ∆-system type triple.

The next condition is relevant once inaccessibles are present.

6. Let F0, F1, F ∈ A1τ be of a ∆-system type, F0, F ∈ Cτ (A0τ ). Suppose that ξ ∈ s ∩ τ ,

X ∈ Cξ(A0ξ), for some ρ ∈ s \ τ , (X)ρ exists and (X)ρ ⊇ F0. Then (X)ρ ⊇ F .

7. (uniqueness) Let F0, F1, F
′
1, F ∈ A1τ . If both triples F0, F1, F and F ′

0, F
′
1, F are of a

∆-system type, then {F0, F1} = {F ′
0, F

′
1}.

Note that conditions 3,4 and 7 can be stated equivalently only in the case when F is

on the central line.

The following lemma follows directly from the definition.

Lemma 2.5 Let 〈〈A0ξ, A1ξ, Cξ〉 | ξ ∈ s〉 ∈ P ′. Then A1θ is a chain.

Proof. Just note that we have no ∆-system triples in the cardinality θ. Hence each model

in A1θ is on the θ-central line, i.e. on Cθ(A0θ).

¤

Lemma 2.6 Let 〈〈A0ξ, A1ξ, Cξ〉 | ξ ∈ s〉 ∈ P ′ and B ∈ A1κ+
. Then it is possible to move B

to the κ+-central line using finitely many switches.

Proof. Consider the walk from A0κ+
to B. Use induction on its length and make switches to

make it into the central line.

¤
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Let p = 〈〈A0ξ, A1ξ, Cξ〉 | ξ ∈ s〉 ∈ P ′ and η ∈ s. Set p \ η = 〈〈A0ξ, A1ξ, Cξ〉 | ξ ∈ s \ η〉.
Define P ′≥η to be the set of all p \ η for p ∈ P ′.

The next lemma is similar to Lemma 2.6.

Lemma 2.7 Let 〈〈A0ξ, A1ξ, Cξ〉 | ξ ∈ s〉 ∈ P ′≥η and B ∈ A1η. Then it is possible to move B

to the η-central line using finitely many switches.

Lemma 2.8 Let 〈〈A0ξ, A1ξ, Cξ〉 | ξ ∈ s〉 ∈ P ′ and B, B′ ∈ A1τ , for some τ ∈ s. If B′  B,

then B′ ∈ B.

Proof. If both B and B′ are on the central line, then we are done, by Definition 2.1. Suppose

that it is not the case. Consider the walks from A0τ to B and to B′. Let A ∈ A1τ be the last

common point of this walks. We need to consider three cases according to the possibilities

in (2) of 2.4.

Case 1. There is B1 ∈ A1τ such that A−, B1, A is a ∆-system type triple and the walk to

B′ goes via A−, the walk to B via B1.

Note that it is impossible that the walk to B goes via A− and those to B′ via B1, since

B′ ⊆ B.

Then B′ ⊆ A− ∩ B1. So we can replace B by πB1,A− [B] and move everything below A−.

Note that πB1,A− ¹ A− ∩ B1 = id, since the triple A−, B1, A is of a ∆-system type. Now the

walks are simpler, so an induction applies. Hence B′ ∈ πB1,A− [B]. Moving back, we obtain

B′ ∈ B.

Suppose now that the case (b) of Definition 2.4(2 occurs. Then there are ρ ∈ s∩A, ρ > τ

and F0, F1, F ∈ A1ρ ∩ A so that

• F0, F ∈ Cρ1(A0ρ),

• the triple F0, F1, F is of a ∆-system type with respect to 〈〈A0ξ, A1ξ, Cξ〉 | ξ ∈ s \ ρ1〉
with witnessing pair of models G0, G1 in A,

• if Z ∈ Cτ (A), then either Z ∈ F0 or F0, F1, F ∈ Z, as well as the witnessing models

for them.

Case 2. A− ∈ F0, B′ ⊆ A− and B ⊆ πF0,F1 [A
−].

Then B′ ⊆ F0 ∩ F1. So we can replace B by πF1,F0 [B] and move everything below A−. Note

that by Definition 2.4 (4), πF1,F0 [B] ∈ A1τ . Also, πF1,F1 ¹ F0 ∩ F1 = id, since the triple

12



F0, F1, F is of a ∆-system type. Now the walks are simpler, so an induction applies. Hence

B′ ∈ πF1,F0 [B]. Moving back, we obtain B′ ∈ B.

Case 3. There is triple Y0, Y1, Y ∈ A1τ of a ∆-system type with Y0, Y ∈ Cτ (A0τ ), A ∈
Cτ (Y0), Y1 ∈ F0, B′ ⊆ A−,B 6⊆ πY0,Y1 [A] and B ⊆ πF0,F1(πY0,Y1 [A]).

Denote A1 = πY0,Y1 [A] and A2 = πF0,F1 [A1]. Note that A2 ∈ A1τ , by 2.4 and πA1,A2 =

πF0,F1 ¹ A1. Hence πA1,A2 ¹ A1 ∩ A2 = id, but πA,A2 ¹ A ∩ A2 need not be the identity.

Consider E = πA2,A1 [B], E ′ = πA2,A1 [B
′] and S = πA1,A[E], S ′ = πA1,A[E ′]. Then S, S ′ ∈

A1τ ∩A, S ) S ′, and so the induction applies. Hence S ′ ∈ S. This implies E ′ ∈ E, and then

also B′ ∈ B.

Case 4. There is triple Y0, Y1, Y ∈ A1τ of a ∆-system type with Y0, Y ∈ Cτ (A0τ ), A ∈
Cτ (Y0), Y1 ∈ F0, B = A and B′ ⊆ πF0,F1(πY0,Y1 [A]).

Then, as in the previous case, denote A1 = πY0,Y1 [A] and A2 = πF0,F1 [A1].

The walk to B′ continues via A2. But A2 ∈ F1 ∈ A. Hence the rank of one of the sets is

reduced here and we can argue by induction that B′ ∈ A2.

Consider A ∩ A2. Clearly, B′ ⊂ A ∩ A2. Let us argue that B′ ∈ A. There are X, X1 ∈
Cτ∗(A0τ∗) such that X ∈ A, X1 ∈ A1 witnessing a ∆-system type, where τ ∗ = min(s\ τ +1).

Clearly, τ ∗ ≤ ρ. Then X ∈ F0. Just otherwise, by Definitions 2.1, 2.4 we must have F0 ∈ X,

but then F0 ∈ A ∩ F0 = A ∩ A1. Which is impossible, since A1 ∈ F0. Clearly also X1 ∈ F0,

since X1 ∈ A1 ∈ F0. Hence πF0,F1 [X], πF0,F1 [X1] are defined. Note that πF0,F1 [X] ∈ A, since

F0, F1 ∈ A. Also πF0,F1 [X1] ∈ A2, since πF0,F1 [X1] = πA1,A2 [X1]. Let us show the following:

Claim 1 A ∩ A2 = A ∩ πF0,F1 [X] = A2 ∩ πF0,F1 [X1].

Proof. Let a ∈ A ∩ A2. Then b = πF1,F0 [a] ∈ A ∩ A1. So, b ∈ A ∩X and b ∈ A1 ∩X1. Then

a = πF0,F1(b) ∈ A ∩ πF0,F1 [X] and a ∈ πF0,F1 [X1]. We use here that πF0,F1 ∈ A.

Let us show the opposite inclusions. Assume first that we have a ∈ A ∩ πF0,F1 [X]. Let

b = πF1,F0(a). Then b ∈ A∩X, since πF0,F1 ∈ A. But A∩X = A1 ∩X1. Hence, b ∈ A1 ∩X1,

and so a ∈ A2 ∩ πF0,F1 [X1] ∩ A.

Let now a ∈ A2 ∩ πF0,F1 [X1]. Then b = πF1,F0(a) ∈ A1 ∩X1, since πF0,F1 ¹ A1 = πA1,A2 . But

A1 ∩X1 = A ∩X. Hence b ∈ A. This implies a ∈ A since πF0,F1 ∈ A.

¤ of the claim.

Now we have B′ ∈ A2 and B′ ⊂ A∩A2 = A2∩πF0,F1 [X1]. But |B′| = τ , so B′ ∈ πF0,F1 [X1].

Then B′ ∈ A2 ∩ πF0,F1 [X1] ⊆ A and we are done.

¤
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Lemma 2.9 Let 〈〈A0ξ, A1ξ, Cξ〉 | ξ ∈ s〉 ∈ P ′ and B ∈ A1τ , for some τ ∈ s. Then

〈〈B,A1τ (B), Cτ ¹ A1τ (B)〉_〈〈A0ξ, A1ξ, Dξ〉 | ξ ∈ s \ τ + 1〉 ∈ P ′≥τ , where A1τ (B) = {B′ ∈
A1τ ∩ P(B) | there is a walk from B to B′} are Dξ’s are the result of moving B to the

τ -central line.

Remark 2.10 Note that in view of the last case of Lemma 2.8, we cannot in general replace

A1τ (B) by A1τ ∩ P(B).

Let us give a concrete example. Let |A| = κ+, A− exists F0, F1, F ∈ A of cardinality κ++ of a

∆-system type with witnessing models G0, G1. Assume that A− ∈ F0 and G0 ∈ A−. Reflect

A to F0, i.e. find some A1 ∈ F0 which is isomorphic to A over A ∩ F0. Let A∗ be a model

of cardinality κ+ with A,A1 ∈ A∗ and set Cκ+
(A∗) = {A, A∗}. Then the triple A,A1, A

∗ is

of a ∆-system type. Set A2 = πF0,F1(A1) and B = πF0,F1(A
−). Then B = A−

2 . Also, B ∈ A,

since πF0,F1 ∈ A. But B 6= A−, since G0 ∈ A− and πF0,F1(G0) = G1 ∈ B ∩ F1 \ F0.

Lemma 2.11 Let 〈〈A0ξ, A1ξ, Cξ〉 | ξ ∈ s〉 ∈ P ′ and X ∈ A1τ , for some τ ∈ s and Y ∈ A1θ.

Then

1. sup(Y ∩ θ+) ≥ sup(X ∩ θ+) implies Y ⊇ X,

2. sup(Y ∩θ+) < sup(X∩θ+) implies that there is Z ∈ A1θ∩X such that X∩Y = X∩Z.

Remark 2.12 Note that the lemma will not be true in general if we replace the requirement

Y ∈ A1θ by Y ∈ Cρ(A0ρ), for some ρ ∈ s\τ +1, ρ < θ. Thus, there may be a model Y ′ ∈ A1ρ,

Y ′ ⊃ X which was switched to Y in a ∆-system type such that sup(Y ′ ∩ θ+) < sup(Y ∩ θ+)

and X 6⊆ Y ∩ Y ′.

Proof. (1) We have a well order < of H(θ+) in the language and X is an elementary submodel.

So it is possible to reconstruct X from its ordinals i.e. from X∩θ+. Recall that Y ∩θ+ ∈ θ+.

Hence, Y ∩ θ+ ⊃ X ∩ θ+ and we are done.

(2)Induction on the walk from A0τ to X. Thus, if X ∈ Cτ (A0τ ), then the statement follows

by Definition 2.1. The inductive step follows from Definition 2.4 treating each of the three

possibilities there separately.

¤
Further we will need to use more complicate inductions than on walks distances. Similar

to Gap 3, we will define a notion of walks complexity. In order to do so we need first to

define walks from A0τ to elements of A0τ ∩A1ρ, for ρ ∈ s \ τ + 1. It corresponds to walks to

ordinals in the gap 3 case. The definition repeats basically (2) of Definition 2.4.
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Definition 2.13 (Complexity of walks)

Let 〈〈A0ξ, A1ξ, Cξ〉 | ξ ∈ s〉 ∈ P ′.

• Suppose that τ ∈ s, A,B ∈ A1τ . We say that the walk from A0τ to A is simpler than

the walk from A0τ to B iff

1. A ⊂ B, or

2. A 6⊂ B, B 6⊂ A,A 6= B and if L ∈ A1τ is the last common point of both walks,

then A ⊆ L−, where L− is the immediate predecessor of L in Cτ (L). Note that

necessarily, there is a triple of a ∆-system type F0, F1, F and B ⊆ F1. In the gap

3 case we had F0 = L−, F = L but here F ′s can be models of bigger cardinality.

• Suppose that ρ ∈ s \ τ + 1,A ∈ A1τ and B ∈ A1ρ ∩ A0τ . We say that the walk from

A0τ to A is simpler than the walk from A0τ to B iff

1. A is one of the models of the walk to B,

or

2. if L is the last common model of the walks, then A ∈ Cτ (L), or A 6∈ Cτ (L) and

A ⊆ L−, where L− is the immediate predecessor of L in Cτ (L). Note, if the

second possibility occurs, then, necessarily, there is a triple of a ∆-system type

F0, F1, F and B ∈ F1.

• Suppose that µ, ρ ∈ s \ τ + 1, A ∈ A1µ ∩A0τ and B ∈ A1ρ ∩A0τ . We say that the walk

from A0τ to A is simpler than the walk from A0τ to B iff A 6= B, there is L ∈ A1τ

which is the last common point of both walks and

1. there are D, E ∈ Cτ (L) such that A ∈ D ∈ E and B ∈ E \D,

or

2. L is not the minimal model of Cτ (L) and A ∈ L−.

The above defines a well-founded relation. We will use further the walks complexity in

inductive arguments.

We need to allow a possibility to change the component Cτ in elements of P ′ and replace

one central line by another. It is essential for the definition of an order on P ′ given below.
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Definition 2.14 Let r, q ∈ P ′. Then r ≥ q (r is stronger than q) iff there is p =

swt(r, B1, . . . , Bn) for some B1, . . . , Bn appearing in r so that the following hold, where

p = 〈〈A0ξ, A1ξ, Cξ〉 | ξ ∈ s〉
q = 〈〈B0ξ, B1ξ, Dξ〉 | ξ ∈ s′〉

1. s′ ⊆ s,

2. B0ξ ∈ Cξ(A0ξ), for each ξ ∈ s′,

3. q = p ¹ 〈B0ξ | ξ ∈ s′〉,
where p ¹ 〈B0ξ | ξ ∈ s′〉 = 〈〈B0ξ, A1ξ ∩ (B0ξ ∪ {B0ξ}), Cξ ¹ (B0ξ ∪ {B0ξ})〉 | ξ ∈ s′〉,

4. for each ξ ∈ s′ and X ∈ Cξ(A0ξ) \ Cξ(B0ξ) q ∈ X,

5. for each ξ ∈ s \ s′ and X ∈ Cξ(A0ξ) q ∈ X.

The meaning of the last two conditions is that new models over central lines supposed to be

above all old ones.

Let p = 〈〈A0ξ, A1ξ, Cξ〉 | ξ ∈ s〉 ∈ P ′ and η ∈ s. Set p \ η = 〈〈A0ξ, A1ξ, Cξ〉 | ξ ∈ s \ η〉.
Define P ′≥η to be the set of all p \ η for p ∈ P ′.

Lemma 2.15 The function p ½ p \ η projects the forcing P ′ onto the forcing P ′≥η.

Remark. Note that we split at η only p’s in P ′ with η inside s of p. The reason is that in

the case of η 6∈ s an extension of p\η may include models of cardinality η which for example

belong to models of p of cardinalities below η. Such extensions will be incompatible with p.

Proof. Let p ∈ P ′ and q ∈ P≥η, q ≥ p \ η. We need to find r ∈ P ′, r ≥ p such that r \ η ≥ q.

Let us take an equivalent to q condition q′ in P ′≥η (a switching of q) with the central lines of

q′ extending those of p \ η. Then p_q′ the combination of p with q′ will be in P ′, p_q′ ≥ p

and (p_q′) \ η = q′.

¤

Lemma 2.16 P ′≥η is η+-strategically closed.

Proof. We define a winning strategy for the player playing at even stages. Thus suppose

〈pj | j < i〉, pj = 〈〈A0τ
j , A1τ

j , Cτ
j 〉 | τ ∈ sj〉 is a play according to this strategy up to an even

stage i < η+.
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Split into two cases.

Case 1. i = j + 1.

Let p = 〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s = sj〉 be a switch of pj which restores A0τ
j−1 to τ -th central

line, i.e. A0τ
j−1 ∈ Cτ (A0τ ), for every τ ∈ sj−1.

Then pick an increasing continuous sequence 〈A0τ
i | τ ∈ s〉 such that for every τ ∈ s

(a) cof(τ)>A0τ
i ⊆ A0τ

i ,

(b) 〈pk | k < i〉, p, 〈A0τ ′
i | τ ′ < τ〉 ∈ A0τ

i .

Set pi = 〈〈A0τ
i , A1τ

i , Cτ
i 〉 | τ ∈ s〉, where

A1τ
i = A1τ ∪ {A0τ

i }, Cτ
i = Cτ (A0τ ) ∪ {〈A0τ

i , Cτ (A0τ ) ∪ {A0τ
i }〉}.

Case 2. i is a limit ordinal.

Set first

s = the closure of
⋃
j<i

sj.

For every τ ∈ ⋃
j<i sj, define

A0τ
i =

⋃
j<i

A0τ
j , A1τ

i =
⋃
j<i

A1τ
j ∪ {A0τ

i },

Cτ
i =

⋃
j<i,j is even

Cτ
j ∪ {〈A0τ

i , {A0τ
i } ∪

⋃
{Cτ

j (A0τ
j ) | j is even}〉}.

If τ ∈ s \⋃
j<i sj, then set

A0τ
i =

⋃

τ ′∈(∪j<isj)∩τ

A0τ ′
i ,

A1τ
i = {A0τ

i } and Cτ (A0τ
i ) = {〈A0τ

i , {A0τ
i }〉}.

As an inductive assumption we assume that at each even stage j < i, pj was defined in

the same fashion. Then pi = 〈A0τ
i , A1τ

i , Cτ
i 〉 | τ ∈ s〉 will be a condition in P ′ stronger than

each pj for j < i.

¤
If we take η = θ, then it is easy to show the following:

Lemma 2.17 〈P ′≥θ,≤ 〉 is θ+-closed.
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Let p = 〈〈A0ξ, A1ξ, Cξ〉 | ξ ∈ s〉 ∈ P ′ and η ∈ s. Set p ¹ η = 〈〈A0ξ, A1ξ, Cξ〉 | ξ ∈ s ∩ η〉.
Let G(P ′≥η) be a generic subset of P ′≥η. Define P ′<η to be the set of all p ¹ η for p ∈ P ′

with p \ η ∈ G(P ′≥η).

Lemma 2.18 P ′ ' P ′≥η ∗ P ′∼<η.

Lemma 2.19 If η is a regular cardinal, then the forcing P ′<η satisfies η+-c.c. in V P ′≥η .

Proof. Suppose otherwise. Let us assume that

∅‖P ′≥η
(〈 p
∼α

= 〈〈A
∼

0τ
α , A

∼
1τ
α , C

∼
τ
α〉 | τ ∈ s∼α〉 | α < η+〉 is an antichain in P ′

∼<η)

Without loss of generality we can assume that each A0τ
α is forced to be a successor model,

otherwise just extend conditions by adding one additional models on the top. Define by

induction, using Lemma 2.16, an increasing sequence 〈qα | α < η+〉 of elements of P ′≥η and

a sequence 〈pα | α < η+〉, pα = 〈〈A0τ
α , A1τ

α , Cτ
α〉 | τ ∈ sα〉 so that for every α < η+

qα‖P′≥η
〈〈A
∼

0τ
α , A

∼
1τ
α , C

∼
τ
α〉 | τ ∈ s∼α〉 = p̌α .

For a limit α < η+ let qα be an upper bound of {qβ | β < α}, as defined in Lemma 2.16

and qα be its extension deciding p∼α. Also assume that pα ∈ A0η(qα), where A0η(qα) is the

maximal model of qα of cardinality η.

Note that the number of possibilities for sα’s is at most η, since if η is an inaccessible, then

by Definition 2.1(1), |sα| < η and if η is an accessible cardinal, then η = (η−)+ (remember

that η is a regular cardinal). So sα ⊆ η− ∪ {η−}. But 2η− = η.

Hence, by shrinking if necessary, we may assume that each sα = s∗, for some s∗ ⊆ η. Let

η∗ = max(s∗).

Form a ∆-system. By shrinking if necessary assume that for some stationary S ⊆ η+ we

have the following for every α < β in S:

1. A0η∗
α ∩ A0η(qα) = A0η∗

β ∩ A0η(qβ) ∈ A0η(q0)

2. 〈A0η∗
α ,∈,≤,⊆, κ, Cη∗

α , f
A0η∗

α
, A1η∗

α , qα∩A0η∗
α 〉 and 〈A0η∗

β ,∈,≤,⊆, κ, Cη∗
β , f

A0η∗
β

, A1η∗
β , qβ ∩

A0η∗
β 〉 are isomorphic over A0η∗

α ∩ A0η∗
β , i.e. by isomorphism fixing every ordinal below

A0η∗
α ∩ A0η∗

β , where

f
A0η∗

α
: η∗ ←→ A0η∗

α
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and

f
A0η∗

β
: η∗ ←→ A0η∗

β

are the fixed enumerations.

Note that |A0η∗
α ∩ A0η∗

β | ≤ η∗. So we can define a function hα : η∗ → η by mapping

each i < η to the order type A0η∗
α ∩ θ+ between the i-th element of A0η∗

α ∩ A0η∗
β ∩ θ+ and its

immediate successor in A0η∗
α ∩A0η∗

β ∩ θ+. The total number of such hα’s is at most η, hence

by shrinking if necessary we will get the same function. This will insure the isomorphism

which is the identity on A0η∗
α ∩ A0η∗

β ∩ θ+ and, hence, on A0η∗
α ∩ A0η∗

β .

We claim that for α < β in S it is possible to extend qβ to a condition forcing compatibility

of pα and pβ. Proceed as follows. Pick A to be an elementary submodel of cardinality η∗

with pα, pβ, qβ inside.

Then the triple A0η∗
β , A0η∗

α , A is of a ∆-system type relatively to qβ, by (2) above.

Use this to construct a condition stronger than both pα, pβ.

Let 〈A(τ) | τ ∈ s∗ ∪ s(qβ)〉 (where s(qβ) denotes the support of qβ) be an increasing and

continuous sequence of elementary submodels such that for each τ ∈ s∗ the following hold:

• pα, pβ, qβ, A ∈ A(τ),

• |A(τ)| = τ .

Extend qβ to q by adding to it 〈A(τ) | τ ∈ s(qβ)〉, as maximal models, i.e. A0τ (q) = A(τ).

Set p = 〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s∗〉, where

A0η∗ = A(η∗), A1η∗ = A1η∗
α ∪ A1η∗

β ∪ {A,A0η∗},

Cη∗ = Cη∗
α ∪ Cη∗

β ∪ 〈A,Cη∗
β (A0η∗

β )aA〉 ∪ 〈A0η∗ , Cη∗
β (A0η∗

β )aAaA0η∗〉,
and for each τ ∈ s∗ ∩ η∗,

A0τ = A(τ), A1τ = A1τ
α ∪ A1τ

β ∪ {A0τ},

Cτ = Cτ
α ∪ Cτ

β ∪ 〈A0τ , Cτ
β(A0τ

β )aA0τ 〉.
The triple A0η∗

β , A0η∗
α , A is of a ∆-system type relatively to q, by (2) above. It follows

that 〈p, q〉 ∈ P ′. Thus the condition (2) of Definition 2.4 holds since each of 〈pα, q〉, 〈pβ, q〉
satisfies it.

¤
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Lemma 2.20 Suppose that p = 〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s〉 ∈ P ′, η, τ ∈ s, τ ≤ η, T0, T1, T ∈
A1η, B ∈ A1τ are so that

1. B ∈ T0,

2. T0, T1, T are of a ∆ system type,

3. T0 ∈ Cη(T ),

4. there is M ∈ A1τ such that

(a) T0, T1, T ∈ M ,

(b) there is no ξ ∈ s \ τ and Z ∈ A1ξ such that T ∈ Z ∈ M .

Then πT0,T1(B) ∈ A1τ .

Proof. Without loss of generality we can assume that T is on the η-th central line (just

otherwise preform the necessary switches).

Consider the walk to B.

Claim. Models of cardinalities ≥ η are never used in this walk before entering T0.

Proof. Suppose otherwise. Let D ∈ A1ρ be the first model used in the walk with ρ ∈ s \ η

and it is not in T . Note that the central lines for all the cardinalities ≥ η remain such up

to the point when D is used. In particular both D and T remain on the central lines. But

then necessarily D ⊃ T .

We deal with the case of Second Continuation of Definition 2.4.

Let D0, D1 ∈ A1ρ be such that D0 ∈ Cρ(D) and the triple D0, D1, D is of a ∆-system type.

By the definition of the walk there are A ∈ A1τ with D0, D1, D ∈ A and its immediate

predecessor A− in Cτ (A) such that B ∈ A,B 6∈ A− and B ∈ πD0,D1(A
−). But T ⊆ D0 and

B ⊆ T , hence B ⊆ D0 ∩D1. Then πD0,D1(B) = B. So, B ∈ A−. Contradiction.

The rest of the cases (Third and Forth Continuations) are similar. Thus we still will have

πD1,D0(B) = B and then B ∈ A1 implies B ∈ A0 since A0 = πD0,D1 [A1] and B does not

move.

¤ of the claim.

Consider M and its immediate predecessor M− in Cτ (M). If there are A, A′ ∈ A1τ on

the walk to B such that A′,M ∈ Cτ (A) and A′ ∈ M− ∪ {M−}, then both πT0,T1(A
′) and

πT0,T1(B) will be in A1τ , since πT0,T1(M
−) ∈ A1τ , by Definition 2.4 (Second Continuation)

and so images by πT0,T1 of the models of cardinality τ of walks from M− will be in A1τ .
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Suppose now that the walks to B and to M split. Let A ∈ A1τ be the last common point

of the walks. Then A is a splitting point. There are A0, A1 its immediate predecessors with

B ∈ A0 ∪ {A0},M ∈ A1 ∪ {A1}.
Assume that we are here in the case of First Continuation of Definition 2.4. Under our

assumptions it will be the only possibility once dealing with Gap 4. We claim that then

A0 ∈ T0. Thus let F0, F1 ∈ A1τ∗ be the witnesses for A0, A1, A, i.e. F0 ∈ A0, F1 ∈ A1 and

A0 ∩ A1 = A0 ∩ F0 = A1 ∩ A1. Note that M 6∈ A0 implies T 6∈ A0. Also M ∈ A1 implies

T ∈ A1. Hence T 6∈ F1. Then F1 ∈ T ∪ {T}. Now, either F0 ∈ F1 and then A0 ⊆ F1 or

F1 ∈ F0 and then A1 ⊆ F0. In the former case we are done (just it is Forth Continuation

of Definition 2.4). If the later case occurs then T ∈ F0. Pick S ∈ Cη(A0η) to be the least

element with B inside. Then S ∈ A0 (just we can make such a choice inside A). Remember

that B ∈ T0. Hence S ∈ T0 (we cannot have S = T0 since then T0 and then also T will be

in A0). The above imply S ∈ A0 ∩A1, by the definition of a ∆-system triple (just all of the

elements of central lines of A0 are above those of A1 except the common part which is an

initial segment). If η = τ ∗ (which is true in Gap 4 case) then A0 ∩ S = A1 ∩ S (just by ∆

-system triples definition). In particular B ∈ A0 which is impossible. Contradiction.

¤ Gap 4.

Example Gap 5.

The following example shows that if one wants to keep GCH in the extension, then

already in the gap 5 case Continuation One-Four of Definition 2.4 do not suffice.

Let τ = κ+, ρ = κ++, η = κ+3.

Suppose we have a long continuous chain of models ~T = 〈Tα | α < η+〉 of cardinality η.

Suppose that each Tα+1 splits into Tα+1,0 = Tα and Tα+1,1. Let S be an element of this

chain.

Let ~F = 〈Fγ | γ ≤ γ̃〉 be a continuous chain of models of cardinality ρ which are spread

among Tα’s, S belongs to some Fα and above first such α each Fβ+1 splits into Fβ+1,0 = Fβ

and Fβ+1,1 which is in S.

Pick some A0 of cardinality τ such that S ∈ A0 and for some member H0 ∈ A0 of ~F with

S ∈ H0 we have reflection A1 of A0 into H0.

Set H1 = πA0,A1(H0). Pick some T from ~T in A1 such that H1 ∈ T0, where T0, T1 are the

immediate predecessors of T in ~T . We assume also that T0, T1 ∈ A0. Pick a model M ∈ A0

of cardinality τ with T ∈ M and no elements of ~T , ~F in between.

Pick some β with H0 ∈ Fβ,0 ∈ A0 and a model B∗ ∈ A0 with H0 ∈ B∗ ∈ Fβ,0. Set

B = πFβ,0,Fβ,1
(B∗). Then B ⊂ S ⊆ T0 and B 6∈ A1, since πFβ,0,Fβ,1

(H0) 6∈ A1. Neither of
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Continuations One-Four of Definition 2.4 can put πT0,T1(B) into A1τ .

Lemma 2.21 Let η, κ < η ≤ θ, be a regular cardinal. Then in V P ′ we have 2η = η+.

Proof. Fix N ≺ H((2λ)+), for λ large enough, such that P ′ ∈ N , |N | = η+ and ηN ⊆ N .

We find pN
≥η+ ∈ P ′≥η+ which is N -generic for P ′≥η+ , using η++-strategic closure of P ′≥η+ . Let

G(P ′≥η+) be a generic subset of P ′≥η+ with p≥η+ ∈ G(P ′≥η+). Then, N [p≥η+ ] ≺ Vλ[G(P ′≥η+)].

By Lemma 2.19, P ′<η+ satisfies η++-c.c in V [G(P ′≥η+)]. In particular, P=η satisfies η++-c.c.

Let G(P ′=η) be a generic subset of P=η over V [G(P ′≥η+)]. Denote N [p≥η+ ] by N1. Then

N1[N1 ∩ G(P ′=η)] ≺ V [G(P ′≥η+)][G(P ′=η)], since each antichain for P ′=η has cardinality at

most η+. Hence, if it belongs to N1 then it is also contained in N1. Denote N1[N1 ∩G(P ′=η)]

by N2.

Consider P ′<η ∩ N2. Clearly this is a forcing of cardinality η+. By Lemma 2.19, P ′<η sat-

isfies η+-c.c., so P ′<η ∩ N2 is a nice suborder of P ′<η. Thus, let G ⊆ P ′<η be generic over

V [G(P ′≥η+)][G(P ′=η)] and H = G∩N2. Then H is P ′<η∩N2 generic over V [G(P ′≥η+)][G(P ′=η)],

since, if A ⊆ P ′<η ∩ N2 is a maximal antichain, then A is a maximal antichain also in P ′<η.

This follows due to the fact that N2 is an elementary submodel closed under η-sequences of

its elements. Namely, |A| ≤ η, so A ∈ N2. Then

N2 |= A is a maximal antichain in P ′<η.

Now, by elementarity, A is a maximal antichain in P ′<η. So there is p ∈ G ∩ A. Finally,

A ⊆ N2 implies that p ∈ N2 and hence p ∈ H.

We claim that each subset of η in V [G(P ′≥η+)][G(P ′=η)][G] is already in N2[G]. It is

enough since |N2[G]| = |N | = η+.

Work in V . The construction below can be preformed above any condition of P ′ stronger

than pN
≥η+ ∈ P ′≥η+ (which is needed in order to preserve the elementarity of N in generic

extensions). So, by density arguments, we will obtain the desired conclusion.

Let a∼ be a name of a function from η to 2. Define by induction (using the strategic

closure of the forcings and η+-c.c. of P ′<η) sequences of ordinals

〈δβ | β < η〉, 〈γ(α, β) | β < η, α < δβ〉

and sequences of conditions

〈pβ(α) | α < δβ〉(β < η), 〈p(β) | β < η〉

such that

22



(1) for each β < η, δβ < η+,

(2) for each β < η, 〈pβ(α)≥η | α < δβ〉 is increasing sequence of elements of P ′≥η and p(β)

is its upper bound obtained as in the Strategic Closure Lemma 2.16,

(3) p0(0)≥η+ ≥ pN
≥η+ ,

(4) the sequence 〈p(β) | β < η〉 is increasing,

(5) for each β < η and α < δβ, pβ(α)‖ a∼(β) = γ(α, β),

(6) if for some p ∈ P ′ we have p \ η ≥P′≥η
p(β)≥η, then there is α < δ such that the

conditions p, pβ(α) are compatible. (I.e. {pβ(α)<η | α < δβ} is a pre-dense set as

forced by p(β)≥η).

Set p(η) to be the upper bound of 〈p(β) | β < η〉 as in the Strategic Closure Lemma 2.16.

Let L denotes the top model of cardinality η of p(η), i.e. A0η(p(η)). By the construction in

2.16, we have δβ, p(β) ∈ L and γ(α, β), pβ(α) ∈ L, for each β < η and α < δβ. Alternatively,

we can just extent the model L to one which includes this sequences. Extend L further if

necessary to include p(η) as an element.

Turn for a moment to a generic extension. Let G(P ′≥η+) be a generic subset of P ′≥η+ with

p(η) \ η+ ∈ G(P ′≥η+). Pick K ∈ N realizing the same type as those of L in H(2λ)[G(P ′≥η+)]

over N ∩ L. Note that N ∩ L is a subset of N of cardinality η and, hence, it is in N .

Let

〈q(β) | β < η〉, 〈qβ(α) | α < δβ〉(β < η)

be the sequences corresponding to

〈pβ(α) | α < δβ〉(β < η), 〈p(β) | β < η〉

and let q(η) corresponds to p(η). Note that q(β) \ η+, qβ(α) \ η+ are in G(P ′≥η+), since

p(β) \ η+, pβ(α) \ η+ are in G(P ′≥η+). Then,

q(β) \ η+, qβ(α) \ η+ ≤P ′≤η+
pN
≥η+ ,

by the choice of pN
≥η+ and since pN

≥η+ ≤P′≤η+
p(η) \ η+ ∈ G(P ′≥η+).

Combine now K,L into one condition making them a splitting point. Let M be a model

of cardinality η such that K,L ∈ M . Then the triple L,K,M will be of a ∆-system type

relatively to p(η)aLaM (which is defined in the obvious fashion with L ∈ Cη(M)). Now,
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we add q(η)aK to p(η)aLaM and turn this into condition in P ′, exactly the same way as it

was done at the end of the proof of Lemma 2.19. Denote such condition by r.

Define a name b∼ of a subset of η to be

{〈qβ(α), γ(α, β)〉 | α < δβ, β < η}.

Clearly, b∼ is in N .

Claim 2.21.1 r‖ a∼ = b∼.

Proof. Let G be a generic subset of P ′ with r ∈ G. Then also p(η)≥η, q(η)≥η ∈ G. Now, for

each β < η there is α < δβ with pβ(α) ∈ G (just otherwise there will be a condition t in

G forcing that for some β there is no α < δβ with pβ(α) ∈ G. Extend it to t′ deciding the

value a
∼
(β). By (6) there is α such that t′, pβ(α) are compatible). Let r′ ∈ G be a common

extension of r and pβ(α). Recall that L,K,M is a triple of a ∆-system type in r and the

isomorphism πLK moves pβ(α) to qβ(α). Hence qβ(α) ≤ r′. But then qβ(α) ∈ G.

¤ of the claim.

¤

Remark 2.22 It is not hard to modify the proof of 2.21 and show that in V [G(P≥η)] the

forcing P<η is equivalent to the forcing N2 ∩P<η of cardinality η+. Thus, instead of a name

a∼ of a subset of η take a P ′≥η-name of a maximal antichain of P ′<η. By η+-c.c. of P ′<η, the

antichain has cardinality ≤ η. Using the strategic closure of P ′≥η we produce a condition

deciding all the elements of the antichain. Let L be its top model of cardinality η. Find

K as in the proof of 2.21 and copy the antichain to N2. Finally, any N2 ∩ P<η-generic will

intersect this image, which in turn will imply that on the L-side the same happens.

Let us show that 2η = η+ for singular η’s as well. Note that it is possible to deduce this

appealing to Core Models arguments (provided that there is no inner model with too large

cardinals).

Lemma 2.23 (a) Let η be a singular cardinal in [κ+, θ]. Then in V P ′ we have 2η = η+.

(b) V P′ satisfies GCH.

Proof. It is enough to proof (a) since then (b) will follow by the previous lemma 2.21.

Fix a singular cardinal η ∈ [κ+, θ]. Let N , p≥η+ , N1, N2, a∼ be as in the proof of 2.21.

Pick an increasing sequence 〈ηi | i < cof(η)〉 of regular cardinals cofinal in η. Let 〈Li | i <

cof(η)〉 be an increasing sequence of elementary submodels of H((2λ)+) such that
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1. |Li| = ηi,

2. Li ⊇ ηi,

3. ηi>Li ⊆ Li,

4. 〈Lj | j < i〉 ∈ Li,

5. N, p≥η+ , a∼ ∈ L0.

Set L =
⋃

i<cof(η) Li.

Now we construct a sequence 〈p(i) | i < cof(η)〉 of elements of P ′ such that

1. p(0) ≥ p≥η+ ,

2. p(i)≥ηi
is (Li,P ′)-generic over p(i)<ηi

, i.e. for any maximal antichain A ⊆ P ′ with

A ∈ Li, if some q is in A and is compatible with p(i), then there is r ≥ q, p(i) such

that for some r′ ≤ r we have r′ ∈ A ∩ Li.

3. p(j) ¹ ηi = p(i)<ηi
, for every j > i,

4. p(i) ∈ Li+1.

The construction is by recursion and uses that at each i < cof(η) strategic closure of P ′≥ηi

together with η+
i -c.c. of P ′<ηi

.

Now let p be the result of putting 〈pi | i < cof(η)〉 together as in the strategic closure

lemma 2.16 with L the top model of cardinality η. Note that if G ⊆ P ′ with p ∈ G, then

L[G ∩ L] ≺ H((2λ)+)[G]. Thus, if A ∈ L is a maximal antichain, then A ∈ Li for some

i < cof(η) and by (2) above some r′ ∈ G is in A ∩ Li.

In particular, a∼ can be computed correctly inside L. We continue further as in 2.19 define

K etc.,with p replacing p(η) of 2.19.

¤

3 The Intersection Property- Gap 4

We turn now to the intersection properties. They are somewhat more complicated here than

those in the gap 3 case.

Let us give a general definition, but further we shall concentrate at Gap 4. The property

as defined fails already at Gap 5. In further sections we present an argument that avoids it.

Nerveless intersection properties seem to us to be interesting on their own.
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Definition 3.1 Let 〈〈A0ξ, A1ξ, Cξ〉 | ξ ∈ s〉 ∈ P ′, τ ≤ ρ and A ∈ A1τ , B ∈ A1ρ. We say that

A satisfies the intersection property with respect to B or shortly ip(A,B) iff either

1. A ⊆ B, or

2. B ∈ A, or

3. A 6⊆ B,B 6∈ A, and then there are pairwise different ordinals η1, ..., ηn ∈ s \ ρ and sets

A1 ∈ A1η1 ∩ A, ..., An ∈ A1ηn ∩ A,A′ ∈ (A ∪ {A}) ∩ A1τ such that

A ∩B = A′ ∩ A1 ∩ ... ∩ An.

If ρ = τ , then let ipb(A,B) denotes that both ip(A,B) and ip(B,A) hold.

Lemma 3.2 Let 〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s〉 ∈ P ′, τ ∈ s and A ∈ A1τ be a successor model.

Then for every ξ ∈ s \ τ + 1, if A ∩ A1ξ 6= ∅, then there is (A)ξ ∈ A ∩ A1ξ such that

1. for every B ∈ A ∩ A1ξ, B ∈ (A)ξ ∪ {(A)ξ},

2. if B ∈ A1ξ and (A)ξ ∈ Cξ(B), then B ⊇ A.

Remark 3.3 We cannot in general allow ξ’s below τ . Thus, say there are A0, A1 such that

the triple A0, A1, A is of a ∆-system type. Suppose that A0, A are on the τ -central line, there

a maximal model B ∈ Cξ(A0ξ) ∩A0 and A0, A1, A belong to the immediate successor B+ of

B in Cξ(A0ξ). Then πA0,A1(B) ∈ A, but there is no X ∈ A∩A1ξ which includes both B and

πA0,A1(B), since B+ 6∈ A.

Proof. Induction on complexity of the walk from A0τ to A.

Suppose first that A is on the τ -central line. By Definition 2.1,

⋃
{Y ∈ Cξ(A0ξ) | Y ∈ A} ∈ A.

Set (A)ξ to be this union. Let B ∈ A ∩ A1ξ. We prove by induction on the walk to B

from A0ξ that B ∈ (A)ξ ∪ {(A)ξ}. If B is on the ξ-central line or the walk goes via (A)ξ,

then it follows from the choice of (A)ξ or it is obvious. Suppose otherwise. Let then X be

the least model from the ξ-central line with X ⊇ B. Then B ∈ A implies necessarily that

X = ((A)ξ)
+ the immediate successor of (A)ξ in Cξ(A0ξ). Also X must be a splitting point.

But then there is no models of small cardinalities between (A)ξ and X. (in gap 4 case, in

general the may be bigger than ξ model with splitting and the statement of the lemma is a
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bit weaker)

Suppose now that the walk to A goes to some Y which is an immediate predecessor of A and

A 6∈ Cτ (Y ). Then either there is Y − ∈ Cτ (Y ) such that Y −, A, Y is a triple of a ∆-system

type or there are there are Y − ∈ Cτ (Y ), Y1 ∈ Y ∩ A1τ which are immediate predecessor of

Y and satisfy the last possibility of Definition 2.4.

Assume first that Y −, A, Y is a triple of a ∆-system type. Then the induction applies to Y −.

By Definition 2.3 (7), then (A)ξ will be as desired.

Suppose now that there are Y − ∈ Cτ (Y ), Y1 ∈ Y ∩ A1τ which are immediate predecessor of

Y and satisfy the last possibility of Definition 2.4. Then the only case to consider is when

the triple Y −, Y1, Y is of a ∆-system type and A is obtained from Y − or from Y1 by moving

it by isomorphism of models of bigger cardinality. Then the induction applies to both Y −

and Y1. So the isomorphic image A will satisfy the statement as well.

¤

Lemma 3.4 Let 〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s〉 ∈ P ′, τ ∈ s and A ∈ A1τ . Suppose that B ∈ A1θ

and sup(B) < sup(A). Then

1. (A)θ exists,

2. B ⊆ (A)θ,

3. if X is the least model in Cθ(A0θ) ∩ A which includes B, then A ∩X = A ∩B.

Proof. Move A to τ -central line. Note that no switch can change θ-central line, since A1θ

itself is such a line. Once A is on the τ -central line, then Definition 2.1 applies.

¤

Remark 3.5 It is possible to have a situation when B ∈ A1ξ and sup(B) < sup(A), for

some ξ ∈ s, τ < ξ < θ, but (A)ξ does not exist. Thus suppose that we are in gap 4 case,

τ = κ+, ξ = κ++, θ = κ+3. Let A0τ , A0,ξ, A0θ be the only models of a condition. Assume that

A0θ ∈ A0τ ∈ A0ξ. Now inside A0θ find X which realizes the same type as A0ξ over A0ξ ∩A0θ.

Let Y be a model of cardinality ξ such that A0ξ, X, A0θ, A0τ ∈ Y and Z be a model of

cardinality τ such that A0ξ, Y, A0θ, A0τ , Y ∈ Z. Let S = πA0ξ,X(A0θ) and T = πA0ξ,X(A0τ ).

Consider now the following condition p = 〈〈A0µ(p), A1µ(p), Cµ(p)〉 | µ ∈ {τ, ξ, θ}〉, where

A0θ(p) = A0θ, A1θ = {A0θ, S}, A0ξ(p) = Y,A1ξ = {Y, A0ξ, X}, Cξ(p)(Y ) = 〈A0ξ, Y 〉, A0τ (p) =

Z, A1τ = {A0τ , T, Z}, Cτ (Z) = 〈Z, A0τ 〉. Then sup(A0τ ) > sup(X), but (A0τ )ξ does not exists

due to minimality of (A0τ )ξ in p.
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Lemma 3.6 Let 〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s〉 ∈ P ′, τ ∈ s and A ∈ A1τ . Suppose that A∗ ∈
Cτ (A0τ ) is the model of the same order type as those of A. Then (A)ξ exists iff (A∗)ξ exists.

Proof. (if no inaccessibles are present) Just isomorphisms needed to move from A∗ to A

will preserve such existence due to Definitions 2.3 and 2.4.

¤
Let us prove the intersection property for the gap 4. Thus, for models in A1κ++ ∪ A1κ+3

it is exactly as in the gap 3 case. Now, if A ∈ A1κ+
and B ∈ A1,κ+3

, then then this follows

by Lemma 3.4.

Lemma 3.7 Suppose that A ∈ A1κ+
and B ∈ A1κ++ ∩ A0κ+

. Then either A ⊂ B or there

are B′ ∈ A ∩A1κ++
and C ′ ∈ A ∩A1κ+3

such that A ∩B = A ∩B′ or A ∩B = A ∩B′ ∩ C ′.

Proof. Suppose that A 6⊂ B. We prove the lemma by induction on walks complexity. Suppose

that X ∈ Cκ+
(A0κ+

) is the last common point of the walks from A0κ+
to A and to B. We

split the argument into few cases. Let us start with the most complicated one.

Case 1. X has three immediate predecessors.

Let X ′
0, X0, X1 be this predecessors of X. Let F0, F1, F ∈ X1 ∩ A1κ++

be a witnessing triple

of a ∆-system type.

Case 1.1. A ⊆ X ′
0 and B ∈ X1.

Compare B with F1. There are B′ ∈ A1κ++ ∩ (F1 ∪ {F1}, G′ ∈ A1κ+3 ∩ F1 such that

B ∩ F1 = B′ ∩G′.

Then

A ∩B = A ∩ F1 ∩B = A ∩B′ ∩G′.

Now the induction applies.

Case 1.2. A ⊆ X1 and B ∈ X ′
0.

Case 1.2.1. F0 ∈ A (or F1 ∈ A).

Then also F ∈ A since there is no models of small cardinality between F and its immediate

predecessors. F ∈ A implies F0, F1 ∈ A and so πF0,F1 ∈ A. Set B0 = πF1,F0 [B]. Now

α ∈ A ∩B iff πF1,F0(α) ∈ A ∩B0.

Consider A,B0. The triple X0, X1, X is of a ∆-system type and X0 ∩X1 = X1 ∩ F0. So,

A ∩B0 = B0 ∩X0 ∩ A ∩X1 = B0 ∩ πX1,X0(A) ∩ πX1,X0(F0).
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Denote πX1,X0(A) by A0 and πX1,X0(F0) by F 0
0 . Then A0 ∈ (X0 ∪ {X0}) ∩ A1κ+

and F 0
0 ∈

X0 ∩ A1κ++
. We can apply the induction to A0, B0, since the common part of the walks to

them is longer than those to A, B. So there are B′
0 ∈ A0 ∩ A1κ++

and C ′
0 ∈ A0 ∩ A1κ+3

such

that A0 ∩B0 = A0 ∩B′
0 or A0 ∩B0 = A0 ∩B′

0 ∩ C ′
0. Suppose that A0 ∩B0 = A0 ∩B′

0 ∩ C ′
0.

Set B′ = πX0,X1(B
′
0) and C ′ = πX0,X1(C

′
0). Then

A ∩B0 = A ∩ F0 ∩B0 = A0 ∩B0 ∩ F0 =

A0 ∩B′
0 ∩ C ′

0 ∩ F0 = A ∩B′ ∩ C ′ ∩ F0.

Now B′, C ′, F0 ∈ A. It remains only to replace B′ ∩ C ′ ∩ F0 by intersection of the form

B′′ ∩ C ′′ for some B′′ ∈ A ∩ A1κ++
and C ′′ ∈ A1κ+3

, and it is easy. So

A ∩B0 = A ∩B′′ ∩ C ′′.

Then

A ∩B = πF0,F1 [A ∩B′′ ∩ C ′′].

If C ′′ ⊃ F0, then

πF0,F1 [A ∩B′′ ∩ C ′′] = πF0,F1 [A ∩B′′],

and we can drop it. If C ′′ 6⊃ F0, then pick some C ′′′ ∈ A ∩ F0 ∩ A1κ+3
such that F0 ∩ C ′′′ =

F0 ∩ C ′′. Let D = πF0,F−1(C
′′′). Then

πF0,F1 [A∩B′′ ∩C ′′] = πF0,F1 [A∩B′′ ∩∩F0 ∩C ′′] = πF0,F1 [A∩B′′ ∩C ′′′] = πF0,F1 [A∩B′′]∩D.

Hence it remains to deal with πF0,F1 [A ∩ B′′]. Compare F0 with B′′. There are B′′′ ∈
(F0 ∪ {F0}) ∩ A ∩ A1κ++

and H ∈ F0 ∩ A ∩ A1κ+3
such that

B′′ ∩ F0 = B′′′ ∩H.

Note that we use here (the only place) that B′′ ∈ A1κ++
and so it is possible to find such

B′′′ and H. This breaks down once B′′ ∈ A1κ+
and makes intersections of this type more

complicated.

Let E = πF0,F1(B
′′′) and S = πF0,F−1(E). Then

πF0,F1 [A∩B′′] = πF0,F1 [A∩B′′ ∩∩F0] = πF0,F1 [A∩B′′′ ∩H] = πF0,F1 [A]∩E ∩S = A∩E ∩S.

So

A ∩B = A ∩ E ∩ S.
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Case 1.2.2. F0 6∈ A (or F1 6∈ A).

Then, also F 6∈ A and so F1 6∈ A. Consider H = (X)κ++ and H1 = (X1)κ++ . Then H1 ⊇ F

and F ∈ Cκ++
(H1). Let T ∈ Cκ++

(H1) be the least model which includes A.

Case 1.2.2.1. T is a splitting point.

So, let T0, T1 be the immediate predecessors of T with T0 ∈ Cκ++
(T ) such that the triple

T0, T1, T is of a ∆-system type.

Subcase 1.2.2.1.1. F ( T .

Then F ⊆ T0. Let G0 ∈ T0 ∩ A1κ+3
be so that T0 ∩ T1 = T0 ∩G0. Clearly

A ∩B = A ∩ F ∩B = A ∩ T0 ∩B.

Set A0 = πT1,T0(A). Then A0 ∈ A1κ+
, since the walk to A from A0κ+

proceeds via X, X1

continues through Cκ+
(X1) and cannot move out of Cκ++

(H1) before getting to T .

Now A ∩ T0 = A0 ∩G0. Hence

A ∩B = A ∩ F ∩B = A ∩ T0 ∩B = B ∩ A0 ∩G0.

The induction applies to A0, B. Hence there are B′
0 ∈ A0∩A1κ++

, C ′
0 ∈ A0∩A1κ+3

such that

A0 ∩B = A0 ∩B′
0 ∩ C ′

0.

Set B′ = πT0,T1(B
′
0) and C ′ = πT0,T1(C

′
0). Then

A ∩B = B ∩ A0 ∩G0 = A0 ∩B′
0 ∩ C ′

0 ∩G0

= A ∩B′ ∩ C ′ ∩G1,

where G1 = πT0,T1(G0). Replace finally C ′ ∩G1 by their maximum.

Subcase 1.2.2.1.3. F ) T .

Then T ⊆ F0 or T ⊆ F1. The arguments of the previous case apply.

Case 1.2.2.1. T is not a splitting point.

Let T− be the unique immediate predecessor of T . Then any further splitting on the way

to A, if there is such at all, involves only models of ∆-system type of cardinality κ+. Hence

relevant models of cardinality κ++ form here a chain. This implies T− ∈ A, and hence,

T− = (A)κ++ . Then Cκ++
(T−) ∈ A as well. We assume that F ∈ T−, just otherwise the

arguments of the previous cases work.

Let R ∈ A ∩ Cκ++
(T−) be the least model which includes F . Consider

R∗ =
⋃
{S ∈ Cκ++

(R) | S 6= R, S ∈ A}.
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Then

A ∩ F = A ∩ F0 = A ∩R∗.

Hence

A ∩B = A ∩ F ∩B = A ∩B ∩R∗.

But R∗ ⊆ F0, hence

B ∩R∗ = B0 ∩ F0 ∩ F1 ∩R∗,

where B0 = πF1,F0 [B]. So

A ∩B = A ∩B ∩R∗ = A ∩B0 ∩ F0 ∩ F1 ∩R∗.

The induction applies to A,B0 and the rest is easy here.

¤

Lemma 3.8 Let 〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s = {κ+, κ++, κ+3}〉 ∈ P ′, A, B ∈ A1κ+
. Then

ipb(A,B).

Proof. Consider the walks from A0κ+
to A and to B. Let X ∈ A1κ+

be the least common

point of this walks. X must be a splitting point. We preform switching in order to move X

to the κ+-central line. So, let us assume that X ∈ Cκ+
(A0κ+

) and it is the least common

model of the walks.

Let us concentrate on the new case. Thus there are X0, X1, X2 ∈ X ∩ A1κ+
which are the

immediate predecessors of X, F0, F1, F ∈ Cκ++
such that

1. F ∈ Cκ++
(A0κ++

),

2. F0 ∈ Cκ++
(F ),

3. F0, F1, F is a triple of a ∆-system type,

4. X0 ∈ Cκ+
(X),

5. X0 ∈ F0,

6. X0, X1, X is a triple of a ∆-system type,

7. X ′
0 = πF0,F1(X0),

8. F0, F1, F ∈ X1,
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9. A ⊆ X ′
0,

10. B ⊆ X1.

Let Y 0
0 , Y 0

1 , Y 0 ∈ X0 be the images of F0, F1, F under πX1,X0 and Y0, Y1, Y ∈ X ′
0 be the

images of F0, F1, F under πF0,F1 .

Using more switching if necessary we may assume that the central line was chosen so

that the models in Cκ+
(X1) either have F (and hence also F0, F1) inside or are the members

of F0. !Also assume the least model of Cκ+
(X1) with F inside has at most one immediate

predecessor. It is possible by Definition 2.4.

We split the argument into few cases.

Case 1. A ∈ Cκ+
(X ′

0).

Set A0 = πF1,F0(A) and A1 = πX0,X1(A0). Then A0 ∈ Cκ+
(X0), and so A1 ∈ Cκ+

(X1). Now

either A1 ∈ F0 or F0, F1, F ∈ A1 by the assumption above.

Subcase 1.1. A1 ∈ F0.

Then

A1 ∈ X1 ∩ F0 = X1 ∩X0.

This implies that A0 = A1, and then A0 ∈ X1. We have πF0,F1 ∈ X1. Hence A = πF0,F1(A
0)

is in X1. Note that A1 ∈ Cκ+
(X1). So we obtain a walk from X1 to A by taking the image

under πF0,F1 of the walk from X1 to A1 after it enters F0.

Subcase 1.2. A1 6∈ F0.

Then F0, F1, F ∈ A1. Let X1 ∩ A0 = X1 ∩ A1 ∩ (X1 ∩ X0) = A1 ∩ H, for some H ∈
X1 ∩ Cκ++

(F0). As in the previous case we have

α ∈ A ∩X1 iff πF1,F0(α) ∈ A0 ∩X1 iff πF1,F0(α) ∈ A1 ∩H.

Now we cannot apply πF0,F1 to A1, since it is not in the domain. Instead, πF0,F1 ∈ A1. So

πF1,F0(α) ∈ A1 ∩H iff α ∈ A1 ∩ πF0,F1 [H].

Putting together we obtain that

α ∈ A ∩X1 iff α ∈ A1 ∩ πF0,F1 [H].

Hence

A ∩X1 = A1 ∩ πF0,F1 [H].

Then

A ∩B = A ∩X1 ∩B = A1 ∩ πF0,F1 [H] ∩B.
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Now the induction applies to the right side and we obtain ip(B, A).

Let us show ip(A,B). Apply the induction to A1, B and find A′ ∈ (A1 ∪ {A1})∩A1κ+
, H ′ ∈

A1 ∩ A1κ++
, G′ ∈ A1 ∩ A1κ+3

such that

A1 ∩B = A′ ∩H ′ ∩G′.

Then

A ∩B = A ∩X1 ∩B = A ∩ A′ ∩H ′ ∩G′ ∩ πF0,F1 [H].

Hence we basically need to check ip(A,A′). But note that A′ ∈ (A1 ∪ {A1}) ∩ A1κ+
and if

B 6∈ A1, then we are here in a simpler situation and the induction can be applied to deduce

ip(A,A′). Suppose that B ∈ A1. If F ∈ B or B ∈ F0, then we proceed as above. In general

we consider the walk from A1 to B and proceed by induction on the walk complexity. Thus,

if B ∈ Cκ+
(A1), then either F ∈ B or B ∈ F0. Assume that B 6∈ Cκ+

(A1). Consider the

least model K of this walk with F ∈ K. Note that F ∈ K implies that F ∈ (K)κ++ , since

F is on κ++-central line and one cannot change this moving between models.

Again we need to consider few cases.

Subcase 1.2.1. There is K1 ∈ A1κ+
such that the triple K−, K1, K is of a ∆-system type

and B ⊆ K1.

Let H = (K)κ++ , H0 = (K−)κ++ and H1 = πK−,K1
(H) = (K1)κ++ . Then H, H0, H1 ∈

Cκ++
(Aκ++

). In addition, due to a ∆-system type of the triple, H ⊇ K−, K1. So, we may

assume that H ) F . Just, if H = F , then K− ∈ F0 (no small models between F0 and F ).

But then also K1 ∈ F0, since K1 ∈ K ∩ F . This implies that every element of K1 is in F0

and we are done.

If H1 ∈ F , then K1 ∈ F too, and then K1 ∈ F0 and we are done.

So, let us assume that F ∈ H1 and F 6∈ K1. Let T be the least element of K1 ∩ Cκ++
(H1)

which contains F . Consider

T∗ =
⋃
{S ∈ Cκ++

(T ) | S 6= T, S ∈ K1}.

Then

K1 ∩ F = K1 ∩ T = K1 ∩ T∗,

but T∗ ⊆ F0 and A ∩ F0 = A ∩ A0 = A0 ∩ F0 ∩ F1. Then

A ∩B = A ∩B ∩ F = A ∩B ∩ T∗ = A ∩ F0 ∩B ∩ T∗ = A0 ∩ F0 ∩ F1 ∩B ∩ T∗.

Now the induction applies to A0, B.

Subcase 1.2.2. B ⊆ K−.
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Then we consider H0 = (K−)κ++ . If H0 ∈ F , then H0 ∈ F0. This implies K− ∈ F0 and we

are done.

Subcase 1.2.3. There are E0, E1, E ∈ K∩A1κ++
of a ∆-system type with E0 ∈ Cκ++

(E), E ∈
Cκ++

(H) such that B 6⊂ K−, but B ⊆ πE0,E1(K
−).

We may assume that F ⊆ E0. Just otherwise E0 ∈ F and then F ⊇ E. Which means that

either E = F and then E0 = F0, E1 = F1 or E ∈ F and then E0, E1 ∈ F0. The second

possibility is impossible since B 6∈ F0. If the first one occurs, then πF1,F0(B) ∈ F0 ∩K. But

A1 ∩ F0 = A0 ∩ A1. So πF1,F0(B) ∈ A0, and then B ∈ A−.

Set B′ = πE1,E0(B). Then

B ∩ F = B ∩ F ∩ E0 = B ∩ F ∩ E0 ∩ E1 = B′ ∩ F ∩ E0 ∩ E1.

So we are able to replace B with a simpler model B′.

Subcase 1.2.4. There are E0, E1, E ∈ K∩A1κ++
of a ∆-system type with E0 ∈ Cκ++

(E), E ∈
Cκ++

(H) such that B 6⊆ K− and B 6⊆ πE0,E1(K
−).

Denote πE0,E1(K
−) by K1. There must be K2 ∈ K ∩A1κ++

such that the triple K1, K2, K is

of a ∆-system type after switching E0 by E1 and B ⊆ K2. Also E0, E1, E ∈ K2. Consider

H2 = (K2)κ++ . Then E ∈ H2. As in the previous case, we have F ⊆ E0. So F ∈ H2. But

F 6∈ K2. Proceed as in the first case. Let T be the least element of K2 ∩ Cκ++
(H2) which

contains F . Consider

T∗ =
⋃
{S ∈ Cκ++

(T ) | S 6= T, S ∈ K2}.

Then

K2 ∩ F = K2 ∩ T = K2 ∩ T∗.

So

B ∩ F = B ∩ T∗.

Now T∗ ⊆ F0 and A ∩ F0 = A ∩ A0. Hence

A ∩B = A ∩B ∩ F = A ∩B ∩ T∗ = A ∩ F0 ∩B ∩ T∗ = A0 ∩ F0 ∩ F1 ∩B ∩ T∗.

Now the induction applies to A0, B.

Case 2. A 6∈ Cκ+
(X ′

0).

Let K ∈ Cκ+
(X ′

0) be the least model with A ∈ K.

Subcase 2.1. There are K0, K1 ∈ K ∩ A1κ+
, K0 ∈ Cκ+

(K) such that the triple K0, K1, K

is of a ∆-system type.
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Then A = K1 or A ∈ K1.

Remember that

X1 ∩X ′
0 = X1 ∩ F1 = X ′

0 ∩ Y0,

since

a ∈ X ′
0 ∩X1 ⇐⇒ πF1,F0(a) ∈ X0 ∩X1 ⇐⇒ πF1,F0(a) ∈ X1 ∩ F0 ⇐⇒

πF1,F0(a) ∈ X0 ∩ πX1,X0(F0) ⇐⇒ a ∈ X ′
0 ∩ πF0,F1(πX1,X0(F0)) and Y0 = πF0,F1(πX1,X0(F0)).

Subcase 2.1.1. A ∈ Y0.

Then A ∈ F1. If in addition K ∈ Y0, then also K ∈ F1. Let K0 = πF1,F0(K) and K1 =

πX0,X1(K
0). It follows that K0 ∈ Y 0

0 and K1 ∈ F0. So, K0 = K1. Also K1 ∈ Cκ+
(X1), as

K ∈ Cκ+
(X ′

0). Then we obtain the walk from X1 to A by taking the image under πF0,F1 of

the walk from X1 to A1 after it enters F0.

Suppose now that K 6∈ Y0. Then Y0 ∈ K, since by Definition 2.4 each element of Cκ+
(X ′

0)

either in Y0 or Y0 (and Y ) belongs to it. Now K is a splitting point, so K0 cannot be inside Y0.

Then Y0 ∈ K0 and hence also Y ∈ K0, since there is no models of small cardinalities between

Y and Y0. Consider (K0)κ++ . We have Y ⊆ (K0)κ++ and so Y0 ∈ (K0)κ++ . Remember

that A ∈ K1 ∪ {K1} and A ∈ Y0. Let T1 ∈ K1 ∩ A1κ++
be the ∆-system witness, i.e.

K0 ∩K1 = K1 ∩ T1. If Y0 ⊆ T1, then A ∈ T1. Hence A ∈ K1 ∩ T1 and so A ∈ K0. Which

is impossible by the choice of K. So we must have T1 ∈ Y0. Then, by the definition of a

∆-system type triple, (K1)κ++ ∈ Y0 and then K1 ∈ Y0.

Set K0 = πF1,F0(K), K1 = πX0,X1(K
0), K0

0 = πF1,F0(K0), K
1
0 = πX0,X1(K

0
0), K0

1 = πF1,F0(K1),

K1
1 = πX0,X1(K

0
1). Then F0, F1, F ∈ K1

0 , as Y0, Y1, Y ∈ K0. Also K0
1 ⊆ F0, as K1 ⊆ Y0. Hence

K0
1 = K1

1 . Then we obtain the walk from X1 to A by going down to K1 then to K0
1 and

taking the image under πF0,F1 of the walk from K0
1 to A1.

Subcase 2.1.2. A 6∈ Y0.

Consider (X ′
0)κ++ . We have Y ∈ Cκ++

((X ′
0)κ++). Also (K)κ++ ∈ Cκ++

((X ′
0)κ++).

Subcase 2.1.2.1. Y0 ∈ A (or equivalently Y1 ∈ A).

Then also Y1, Y ∈ A. Hence F0, F1, F ∈ A1 = πF0,F1(πX′
0,X0

(A)). Now, as was shown in Case

1.2,

A ∩B = A1 ∩B ∩ F1.

Subcase 2.1.2.2. Y0 6∈ A (or equivalently Y1 6∈ A).
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Then also Y1, Y 6∈ A.

If Y ∈ K1, then Y ∈ K0 as well, since K as a model with two immediate predecessors cannot

be the least model in Cκ+
(X ′

0) with Y inside. So Y0, Y1, Y ∈ K0 ∩K1. Then

K0 ∩ Y = K1 ∩ Y,

by the definition of a ∆-system type triple (just compare (K0)κ++ and (K1)κ++). Consider

A∼ = πK1,K0 [A]. Then

A ∩ Y0 = A∼ ∩ Y0.

But

A ∩ Y0 = A ∩X1,

since

A ∩X1 = A ∩ F1 ∩X1 = A ∩ Y0 ∩X ′
0 = A ∩ Y0.

Hence

A ∩B = A ∩X1 ∩B = A ∩ Y0 ∩B = A∼ ∩B ∩ Y0.

The induction applies now to A∼, B.

Suppose now that Y 6∈ K1. We have Y ∈ K0, since K as a model with two immediate

predecessors cannot be the least model in Cκ+
(X ′

0) with Y inside. Also (K1)κ++ 6⊆ Y , since

otherwise K1 will be a subset of Y0, as K0, K1, K are of a ∆-system type and Y0, Y are on

the κ++-central line. Hence Y ∈ Cκ++
((K1)κ++) and so (K0)κ++ ∈ Cκ++

((K1)κ++). Then

K1 ∩ Y = K1 ∩ Y0 = K1 ∩K0 ∩ Y0.

So

A ∩ Y0 = A ∩K1 ∩ Y0 = A ∩K1 ∩K0 ∩ Y0 = A∼ ∩ Y0 ∩G0,

where G0 ∈ K0 ∩ Cκ++
((K0)κ++) is so that K0 ∩K1 = K0 ∩G0. Hence

A ∩B = A ∩ Y0 ∩B = A∼ ∩B ∩ Y0 ∩G0.

Now the induction applies.

Subcase 2.2. There are K0, K
′
0, K1 which are the immediate predecessors of K.

Let G0, G1, G ∈ A1κ++ ∩ K1, G ∈ Cκ++
((K)κ++), G1 ∈ Cκ++

(G) be the corresponding wit-

nessing triple of a ∆-system type.

Split into two subcases.

Subcase 2.2.1. A ⊆ K1 and K ′
0 ∈ Cκ+

(K).
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Then Y0, Y1, Y ∈ K ′
0, since K splits and so it cannot be the least model on Cκ+

(X ′
0) with

Y ’s inside. Then Y ⊆ G1. Hence

K1 ∩ Y0 = K1 ∩G1 ∩ Y0 = K ′
0 ∩G′

0 ∩ Y0,

where G′
0 = πG0,G1(πK1,K0(G1)). So,

A ∩ Y0 = A ∩K1 ∩ Y0 = A ∩K ′
0 ∩G′

0 ∩ Y0.

Apply the induction to A and K ′
0. So, there are A′ ∈ K ′

0 ∪ {K ′
0}, T ∈ K ′

0 ∩ A1κ++
, S ∈

K ′
0 ∩ A1κ+3

such that

A ∩ Y0 = A′ ∩ T ∩ S.

Then

A ∩B = A ∩ Y0 ∩B = A′ ∩B ∩ T ∩ S

and the induction applies to A′ and B.

Subcase 2.2.2. A ⊆ K ′
0 and K1 ∈ Cκ+

(K).

Then Y0, Y1, Y ∈ K1, since K splits and so it cannot be the least model on Cκ+
(X ′

0) with

Y ’s inside.

Subcase 2.2.2.1 Y0 ⊆ G1.

Then

A ∩ Y0 = A ∩K ′
0 ∩G1 ∩ Y0 = A ∩K1 ∩ Y0.

Apply the induction to A,K1. So, there are A′ ∈ K1∪{K1}, T ∈ K1∩A1κ++
, S ∈ K1∩A1κ+3

such that

A ∩ Y0 = A′ ∩ T ∩ S.

Then

A ∩B = A ∩ Y0 ∩B = A′ ∩B ∩ T ∩ S

and the induction applies to A′ and B.

Subcase 2.2.2.2 Y0 6⊆ G1.

Then G1 ( Y0. So K ′
0 ∈ Y0 and then A ∈ Y0. Move everything to X1 and copy the walks as

it was done in the previous cases.

¤.
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4 Suitable structures and assignment functions

We address first the new splitting possibility, which is crucial for GCH and does not appear

in the gap 2, 3 cases.

Definition 4.1 Let ν < ξ < µ be cardinals, A,X, Y0, Y1, Y be models, Cν ⊆ Pν+(H(θ+)), Cξ ⊆
Pξ+(H(θ+)). We call triples F0, F1, F and A′

0, A0, A1 splitting triples over A, X, Y0, Y1, Y in-

side Cν , Cξ iff

1. |A0| = ν,

2. |Y0| = ξ,

3. |X| = µ,

4. A0, A
′
0, A1 ∈ Cν ,

5. Y0, Y1, Y, F0, F1, F ∈ Cξ,

6. F0, F1 ∈ F ,

7. F0, F1 are isomorphic over F0 ∩ F1,

8. F0, F1, F ∈ A1,

9. X ∈ F1,

10. F0 ∩ F1 = F1 ∩X,

11. A0 ∈ F0,

12. A1 ∩ A0 = A1 ∩ F0,

13. A1, A0 are isomorphic over A1 ∩ A0,

14. A′
0 = πF0,F1(A0),

15. A ⊆ A′
0,

16. Y0 = πF0,F1(πA1,A0(F0)), Y1 = πF0,F1(πA1,A0(F1)), Y = πF0,F1(πA1,A0(F )).

Note that A0 ∩A1 = A0 ∩ πA1,A0(F0), since α ∈ A0 ∩A1 iff α ∈ A1 ∩ F0 iff πA1,A0(α) ∈
A0 ∩ πA1,A0(F0), but for α ∈ A0 ∩ A1, πA1,A0(α) = α.

Then A′
0 ∩ A1 = A1 ∩ F1 = A′

0 ∩ Y0, since πF1,F0 ∈ A1. Hence Y is a model which

corresponds to F0 in A′
0.
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Normally, we will have |A0| < |F | and |X| = |F |∗.

Lemma 4.2 Suppose that all the models of Definition 4.1 are members of a condition in P ′.
Then Y0 ∈ A implies Y1, Y,X ∈ A.

Proof. Set A∗
1 = πA0,A1(πF1,F0(A)). If Y0 ∈ A, then πF1,F0(Y0) ∈ πF1,F0(A), and hence

πA0,A1(πF1,F0(Y0)) = F0 ∈ A∗
1. Then F ∈ A∗

1, since there are no models of small cardinality

between F0 and F . Hence, F1 ∈ A∗
1. So, their pre-images Y and Y1 are in A.

Now, there is G0 ∈ F0 ∩ A∗
1 such that F0 ∩ F1 = F0 ∩ G0. Then G0 ∈ A1 ∩ F0 = A0 ∩ A1.

Moreover, G0 ∈ A∗
1 ∩ F0 = A∗

0 ∩ A∗
1, where A∗

0 = πF1,F0(A).

Set G1 = πF0,F1(G0). Then G1 ∈ A ∩ A∗
1 and F0 ∩ F1 = F1 ∩G1, i.e. G1 = X and X ∈ A.

¤

Lemma 4.3 (Existence of splitting triples). Let µ > ξ > ν be regular cardinals in [κ+, θ].

Then for every closed unbounded sets Cν ⊆ Pν+(H(θ+)), Cξ ⊆ Pξ+(H(θ+)) there is a closed

unbounded Cµ ⊆ Pµ+(H(θ+)) such that for every model X ∈ Cµ, with ξX ⊆ X, there are

Y0, Y1, Y ∈ Cξ,
νY0 ⊆ Y0,

νY1 ⊆ Y1,
νY ⊆ Y so that for every model A with |A| ≤ ν there are

splitting triples over A,X, Y0, Y1, Y inside Cν , Cξ.

Proof. Suppose otherwise. Then there are clubs Cν ⊆ Pν+(H(θ+)), Cξ ⊆ Pξ+(H(θ+))

such that for every club Cµ ⊆ Pµ+(H(θ+)) there is a model X ∈ Cµ so that for ev-

ery models Y0, Y1, Y ∈ Cξ there is a model A(X, Y0, Y1, Y ) without splitting triples over

A(X, Y0, Y1, Y ), X, Y0, Y1, Y inside Cν , Cξ.

Let Cν ⊆ Pν+(H(θ+)), Cξ ⊆ Pξ+(H(θ+)) be such clubs. Define a function

I : Pµ+(H(θ+))× Cξ × Cξ × Cξ → Pν+(H(θ+))

by setting I(X, Y0, Y1, Y ) to be the least model A ∈ Pν+(H(θ+)) without splitting triples

over A(X, Y0, Y1, Y ), X, Y inside Cν , Cξ, if there is one and 0 otherwise.

Fix functions hν : [H(θ+)]<ω → Pν+(H(θ+)), hξ : [H(θ+)]<ω → Pξ+(H(θ+)) such that

Cν ⊇ {t ∈ Pν+(H(θ+)) | hν(e) ⊆ t whenever e ∈ [t]<ω},

Cξ ⊇ {t ∈ Pξ+(H(θ+)) | hξ(e) ⊆ t whenever e ∈ [t]<ω}.
Turn to submodels of 〈H(λ+5),∈, <, θ+, hν , hξ, I〉 for λ much bigger than θ. Consider

C = {Z ∈ Pµ+(H(λ+5)) | Z ≺ 〈H(λ),∈, <, θ+, hν , hξ, I〉}.
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Then

C ¹ H(θ+) = {Z ∩H(θ+) | Z ∈ C}
contains a club in Pµ+(H(θ+)). Let Cµ be such a club. Pick X ∈ Cµ,

ξ ⊆ X, to be a

counterexample.

Find X∗ ∈ C with X∗ ∩H(θ+) = X. Note that X∗ may be not closed under ξ-sequences of

its elements (even sup(X∗ ∩ θ++) can have cofinality ω).

Let F ∗
1 ≺ 〈H(λ+5),∈, <, θ+, hν , hξ, I〉 be a model of cardinality ξ, closed under ν-sequences

of its elements and with X∗ inside. Then F1 = F ∗
1 ∩ H(θ+) is closed under hξ and hence

F1 ∈ Cξ. Let F ∗
0 be obtained from F ∗

1 via a reflection to X∗. Here F ∗
1 ∩X∗ need not be an

element of X∗ due the possible lack of closure, but F1 = F ∗
1 ∩H(θ+) is in X = X∗ ∩H(θ+),

since ξX ⊆ X. We pick F ∗
0 ≺ 〈H(λ+4),∈, <, θ+, hν , hξ, I〉 to be a model realizing the same

type as F ∗
1 over F1 ∩X. So F ∗

1 , F ∗
0 are isomorphic by the isomorphism which is the identity

over F1 ∩X, but probably not the identity over F ∗
1 ∩ F ∗

0 .

Let F ∗ ≺ 〈H(λ+5),∈, <, θ+, hν , hξ, I〉 be a model with F ∗
0 , F ∗

1 inside and closed under

ν-sequences of its elements. Pick now A∗
1 ≺ 〈H(λ+5),∈, <, θ+, hν , hξ, I〉 to be a model of

cardinality ν with F ∗
0 , F ∗

1 , F ∗, X∗ ∈ A∗
1. Reflect A∗

1 to F ∗
0 . Let A∗

0 ⊆ F ∗
0 ∩ H(λ+3) be a

result. Then A∗
0 ≺ 〈H(λ+3),∈, <, θ+, hν , hξ, I〉, the isomorphism πA∗1∩H(λ+3),A∗0 is the identity

on A∗
1 ∩H(θ+) ∩ A∗

0 and A∗
1 ∩H(θ+) ∩ F ∗

0 = A∗
1 ∩ A∗

0 ∩H(θ+).

Set A′∗
0 = πF ∗0 ,F ∗1 ∩H(λ+4)(A

∗
0). Then, A′∗

0 ≺ 〈H(λ+3),∈, <, θ+, hν , hξ, I〉, since A∗
0 ≺ F ∗

0 ∩
H(λ+3) and F ∗

0 ' F ∗
1 ∩H(λ+4). This implies in particular that A′

0 = A′∗
0 ∩H(θ+) is in Cν

and A′∗
0 is closed under I.

Set F 0∗
0 = πA∗1∩H(λ+3),A∗0(F

∗
0 ∩H(λ+3)), F 0∗

1 = πA∗1∩H(λ+3),A∗0(F
∗
1 ∩H(λ+3))

and F 0∗ = πA∗1∩H(λ+3),A∗0(F
∗ ∩H(λ+3)).

Move this models to A′∗
0 . Thus let Y ∗

0 = πF ∗0 ,F ∗1 ∩H(λ+4)(F
0∗
0 ), Y ∗

1 = πF ∗0 ,F ∗1 ∩H(λ+4)(F
0∗
1 ) and

Y ∗ = πF ∗0 ,F ∗1 ∩H(λ+4)(F
0∗). Then Y ∗

0 , Y ∗
1 , Y ∗ ∈ A′∗

0 .

Define F0 = F ∗
0 ∩ H(θ+), F1 = F ∗

1 ∩ H(θ+), F = F ∗ ∩ H(θ+), Y0 = Y ∗
0 ∩ H(θ+), Y1 =

Y ∗
1 ∩ H(θ+), Y = Y ∗ ∩ H(θ+), A0 = A∗

0 ∩ H(θ+) etc. Then X, Y0, Y1, Y ∈ A′
0, since X ∈

A1 ∩F1 = A1 ∩A′
0 (the last equality holds because A1 ∩F0 = A1 ∩A0 and πF0,F1 ∈ A1). The

models A′
0, A0, A are in Cν , since they are closed under hν . Similar F0, F1, F, Y0, Y1, Y ∈ Cξ.

Finally, A′∗
0 is closed under I and X, Y0, Y1, Y ∈ A′∗

0 , hence I(X, Y0, Y1, Y ) ∈ A′∗
0 . By

the choice of X, Y0, Y1, Y , I(X, Y0, Y1, Y ) must be a model without splitting triples over

I(X, Y0, Y1, Y ), X, Y0, Y1, X inside Cν , Cξ. But F0, F1, F ∈ Cξ and A′
0, A0, A1 ∈ Cν are split-

ting triples over I(X, Y0, Y1, Y ), X, Y0, Y1, Y . Contradiction.

¤
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Lemma 4.4 Suppose that X,Y0, Y1, Y satisfy the conclusion of Lemma 4.3 and they are

in M for a model M ∈ Cν. Then there are splitting triples A′
0, A0, A1, F0, F1, F over

M,X, Y0, Y1, Y with A′
0 = M .

Proof. Let A′
0, A0, A1, F0, F1, F be any splitting triples over M, X, Y0, Y1, Y . Consider M0 =

πF1,F0(M) and M1 = πA0,A1(M0). Then, F0, F1, F ∈ M1, since F0 = πA0,A1(πF1,F0(Y0)), F1 =

πA0,A1(πF1,F0(Y1)), F = πA0,A1(πF1,F0(Y )).

So, we can replace A′
0 by M , A0 by M0 and A1 by M1. Hence M, M0,M1, F0, F1, F will be

splitting triples over M,X, Y0, Y1, Y .

¤
For every cardinal µ ∈ [κ+, θ] we define a closed unbounded subset Cµ of Pµ+(H(θ+)) by

induction as follows: Cκ+ = Pκ++(H(θ+)),

Cκ++ = Pκ+3(H(θ+)),

if µ is a limit cardinal, then

Cµ = Pµ+(H(θ+)),

if µ is a successor cardinal, then let Cµ be the intersection of the clubs given by Lemma 4.3

for each ν < ξ < µ.

Definition 4.5 A model M of a regular cardinality ν is called a reliable model iff

1. M ∩H(θ+) ∈ Cν ,

2. for every regular cardinals ξ, µ ∈ M, ν < ξ < µ, for every clubs E ⊆ Pν+(H(θ+)), D ⊆
Pξ+(H(θ+)) in M and there is a club C ⊆ Pµ+(H(θ+)), C ⊆ Cµ, C ∈ M such that for

every X ∈ C ∩M there are Y0, Y1, Y ∈ D ∩M which satisfy the conclusion of Lemma

4.3 with E and D.

Definition 4.6 A structure X = 〈X, E, C ∈,⊆ 〉, where E ⊆ [X]2 and C ⊆ [X]3 is called

suitable structure iff there is p(X) = 〈〈A0τ (X), A1τ (X), Cτ (X)〉 | τ ∈ s(X)〉 ∈ P ′ such that

1. X = A0κ+
(X),

2. s(X) ∈ X,

3. s(X) ⊆ X,

4. 〈a, b〉 ∈ E iff a ∈ s(X) and b ∈ A1a(X),

5. 〈a, b, d〉 ∈ C iff a ∈ s(X), b ∈ A1a(X) and d ∈ Ca(X)(b).

41



Let G(P ′) be a generic subset of P ′.

Definition 4.7 A suitable structure X = 〈X,E, C ∈,⊆ 〉 is called suitable generic structure

iff there is 〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s〉 ∈ G(P ′) such that

1. 〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s \ {κ+}〉 ∈ A0κ+
.

In particular s ∈ A0κ+
. Note that s may have cardinality above κ+ (which is not a

case in a suitable structure ) and so s not necessary is contained in A0κ+
.

2. X is a substructure (not necessarily elementary) of the suitable structure generated by

〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s〉, i.e. 〈A0κ+
, {〈τ, B〉 | τ ∈ s,B ∈ A1τ}, {〈τ, B, D〉 | τ ∈ s,B ∈

A1τ , D ∈ Cτ (B)},

3. X ∈ Cκ+
(A0κ+

),

4. p(X) and 〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s〉 agree about the walks to members of X∩⋃{A1τ | τ ∈
s}. In other words we require that all the elements of walks in 〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s〉
to elements of X ∩⋃{A1τ | τ ∈ s} are in X.

5. If A ∈ A1τ (X), for some τ ∈ s(X), then either A it is of one of the first three types of

Definition 2.4(2) inside 〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s〉 or the models witnessing that it is of

the forth type appear in X as well.

Note that, as a condition in P ′, p(X) need not be weaker than 〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s〉,
and hence it need not be in G(P ′).
Note also, that any stronger condition 〈〈B0τ , B1τ , Dτ 〉 | τ ∈ r〉 ∈ G(P ′) such that

• 〈〈B0τ , B1τ , Dτ 〉 | τ ∈ r \ {κ+}〉 ∈ B0κ+
,

and

• Cτ (A0τ ) is an initial segment of Dτ (B0τ ), for each τ ∈ s

will witness that X is a suitable generic structure.

Fix n < ω. We define an analog P ′n of P ′ on the level n just replacing κ by κ+n
n and θ by

some λn big enough ( λn a Mahlo will be more than enough; we can use for the gap 4 case

λn = κ+n+4
n , etc). An assignment function an will be an isomorphism between a suitable

generic structure of cardinality less than κn over κ and a suitable structure over κ+n
n .

Define Qn0.
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Definition 4.8 Let Qn0 be the set of the triples 〈a,A, f〉 so that:

1. f is partial function from θ+ to κn of cardinality at most κ

2. a is an isomorphism between a suitable generic structure X of cardinality less than κn

and a suitable structure X′ in P ′n so that

(a) every model in X′ is a reliable model,

(b) X ′ is above every model which appears in A1τ (X′) for some τ ∈ s(X′) \ {κ+} and

also those in A1κ+
(X′) \ {X ′} in the order ≤En of the extender En, (or actually,

after codding X ′ by an ordinal),

(c) if t ∈ ⋃{A1τ (X′) | τ ∈ s(X′)}, then for some k, 2 < k < ω,

?t ≺ H(χ+k), with χ big enough fixed in advance. (Alternatively, may be to work

with subsets of λn only and further require it is a restriction of such model to λn.)

We deal with elementary submodels of H(χ+k), instead of those of H(λn).

Further passing from Qn0 to P we will require that for every k < ω for all but

finitely many n’s the n-th image of a model t ∈ X ∪ Y will be an elementary

submodel of H(χ+k).

The way to compare such models t1 ≺ H(χ+k1), t2 ≺ H(χ+k2), when k1 6= k2, say

k1 < k2, will be as follows:

move to H(χ+k1), i.e. compare t1 with t2 ∩H(χ+k1).

3. A ∈ En,X′ ,

4. for every ordinals α, β, γ which code models in
⋃{A1τ (X′) | τ ∈ s(X′)} we have

α ≥En β ≥En γ implies

πEn
αγ (ρ) = πEn

βγ (πEn
αβ (ρ))

for every ρ ∈ π“X′,α(A).

Define a partial order on Qn0 as follows.

Definition 4.9 Let 〈a,A, f〉 and 〈b, B, g〉 be in Qn0. Set 〈a,A, f〉 ≥n0 〈b, B, g〉 iff

1. a ⊇ b,

2. f ⊇ g,
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3. πmax(rng(a)),max(rng(b))“A ⊆ B,

4. dom(f)∩Y b = dom(g)∩Y b, where Y b is the second component (i.e. the set of ordinals)

of the suitable structure on which b is defined.

Note that here we do not require disjointness of the domain of g and of Y b, but as it

will follow from the further definition of non-direct extension, the value given by g will

be those that eventually counts.

Definition 4.10 Qn1 consists of all partial functions f : κ+3 → κn with |f | ≤ κ. If f, g ∈
Qn1, then set f ≥n1 g iff f ⊇ g.

Definition 4.11 Define Qn = Qn0 ∪Qn1 and ≤∗n=≤n0 ∪ ≤n1.

Let p = 〈a,A, f〉 ∈ Qn0 and ν ∈ A. Set

p_ν = f ∪ {〈α, πmax(rng(a)),a(α)(ν) | α ∈ A1θ(dom(a)) \ dom(f)}.

Note that here a contributes only the values for α’s in dom(a) \ dom(f) and the values on

common α’s come from f . Also only the ordinals in A1θ(dom(a)) are used to produce non

direct extensions, the rest of models disappear.

Now, if p, q ∈ Qn, then we set p ≥n q iff either p ≥∗n q or p ∈ Qn1, q = 〈b, B, g〉 ∈ Qn0 and

for some ν ∈ B, p ≥n1 q_ν.

Definition 4.12 The set P consists of all sequences p = 〈pn | n < ω〉 so that

(1) for every n < ω, pn ∈ Qn,

(2) there is `(p) < ω such that

(i) for every n < `(p), pn ∈ Qn1,

(ii) for every n ≥ `(p), we have pn = 〈an, An, fn〉 ∈ Qn0,

(iii) there is 〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s〉 ∈ G(P ′) which witnesses that dom(an(p)) is a

suitable generic structure (i.e. dom(an(p)) and 〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s〉 satisfy

4.7), simultaneously for every n, l(p) ≤ n < ω.

(3) For every n ≥ m ≥ `(p), dom(am) ⊆ dom(an),

(4) ? for every n, `(p) ≤ n < ω, and X ∈ dom(an) we have that for each k < ω the set

{m < ω | ¬(am(X) ∩ H(χ+k) ≺ H(χ+k))} is finite.] (Alternatively require only that

am(X) ⊆ λm but there is X̃ ≺ H(χ+k)) such that am(X) = X̃ ∩ λm. It is possible to

define being k-good this way as well).
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(5) ? For every n ≥ `(p) and α ∈ dom(fn) there is m,n ≤ m < ω such that α ∈
dom(am) \ dom(fm).

Next lemma which allows to extend elements of P is crucial.

Lemma 4.13 Let p ∈ P and 〈〈B0τ , B1τ , Dτ 〉 | τ ∈ r〉 ∈ G(P ′). Then

1. for every t ∈ ⋃{B1τ | τ ∈ r} there is q ≥∗ p such that t ∈ dom(an(q)) for all but

finitely many n’s;

2. for every A ∈ B1κ+
there is q ≥∗ p such that A ∈ dom(an(q)) for all but finitely many

n’s. Moreover, if 〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s〉 ≥ 〈〈B0τ , B1τ , Dτ 〉 | τ ∈ r〉 witnesses a

generic suitability of p and A ∈ Cκ+
(A0κ+

), then the addition of A does not require

adding of ordinals and the only models that probably will be added together with A are

its images under ∆-system type isomorphisms for triples in p.

Proof. The proof follows the proof of this lemma in a gap 3 case. Let us concentrate on

the new possibility of splitting. Namely given triples A′
0, A0, A1 ∈ A and F0, F1, F as in

the last case of Definition 2.4 with A′
0, A and F1, F on the central lines (other possibilities

are as in a gap 3 case), we would like to add A0, A1, F0. Denote by Â the largest model

of C |A|(A′
0) \ {A′

0} which is in p, if such a model exists. Suppose that it exists. If it does

not exist then the argument is similar and simpler. Consider X ∈ F1 ∩ A1|F1|∗ such that

F0 ∩ F1 = F1 ∩ X and Y0, Y1, Y ∈ A1|F1|∗ as in Definition 4.1. Then X, Y0, Y1, Y ∈ A′
0.

Using the induction we can assume that X already appears in p. Now apply Lemma 4.3

to X∗ = an(X) and appropriate C (C will depend on an(Â) and its place relatively to

Y0, Y1, Y ) and find models Y ∗
0 , Y ∗

1 , Y ∗ satisfying the conclusion of this lemma and which can

be added to rng(an) as images of Y0, Y1, Y . Assume that already an(Y0) = Y ∗
0 , an(Y1) = Y ∗

1

and an(Y ) = Y ∗. Pick now inside A∗ = an(A) splitting triples F ∗
0 , F ∗

1 , F ∗ and A′∗
0 , A∗

0, A
∗
1

over an(A′
0), X

∗, Y ∗
0 , Y ∗

1 , Y ∗. By Lemma 4.4, we can assume that A′∗ = an(A′
0). Add this

models to rng(an) as images of the corresponding models over κ. Finally extend an further

by adding the images under isomorphisms corresponding to ∆-system types.

We need the following property:

if A ∈ A0κ+ ∩dom(an), for some n ≥ `(p) big enough, and B ∈ max(dom(an)) is a model

which is reachable by a walk from A, then

(1) it is possible to extend an to bn by adding B, probably in addition also models which

belong to A and then taking isomorphic images.
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(2) Let A ∈ dom(an), B a model added to dom(an) and B̃ is an isomorphic image of B

which belongs to A, then bn(B̃) ∈ an(A) as well all the models of the walk from A to

B̃, where bn denotes the extension of an obtained by adding B and taking isomorphic

images.

This means basically that for adding such B we should take care only of models which

are in A. The images of the rest of models with B inside will have the image of B inside

automatically.

(1) was explained above. Let us deal with (2).

Assume that B is a model of cardinality κ+ and B is on the central line. Note that any

model involved is a member of one of cardinality κ+.

Our first tusk will be to replace A by a model on the central line. Consider the walk to A.

Let M be the last model on the central line which includes A, M1 ∈ M the next model of

the walk of the same cardinality with A ∈ M1 ∪ {M1} and M0 ∈ C |M |(M) isomorphic to

it model. By the definition of the walk ( Definition 2.4, One to Four Continuations), the

models M0,M1 are the immediate predecessors of M . Replace A by A1 = πM1,M0 [A]. Note

that B̃1 := πM1,M0 [B̃] is an isomorphic image of B. If A1 and B̃1 satisfy (2), then also A and

B̃ do.

Replace A by A1 and consider the walk to A1. After finitely many steps we will reach the

desired situation.

Assume now that both A and B are on the central line. Then B ∈ A, since both are on

the central line and otp(B) = otp(B̃) < otp(A).

Consider now the walk to B̃. Let M be the last model on the central line which includes

B̃,M0,M1 its immediate predecessors with B̃ ∈ M1 ∪ {M1} and M0 ∈ C |M |(M).

If A ∈ M0∪{M0}, then we move everything to M1 putting M1 on the central line and apply

an appropriate inductive assumption (the number of steps required to move from B to B̃ is

now reduced, since B is replaced by πM0,M1(B) which is needed to move to the same B̃).

If M0 ∈ A, then M ⊆ A. So M1 ∈ A. We make a switch below A (actually below M) to

move M1 to the central line. Then πM0,M1(B) will be on the new central line as well as A

(and M). As above the induction applies here to A and πM0,M1(B).

¤
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