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Abstract

We continue the study of tall cardinals and related notions begun by Hamkins in [11] and
answer three of his questions posed in that paper.

1 Introduction and preliminaries

We begin with the following definition.
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Definition 1.1 (Hamkins [11]) Suppose κ is a cardinal and λ ≥ κ is an arbitrary ordinal. κ is

λ tall if there is an elementary embedding j : V → M with critical point κ such that j(κ) > λ and

Mκ ⊆ M . κ is tall if κ is λ tall for every ordinal λ. κ is strongly tall if for every ordinal λ ≥ κ,

there is an elementary embedding witnessing that κ is λ tall which is generated by a κ-complete

measure on some set.

Definition 1.2 κ is tall with bounded closure if κ is not a tall cardinal, yet there is a cardinal δ

with ω ≤ δ < κ such that for all ordinals λ ≥ κ, there is an elementary embedding j : V → M with

critical point κ such that j(κ) > λ and M δ ⊆ M . Let ω ≤ δ < κ be a fixed cardinal. κ is tall with

bounded closure δ if for every ordinal λ ≥ κ, there is an elementary embedding j : V → M with

critical point κ such that j(κ) > λ, M δ ⊆ M , and M δ+ 6⊆ M .

In [11], Hamkins made a systematic study of tall cardinals and some related notions and posed

the following questions.

1. (implicit to [11, Section 4]) Is it possible to construct a model containing infinitely many tall

cardinals in which the measurable and tall cardinals coincide precisely?

2. ([11, Question 5.5]) Is it possible to construct a model containing a tall cardinal with bounded

closure?

3. ([11, Question 2.12]) Are strong tallness and strong compactness equivalent? Are they

equiconsistent?

The purpose of this paper is to answer Questions 1 and 2 affirmatively and Question 3 negatively.

Specifically, we prove the following eight theorems, along with a corollary to one of them. Theorem

1 addresses Question 1. Theorems 2 – 7 address Question 2. Theorem 8 addresses Question 3.

Theorem 1 Suppose V ² “ZFC + GCH + κ is supercompact + No cardinal λ > κ is measurable”.

There is then a partial ordering P ⊆ V such that V P ² “ZFC + κ is supercompact + No cardinal

λ > κ is measurable + For every δ < κ, δ is measurable iff δ is tall”.
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Theorem 2 Suppose κ is a strong cardinal. Then κ is a tall cardinal having bounded closure ω.

Theorem 3 Suppose V = K and V ² “ZFC + κ is strong + η > κ is such that o(η) = ω1 +

No cardinal δ > η is measurable”. There is then a partial ordering P ∈ V such that V P ² “κ is a

tall cardinal having bounded closure ω + There are neither any tall cardinals nor any tall cardinals

having bounded closure δ for ω1 ≤ δ < κ”.

Theorem 4 The following conditions are equivalent:

1. There is an elementary embedding j : V → M with critical point κ such that (j(κ))ω ⊆ M

yet (j(κ))ω1 6⊆ M .

2. There exists a Rudin-Keisler increasing sequence of ultrafilters over κ having length ω1.

3. There exists an elementary embedding j : V → M such that Mω ⊆ M and a sequence

〈ηα | α < ω1〉 of ordinals below j(κ) such that for every α < ω1 and for every f : [κ]α → κ, it

is the case that ηα 6= j(f)(〈ηβ | β < α〉).

Theorem 5 Suppose that there is no sharp for a strong cardinal (i.e., that o pistol does not exist).

If there is an elementary embedding j : V → M with critical point κ such that (j(κ))ω ⊆ M yet

(j(κ))ω1 6⊆ M , then either o(κ) ≥ ω1 in K, or κ is measurable in K and {ν < κ | oK(ν) ≥ ω1} is

unbounded in κ.

Theorem 6 Suppose that o(κ) ≥ ω1 in K. Then there is a generic extension V of K with an

elementary embedding j : V → M having critical point κ such that Mω ⊆ M yet (j(κ))ω1 6⊆ M .

Theorem 7 Suppose that κ is a measurable cardinal in K and {ν < κ | oK(ν) ≥ ω1} is unbounded

in κ. Then there is a generic extension V of K and an elementary embedding j : V → M having

critical point κ such that Mω ⊆ M yet (j(κ))ω1 6⊆ M .

Theorem 8 The following theories are equiconsistent:

a) ZFC + There is a strong cardinal and a proper class of measurable cardinals.

b) ZFC + There is a strongly tall cardinal.
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We take this opportunity to make a few remarks concerning Theorems 1 – 8. Theorem 1 provides

a positive answer to Question 1, since in (Vκ)
V P , there is a proper class of tall cardinals, and the tall

and measurable cardinals precisely coincide. As we will show, however, the use of a supercompact

cardinal is unnecessary in order to construct a model witnessing a positive answer to Question 1.

We prove Theorem 1 in this form, though, because we feel it is of independent interest to show

that the tall and measurable cardinals can coincide precisely below a supercompact cardinal. In

addition, Question 1 is a direct analogue of a famous question concerning strongly compact and

measurable cardinals, which we will discuss at greater length in Section 2 after the proof of Theorem

1. Theorem 2 shows that any strong cardinal is in fact tall with bounded closure ω. Theorem 3

provides a positive answer to Question 2, and Theorems 3 – 7 address the consistency strength

of the existence of a tall cardinal κ exhibiting tallness with closure bounded below κ. Theorem 8

exactly pins down the consistency strength of the existence of a strongly tall cardinal and shows

that it is much weaker than the consistency strength of a strongly compact cardinal.

Before beginning the proofs of our theorems, we briefly mention some preliminary information

and terminology. Essentially, our notation and terminology are standard, and when this is not the

case, this will be clearly noted. For α < β ordinals, [α, β], [α, β), (α, β], and (α, β) are as in the

usual interval notation. If κ ≥ ω is a regular cardinal and λ is an arbitrary ordinal, then Add(κ, λ)

is the standard partial ordering for adding λ Cohen subsets of κ.

When forcing, q ≥ p will mean that q is stronger than p. If G is V -generic over P, we will abuse

notation slightly and use both V [G] and V P to indicate the universe obtained by forcing with P.

If x ∈ V [G], then ẋ will be a term in V for x. We may, from time to time, confuse terms with

the sets they denote and write x when we actually mean ẋ or x̌, especially when x is some variant

of the generic set G, or x is in the ground model V . The abuse of notation mentioned above will

be compounded by writing x ∈ V P instead of ẋ ∈ V P. Any term for trivial forcing will always be

taken as a term for the partial ordering {∅}. If ϕ is a formula in the forcing language with respect

to P and p ∈ P, then p ‖ ϕ means that p decides ϕ.

4



From time to time within the course of our discussion, we will refer to partial orderings P as

being Easton support iterations of Prikry type forcings. By this we will mean an Easton support

iteration as first given by the second author in [5], to which we refer readers for a discussion of the

basic properties of and terminology associated with such an iteration.

As in [9], we will say that the partial ordering P is κ+-weakly closed and satisfies the Prikry

property if it meets the following criteria.

1. P has two partial orderings ≤ and ≤∗ with ≤∗ ⊆ ≤.

2. For every p ∈ P and every statement ϕ in the forcing language with respect to P, there is

some q ∈ P such that p ≤∗ q and q ‖ ϕ.

3. The partial ordering ≤∗ is κ-closed, i.e., there is an upper bound for every increasing chain

of conditions having length κ.

Key to the proof of Theorem 1 is the following result due to the second author and Shelah. It

is a corollary of the work of [9, Section 2].

Theorem 9 Suppose V ² “ZFC + GCH + δ < κ are such that δ is a regular cardinal and

κ is a strong cardinal”. There is then a δ+-weakly closed partial ordering I(δ, κ) satisfying the

Prikry property having cardinality κ such that V I(δ,κ) ² “κ is a strong cardinal whose strongness is

indestructible under κ+-weakly closed partial orderings satisfying the Prikry property”.

We mention that we are assuming some familiarity with the large cardinal notions of measura-

bility, measurable cardinals of high Mitchell order, tallness, hypermeasurability, strongness, strong

compactness, and supercompactness. Interested readers may consult [13], [17], [18], or [21]. In

addition, we are assuming some familiarity with basic inner model and core model theory, as pre-

sented in [22] and [19]. In particular, K will always denote the core model. Finally, we are assuming

some familiarity with the Rudin-Keisler ordering on ultrafilters, for which we refer readers to [6].
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2 Models where the measurable and tall cardinals coincide

precisely

We begin with the proof of Theorem 1, which we restate for the convenience of readers.

Theorem 1 Suppose V ² “ZFC + GCH + κ is supercompact + No cardinal λ > κ is measurable”.

There is then a partial ordering P ⊆ V such that V P ² “ZFC + κ is supercompact + No cardinal

λ > κ is measurable + For every δ < κ, δ is measurable iff δ is tall”.

Proof: We start with the key fact that a Magidor iteration [16] of Prikry forcing preserves the

tallness of a strong cardinal.

Lemma 2.1 Suppose δ < κ and V ² “κ is a strong cardinal”. Let P(δ, κ) be the Magidor iteration

of Prikry forcing which adds a Prikry sequence to every measurable cardinal in the open interval

(δ, κ). Then V P(δ,κ) ² “κ is a tall cardinal”.

Proof: Let λ > κ be an arbitrary strong limit cardinal of cofinality at least κ. By the proof of [11,

Theorem 4.1], we may take j : V → M to be an elementary embedding witnessing the λ tallness of

κ generated by the (κ, λ)-extender E = 〈Ea | a ∈ [λ]<ω〉 such that M ² “κ is not measurable”. Since

Mκ ⊆ M , it is the case that E is κ+-directed, i.e., for each κ sequence 〈Ei | i < κ〉 of measures from

E , there is some E ∈ E such that for each i < κ, Ei <RK E (so E projects onto Ei as in the Rudin-

Keisler ordering). To see this, let ji : Ult(V, Ei) → M be the canonical elementary embedding of

Ult(V,Ei) into M , and let τi = ji([id]Ei
). Because Mκ ⊆ M , 〈τi | i < κ〉 ∈ M . Consequently, there

must be some E ∈ E such that for some σ ∈ Ult(V, E) and jE : Ult(V, E) → M the canonical

elementary embedding, τ = jE(σ). However, this just means that for every i < κ, Ei <RK E.

For each E ∈ E , E = Eb for b ∈ [λ]<ω, let kE : V → Ult(V, E) = ME be the canonical

elementary embedding. Note that since the canonical elementary embedding `E : ME → M is such

that cp(`E) > κ and M ² “κ is not measurable”, ME ² “κ is not measurable” as well. Therefore,

if we consider now E∗ defined in V P(δ,κ) by p ° “ẋ ∈ Ė∗” iff there is q ∈ kE(P(δ, κ)), q ≥ kE(p)

such that |kE(p) − q| = 0 (where | | is the distance function from [16]), kE(p) ¹ κ = q ¹ κ = p,
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and q ° “b ∈ kE(ẋ)”, then because ME ² “κ is not measurable”, the arguments of [16, Theorem

2.5] show that E∗ is well-defined and is a κ-additive ultrafilter extending E. It is routine (although

tedious) to verify that E∗ = 〈E∗
a | a ∈ [λ]<ω〉 ∈ V P(δ,κ) is hence a (κ, λ)-extender extending E which

is κ+-directed. (Note that κ+-directedness follows because by its definition, projection maps in the

sense of the Rudin-Keisler ordering between members of E∗ remain projection maps in the same

sense.) To show that in fact E∗ witnesses that V P(δ,κ) ² “κ is λ tall”, it suffices to show that for

M∗ = Ult(V P(δ,κ), E∗), Mκ
∗ ⊆ M∗.

To see this, suppose 〈ai | i < κ〉 ∈ V P(δ,κ) is a κ sequence of members of M∗. There must

be E∗
i ∈ E∗ and a′i ∈ Mi = Ult(V P(δ,κ), E∗

i ) such that for `∗i : Mi → M∗ the canonical elementary

embedding, `∗i (a
′
i) = ai. Since E∗ is κ+-directed, let E∗ ∈ E∗ be such that for each i < κ, E∗

i <RK E∗.

Consider ME∗ = Ult(V P(δ,κ), E∗), with jE∗ : ME∗ → M∗ the canonical elementary embedding. Note

that there is a canonical elementary embedding j∗i : Mi → ME∗ generated by the projection of E∗

to E∗
i and that jE∗ ◦ j∗i : Mi → M∗ is an elementary embedding. Also, since ME∗ is the ultrapower

via a measure, it is κ-closed with respect to V P(δ,κ). Therefore, a′′ = 〈a′′i | i < κ〉 ∈ ME∗ , where for

i < κ, a′′i = j∗i (a
′
i). However, jE∗(a

′′) = 〈ai | i < κ〉 ∈ M∗, so Mκ
∗ ⊆ M∗. Thus, V P(δ,κ) ² “κ is λ

tall”. Since λ was arbitrary, this completes the proof of Lemma 2.1.

¤

Since the proof of Theorem 1 requires that we force over a ground model V satisfying certain

indestructibility properties for strongness, we next show that this is possible in the following lemma.

Lemma 2.2 Suppose V ² “ZFC + GCH + κ is supercompact + No cardinal η > κ is measurable”.

Let C = {δ < κ | δ is a strong cardinal which is not a limit of strong cardinals}”. There is then a

partial ordering I ∈ V such that V I ² “ZFC + κ is supercompact + No cardinal η > κ is measurable

+ For every δ ∈ C, δ is a strong cardinal whose strongness is indestructible under δ+-weakly closed

partial orderings satisfying the Prikry property”.

Proof: Let 〈δα | α < κ〉 enumerate in increasing order the members of C. For every α < κ, let

γα = (supβ<α δβ)+, where γ0 = ω. I = 〈〈Pα, Q̇α〉 | α < κ〉 is defined as the Easton support iteration
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of Prikry type forcings of length κ such that P0 = {∅}. For every α < κ, Pα+1 = Pα ∗ Q̇α, where Q̇α

is a term for the partial ordering I(γα, δα) of Theorem 9 as defined in V Pα . Note that this definition

makes sense, since inductively, it is the case that |Pα| < δα. By the Hamkins-Woodin results [12],

V Pα ² “δα is a strong cardinal”, meaning that Pα+1 may be correctly defined. Note also that the

only strong cardinals on which I acts nontrivially are those strong cardinals which are not limits

of strong cardinals in V . In other words, if V ² “δ is a strong cardinal which is a limit of strong

cardinals”, then I acts trivially on δ.

By its definition, V Pα+1 ² “δα is a strong cardinal whose strongness is indestructible under

δ+
α -weakly closed partial orderings satisfying the Prikry property”. Factor I as I = Pα+1 ∗ Ṗα+1.

Since also by its definition, °Pα+1 “Ṗα+1 is δ+
α -weakly closed and satisfies the Prikry property”,

V Pα+1∗Ṗα+1
= V I ² “δα is a strong cardinal whose strongness is indestructible under δ+

α -weakly

closed partial orderings satisfying the Prikry property”. Consequently, since α was arbitrary,

V I ² “For every δ ∈ C, δ is a strong cardinal whose strongness is indestructible under δ+-weakly

closed partial orderings satisfying the Prikry property”.

To show that V I ² “κ is supercompact”, we follow the proof of [1, Lemma 2.1]. Let λ ≥
κ+ = 2κ be any regular cardinal. Take j : V → M as an elementary embedding witnessing the

λ supercompactness of κ. By [4, Lemma 2.1], in M , κ is a limit of strong cardinals. In addition,

since V ² “No cardinal η > κ is measurable”, M ² “No cardinal η ∈ (κ, λ] is measurable”. Hence,

in M , j(I) is forcing equivalent to I ∗ Q̇, where the first nontrivial stage in Q̇ takes place well after

λ.

We may now apply the argument of [5, Lemma 1.5]. Specifically, let G be V -generic over I.

Since GCH in V implies that V ² “2λ = λ+”, we may let 〈ẋα | α < λ+〉 be an enumeration in V of

all of the canonical I-names of subsets of Pκ(λ). Because I is κ-c.c. and Mλ ⊆ M , M [G]λ ⊆ M [G].

By [5, Lemmas 1.4 and 1.2], we may therefore define an increasing sequence 〈pα | α < λ+〉 of

elements of j(I)/G such that if α < β < λ+, pβ is an Easton extension of pα,1 every initial segment

of the sequence is in M [G], and for every α < λ+, pα+1 ‖ “〈j(β) | β < λ〉 ∈ j(ẋα)”. The remainder

1Roughly speaking, this means that pβ extends pα as in a usual reverse Easton iteration, except that at coordinates
at which, e.g., Prikry forcing or some variant or generalization thereof occurs in pα, measure 1 sets are shrunk and
stems are not extended. For a more precise definition, readers are urged to consult [5].
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of the argument of [5, Lemma 1.5] remains valid and shows that a supercompact ultrafilter U over

(Pκ(λ))V [G] may be defined in V [G] by x ∈ U iff x ⊆ (Pκ(λ))V [G] and for some α < λ+ and some

I-name ẋ of x, in M [G], pα °j(I)/G “〈j(β) | β < λ〉 ∈ j(ẋ)”. (The fact that j′′G = G tells us U is

well-defined.) Thus, °I “κ is λ supercompact”. Since λ was arbitrary, V I ² “κ is supercompact”.

Finally, since I may be defined so that |I| = κ, V I ² “No cardinal η > κ is measurable”. This

completes the proof of Lemma 2.2.

¤

We assume now that our ground model, which with an abuse of notation we relabel as V , has

the properties of the model V I constructed in Lemma 2.2. Given this, and adopting the notation of

Lemma 2.1, let P(γα, δα) for every α < κ be the Magidor iteration of Prikry forcing from [16] which

adds a Prikry sequence to every measurable cardinal in the open interval (γα, δα). The partial

ordering P = 〈〈Pα, Q̇α〉 | α < κ〉 with which we force is defined as the Easton support iteration of

Prikry type forcings of length κ such that P0 = {∅}. For every α < κ, Pα+1 = Pα ∗ Q̇α, where Q̇α is

a term for the partial ordering P(γα, δα) of Lemma 2.1 as defined in V (and not as defined in V Pα).

To see that this makes sense, i.e., that V Pα ² “P(γα, δα) as defined in V is γ+
α -weakly closed and

satisfies the Prikry property”, we note that by their definitions, the cardinality of Pα is less than

the least measurable cardinal in the open interval (γα, δα). Consequently, by the results of [14],

for any δ ∈ (γα, δα), δ is measurable in V iff δ is measurable in V Pα , and every normal measure

µ∗ over δ in V Pα has the form {x ⊆ δ | ∃y ∈ µ[y ⊆ x]}, where µ ∈ V is some normal measure

over δ. This means that informally, every normal measure µ∗ used in the Magidor iteration of

Prikry forcing P∗(γα, δα) as defined in V Pα which adds a Prikry sequence to every measurable

cardinal in the open interval (γα, δα) may be replaced by its ground model counterpart µ. More

formally, let p = 〈〈sβ, Aβ〉 | β < δα〉 ∈ P∗(γα, δα), where sβ is a finite sequence of ordinals and

〈Aβ | β < δα〉 is a sequence of terms for measure 1 sets which are forced to be members of the

appropriate normal measure. We proceed inductively. Let Rβ = P∗(γα, δα) ¹ β, i.e., Rβ is the

Magidor iteration defined up to stage β in V Pα . By the work of [16], for some normal measure

µ∗β ∈ V Pα∗Ṙβ , °Pα∗Ṙβ
“Aβ ∈ µ∗β”. By the results of [14], there must exist some normal measure
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µβ ∈ V Rβ and some term Bβ such that °Pα “Bβ ∈ µβ and Bβ ⊆ Aβ”. By replacing each Aβ with

Bβ, we inductively define a condition q = 〈〈sβ, Bβ〉 | β < δα〉 ∈ P(γα, δα) ⊆ P∗(γα, δα) such that

q ≥P∗(γα,δα) p. Thus, P(γα, δα) is dense in P∗(γα, δα), a partial ordering which is γ+
α -weakly closed

and satisfies the Prikry property in V Pα . It therefore immediately follows that V Pα ² “P(γα, δα) as

defined in V is γ+
α -weakly closed and satisfies the Prikry property”.

Lemma 2.3 V P ² “Any δ ∈ C is a strong cardinal”.

Proof: Suppose δ ∈ C. It is then the case that for some α < κ, δ = δα. Because each component of

P is an element of V , it is possible to write P = (
∏

β<α P(γβ, δβ))× P(γα, δα)× (
∏

β>α P(γβ, δβ)) =

P0 × P1 × P2, where P0,P1,P2 ∈ V and the ordering on P0 and P2 is the one used in an Easton

support iteration of Prikry type forcings. Since by our observations above, P2 is in fact δ+-weakly

closed and satisfies the Prikry property, by the indestructibility properties of V , V P2 ² “δ is a

strong cardinal”. Further, by the fact P2 is δ+-weakly closed, the definition of P1 = P(γα, δα) as

the Magidor iteration of Prikry forcing adding a Prikry sequence to each measurable cardinal in the

open interval (γα, δα) is the same in both V and V P2
. By Lemma 2.1, this means that V P2×P1 ² “δ

is a tall cardinal”. Finally, because |P0| < δ, by [11, Theorem 2.13], V P2×P1×P0
= V P ² “δ is a tall

cardinal”. This completes the proof of Lemma 2.3.

¤

Lemma 2.4 V P ² “Any measurable cardinal is either a member of C or a limit of members of C”.

Proof: Since |P| = κ and V ² “No cardinal η > κ is measurable”, by the results of [14], V P ² “No

cardinal η > κ is measurable” as well. We may thus assume that δ < κ and V P ² “δ is measurable”,

since V P ² “κ is supercompact and a limit of members of C”. If in addition V P ² “δ is neither a

member of C nor a limit of members of C”, then let α < κ be such that α is least with δα > δ.

Because in both V and V P, δ is not a limit of members of C, it must be the case that δ ∈ (γα, δα).

As in the proof of Lemma 2.3, write P = (
∏

β<α P(γβ, δβ)) × P(γα, δα) × (
∏

β>α P(γβ, δβ)) =

P0 × P1 × P2. The work of [16] shows that V P1 ² “There are no measurable cardinals in the open
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interval (γα, δα)”, i.e., that V P(γα,δα) ² “There are no measurable cardinals in the open interval

(γα, δα)”. Since as we observed in the proof of Lemma 2.3, P1 retains its properties in V P2
, it

is also the case that V P2×P1 ² “There are no measurable cardinals in the open interval (γα, δα)”.

Because |P0| < δ, the results of [14] again imply that V P2×P1×P0
= V P ² “There are no measurable

cardinals in the open interval (γα, δα)”. This contradiction completes the proof of Lemma 2.4.

¤

By [11, Corollary 2.7], any measurable limit of tall cardinals is also a tall cardinal. In addition,

the same argument as found in the proof of Lemma 2.2 shows that V P ² “κ is supercompact”.

These facts, together with Lemmas 2.1 – 2.4, complete the proof of Theorem 1.

¤

As we mentioned when making our introductory comments in Section 1, it is completely un-

necessary to use a supercompact cardinal in order to construct a model in which the tall and

measurable cardinals precisely coincide. An inaccessible limit of strong cardinals is more than

enough for this purpose. To see this, suppose κ is an inaccessible limit of strong cardinals instead

of a supercompact cardinal. Suppose further that the partial orderings I and P of Theorem 1 are

both defined as they were in our original proof, i.e., as Easton support iterations of length κ. By [2,

Lemma 0.6], in V I∗Ṗ, κ remains inaccessible. Thus, the proofs we gave above show that in (Vκ)
V I∗Ṗ ,

there is a proper class of tall cardinals, and the tall and measurable cardinals precisely coincide.

As we also mentioned in our introductory comments in Section 1, a famous question (essentially

due to Magidor) asks whether it is possible to construct a model of ZFC containing infinitely

many strongly compact cardinals in which the measurable and strongly compact cardinals precisely

coincide. To date, this question remains open, and has defied every effort to obtain a positive

answer. We were able to prove Theorem 1 because the work of [9] shows that it is possible to

do Prikry forcing above a strong cardinal while preserving strongness. However, as is fairly well

known (see, e.g., [16, Section 4] and [3, Lemma 3.1]), adding a Prikry sequence above a strongly

compact cardinal destroys strong compactness. Thus, the methods of this paper cannot be used

to provide a positive answer to Magidor’s question.
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3 Tall cardinals with bounded degrees of closure

Having completed the proof of Theorem 1, we turn now to the proofs of Theorems 2 – 7. We begin

with the proof of Theorem 2, which we again restate.

Theorem 2 Suppose κ is a strong cardinal. Then κ is a tall cardinal having bounded closure ω.

Proof: Suppose V ² “ZFC + κ is a strong cardinal”. Let λ > κ be a strong limit cardinal.

Let j : V → M be an elementary embedding such that M ⊇ H(λ+ω1) which is generated by a

(κ, δ)-extender E for the appropriate strong limit cardinal δ > λ. Consider E ′ = E ¹ λ+ω1 , with

j′ : V → M ′ the elementary embedding generated by E ′ and k : M ′ → M the canonical elementary

embedding. Since k ◦ j′ = j, j(κ) > λ, and cp(k) > λ, j′(κ) > λ. Because E ′ 6∈ M ′, M ′ is

not ω1 closed. To see this, let α < ω1, and define Eα = E ¹ λ+α. Let β < ω1 be such that

Eα ∈ H(λ+β). Note that Eα ∈ M ′, since H(λ+β) ⊆ M ′ and Eα ∈ H(λ+β). Hence, if (M ′)ω1 ⊆ M ′,

then 〈Eγ | γ < ω1〉 ∈ M ′, thereby allowing us to recover E ′ within M ′.

To prove that M ′ is ω closed, it suffices to show that every countable set of generators of E ′ is a

member of M ′. To see this, let 〈xn | n < ω〉 be a countable sequence of elements of M ′. Then there

are functions 〈fn | n < ω〉 and a sequence 〈an | n < ω〉 of generators of E ′ such that xn = j(fn)(an).

Let a be a generator of E ′ coding 〈an | n < ω〉, with πn(a) = an. By hypothesis, a ∈ M ′. Since

〈j(fn) | n < ω〉 ∈ M ′ and 〈πn | n < ω〉 is definable in M ′, 〈xn | n < ω〉 ∈ M ′ as well.

The proof of Theorem 2 will thus be complete once we have established that every countable

set of generators of E ′ is a member of M ′. Consequently, let a be such a set, and let τ < ω1 be such

that a ∈ H(λ+τ ). For E ′′ = E ′ ¹ λ+τ+1 and M ′′ = Ult(V, E ′′), it is then the case that H(λ+τ ) ⊆ M ′′,

from which it immediately follows that a ∈ M ′′. Since for i : M ′′ → M ′ the canonical elementary

embedding, i(a) = a, we have that i(a) = a ∈ M ′. This completes the proof of Theorem 2.

¤

For the convenience of readers, we also restate Theorem 3 before giving its proof.

Theorem 3 Suppose V = K and V ² “ZFC + κ is strong + η > κ is such that o(η) = ω1 +

No cardinal δ > η is measurable”. There is then a partial ordering P ∈ V such that V P ² “κ is a
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tall cardinal having bounded closure ω + There are neither any tall cardinals nor any tall cardinals

having bounded closure δ for ω1 ≤ δ < κ”.

Proof: Suppose V = K and V ² “ZFC + κ is strong + η > κ is such that o(η) = ω1 + No

cardinal δ > κ is measurable”. We define an Easton support iteration of Prikry type forcings

P = 〈〈Pα, Q̇α〉 | α ≤ η〉 of length η as follows. For α < η, Q̇α is a term for trivial forcing, unless

α is a measurable cardinal in V such that o(α) < ω1. If this is the case, then Q̇α is a term for

the forcing of [5] which adds a Magidor sequence (see [15]) of order type ωo(α) to α. For α = η,

Q̇α is a term for the Prikry type forcing from [5] which changes the cofinality of η to ω1 without

adding over V Pη any new bounded subsets of η. This partial ordering can be defined in V Pη so

as to be η+-c.c. and have cardinality η+. Consequently, forcing with Q̇η over V Pη adds no new

countable sets of ordinals. This is since if A ∈ V Pη∗Q̇η = V P were a new countable set of ordinals,

then because V Pη ² “Qη is η+-c.c.”, there is a set B ∈ V such that B ⊇ A and |B| = η. However,

since no new countable subsets are added to B, this is impossible.

Let G be V -generic over P, with G ¹ η = Gη. We claim that V ′ = V [G] is our desired model

in which κ is a tall cardinal having closure ω but not closure ω1 and in which there are no tall

cardinals having closure ω1.

We begin by showing that V ′ ² “κ is not a tall cardinal having closure ω1”. If this is not true,

then choose some λ > η, and let j′ : V ′ → M ′ be such that cp(j′) = κ, j′(κ) > λ, and (M ′)ω1 ⊆ M ′.

Consider j = j′ ¹ K. Note that j is given as an iterated ultrapower of K using extenders at and

above κ (see [20] and [22]). Then η is regular in (K)M ′
, since it is regular in K and (K)M ′

is an

iterated ultrapower of K by its extenders.

By elementarity, M ′ is a generic extension of j(K) = (K)M ′
by j(P). In addition, by its

definition, forcing with P does not change the cofinality of any cardinal below κ to ω1. Hence,

by elementarity, forcing with j(P) does not change the cofinality of any cardinal below j(κ) to ω1

in M ′. However, since V ′ ² “cof(η) = ω1” and (M ′)ω1 ⊆ M ′, M ′ ² “cof(η) = ω1” as well. This

immediately contradicts that j(κ) > λ > η.

13



To show that V ′ ² “κ is a tall cardinal having closure ω”, let λ > η be a regular cardinal. Let E
be a (κ, λ)-extender, with k : V → M the corresponding elementary embedding. By the arguments

of [9], in V [Gη], E extends to a (κ, λ)-extender E∗. Let k∗ : V [Gη] → M∗ be the corresponding

elementary embedding. Since no new ω sequences and no new subsets of κ are added to V [Gη] after

forcing with Qη, E∗ remains an extender in V ′ with well-founded ultrapower. Let k′ : V ′ → M ′ be

the corresponding elementary embedding. Then k′ ¹ V [Gη] = k∗, since no new subsets of κ were

added to V [Gη] after forcing with Qη. Hence, k′(κ) > λ. Also, since we may assume that Mκ ⊆ M ,

this is preserved to V [Gη], i.e., (M∗)κ ⊆ M∗. As V [Gη] and V ′ have the same countable sets of

ordinals, in V ′, (M∗)ω ⊆ M∗. Consequently, because λ was an arbitrary regular cardinal, V ′ ² “κ

is a tall cardinal having closure ω”.

It remains to show that V ′ ² “There are no tall cardinals having closure ω1”. Because P may

be defined so that |P| = η+, by the results of [14] and the fact that V = K and K contains no

measurable cardinals above η, V ′ ² “There are no measurable cardinals greater than η”. It thus

suffices to show that V ′ ² “No δ ∈ (κ, η) is a tall cardinal having closure ω1”. To see this, suppose

to the contrary that V ′ ² “δ ∈ (κ, η) is a tall cardinal having closure ω1”. Take i : V ′ → N

with i(δ) > η and Nω1 ⊆ N . As above (see [20] and [22]), i∗ = i ¹ K is given as an iterated

ultrapower of K using extenders at and above δ. In addition, because K ² “η is regular” and i∗(K)

is an inner model of K, i∗(K) ² “η is regular” as well. Since V ′ ² “cof(η) = ω1”, N must be a

generic extension of i∗(K), and Nω1 ⊆ N in V ′, this means that N ² “cof(η) = ω1”. However,

as η < i(δ), by reflection, it follows that in V ′, unboundedly many K-regular cardinals below δ

have their cofinalities changed to ω1. By the definition of P, this is impossible. This contradiction

completes the proof of Theorem 3.

¤

Theorems 2 and 3 raise the question of classifying the consistency strength of the existence of

embeddings witnessing a bounded degree of closure, which we address now. We deal here with ω1,

but the same arguments actually apply to any regular δ ≤ κ. We begin with Theorem 4, which

gives the equivalence of three conditions for the existence of such elementary embeddings.
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Theorem 4 The following conditions are equivalent:

1. There is an elementary embedding j : V → M with critical point κ such that (j(κ))ω ⊆ M

yet (j(κ))ω1 6⊆ M .

2. There exists a Rudin-Keisler increasing sequence of ultrafilters over κ having length ω1.

3. There exists an elementary embedding j : V → M such that Mω ⊆ M and a sequence

〈ηα | α < ω1〉 of ordinals below j(κ) such that for every α < ω1 and for every f : [κ]α → κ, it

is the case that ηα 6= j(f)(〈ηβ | β < α〉).

Proof: To show that (1) =⇒ (2), let α ⊆ j(κ), |a| = ℵ1 be such that a 6∈ M . Let 〈ηα | α < ω1〉 be

an increasing enumeration of a. Define a κ-complete ultrafilter Uα over Vκ by

x ∈ Uα iff 〈ηβ | β < α〉 ∈ j(x).

Clearly, if γ < α, then Uγ ≤RK Uα. We claim that for every γ < ω1, there is some α, γ < α < ω1

such that Uγ <RK Uα (i.e., the inequality is strict). To see this, suppose otherwise. Then there

is γ < ω1 such that for every α with γ < α < ω1, we have that Uγ =RK Uα. For every α with

γ < α < ω1, we fix a function fα : [κ]γ → [κ]α witnessing Uγ =RK Uα. We have j(fα)(〈ηβ | β <

γ〉) = 〈ηβ | β < α〉. But j(〈fα | γ < α < ω1〉) = 〈j(fα) | γ < α < ω1〉, so 〈j(fα) | γ < α < ω1〉 ∈ M .

Since 〈ηβ | β < γ〉 is a countable sequence of ordinals below j(κ), 〈ηβ | β < γ〉 ∈ M . Consequently,

〈j(fα)(〈ηβ | β < γ〉) | γ < α < ω1〉 ∈ M , from which it follows that 〈ηα | α < ω1〉 ∈ M . This

contradicts that a 6∈ M , thereby proving (1) =⇒ (2).

To show that (2) =⇒ (1), let 〈Uα | α < ω1〉 be a Rudin-Keisler increasing sequence of ultrafilters

over κ. For α < ω1, denote by jα : V → Mα the ultrapower embedding generated by Uα, and for

α < β < ω1, denote by jα,β : Mα → Mβ the elementary embedding generated by a projection of

Uβ to Uα. Let 〈〈M, iα〉 | α < ω1〉 be the direct limit of the system 〈〈Mα, jα,β〉 | α < β < ω1〉,
where iα : Mα → M . It is then the case that M and the limit embedding j : V → M are as

desired. To see this, we first note that Mω ⊆ M . This follows since if x ⊆ M is countable, then

for some α < ω1, x has a preimage in Mα. However, (Mα)κ ⊆ Mα, since Mα is the ultrapower by

an ultrafilter over κ.
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We now define a ⊆ j(κ) with |a| = ℵ1 such that a 6∈ M by a = {iα([id]Uα) | α < ω1}. To see

that a is as desired, assume to the contrary that a ∈ M . It must then be true that for some β < ω1

and some b ∈ Mβ, iβ(b) = a. But then for every α ≥ β, Uα must be Rudin-Keisler equivalent to

Uβ, which is impossible. Since each iα([id]Uα) < j(κ), this completes the proof of (2) =⇒ (1).

To show that (2) =⇒ (3), we use the previous construction. The set a just defined is as desired,

since 〈Uα | α < ω1〉 is a strictly increasing Rudin-Keisler sequence of ultrafilters.

Finally, to show that (3) =⇒ (2), we use 〈ηα | α < ω1〉 to define the Uα s as in (1) =⇒ (2) and

argue as in (1) =⇒ (2). Even if a ∈ M , the argument remains valid. This completes the proof of

Theorem 4.

¤

We remark that in general, (j(κ))ω ⊆ M does not imply that Mω ⊆ M . To see this, suppose

κ < λ are both measurable cardinals. We construct j : V → M by first taking an ultrapower via a

measure over κ, and then taking an iterated ultrapower ω many times by a measure over λ. It will

then be the case that (j(κ))ω ⊆ M but (j(λ))ω 6⊆ M . In addition, an argument using the work of

[9] shows that it is impossible to replace the condition of Theorem 4(3) with ηα 6= j(f)(ξ1, . . . , ξn)

whenever n < ω, ξ1, . . . , ξn < ηα, and f : [κ]n → κ.

Corollary 3.1 Suppose that κ is a Pλ(κ) hypermeasurable cardinal for λ ≥ 2 of cofinality different

from ω. Then there is an elementary embedding j : V → M having critical point κ such that

(j(κ))ω ⊆ M yet (j(κ))ω1 6⊆ M . Moreover, the embedding may be constructed so that Pλ(κ) ⊆ M .

Proof: Let i : V → N be an elementary embedding witnessing the Pλ(κ) hypermeasurability of

κ. Since λ ≥ 2, i clearly witnesses the P2(κ) hypermeasurability of κ as well. Hence, P2(κ) ⊆ N ,

from which it follows that i(κ) > (2κ)+.

We define by induction an increasing sequence 〈ηα | α < ω1〉 of ordinals below (2κ)+ satisfying

the assumptions of Theorem 4(3) as follows. Begin by setting η0 = κ. Assume now that 〈ηβ | β < α〉
has been defined. To define ηα, we first note that 〈ηβ | β < α〉 ∈ N , since P2(κ) ⊆ N . Let

Uα = {x ⊆ [κ]α | 〈ηβ | β < α〉 ∈ i(x)},
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with iα : V → Nα the corresponding ultrapower embedding. Note that 2κ < iα(κ) < (2κ)+.

Consider kα : Nα → N defined by setting kα([f ]Uα) = i(f)(〈ηβ | β < α〉). Let 〈Aξ | ξ < (2κ)Nα〉 ∈
Nα list all subsets of κ. Then since kα ¹ κ + 1 is the identity, we will have kα(Aξ) = Aξ. But

then kα(〈Aξ | ξ < (2κ)Nα〉) = 〈Aξ | ξ < (2κ)Nα〉, since P(κ) ⊆ Nα. In particular, (2κ)Nα ≥ 2κ

and kα ¹ 2κ + 1 is the identity. Thus, cp(kα) = ((2κ)+)Nα . We now set ηα = ((2κ)+)Nα , thereby

completeing our construction.

By (3) =⇒ (2) of Theorem 4, we can let 〈Uα | α < ω1〉 be a strictly increasing Rudin-

Keisler sequence of ultrafilters over κ. Denote by ρβ,α the projection from Uβ onto Uα, whenever

α ≤ β < ω1. Then, for every countable sequence a of elements of Pλ(κ), define

Ea = {x ⊆ Vκ | a ∈ i(x)}.

This definition makes sense, since by our assumption that cof(λ) 6= ω, we may also assume that

(Pλ(κ))ω ⊆ Pλ(κ). If a is a subsequence of b, denote by πβ,a the projection of Eb onto Ea. Let

E = 〈〈Ea, πb,a | a, b ∈ [Pλ(κ)]ℵ0 , a is a subsequence of b〉 be the corresponding extender, with

iE : V → NE the associated embedding. Then because i witnesses the Pλ(κ) hypermeasurability

of κ, iE does as well. In particular, NE ⊇ Pλ(κ) and (NE)ω ⊆ NE .

Consider now 〈Ea×Uα | a ∈ [Pλ(κ)]ℵ0 , α < ω1〉 with projections 〈〈πb,a, ρb,a〉 | a is a subsequence

of b, α ≤ β < ω1〉. It is a directed system whose limit model M will be as desired. To see this,

use iE(〈Uα | α < ω1〉) over NE as in (2) =⇒ (1) of Theorem 4 to obtain M . Because Pλ(κ) ⊆ NE ,

iE(κ) > |Pλ(κ)|. Since the embedding generated by 〈Uα | α < ω1〉 over V has critical point κ, the

embedding generated by iE(〈Uα | α < ω1〉) from NE to M has critical point iE(κ). Consequently,

Pλ(κ) ⊆ M . This completes the proof of Corollary 3.1.

¤

We turn our attention now to addressing the strength of the existence of an elementary em-

bedding j : V → M with critical point κ such that (j(κ))ω ⊆ M yet (j(κ))ω1 6⊆ M . We will prove

three theorems in this regard, beginning with the following.

Theorem 5 Suppose that there is no sharp for a strong cardinal (i.e., that o pistol does not exist).
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If there is an elementary embedding j : V → M with critical point κ such that (j(κ))ω ⊆ M yet

(j(κ))ω1 6⊆ M , then either o(κ) ≥ ω1 in K, or κ is measurable in K and {ν < κ | oK(ν) ≥ ω1} is

unbounded in κ.

Proof: Suppose otherwise, i.e., that κ is a measurable cardinal in K, o(κ) < ω1 in K, and

{ν < κ | oK(ν) ≥ ω1} is bounded in κ. Consider j∗ = j ¹ K. Then j∗ : K → (K)M is an iterated

ultrapower of K. Hence, each x ∈ (K)M is of the form j∗(f)(κα1 , . . . , καn) for some f : [κ]n → K
in K and some critical points κα1 , . . . , καn of the iteration. Note that by our assumptions, only

measures are involved in the iteration up to j∗(κ). We ignore the iteration above j∗(κ), if any,

since it is irrelevant for the arguments below. Then it is possible to find an increasing sequence of

critical points (generators of j∗) not in M which has all initial segments in M . Consider the least

possible δ which is the limit of such a sequence.

Let θ be a generator of j∗. Then at some stage during the iteration, θ was a measurable

cardinal, and a measure over θ was applied. We may assume that always the smaller measures in

the Mitchell order are applied before the larger ones. Denote by meas(θ) the final image of θ during

the continuation of the iteration to the final model (K)M . Then meas(θ) is a measurable cardinal

in (K)M , and meas(θ) ≤ j∗(κ). There are fθ : [κ]nθ → κ + 1 in K and a sequence of generators

ρ1,θ < · · · < ρnθ,θ < θ such that j∗(f)(ρ1,θ, . . . , ρnθ,θ) = meas(θ).

Lemma 3.2 Let 〈ρβ | β < α〉 be a sequence of generators corresponding to the same measurable

cardinal λ, i.e., for every β, γ < α, meas(ρβ) = meas(ργ). Then α < ω1.

Proof: By our assumptions, the measurable cardinals of order at least ω1 are bounded below κ.

Hence, there are only countably many normal measures over κ. Consequently, if α ≥ ω1, the same

measure was used during the iteration uncountably many times. However, since Mω ⊆ M , it is

impossible to use the same measure even ω + 1 many times. This completes the proof of Lemma

3.2.

¤

Lemma 3.3 |j∗(κ)|K = (κ+)K = κ+.
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Proof: Suppose that |j∗(κ)|K ≥ (κ++)K. Since by our assumptions, there are only countably many

normal measures over κ in K, some of these measures must be used more than ω many times in

the iteration. This is impossible, however, since (j(κ))ω ⊆ M . This completes the proof of Lemma

3.3.

¤

It now immediately follows that δ must be a singular cardinal in K having cofinality less than

κ. This is since κ ≤ δ ≤ j∗(κ), by Lemma 3.3, |j∗(κ)|K = (κ+)K = κ+, and both κ and κ+ remain

regular in V .

Suppose that δ is a regular cardinal in (K)M .

Lemma 3.4 There is a continuous, increasing sequence 〈κα | α < ω1〉 of critical points of the

iteration such that:

1. δ =
⋃

α<ω1
κα.

2. For every f : κ → κ such that f ∈ K, and for every α < ω1, it is the case that (j∗(f)′′κα) ∩
[κα, δ) = ∅.

Proof: Suppose otherwise. Let 〈τα | α < ω1〉 be a continuous, increasing sequence of critical points

of the iteration having limit δ. Consider the set

S = {α < ω1 | ∃g : κ → κ, g ∈ K such that (j∗(g)′′τα) ∩ [τα, δ) 6= ∅}.

Then S is stationary, for if not, pick a club C ⊆ ω1 such that C ∩ S = ∅. Consider 〈τα | α ∈ C〉.
This sequence satisfies clause (2) above, so there will be a club C ′ ⊆ C where 〈τα | α ∈ C ′〉 satisfies

clause (1) as well, contrary to our assumptions. Therefore, by applying Fodor’s Theorem to the

function f(α) = The least β < α with (j∗(g)′′τβ) ∩ [τα, δ) = ∅} for some g : κ → κ, g ∈ K, there

are α∗ < ω1 and a stationary S∗ ⊆ S such that for every α ∈ S∗, there exists gα : κ → κ, gα ∈ K
such that (j∗(g)′′τα∗) ∩ [τα, δ) 6= ∅.

We now argue that there is a set E ∈ K consisting of functions from κ to κ such that |E|K < κ

and E ⊇ {gα | α < ω1}. This follows from the following
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Claim 3.5 Let A ⊆ κ+, |A| < κ. Then there is B ∈ K, |B|K < κ such that B ⊇ A.

Proof: There is η < κ+, η ⊇ A. Let tη ∈ K be a bijection between κ and η. Consider x = t−1
η
′′
A.

Then x ⊆ κ and |x| < κ. Hence, there is ξ < κ such that x ⊆ ξ. The set B = t′′ηξ is as desired.

¤

Consider next j∗(E) = j∗′′E. This set is in (K)M . But now the set

x = {sup((j∗(f)′′τα∗) ∩ δ) | g ∈ j∗(E)}

is in (K)M . In addition, x is unbounded in δ and has cardinality less than κ in (K)M . But this

means that δ is singular in (K)M , contrary to our assumptions. This completes the proof of Lemma

3.4.

¤

It is now possible to infer that there must be some α0 < ω1 such that the measures originating

from κα0 are used unboundedly often below δ. This is since by Lemma 3.4, α ≤ β < ω1 implies

that meas(κα) ≥ meas(κβ) ≥ δ. This follows because the fact that κα is a critical point of the

iteration j∗ implies that meas(κα) = min {j∗(f)′′κα | f : κ → κ, f ∈ K}. For any α < ω1, κα < δ,

and by clause (2) of Lemma 3.4, δ ≤ meas(κα). Therefore, the sequence 〈meas(κα) | α < ω1〉 is

non-increasing. This means that meas(κα) should stabilize, i.e., there are α0 < ω1 and µ ≥ δ such

that for every α with α0 ≤ α < ω1, µ = meas(κα). However, by our assumptions, there are only

countably many normal measures over κα0 , which means that one of them should be used ℵ1 many

times in the iteration. By Lemma 3.2, this is impossible. Thus, δ cannot be regular in (K)M .

Suppose now that δ is singular in (K)M . Then cof(δ) < κ in (K)M .2 Hence, clearly, δ is not a

generator and δ < j∗(κ). This means we can pick a function gδ : [κ]nδ → κ in K and a sequence

of generators ξ1,δ < · · · < ξnδ,δ < δ such that j∗(gδ)(ξ1,δ, . . . , ξnδ,δ) = δ. Let (cof(δ))(K)M
= ε. Fix

a closed, cofinal sequence 〈σi | i < ε〉 ∈ (K)M for δ. Let 〈ητ | τ < ω1〉 be an increasing sequence

2Note that (cof(δ))(K)M

= (cof(δ))K ≥ cof(δ) = (cof(δ))M = ω1, since otherwise, say if cof(δ) < ε = (cof(δ))M ,
then necessarily, ε must have cofinality cof(δ) = ω1. However, M ² “ε is regular” and ε < κ. This means that
j(ε) = ε, a contradiction.
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of generators unbounded in δ such that 〈ητ | τ < ω1〉 6∈ M and η0 > ξnδ,δ. We would like to use

Mitchell’s Covering Lemma [19, Theorem 4.19, page 1566] to cover inside M either the sequence

〈ητ | τ < ω1〉 or a final segment s′ = 〈ητ | γ < τ < ω1〉 of this sequence by a set z of size below

κ. Then P(z) = P(z)M , so s′ ∈ M . However, because ητ < j(κ) for τ < ω1 and (j(κ))ω ⊆ M ,

s = 〈ητ | τ ≤ γ〉 ∈ M . Thus, s_s′ = 〈ητ | τ < ω1〉 ∈ M , a contradiction.

If the sequence 〈meas(ητ ) | τ < ω1〉 ∈ M and moreover, there is a set A ∈ (K)M of size ε′ < κ

in (K)M which covers 〈ητ | τ < ω1〉, then working inside M , for sufficiently large θ, we pick an

elementary submodel N ≺ Hθ such that Nω ⊆ N , |N | = ε′ + 2ℵ0 , and δ, 〈σi | i < ε〉, 〈meas(ητ ) |
τ < ω1〉, A ∈ N . Then by Mitchell’s Covering Lemma, there are ζ < δ, h ∈ (K)M , and a system of

indiscernibles C such that N ∩ δ ⊆ h[ζ; C]. Moreover, for every limit i < ε with ζ < σi, we have

that all but boundedly many indiscernibles for measures in σi∩A are in C. Now, using a regressive

function, we will obtain that all but boundedly many indiscernibles for measures in A are in C. In

particular, a final segment of 〈ητ | τ < ω1〉 ∈ C, and we are done.

In general, we need not have 〈meas(ητ ) | τ < ω1〉 ∈ M . We can compensate for this by working

a little harder. Specifically, we define a tree T and begin by putting 〈ητ | τ < ω1〉 at the first level

of T . Set

SuccT (〈ητ 〉) = {ρητ ,k | k < nητ}

for every ητ 6= κ. If ητ = κ, then set SuccT (〈ητ 〉) = ∅. The next level (and all further levels as well)

are defined similarly. Thus, if ρητ ,k = κ, then set Succ(〈ητ , ρητ ,k〉) = ∅. Otherwise set

SuccT (〈ητ , ρητ ,k〉) = {ρρητ ,km
| m < nηρτ ,k

}.

The tree T will be well founded, since ordinals along its branches are decreasing.

Consider the set of nodes S = {ρ | ∃t ∈ T [t_ρ ∈ T and all immediate successors (and

consequently all successors) correspond to j∗(κ)}. Note that |S| ≤ |T | = ω1. In addition, by the

definition of T , generators corresponding to j∗(κ) (which are just measures that started originally

from κ) appear only at terminal nodes (κ), or possibly at nodes one step before terminal ones.

Further, x = {meas(ρ) | ρ ∈ S} ∈ M . To see this, observe that each meas(ρ) is of the form

j∗(fρ)(ξ1,ρ, . . . , ξnρ,ρ), with ξ1,ρ, . . . , ξnρ,ρ being generators for j∗(κ). We have already shown that
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the number of generators for j∗(κ) is at most countable. Note that the total number of functions

fρ which are used in T has size at most ω1 (and the total number of functions relevant for x is

at most countable). If we let 〈ti | i < ω1〉 be an enumeration of all of these functions in V , then

j(〈ti | i < ω1〉) = 〈j∗(ti) | i < ω1〉 ∈ M . Hence, by using the generators for x and the sequence

〈j∗(ti) | i < ω1〉, we may now infer that x ∈ M .

Let us now cover 〈j∗(ti) | i < ω1〉 by a set of size less than κ in (K)M . We will do this by

covering 〈ti | i < ω1〉 by a set in K of cardinality less than κ and then applying j∗ to our covering

set. In particular, we argue in V as follows: 2κ = κ+ in K (and in V as well since o(κ) < ω1). This

means that we can code in K functions by ordinals less than κ+. Thus, there is γ < κ∗ such that

the codes for 〈ti | i < ω1〉 are all below γ. Pick a bijection h : γ → κ in K. There is γ∗ < κ such

that the images of the codes of the ti s are below γ∗. Then h′′γ∗ will be the desired covering of the

set of the codes of the ti s.

Now, back in M , let B = j∗(h′′γ∗). For sufficiently large θ, we pick an elementary submodel

N ≺ Hθ such that Nω ⊆ N , |N | = γ∗ + 2ℵ0 , and δ, κ, j∗(κ), B ∈ N . Then as before, by Mitchell’s

Covering Lemma, there are ζ < δ, h ∈ (K)M , and a system of indiscernibles C such that N ∩ δ ⊆
h[ζ; C]. Moreover, for every limit i < ε with ζ < σi, we have that all but boundedly many

indiscernibles for measures in σi∩N are in C. Now, using a regressive function, we will obtain that

all but boundedly many indiscernibles for measures in N are in C. In particular, again as before,

a final segment of 〈ητ | τ < ω1〉 ∈ C, and we are done. This completes the proof of Theorem 5.

¤

Theorem 6 Suppose that o(κ) ≥ ω1 in K. Then there is a generic extension V of K with an

elementary embedding j : V → M having critical point κ such that Mω ⊆ M yet (j(κ))ω1 6⊆ M .

Proof: By the Theorem of [6], assuming that o(κ) ≥ ω1 in K, it is possible to force over K to

obtain a strictly increasing Rudin-Keisler sequence of ultrafilters over κ having length ω1. Theorem

6 then follows by the proof of Theorem 4, (2) =⇒ (1).

¤
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Theorem 7 Suppose that κ is a measurable cardinal in K and {ν < κ | oK(ν) ≥ ω1} is unbounded

in κ. Then there is a generic extension V of K and an elementary embedding j : V → M having

critical point κ such that Mω ⊆ M yet (j(κ))ω1 6⊆ M .

Proof: Fix a normal measure U over κ. For each ν < κ, let ν∗ be the least cardinal above ν with

o(ν) = ω1. Let ~W (ν∗) = 〈W (ν∗, ξ) | ξ < ω1〉 witness that o(ν∗) = ω1, i.e., ~W (ν∗) is an increasing

sequence in the Mitchell ordering / [18] of normal measures over κ.

We now turn ~W (ν∗) into a Rudin-Keisler increasing sequence of ultrafilters. Let 〈〈Pα, Q̇α〉 | α <

κ〉 be an Easton support iteration of Prikry type forcings of length κ, where for every α < κ, Q̇α is

a term for the forcing of [6, Section 2] (see also [7]) which adds either a Prikry or Magidor sequence

to every measurable cardinal γ ∈ (α, α∗). Note that for all such γ, o(γ) < ω1 by the definition

of α∗. This extends ~W (α∗) = 〈W (α∗, ξ) | ξ < ω1〉 into a Rudin-Keisler increasing commutative

sequence ~W ′(α∗) = 〈W ′(α∗, ξ) | ξ < ω1〉 of α∗ complete ultrafilters over α∗.

Let G be K-generic over P = Pκ. We claim that in V = K[G], there is an elementary embedding

j : V → M having critical point κ such that Mω ⊆ M yet (j(κ))ω1 6⊆ M . To see this, fix some

ξ < ω1. Define an ultrafilter Uξ over κ2 in K by

x ∈ Uξ iff {ν < κ | {ζ < ν∗ | (ν, ζ) ∈ x} ∈ W (ν∗, ξ)} ∈ U.

The ultrapower by Uξ is the ultrapower by U followed by the ultrapower by (jU( ~W ))(κ∗, ξ). Let

jξ : K → Mξ be the corresponding elementary embedding. Then we can write jξ = j(jU ( ~W ))(κ∗,ξ) ◦jU

and obtain a commutative system of embeddings.

Consider now what happens in V . By using the argument found in the proof of Lemma 2.2

for the construction of the supercompact ultrafilter U , we may extend the ultrafilter Uξ of K to

an ultrafilter U ′
ξ of V by constructing an increasing sequence of conditions successively deciding

the statements “(κ, ξ) ∈ jξ(ẋ)” for all suitable canonical names ẋ. Because o(ζ) = ξ, by the

definition of P, for a typical (ν, ζ), a Magidor sequence of order type ωξ was added to ζ. Also, by

elementarity, in the ultrapower by U ′
ξ, the same thing is true. Thus, let jU ′ξ : K → M ′

ξ ' V κ2
/U ′

ξ.

Let [id]U ′ξ = 〈κ, ξ̃〉. Then M ′
ξ has a Magidor sequence of order type ωξ for ξ̃ over its ground model

KM ′
ξ .
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Let ρ < ξ. Set σξ,ρ(ν, ζ) = (ν, ζρ), where ζρ is the ρth member of the Magidor sequence added

to ζ. Note that by their definitions, σξ,ρ will project the extension U ′
ξ of Uξ to the extension U ′

ρ of

Uρ. Consequently,

〈〈U ′
ξ | ξ < ω1〉, 〈σξ,ρ | ρ ≤ ξ < ω1〉〉

forms a Rudin-Keisler commutative sequence. We check that it is strictly increasing. By Theorem

4, (2) =⇒ (1), this will suffice to prove Theorem 7.

To do this, we suppose otherwise. Then there are ρ < ξ < ω1 such that U ′
ρ =RK U ′

ξ. Let f : κ2 →
κ2 be a witnessing isomorphism. Then in the ultrapower by U ′

ξ we will have jU ′ξ(f)(κ, ξ̃ρ) = (κ, ξ̃)

since U ′
ρ = {x ⊆ κ2 | 〈κ, ξ̃ρ〉 ∈ jU ′ξ(x)} because of the projection map σξ,ρ.

By the next claim (Claim 3.6), we will be able to assume that f is the identity in the first

coordinate and is strictly increasing in the second coordinate once the first one has been fixed, i.e.,

if τ < τ ′ < ν∗ and f(ν, τ) = (α, β), f(ν, τ ′) = (α′, β′), then ν = α = α′ and τ < β < β′.

Claim 3.6 There is f ′ : κ2 → κ2 such that

1. [f ′]U ′ξ = [f ]U ′ξ .

2. For every inaccessible ν < κ and τ < τ ′ < ν∗, if f ′(ν, τ) = (α, β) and f ′(ν, τ ′) = (α′, β′),

then ν = α = α′ and τ < β < β′.

Proof: Without loss of generality, we assume that for every inaccessible ν and every τ < ν∗, it

is the case that f(ν, τ) < ν∗. Therefore, for any inaccessible cardinal ν < κ, we may define in V

the set C = {τ < ν∗ | For all σ < τ , the second coordinate of f(ν, σ) is less than τ}, which is

a club subset of ν∗. Note that the forcing above ν∗ does not add subsets to ν∗, nothing is done

over ν∗ itself, and Pν∗ satisfies ν∗-c.c. Hence, there is a club Eν ∈ K, Eν ⊆ Cν . Consequently, by

normality, we have that Eν ∈ W (ν∗, θ) for every θ < ω1. It then follows that Eν and Cν will each

be in W ′(ν∗, θ). Thus, for every θ < ω1, the set x = {(ν, τ) ∈ κ2 | τ ∈ Eν} ∈ Uθ. However, U ′
θ

extends Uθ, so in particular, x ∈ U ′
ξ. This means that f ¹ x is as desired. This completes the proof

of Claim 3.6.

¤
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For every inaccessible cardinal ν < κ and every τ ∈ [ν, ν∗), set fν(τ) = The second coordinate

of f(ν, τ). Then jU ′ξ(f)κ(ξ̃ρ) = ξ̃. Pick a set A ∈ W (ν∗, ρ)−W (ν∗, ξ). Let gν = fν ¹ A. Note that

each gν is strictly increasing. Also, in the ultrapower by U ′
ξ, gκ(ξ̃ρ) = ξ̃.

For ν < κ an inaccessible cardinal, define hν ∈ K by hν(τ) = {µ | ∃p ∈ Pν∗ [p ° “gν(τ) = µ”]}.
By its definition, hν : Aν → P(ν∗), and for every τ ∈ Aν , gν(τ) ∈ hν(τ) and min(hν(τ)) > τ .

Claim 3.7 There is Bν ∈ W (ν∗, ξ) such that Bν ∩
⋃

rng(hν) = ∅.

Proof: If not, then
⋃

rng(hν) ∈ W (ν∗, ξ). Consequently, ν∗ ∈ jW (ν∗,ξ)(
⋃

rng(hν)). So there is

τ ∈ jW (ν∗,ξ)(Aν) such that ν∗ ∈ (jW (ν∗,ξ)(hν))(τ). But min((jW (ν∗,ξ)(hν))(τ)) > τ , so ν∗ > τ .

Then (jW (ν∗,ξ)(hν))(τ) = hν(τ). This is since ν∗ is the critical point of the embedding jW (ν∗,ξ) and

|hν(τ)| < ν∗. (This last fact follows because as we have already observed, the forcing above ν∗ does

not add subsets to ν∗, nothing is done over ν∗ itself, and Pν∗ satisfies ν∗-c.c.) But hν(τ) ⊆ ν∗, so

ν∗ 6∈ hν(τ). This contradiction completes the proof of Claim 3.7.

¤

We now look at what happens at κ in the ultrapower by U ′
ξ. It is the case that ξ̃ ∈ Bκ. To

see this, let z = {(ν, ζ) | ζ ∈ Bν}. We have that z ∈ Uξ ⊆ U ′
ξ. Hence (κ, ξ̃) ∈ jU ′ξ(z), so ξ̃ ∈ Bκ.

Then ξ̃ = gκ(ξ̃ρ) ∈ hκ(ξ̃ρ) and Bκ ∩
⋃

(rng(hκ)) = ∅. This is impossible. This completes the proof

of Theorem 7.

¤

We conclude Section 3 by noting that it is possible to prove Theorem 6 by forcing over an

arbitrary model V ∗ of ZFC in which κ has a coherent sequence of measures of length at least ω1.

In addition, it is possible to prove Theorem 7 by forcing over an arbitrary model V ∗ of ZFC in

which {ν < κ | There is a coherent sequence of measures over ν of length at least ω1} is unbounded

in κ. In order to minimize the technical details involved, however, we force over K instead.
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4 The consistency strength of strongly tall cardinals

Recall that κ is strongly tall if for every ordinal λ ≥ κ, there is an elementary embedding witnessing

that κ is λ tall which is generated by a κ-complete measure on some set. We address the consistency

strength of strongly tall cardinals with the following theorem.

Theorem 8 The following theories are equiconsistent:

a) ZFC + There is a strong cardinal and a proper class of measurable cardinals.

b) ZFC + There is a strongly tall cardinal.

Proof: We begin with the proof of Theorem 8(a). Suppose V ² “ZFC + κ is strong + There is a

proper class of measurable cardinals”. Assume without loss of generality that V ² GCH as well.

Fix a proper class 〈λα | α ∈ Ord〉 satisfying the following properties.

1. λ0 > κ.

2. α < β implies that λα < λβ.

3. If α is a limit ordinal, then λα =
⋃

β<α λβ.

4. For every α, λα+1 is a measurable cardinal.

We now define the partial ordering P used in the proof of Theorem 8(a). Let α be an ordinal.

Let Qα be the reverse Easton iteration of length λα+1 which does trivial forcing except at regular

cardinals in the half-open interval (λα, λα+1]. At such a stage δ, the forcing used is Add(δ, λα). P

is taken as the Easton support product
∏

α∈OrdQα.

Let G be V -generic over P. Standard arguments show that V [G] ² ZFC. The proof of Theorem

8(a) will be complete once we have shown that V [G] ² “κ is strongly tall”. Towards this end, let

λ ≥ κ be a regular cardinal. Choose α such that λα > λ and cof(α) >> λ.

Work for the time being in V . Fix a (κ, λ)-extender E , with j : V → M the corresponding

ultrapower embedding. It is then the case that cp(j) = κ, λα > j(κ) > λ, and Mκ ⊆ M . For

every a ∈ [λ]≤κ, set Ua = {x ⊆ Vκ | a ∈ j(x)}. Let ja : V → Ma be the corresponding ultrapower
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embedding. If a is a subsequence of b, then we denote by πb,a the obviously defined projection

of Ub onto Ua and let ka,b : Ma → Mb be the corresponding elementary embedding between the

ultrapowers. Then

〈〈Ma | a ∈ [λ]≤κ〉, 〈ka,b | a, b ∈ [λ]≤κ, a is a subsequence of b〉〉

is a κ+-directed system having limit 〈M, 〈ja | a ∈ [λ]≤κ〉〉.
Let W ∈ V be a normal ultrafilter over λα+1, with i : V → N the corresponding ultrapower

embedding. For every a ∈ [λ]≤κ, let Wa = Ua×W , with ia : V → Na the corresponding ultrapower

embedding. Note that ia may be obtained either by first applying Ua and then ja(W ) (which is

actually W ) or by first applying W and then Ua.

Define a κ+-directed system

〈〈Na | a ∈ [λ]≤κ〉, 〈`a,b | a, b ∈ [λ]≤κ, a is a subsequence of b〉〉

in the obvious manner. Let 〈NE , 〈ia | a ∈ [λ]≤κ〉〉 be its limit, with iE : V → NE the corresponding

embedding. Note that NE may be viewed as the ultrapower by E ×W or as the iterated ultrapower

by E and then by j(W ) = W or as the ultrapower by first applying W and then E .

Consider now V [G]. Let W ′ be an extension of W in V [G] and i′ : V [G] → N [G′], i′ ⊇ i the

corresponding ultrapower embedding.

Write P = P<α × Pα × P>α, with P<α =
∏

β<αQβ, Pα = Qα, and P>α =
∏

β>αQβ. Since P

is defined as a product forcing, the order of the products just given can be changed. In addition,

i(P<α) = P<α, and W is not affected by P>α because of its closure. Let G<α = G ¹ P<α, Gα =

G ¹ Pα, and G>α = G ¹ P>α. Then G′ ¹ P<α = G<α, G′ ¹ Pα = Gα, and G′ ¹ P>α is generated

by i′′G>α. Denote by G>α the part of G′ in the interval (λα+1, i(λα+1)]. Let 〈fξ | ξ < λα〉 be the

Cohen functions from λα+1 to λα+1 added by Gα over λα+1, with 〈f ′ξ | ξ < i(λα)〉 the corresponding

functions from i(λα+1) to i(λα+1) added by G′.

Consider now iE : V → NE . We extend it to i′E : V [G] → NE [GE ] as follows. We first generate

G<α
E , the part of GE below λα, by j′′G<α. We then use G>α to generate the part of GE in the

interval (λα+1, i(λα+1)]. Finally, the part of GE above i(λα+1) is generated by i′′EG>α.
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For every a ∈ [λ]≤κ, let W ′
a = {x ⊆ Vκ × λα+1 | (α, λα+1) ∈ i′E(x)} be the extension of Wa

in V [G] and i′a : V [G] → Na[G
′
a], i′a ⊇ ia the corresponding ultrapower embedding. Then the

κ+-directed system

〈〈Na | a ∈ [λ]≤κ〉, 〈`a,b | a, b ∈ [λ]≤κ, a is a subsequence of b〉〉

extends in the obvious fashion to the κ+-directed system

〈〈Na[G
′
a] | a ∈ [λ]≤κ〉, 〈`′a,b | a, b ∈ [λ]≤κ, a is a subsequence of b〉〉

with limit 〈NE [GE ], 〈i′a | a ∈ [λ]≤κ〉〉 and i′E : V [G] → NE [GE ] the corresponding embedding.

Fix a ∈ [λ]≤κ. Let the Cohen functions added by G′
a over ia(λα+1) corresponding to 〈fξ | ξ < λα〉

be denoted by 〈f ′a,ξ | ξ < i(λα)〉.
We come now to the crucial point of the construction. For every ζ ∈ a, let ζa be the ordinal

represented in Ma by the coordinate ζ, i.e., ja(ζa) = ζ. We change the value of f ′a,ia(ζ)(λα+1) to

ζa and let f ′′a,ia(ζ) be the resulting function. Since we have changed only one value, f ′′a,ia(ζ) remains

Cohen generic. Note that the number of changes made is at most κ, which is small relative to

λα+1. Consequently, after all of the changes have been made to GE , the resulting set G′′
E remains

Na[GE ¹ ia(λα+1)]-generic. Let i′′a : V [G] → Na[G
′′
a] be the corresponding embedding. Note that

since the generic set has been changed, i′′a 6= i′a. Regardless, we have a κ+-directed system

〈〈Na[G
′′
a] | a ∈ [λ]≤κ〉, 〈`′′a,b | a, b ∈ [λ]≤κ, a is a subsequence of b〉〉

with limit 〈NE [G′′
E ], 〈i′′a | a ∈ [λ]≤κ〉〉 and i′′E : V [G] → NE [G′′

E ] the corresponding embedding. Since

G′′
E ∈ NE [GE ], NE [G′′

E ] = NE [GE ]. Using κ+-directedness, it follows that (NE [GE ])κ ⊆ NE [GE ].

By using an appropriate coding of [λ]≤κ in V , any ultrafilter of the form Ua for a ∈ [λ]≤κ may be

replaced by an ultrafilter of the form U{ζ} for some ζ < λ. Consequently, any system defined using

〈Ua | a ∈ [λ]≤κ〉 may be replaced by a system defined from this coding using only 〈U{ζ} | ζ < λ〉,
i.e., the two systems will have the same direct limit.

Let W ∗ = {z ⊆ λα+1 | λα+1 ∈ i′′E(z)}. By its definition, and using the fact mentioned in the

preceding paragraph, W ∗ extends W and projects onto Wa for every a ∈ [λ]≤κ. Let i∗ : V [G] → N∗
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be the corresponding elementary embedding and k∗ : N∗ → NE [G′′
E ] be the standard embedding

which forms a commutative diagram, i.e., k∗([g]W ∗) = i′′E(g)(λα+1).

The next claim is used to finish the proof of Theorem 8(a).

Claim 4.1 k∗ is a map onto NE [G′′
E ] and hence N∗ = NE [G′′

E ].

Proof: Note that every element of NE [G′′
E ] is of the form i′′E(h)(ζ, λα+1) for some h : κ×λα+1 → V [G]

and ζ < λ.

Fix ζ < λ and consider fζ . We have

k∗([fζ ]W ∗) = (i′′E(fζ))(λα+1) = ζ

because of the change we made to the value of the Cohen function. Then for any h : κ× λα+1 →
V [G],

i′′E(h)(ζ, λα+1) = i′′E(h)((i′′E(fζ))(λα+1), λα+1) = i′′E(t)(λα+1) = k∗([t]W ∗),

where t(ρ) = h(fζ(ρ), ρ) for every ρ < λα+1.

¤

Because W ∗ ⊇ W and W ∗ projects onto Ua for every a ∈ [λ]≤κ, i∗(κ) > λα+1. Since N∗ =

NE [G′′
E ], NE [G′′

E ] = NE [GE ], and (NE [GE ])κ ⊆ NE [GE ], i∗ maps V [G] into a κ-closed inner model.

Consequently, because for any ordinal α, λα+1 is a measurable cardinal in V , V [G] ² “κ is strongly

tall”. This completes the proof of Theorem 8(a).

¤

Having completed the proof of Theorem 8(a), we turn now to the proof of Theorem 8(b).

Suppose κ is a strongly tall cardinal and that there is no inner model with two strong cardinals.

We show this implies that there are arbitrarily large measurable cardinals in K (which of course

can be assumed to contain one strong cardinal).

Suppose θ > κ. Let λ >> θ be a strong limit cardinal. Let U be a κ-complete uniform ultrafilter

on some cardinal δ with corresponding elementary embedding j : V → M such that j(κ) > λ.

Then δ ≥ θ, and uniformity and κ-completeness together imply that cof(δ) ≥ κ.
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Let PU be Prikry tree forcing defined with respect to U (see [7] for the exact definition). Force

with PU over V . Then as with ordinary Prikry forcing, V and V PU have the same bounded subsets

of κ, and δ has cofinality ω in V PU . Therefore, if δ was regular in V , work of Schindler [20] shows

that δ is measurable in K.

Suppose now that V ² “cof(δ) = η < δ”. Let 〈δn | n < ω〉 be the cofinal ω sequence added

by PU . Observe that there is no set x ∈ V of cardinality less than δ in V covering {δn | n < ω}.
To see this, suppose otherwise. Without loss of generality, we can assume that x ⊆ δ. By the

uniformity of U , it is the case that x 6∈ U . This, however, implies that a final segment of the

δn s will be in the compliment of x, an immediate contradiction. Hence, by applying covering

arguments to Schindler’s core model [20], for every τ < δ, there is a measurable cardinal in K
above τ . In particular, there is a measurable cardinal in K above θ. This completes the proofs of

both Theorem 8(b) and Theorem 8.

¤

5 Concluding remarks

We conclude by posing some questions and making some related comments. These are as follows:

1. Is it possible to obtain a model of ZFC in which the first ω strongly compact and measurable

cardinals precisely coincide? More generally, is it possible to obtain a model of ZFC in

which there are infinitely many (including possibly even proper class many) strongly compact

cardinals, and the measurable and strongly compact cardinals precisely coincide?

2. Is V = K really needed in the hypotheses of Theorem 3, or is it possible to construct a model

with a tall cardinal having bounded closure ω in which there are neither any tall cardinals

nor any tall cardinals having bounded closure δ for ω1 ≤ δ < κ by forcing over an arbitrary

model V of ZFC satisfying the current assumptions?

3. Is the existence of η > κ with o(η) = ω1 really needed in order to construct a model with a

tall cardinal having bounded closure ω in which there are neither any tall cardinals nor any
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tall cardinals having bounded closure δ for ω1 ≤ δ < κ? In particular, are the theories “ZFC

+ There is a tall cardinal with bounded closure ω” and “ZFC + There is a tall cardinal with

bounded closure” equiconsistent? Are the theories “ZFC + There is a strong cardinal” and

“ZFC + There is a tall cardinal with bounded closure” equiconsistent?

4. Suppose that there is no η > κ with o(η) = ω1 in K. Is it possible to have an elementary

embedding j : V → M such that cp(j) = κ, j(κ) ≥ κ++, and Mω ⊆ M , yet for no elementary

embedding j′ : V → M ′ with cp(j′) = κ and j′(κ) ≥ κ++ is it the case that (M ′)ω1 ⊆ M ′?

5. The same question as Question 4, except that we require in addition that κ++ = (κ++)M .

Question 1 and its generalized version are variants of Magidor’s question posed at the end of

Section 2. Also, in Theorem 3, it is possible to eliminate the assumption of no measurable cardinals

above η.

Note that assuming the existence in K of η > κ with o(η) = ω1, it is possible first to use the

construction given in the proof of Theorem 3 and then force with Add(ω, 1) ∗ ˙Coll(κ+, <λ). Here,

λ ≥ η+ is a fixed regular cardinal, and Coll(κ+, <λ) is the standard Lévy collapse which makes

λ = κ++. By the results of [14], the model obtained after forcing with Add(ω, 1) also witnesses

the conclusions of Theorem 3. Since forcing with Coll(κ+, <λ) will add no new subsets of κ, the

relevant extender is not affected, and in our final model V , there is an elementary embedding

j : V → M such that cp(j) = κ, j(κ) ≥ κ++, Mω ⊆ M , and Mω1 6⊆ M . By Hamkins’ results of

[10], because Add(ω, 1)∗ ˙Coll(κ+, <λ) “admits a closure point at ω” (see [10] for a definition of this

terminology), there is no elementary embedding j′ : V → M ′ such that cp(j′) = κ, j′(κ) ≥ κ++,

and (M ′)ω1 ⊆ M ′. With a little more work (i.e., by using a preparatory forcing similar to the one

given in [8]), it is possible to ensure also that κ++ = (κ++)M .

It is unclear at all, however, whether an assumption beyond o(κ) = κ++ is really needed. In

fact, this prompts us to ask the related question

6. Suppose o(κ) = κ++. Is it possible to force in V P an ω-directed but not ω1-directed sequence

〈〈Uα, πα,β〉 | α ≤ β < κ++〉 of ultrafilters over κ such that there is no κ-directed sequence of
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ultrafilters of length κ++ in V P?

We end by conjecturing that it is possible and that methods from [8] may be relevant.
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