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Abstract

Answering a question of Mitchell [7] we show that a limit of accumulation points
can be singular in K. Some additional constructions are presented.

1 Introduction

W. Mitchell [7] stated the following problem (2.12 there ):

Suppose that ~κ = 〈κi | i < ω〉 is an increasing sequence of measurable cardinals in the core

model such that o(κi+1) = κi. Is there a larger model M in which each κi is still measurable

and such that if ~γ and ~β are any sequences such that γi < κi and βi < o(κi), for all i < ω,

then there is a sequence ~c which is an indiscernible sequence for (~κ, ~β) such that γi < ci for

all i < ω?

The problem is tightly related to the problem of existence of accumulation points. Such

points are one of the basic components of the Mitchell Covering Lemma (see, for example,

[8]). Mitchell showed that if accumulation points exist then there is a cardinal α such that

{o(β) | β < α} is unbounded in α. On the other hand in [5], starting with such measurable

α, a model with accumulation points was constructed.

It remained open whether a measurability of α can be removed and if a limit of accumulation

points can be singular in the core model. Mitchell note in [7] that an affirmative answer to

the problem above would answer both of these questions affirmatively.

The main purpose of the paper is to give an affirmative answer to the Mitchell problem.

This is done in Section 2. A new variation of short extenders forcing, based on names in

∗We are grateful to the referee of the paper for his remarks and corrections. The work was partially
supported by ISF grant No. 1216/18.
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order to compensate incompleteness of extenders, is used for this. It may of an interest by

its own.

In Section 3, we address a question of maximality of sequences of indiscernibles. By results

of Jensen -Dodd and Mitchell (see for example [8]), if o(κ) < κ, κ changes its cofinality, then

there is such sequence. We will show that this not true anymore if o(κ) = κ.

2 A variation of short extenders forcing.

We would like now to present the extender based Prikry forcing using very short extenders.

This will allow to give an affirmative answer to a problem of Mitchell, 2.12 [7].

Assume GCH. Let κ =
⋃
n<ω κn with 〈κn | n < ω〉 increasing.

Assume that each κn is measurable and there exists a coherent sequence
~Un = 〈U(α, β) | κn−1 < α ≤ κn, β < o

~Un(α)〉 with o
~Un(κn) = κn−1, where κ−1 = 1.

Force first with the forcing of [4] and turn the Mitchell order into the Rudin -Keisler order.

Denote the extension by V1. For each n < ω, the /−increasing sequence 〈U(κn, β) | β < κn−1〉
is turned into a ≤R−K −sequence 〈U∗(κn, β) | β < κn−1〉 in V1.

Let jn : V1 →Mn be the corresponding direct limit embedding.

Then κn−1>Mn ⊆Mn.

Note that M0 will be just the ultrapower by U∗(κ0, 0), and so it is closed under κ0−sequences

of its elements.

We view 〈U∗(κn, β) | β < κn−1〉 as extender over κn. Just define a (κn, jn(κn))−extender En

by setting

X ∈ En(β)⇔ β ∈ jn(X).

Our next task will be to force, using 〈En | n < ω〉, κ+−many ω−sequences in
∏

n<ω κn.

We will use a variation of a forcing of [6] and [1] for this purpose.

A slight complication here is that the extenders En are only < κn−1−closed.

We are now ready to define our first forcing notion. It will resemble the one element

Prikry forcing and will be built from two pieces.

Fix n < ω.

Definition 2.1 Let

Qn1 = {f | f is a partial function from κ+ to κn of cardinality at most κ}.

We order Qn1 by inclusion. Denote this order by ≤1.

Thus Qn1 is basically the usual Cohen forcing for adding a function from κ+ to κn.
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Definition 2.2 Let Qn0 be the set of triples p = 〈a,A, f〉 so that

(1) f ∈ Qn1

(2) a is an order preserving partial function from κ+ to jn(κn) such that

(2)(i) |a| < κn−1

(2)(ii) dom(a) ∩ dom(f) = ∅

(2)(iii) rng(a) has a ≤En-maximal element, i.e. an element α ∈ rng(a) such that α ≥En β for

every β ∈ rng(a)

(3) A ∈ Unmax(rng(a))

(4) for every α, β, γ ∈ rng(a), if α ≥En β ≥En γ, then παγ(ρ) = πβγ(παβ(ρ)) for every

ρ ∈ πmax(rng(a)),α“A

(5) for every α > β in a and every ν ∈ A

πmax(rng(a)),α(ν) > πmax(rng(a)),β(ν) .

Further we will often denote a by a(p), A by A(p) and f by f(p).

Definition 2.3 Let 〈a,A, f〉, 〈b, B, g〉 ∈ Qn0. Then

〈a,A, f〉 ≥0 〈b, B, g〉

(〈a,A, f〉 is stronger than 〈b, B, g〉) iff

(1) f ⊇ g

(2) a ⊇ b

(3) πmax(a),max(b)“A ⊆ B

We now define a forcing notion Qn:

Definition 2.4 Qn = Qn0 ∪Qn1.

Definition 2.5 The direct extension ordering ≤∗ on Qn is defined to be ≤0 ∪ ≤1.
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Definition 2.6 (One step extension) Let p = 〈a,A, f〉 ∈ Qn0 and ν ∈ A. Define p_ν to be

an element g ∈ Qn1 such that

1. dom(g) = dom(a) ∪ dom(f),

2. for every α ∈ dom(f), g(α) = f(α),

3. g(max(dom(a)) = ν,

4. for every β ∈ dom(a) g(β) = πmax(rng(a)),a(β)(ν).

Definition 2.7 Let p, q ∈ Qn.

Then p ≤ q iff either

(1) p ≤∗ q or

(2) p = 〈a,A, f〉 ∈ Qn0, q ∈ Qn1 and the following holds for some ν ∈ A, q ≥1 p
_ν.

Clearly, the forcing 〈Qn,≤ 〉 is equivalent to 〈Qn1,≤1 〉, i.e. the Cohen forcing. However,

the following basic facts relate it to the Prikry type forcing notion.

The next two lemmas are standard.

Lemma 2.8 〈Qn,≤∗ 〉 is κn−1-closed.

Lemma 2.9 〈Qn,≤,≤∗ 〉 satisfies the Prikry condition, i.e. for every p ∈ Qn and every

statement σ of the forcing language there is q ≥∗ p deciding σ.

Now let us put the blocks Qn, n < ω together. A difference from the usual short extenders

forcings is now that Qn’s are not complete enough (only κn−1−complete due to incomplete-

ness of the extender En) and in order to overcome this names (but rather simple ones) will

be used.

Let us deal first with two - Q0, Q1.

Definition 2.10 The set P≤1 consists of sequences p = 〈p0, p1〉 so that either

1. p0 ∈ Q01 and p1 ∈ Q11, i.e. p ∈ Q01 ×Q11.

Or

2. p0 ∈ Q01 and p1 ∈ Q10, i.e. p ∈ Q01 ×Q10.

Or
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3. p0 ∈ Q00 and p1 = 〈a∼1, A∼1, f∼1〉,
where a∼1 = {〈ν, aν1〉 | ν ∈ A0}, A∼1 = {〈ν,Aν1〉 | ν ∈ A0} and f

∼1 = {〈ν, f ν1 〉 | ν ∈ A0}
are such that

(a) for every ν ∈ A0, 〈aν1, Aν1, f1〉 ∈ Q10,

(b) for every ν ∈ A0, dom(aν1) ⊇ dom(a(p0)),

(c) let the potential domain of a1, ptdom(a1) =
⋃
ν∈A0

dom(aν1). We require that for

every ν, µ ∈ A0, f
ν
1 � (κ+ \ ptdom(a1)) = fµ1 � (κ+ \ ptdom(a1)).

Intuitively, this means that only inside the potential domain of a1 the Cohen

function f1 is a name.

The intuitive meaning is that a choice of an element in A0 determines the function a1,

the set of measure one A1 for E1max(rng(a1)) and the Cohen function f1.

Define now orders ≤∗ and ≤ on P≤1. Start with ≤∗.

Definition 2.11 Let p = 〈p0, p1〉 and q = 〈q0, q1〉 be in P≤1. Set p ≥∗ q iff either

If

1. p, q ∈ Q01 ×Q11 and p ≥Q01×Q11 q,

or

2. p, q ∈ Q01 ×Q10 and p ≥Q01×Q10 q,

or

3. p0 = 〈a(p)0, A(p)0, f(p)0〉, q0 = 〈a(p)0, A(p)0, f(p)0〉 ∈ Q00,

p1 = 〈a∼(p)1, A∼(p)1, f∼
(p)1〉, q1 = 〈a∼(q)1, A∼(q)1, f∼

(q)1〉,
and then the following hold:

(a) q0 ≤Q00 p0,

(b) for every ν ∈ A(p)0,

〈a(q)ρ1, A(q)ρ1, f(q)ρ1〉 ≤Q10 〈a(p)ν1, A(p)ν1, f(p)ν1〉,
where ρ = πmax(rng(a(p)0)),max(rng(a(q)0))(ν).

Let now p = 〈p0, p1〉 ∈ P≤1, p0 = 〈a(p)0, A(p)0, f(p)0〉, p1 = 〈a∼(p)1, A∼(p)1, f∼
(p)1〉 and

ν ∈ A(p)0.

We set p_ν = 〈p0_ν, 〈a(p)ν1, A(p)ν1, f(p)ν1〉.
If ν1 ∈ A(p)ν1, then set p_〈ν, ν1〉 = 〈p0_ν, pν1_ν1〉, where pν1 = 〈a(p)ν1, A(p)ν1, f(p)ν1〉.

5



Definition 2.12 Let p = 〈p0, p1〉 and q = 〈q0, q1〉 be in P≤1. Set p ≥ q iff either

1. p ≥∗ q,
or

2. for some ν, q_ν is defined and p ≥∗ q_ν,

or

3. for some 〈ν0, ν1〉, q_〈ν0, ν1〉 is defined and p ≥∗ q_〈ν0, ν1〉.

Define for every n < ω, P≤n in a similar fashion.

Definition 2.13 The set P≤n consists of sequences p = 〈p0, p1, ..., pn〉 so that either

1. for every m ≤ n, pm ∈ Qm1, i.e. p ∈ Q01 ×Q11 × ...×Qn1.

Or

2. there is `(p) < n such that

(a) for every m < `(p), pm ∈ Qm1,

(b) p`(p) ∈ Q`(p)0,

(c) for every m, `(p) < m ≤ n, pm = 〈a∼m, A∼1, f∼m
〉, where

a∼m consists of pairs 〈〈νk | `(p) ≤ k < m〉, a〈νk|`(p)≤k<m〉m 〉
A∼m consists of pairs 〈〈νk | `(p) ≤ k < m〉, A〈νk|`(p)≤k<m〉m 〉
and f
∼m

consists of pairs 〈〈νk | `(p) ≤ k < m〉, f 〈νk|`(p)≤k<m〉m 〉, such that

ν`(p) ∈ A`(p), ν`(p)+1 ∈ A
ν`(p)
`(p)+1,..., νk ∈ A

ν`(p),...,νk−1

k ,..., νm−1 ∈ A
ν`(p),...,νm−2

m−1 .

Further let us call such sequences 〈νk | `(p) ≤ k ≤ m〉- suitable extension sequences

for p.

We require that 〈a〈νk|`(p)≤k<m〉m , A
〈νk|`(p)≤k<m〉
m , f

〈νk|`(p)≤k<m〉
m 〉 ∈ Qm0.

Moreover, if 〈νk | `(p) ≤ k < m1〉 and 〈µk | `(p) ≤ k < m2〉, are two suitable

extension sequences, m1 < m2 and 〈νk | `(p) ≤ k < m1〉 is an initial segment of

〈µk | `(p) ≤ k < m2〉 then dom(a
〈νk|`(p)≤k<m1〉
m1 ) ⊆ dom(a

〈νk|`(p)≤k<m2〉
m2 ).

(d) For every m, `(p) < m ≤ n, set

ptdom(am) =
⋃
{dom(a〈νk|`(p)≤k<m〉m ) | 〈νk | `(p) ≤ k < m〉

is a suitable extension sequence}.

We require that for every two suitable extension sequences ~ν = 〈νk | `(p) ≤ k <

m〉, ~µ = 〈µk | `(p) ≤ k < m〉, f~ν � (κ+ \ ptdom(am)) = f ~µ � (κ+ \ ptdom(am)).
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Definition 2.14 Let 〈νk | `(p) ≤ k ≤ m〉 be a suitable extension sequence for p. Define

p_〈νk | `(p) ≤ k ≤ m〉 to be q = 〈q0, ..., qn〉 such that

1. for every k < `(p), qk = pk,

2. q`(p) = p`(p)
_ν`(p),

3. qk = 〈a〈νs|`(p)≤s<k〉k , A
〈νs|`(p)≤s<k〉
k , f

〈νs|`(p)≤s<k〉
k 〉_νk, for every k, `(p) < k ≤ m,

4. for every k,m < k ≤ n, qk = 〈a∼k(q), A∼k(q), f∼k
(q)〉, where

a∼k(q) consists of pairs 〈〈µi | m < i < k〉, a〈µi|m<i<k〉k 〉,
A∼k(q) consists of pairs 〈〈µi | m < i < k〉, A〈µi|m<i<k〉k 〉
and f
∼k

(q) consists of pairs 〈〈µi | m < i < k〉, f 〈µi|m<i<k〉k 〉 , such that

〈νk | `(p) ≤ k ≤ m〉_〈µi | m < i < k〉 is suitable extension sequence for p.

The orders ≤∗ and ≤ are defined on P≤n similarly to those on P≤1.

Definition 2.15 The set P consists of sequences p = 〈pn | n < ω〉 so that

(1) for every n < ω, p � n+ 1 ∈ P≤n.

(2) there is an `(p) < ω so that for every n < `(p), pn ∈ Qn1,

and for every n ≥ `(p), pn = 〈a∼n, A∼n, f∼n
〉,

(3) if for some suitable extension sequence ~ν = 〈νk | `(p) ≤ k < m〉, an ordinal α is in

dom(f~νm) ∪ dom(a~νm), then there is m(α),m ≤ m(α) < ω, for every r,m(α) ≤ r < ω,

we have α ∈ dom(a~ρr), for every suitable extension sequence ~ρ of the length r.

Note that the total number of ordinals which appear in dom(f~νm), for any m < ω and

any suitable extension sequence ~ν, is at most κ. Recall that κ =
⋃
n<ω κn. So, we can

spread such ordinals among the domains of an’s.

Condition 3 will alow to show that for any α < β < κ+, a generic ω−sequences

produced by the forcing P for α is dominated (mod finite) by a generic ω−sequences

for β.

(4) There is η < κ+ which is the maximal element of p in the following sense:

• for some suitable extension sequence ~ν = 〈νk | `(p) ≤ k < m〉, η ∈ dom(a~νm),

• for every ordinal α, if α ∈ dom(f~νm) ∪ dom(a~νm), for some suitable extension

sequence ~ν = 〈νk | `(p) ≤ k < m〉, then α ≤ η,
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• for every ordinal α ≤ η, there is a suitable sequence ~ν = 〈νk | `(p) ≤ k < m〉 such

that α ∈ dom(a~νm).

This condition allows to avoid situations of the following type:

For some α + 1 < β < κ+, α, β ∈ dom(an) and an(β) = an(α) + 1, for every n < ω.

Here no room is left in order to add α+ 1 to domain an, for any n, since an’s are order

preserving.

Let us denote such η by md(p).

Definition 2.16 Let p, q ∈ P . We set p ≥ q (p ≥∗ q) iff for every n < ω,

p � n+ 1 ≥P≤n q � n+ 1 (p � n+ 1 ≥∗P≤n
q � n+ 1).

The forcing 〈P ,≤ 〉 does not satisfy the κ+-c.c., however its cardinality is κ+, and so,

there is no issue of preserving cardinals above κ+.

Then the following lemmas are obvious:

Lemma 2.17 〈P≤n,≤ 〉 has a dense subset equivalent to the Cohen forcing for κ+, for every

n < ω.

Lemma 2.18 P ' P≤n ∗ P>n for every n < ω.

Lemma 2.19 〈P>n,≤∗ 〉 is κn-closed in V
P≤n
1 . Moreover if 〈pα | α < δ < κn〉 is a ≤∗

−increasing sequence with κ`(p0)−1 > δ, then there is p ≥∗ pα for every α < δ.

We will turn now to the Prikry condition.

Let us introduce first some notation. For p = 〈pn | n < ω〉 ∈ P and m with `(p) ≤ m < ω,

let pm = 〈a∼m, A∼m, f∼m
〉. Denote a∼m by a∼m(p), A∼m by A∼m(p) and f

∼m
by f
∼m

(p).

Lemma 2.20 Let q ∈ P and α < κ+. Then there is p ≥∗ q with α ≤ md(p).

Proof. If α ≤ md(q), then just take p = q. Suppose that α > md(q). Consider α+ 1\md(q).

It is a set of cardinality at most κ. So we can present it as a non-decreasing union
⋃
i<ω xi

with |xi| < κ. For every i < ω, let n(i) < ω be the least with |xi| < κn(i)−1. Now, for every

n, n(i) ≤ n < ω, we extend an by adding xi to its domain and mapping it to κn−1 in an

order preserving fashion.

This will easily define a desired condition p.

�
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Lemma 2.21 Let p ∈ P and D be a dense open subset of 〈P ,≤ 〉 above p. Then there are

p∗ ≥∗ p and n∗ < ω such that for every suitable extension sequence 〈ν0, . . . , νn∗〉 for p∗ ,

p∗_〈ν0, . . . , νn∗〉 ∈ D.

Proof. If there is a direct extension of p inside D, then we are done. Suppose otherwise.

Assume for simplicity that `(p) = 0.

Proceed by induction on ν ∈ A0. Let ν = min(A0).

Consider p_ν. If there is a direct extension of p_ν which is in D, then let r be such extension.

Set p(0) = 〈pn(0) | n < ω〉 to be a direct extension of p defined as follows:

1. p0(0) = p0,

2. p1(0) = 〈a∼1(p(0)), A∼1(p(0)), f
∼1(p(0))〉, where

(a) a∼1(p(0)) = 〈µ, aµ1(p(0))〉, where aµ1(p(0)) = aµ1(p) unless µ = ν and if µ = ν, then

aµ1(p(0)) = aµ1(r),

(b) f
∼1(p(0)) = 〈µ, fµ1 (p(0))〉, where fµ1 (p(0)) = fµ1 (p) unless µ = ν and if µ = ν, then

fµ1 (p(0)) = fµ1 (r),

(c) A∼1(p(0)) = 〈µ,Aµ1(p(0))〉, where Aµ1(p(0)) = Aµ1(p) unless µ = ν and if µ = ν,

then Aµ1(p(0)) = Aµ1(r).

3. for every m, 1 < m < ω, pm(0) = 〈a∼m(p(0)), A∼m(p(0)), fm(p(0))〉, where

(a) a∼m(p(0)) = 〈~µ, a~µm(p(0))〉,
where ~µ = 〈µ0, ..., µm−1〉 is a suitable extension

sequence for p and a~µm(p(0)) = a~µm(p),

unless µ0 = ν and if µ0 = ν, then 〈µ1, ..., µm−1〉 is a suitable extension sequence

for r and a~µm(p(0)) = a
〈µ1,...,µm−1〉
m (r),

(b) f
∼m

(p(0)) = 〈~µ, f ~µm(p(0))〉,
where ~µ = 〈µ0, ..., µm−1〉 is a suitable extension

sequence for p and f ~µm(p(0)) = f ~µm(p),

unless µ0 = ν and if µ0 = ν, then 〈µ1, ..., µm−1〉 is a suitable extension sequence

for r and f ~µm(p(0)) = f
〈µ1,...,µm−1〉
m (r),

(c) A∼m(p(0)) = 〈~µ,A~µ
m(p(0))〉,

where ~µ = 〈µ0, ..., µm−1〉 is a suitable extension
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sequence for p and A~µ
m(p(0)) = A~µ

m(p),

unless µ0 = ν and if µ0 = ν, then 〈µ1, ..., µm−1〉 is a suitable extension sequence

for r and A~µ
m(p(0)) = A

〈µ1,...,µm−1〉
m (r).

If there is no direct extension of p_ν in D then set p(0) = p.

Turn next the second element ν(1) of A0. If there is no direct extension of p(0)_ν(1) in D,

then set p(1) = p(0). Otherwise, pick such a direct extension r ≥∗ p(0) in D and define p(1)

as above replacing p by p(0) and ν by ν(1).

Continue by induction. We have enough completeness at coordinates 2 and above, at co-

ordinate 1 the lack of completeness (recall that there we have only κ0−completeness) is

compensated by taking names.

Denote by p∗(0) the resulting direct extension of p, i.e. the one obtained after passing

through all ν’s in A0.

Then, for every ν ∈ A0, if there is a direct extension of p∗(0)_ν in D, then already

p∗(0)_ν ∈ D.

Shrink now A0 to A∗0 ∈ E0max(rng(a)0 such that for every ν, ν ′ ∈ A∗0,

p∗(0)_ν ∈ D ⇔ p∗(0)_ν ′ ∈ D.

Let p∗∗(0) be obtained from p∗(0) by replacing A0 with A∗0.

If for some (every) ν ∈ A∗0, p∗(0)_ν ∈ D, then p∗(0) is as required and we are done.

Suppose otherwise. Proceed to the next level and repeat the process.

This way p∗∗(n)’s will be constructed, for n < ω.

The process should stop at some stage n∗ < ω and the resulting p∗∗(n∗) will be as desired.

�

By standard arguments it follows now:

Proposition 2.22 The forcing 〈P ,≤ 〉 does not add new bounded subsets to κ and preserves

all the cardinals.

In particular, each κn(n < ω) remains measurable.

Let us show that this forcing adds κ+ ω-sequences to κ. Thus, let G ⊆ P be generic. For

every n < ω define a function Fn : κ+ → κn as follows:

Fn(α) = ν if for some p = 〈pm | m < ω〉 ∈ G with `(p) > n, pn(α) = ν.

Now for every α < κ+ set tα = 〈Fn(α) | n < ω〉. Let us show that the set {tα | α < κ+}
has cardinality κ+.
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Lemma 2.23 For every β < α < κ+, tβ(n) < tα(n), for all but finitely many n < ω.

Proof. Work in V1. Let q ∈ P . By Lemma 2.20 there is a direct extension p of q such that

α, β ≤ md(p). Then, by Definition 2.15(3,4), there is n∗, `(q) = `(p) ≤ n∗ < ω such that for

every n, n∗ ≤ n < ω, α, β ∈ dom(a∼n(p)), where by γ ∈ dom(a∼n(p)) we mean the following:

if n = `(p), then just γ ∈ dom(an)(p);

if n > `(p), then for every suitable extension sequence ~ν = 〈ν`(p), ..., νn−1〉, γ ∈ dom(a~νn(p)).

Now, the order preservation implies

p 
 ∀n ≥ n∗( t∼β(n) < t∼α(n)).

�

Let us argue that 〈tα | α < κ+〉 is actually a scale in
∏

n<ω κn mod finite.

We will show a bit stronger statement which will insure that unboundedly many α’s, tα is a

sequence of indiscernibles.

Definition 2.24 A sequence 〈cn | n < ω〉 ∈
∏

n<ω κn is called a principle sequence iff

1. for some α < κ+, for all but finitely many n < ω, cn = tα(n),

2. there is p ∈ G such that

(a) for every n, `(p) ≤ n < ω, α ∈ dom(an(p)),

(b) a`(p)(p)(α) is a generator of E`(p),
1

(c) for every k, `(p) < k < ω, for every suitable extension sequence 〈ν`(p), ..., νk−1〉 for

p, ak(p)
〈ν`(p),...,νk−1〉(α) is a generator of Ek.

Lemma 2.25 Let t ∈
∏

n<ω κn in V1[G]. Then there is α < κ+ such that for all but finitely

many n < ω, tα(n) > t(n).

Moreover, such tα can be picked to be a principle sequence.

Proof. Work in V1. Let p 
 t∼ ∈
∏

n<ω κn. Suppose for simplicity that `(p) = 0. Let η
∼n

be

a name of the ordinal t(n) < κn.

Start with η0.

1Recall that an ordinal η is called a generator of an extender F over λ, if for every n < ω and h : [λ]n → λ,
η 6= jF (h)(a), for any a ∈ [η]n, where jF denotes the corresponding elementary embedding.
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Set D0 = {q ∈ P | q ≥ p ∧ q||η
∼0}.

Clearly, D0 is a dense open subset of P .

Apply Lemma 2.21 to p and D0.

Let n0 < ω be the least possible which satisfies the conclusion of Lemma 2.21.

Let p∗(0) be a witnessing direct extension of p.

Claim 1 n0 = 0.

Proof. First note that due to degrees of completeness n0 ≤ 1.

Suppose that n0 = 1.

Let ν ∈ A0(p
∗(0)). Consider Aν1((p∗(0)).

It is a set in κ1−complete ultrafilter E1max(rng(aν1(p
∗(0)))).

For every ρ ∈ Aν1((p∗(0)), p∗(0)_〈ν, ρ〉 ∈ D0, hence there is η(ν, ρ) < κ0 such that

p∗(0)_〈ν, ρ〉 
 η
∼0 = η(ν, ρ).

Now, using κ1−completeness of E1max(rng(aν1(p
∗(0)))), we can shrink Aν1((p∗(0)) to a set Aν1 ∈

E1max(rng(aν1(p
∗(0)))) such that for every ρ ∈ Aν1

p∗(0)_〈ν, ρ〉 
 η
∼0 = η(ν),

where η(ν) < κ0 does not depend on ρ.

Preform the above for every ν ∈ A0(p
∗(0)). Then replace in p∗(0) the sets Aν1((p∗(0))’s by

Aν1.

This will reduce n0, which is impossible by its minimality.

Contradiction.

� of the claim.

Proceed by induction on k < ω and define Dk,nk, p
∗(k) ≥∗ p∗(k − 1) as above.

As in the claim, we will have nk = k.

Let finally, p∗ be a common direct extension of all p∗(k)’s.

Then for every k < ω, for every suitable extension sequence 〈ν0, ..., νk〉 for p∗,

p∗_〈ν0, ..., νk〉||〈η∼0, ..., η∼k
〉.

Denote the decided values by 〈η0(ν0, ..., νk), ..., ηk(ν0, ..., νk)〉.
Pick now α < κ+ above everything that appears in p∗. Let us define a direct extension

p∗∗ of p∗ by adding α to domains of an(p∗)’s and insuring that p∗∗ will force η
∼n

< t∼α(n),

for every n < ω.
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Start with n = 0. Consider max(rng(a0(p
∗))). It is an ordinal < j0(κ0).

Actually, we here in a special case - E0 is just equivalent to the normal ultrafilter U∗(κ0, 0),

i.e. it has a single generator κ0. Consider the function ν 7→ η0(ν) on A0(p
∗). It represents

an ordinal γ0 < j0(κ0). Pick α0 < j0(κ0) to be above both γ0 and max(rng(a0(p
∗))).

Extend a0(p
∗) by adding α to its domain and setting its value to be α0.

Turn to the next step - n = 1.

Fix ν ∈ A0(p
∗). Consider a function ρ 7→ η(ν, ρ) defined on Aν1(p∗).

We have Aν1(p∗) ∈ E1max(rng(aν1(p
∗))). Recall that E1 is a (κ1, j1(κ1))−extender generated by

taking a direct limit of a Rudin-Keisler increasing sequence 〈U∗(κ1, γ) | γ < κ0〉 of ultrafilters

over κ1.

Note that for every γ < κ0, jU(κ1,γ)(κ1) = jU∗(κ1,γ)(κ1), by arguments of [4].

So, j1(κ1) =
⋃
γ<κ0

jU(κ1,γ)(κ1) and every jU(κ1,γ)(κ1) is a generator of E1.

Pick γ < κ0 such that max(rng(aν1(p∗))) < jU(κ1,γ)(κ1). Set αν1 = jU(κ1,γ)(κ1). Extend aν1 by

adding α to its domain and setting its value to be αν1 .

Do the above for every ν ∈ A0(p
∗) (separately).

Continue up to n = 2 etc. We will construct a desired direct extension of p∗.

�

Let us show that our construction provides an affirmative answer to the problem of W.

Mitchell [7] stated the introduction.

Lemma 2.26 Suppose that ~c = 〈cn | n < ω〉 ∈
∏

n<ω κn is a principle sequence. Then it is

a sequence of indiscernibles for ~κ = 〈κn | n < ω〉2.

Proof. Let N be a covering model (we refer to Mitchell [8] for definitions) with ~c ∈ N . Then

N ∩ Kκ = hN(ρ;CN), for some ρ < κ, sequence of indiscernibles CN and a Skolem function

hN ∈ K.

Suppose that infinitely many of cn’s are not indiscernibles for N .

Assume for simplicity that none of is an indiscernible.

Then for every n < ω there is a finite sequence of ordinals ~dn below cn such that hN(~dn) = cn.

Define in K a function h̃ ∈
∏

n<ω κn as follows:

Let ν < κ, pick the least n < ω such that ν < κn.

Set

h̃(ν) =
⋃
{hN(~d) | ~d ∈ [ν + 1]<ω, hN(~d) is defined and hN(~d) is an ordinal < κn}.

2Note that o(κn) = κn−1 implies that the measure over κn to which cn corresponds is U(κn, o(cn)).
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Define h̃n = h̃ � κn. Clearly, h̃n : κn → κn.

Then, cn ≤ h̃(max( ~dn)) = h̃n(max( ~dn)) < κn and max( ~dn) < cn, for every n < ω. It is

impossible to have this type of situation, since by the definition of a principal sequence, cn

corresponds to a generator of extender En for all but finitely many n < ω.

�

Now, Lemma 2.25 and Lemma 2.26 imply the following:

Lemma 2.27 For every ~γ = 〈γn | n < ω〉 ∈
∏

n<ω κn there is α < κ+ such that

1. tα is a principal sequence,

2. tα(n) > γn, for all but finitely many n < ω.

The next lemma completes the proof:

Lemma 2.28 Let ~β = 〈βn | n < ω〉 ∈
∏

n<ω κn−1. Then there are arbitrary large α < κ+

such that

1. tα is a principal sequence,

2. oK(tα(n)) = βn, for all but finitely many n < ω.

Proof. We repeat the proof of Lemma 2.25 with t = ~β. Find p∗ which suitable extensions of

the length n − 1 decide β
∼n

for all n’s. Next, α < κ+ above everything in p∗ is picked and

added to domains of an(p∗)’s. The final stage was to specify images of α. Generators of En’s

were picked for this purpose.

Note that for given n, 0 < n < ω, there are arbitrary large generators ζ of En with oK
Mn

(ζ) =

βn. So we are free to choose one of them to be the image of α.

This process will produce the desired tα.

�
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3 No maximal sequence of indiscernibles for a mea-

surable.

Let o(κ) = δ ≤ κ as witnessed by ~U = 〈U(κ, β) | β < δ〉.
Suppose that the Prikry or Magidor or Radin forcing with ~U is used. Let C~U be a generic

club.

Then in V [C~U ], we have

(A) for every A ∈
⋂
β<δ U(κ, β) there is η < κ such that C~U \ η ⊆ A.

(B) (Maximality) If C ′ ⊆ κ is so that

for every A ∈
⋂
β<δ U(κ, β) there is η < κ such that C \ η ⊆ A,

then a final segment of C ′ is subset of C~U .

By results of Jensen -Dodd and Mitchell, if o(κ) < κ, κ changes its cofinality, then there

is a club C ⊆ κ which satisfies both items above.

We would like to show here that this not true anymore if o(κ) = κ.

Namely, we will construct a generic extension V [G] which satisfies the following:

1. cof(κ) = ω,

2. there is no C ⊆ κ which satisfies Items (A) and (B) above.

The final extension V [G] will be built in three steps. The first one will be a tree Prikry

forcing extracted from the Radin forcing with ~U which will change the cofinality of κ to ω. Let

〈κn | n < ω〉 be such Prikry sequence. The next forcing will be an Easton support iteration

of Prikry, Magidor forcings for changing cofinality of each measurable ν ∈ κ \ {κn | n < ω}
according to o(ν). Then the final one will a variant of short extenders forcing similar to

those of [1]. Also the one of the previous section can be used, but this will make the matters

more complicated due to use of names.

Let us describe the first one - P~U a tree Prikry forcing with ~U .

Definition 3.1 P~U consists of pairs 〈t, T 〉 such that

1. t is a finite increasing sequence of ordinals < κ,

2. T is a tree of finite increasing sequences of ordinals < κ with trunk t,

3. if t is the empty sequence, then SucT (t) ∈ U(κ, 0),
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4. if s ∈ T and s extends t, then SucT (s) ∈ U(κ,max(s)).

The orders ≤ and ≤∗ are defined on P~U in the standard fashion.

Let 〈κn | n < ω〉 be a generic Prikry sequence.

By removing an initial segment if necessary, we can assume that for every n < ω,

o(κn+1) > (κn)+ is an inaccessible cardinal < κn+1.

The second stage is to force further with Easton support iteration of Prikry, Magidor

forcings for changing cofinality of each measurable ν ∈ κ \ {κn | n < ω} according to o(ν).

We refer to [3],[4] for details.

Note that for every n < ω, the increasing in the Mitchell order sequence 〈U(κn, β) | β <

o(κn)〉 turned a Rudin-Keisler increasing sequence 〈U∗(κn, β) | β < o(κn)〉. We view further

this sequence as an extender En over κn.

The final stage will be to force with a short extenders forcing P with 〈En | n < ω〉.
We just use the forcing of the previous section, but without names anymore.

Note that here we assumed that o(κn+1) > (κn)+ is an inaccessible cardinal < κn+1. This

will guarantee enough completeness at the final stage, and so, will eliminate the need of

using names.

Let us argue that there is no maximal set of indiscernibles. An analysis of subsets of κ

will be needed for this.

Denote V [〈κn | n < ω〉] by V0, the second extension by V1 and the final third by V2.

Suppose that in V2 there is a club C ⊆ κ which satisfies Items (A) and (B) above.

Note that for every n < ω, Cn = C ∩ κn ∈ V1, since the forcing with P does not add new

bounded subsets to κ.

We have 2κn = κ+n , so Cn can be coded (in V1) by an ordinal ξn < κ+n .

Work in V1. Let C∼ be a name of such C, 〈C∼n | n < ω〉 and 〈 ξ
∼n
| n < ω〉 names for

〈Cn | n < ω〉 and for 〈ξn | n < ω〉.
Let p ∈ P be a condition forcing this.

Assume for simplicity that `(p) = 0.

Proceed as in the previous section and find a direct extension p∗ of p such that

for every m < ω, 〈ν0, ..., νm〉 ∈
∏

i≤mAi(p
∗),

p∗_〈ν0, ..., νm〉||〈 ξ∼0, ..., ξ∼m
〉,

and so decides 〈C∼i | i ≤ m〉 as well.

Note that there is no need here in suitable extension sequences due to degree of completeness
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of extenders En’s.

Split now into two cases.

Case 1. For infinitely many n < ω there are Am ⊆ Am(p∗), Am ∈ Emmax(rng(am(p∗))),

m ≤ n such that for every 〈ν0, ..., νn〉 ∈
∏

m≤nAm, the value of C∼n decided by p∗_〈ν0, ..., νn〉
is bounded in κn.

Then, as in Lemma 2.27, in V2 there will be α < κ+ with tα being a sequence of indis-

cernibles such that tα(n) 6∈ C for infinitely many n < ω.

Contradiction to the maximality of C, i.e. to Item (B).

Case 2. For all but finitely many n < ω, for every 〈ν0, ..., νn〉 ∈
∏

m≤nAm(p∗), the

value of C∼n decided by p∗_〈ν0, ..., νn〉 is unbounded in κn.

Let show that then Item (A) breaks down.

Suppose for simplicity that the above holds for every n < ω.

Fix n < ω.

Denote the value decided by p∗_〈ν0, ..., νn〉 value of C∼n by Cn(ν0, ..., νn).

By the assumption, it is an unbounded subset of κn.

Define a function hn :
∏

m≤n κm → κn by setting hn(ν0, ..., νn) = min(Cn(ν0, ..., νn) \ νn + 1),

whenever the right side is defined and 0 otherwise.

Such 〈hn | n < ω〉 naturally defines, in V2, an unbounded sequence 〈ηn | n < ω〉 ∈∏
n<ω κn such that ηn ∈ Cn ⊆ C, for every n < ω.

Let us argue that it cannot be a sequence of indiscernibles in some (every) covering over V

model. This easily implies a failure of Item (A).

Fix n < ω. Work in V0. Recall that the forcing below κn used over V0 in order to get

V1 satisfies κn−c.c., nothing is done at κn and no new subsets are added to κn by iteration

above it.

Apply κn−c.c.. So, there is a function gn :
∏

m≤n κm → κn in V0 which dominates hn

everywhere.

Now consider 〈gn | n < ω〉 ∈ V0.
Recall that V0 is an extension of V obtained by adding a generic Prikry sequence 〈κn | n < ω〉
for the forcing P~U . No new bounded subsets are added to κ by such extension. In particular,

each gn is in V .

Work in V . Let 〈g
∼n
| n < ω〉 be the sequence of names of 〈gn | n < ω〉. Suppose that a

condition 〈〈〉, T 〉 ∈P~U forces this.

Use normality of ultrafilters involved and define 〈〈〉, T ∗〉 ≥∗ 〈〈〉, T 〉 and 〈Rt | t ∈ T ∗〉 such

that for every t ∈ T ∗,
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1. Rt : [κ]<ω → κ,

2. for every ν ∈ SucT ∗(t), 〈t, T ∗t 〉 
 Rt � ν = g
∼|t|

.

In particular,

for every ν ∈ SucT ∗(〈〉), 〈〈〉, T ∗〉 
 R〈〉 � ν = g
∼0

and

for every ν ∈ SucT ∗(〈〉), 〈〈κ0〉, T ∗〉 
 R〈κ0〉 � ν = g
∼1.

Now, for every t ∈ T ∗ let

At = {ν < κ | Rt
′′ν ⊆ ν}.

Clearly it is a club, and so, is inside every U(κ, β), β < κ.

Set

A = ∆t∈T ∗At = {δ < κ | ∀t ∈ T ∗(max(t) < δ → δ ∈ At)}.

Then A ∈ U(κ, β), β < κ, due to normality.

Now, let us argue that in V2, C \A will be unbounded in κ, as witnessed by 〈ηn | n < ω〉.
This will contradict Item (A).

Namely, assume that ηn ∈ A, for some n < ω. Then

κn−1 < νn < ηn < gn(ν0, ..., νn) < κn.

We have R〈κ0,...,κn−1〉 � κn = gn.

Hence, R〈κ0,...,κn−1〉(ν0, ..., νn) = gn(ν0, ..., νn) > ηn, and so, ηn 6∈ A〈κ0,...,κn−1〉.

But ηn > κn−1 = max(〈κ0, ..., κn−1〉) and ηn ∈ A, hence ηn ∈ A〈κ0,...,κn−1〉. Which is impossi-

ble. Contradiction.
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