Strongly compact Magidor forcing.

Moti Gitik

June 25, 2014

Abstract

We present a strongly compact version of the Supercompact Magidor forcing ([3]). A variation of it is used to show that the following is consistent:

 $V \supseteq W$ are transitive models of ZFC+GCH with the same ordinals such that:

- 1. κ is an inaccessible in W,
- 2. κ changes its cofinality to ω_1 in V witnessed by a club $\langle \kappa_{\alpha} \mid \alpha < \omega_1 \rangle$,
- 3. for every $\alpha < \omega_1, (\kappa_{\alpha}^{++})^W < \kappa_{\alpha}^+,$
- 4. $(\kappa^{++})^W = \kappa^+$.

1 Preliminary settings.

Assume GCH. Let κ be a κ^{+4} -supercompact cardinal and $j : V \to M$ be a witnessing embedding. Denote the normal measure over κ derived from j by U, i.e.

$$X \in U$$
 iff $\kappa \in j(X)$.

We assume that

$$\{\alpha < \kappa \mid \alpha \text{ is a } \kappa^{++} - \text{supercomact cardinal }\} \in U.$$

Let

 $i:V\to N$

be the ultrapower embedding and

$$k:N\to M$$

be defined by $k([f]_U) = j(f)(\kappa)$. Then it is elementary and the corresponding diagram is commutative.

Pick some large enough $\chi >> \kappa$ which is a fixed point of k. We fix inside N a well-ordering

 \prec of V_{χ} such that $\prec \upharpoonright \eta$ wellorders $\mathcal{P}(\eta)$ in order type η^+ , for each cardinal $\eta < \chi(\text{of } N)$. Then $k(\prec)$ does the same in M.

We use j in a Radin fashion (see [4],[1]) to define a sequence of ultrafilters

$$\langle W(\kappa,\beta) \mid \beta < \omega_1 \rangle$$

 Set

$$X \in W(\kappa, 0)$$
 iff $j"\kappa^{+3} \in j(X)$.

Suppose that $\beta < \omega_1$ and the sequence $\langle W(\kappa, \beta) \mid \beta' < \beta \rangle$ is defined. Set

$$X \in W(\kappa, \beta) \text{ iff } \langle j^{"}\kappa^{+3}, \langle W(\kappa, \beta) \mid \beta' < \beta \rangle \rangle \in j(X).$$

Then each $W(\kappa, \beta)$ will be a κ -complete ultrafilter over $\mathcal{P}_{\kappa}(V_{\kappa+3})$. $W(\kappa, 0)$ will be a normal ultrafilter over $\mathcal{P}_{\kappa}(\kappa^{+3})$.

We denote by

$$j_{W(\kappa,\beta)}: V \to M_{W(\kappa,\beta)}$$

the elementary embedding of $W(\kappa, \beta)$ and let

$$k_{W(\kappa,\beta)}: M_{W(\kappa,\beta)} \to M$$

be defined by setting

$$k_{W(\kappa,\beta)}([f]_{W(\kappa,\beta)}) = j(f)(\langle j^{"}\kappa^{+3}, \langle W(\kappa,\beta') \mid \beta' < \beta \rangle \rangle).$$

Then $k_{W(\kappa,\beta)}$ is elementary and the resulting diagram is commutative. Then

$$j_{W(\kappa,\beta)}$$
" $\kappa^{+3} \in M_{W(\kappa,\beta)}$

and, hence

$$^{\kappa^{+3}}M_{W(\kappa,\beta)} \subseteq M_{W(\kappa,\beta)}, \text{ and } \operatorname{crit}(k_{W(\kappa,\beta)}) = (\kappa^{+5})^{M_{W(\kappa,\beta)}}.$$

In addition, if $\beta' < \beta < \omega_1$, then

$$W(\kappa, \beta') \in M_{W(\kappa, \beta)}$$

and we have an elementary embedding

$$k_{W(\kappa,\beta'),W(\kappa,\beta)}: M_{W(\kappa,\beta')} \to M_{W(\kappa,\beta)},$$

where

$$k_{W(\kappa,\beta'),W(\kappa,\beta)}([f]_{W(\kappa,\beta')}) = j_{W(\kappa,\beta)}(f)(\langle j_{W(\kappa,\beta)},\kappa^{+3},\langle W(\kappa,\beta') \mid \beta'' < \beta' \rangle \rangle).$$

Also all corresponding diagrams are commutative.

Let us now define a sequence of (κ, κ^{++}) -extenders $\langle E(\kappa, \beta) | \beta < \omega_1 \rangle$. Let $E(\kappa, 0) = \langle E(\kappa, 0)(a) | a \in [\kappa^{++}]^{<\omega} \rangle$ be the (κ, κ^{++}) -extender derived from $W(\kappa, 0)$, i.e.

$$X \in E(\kappa, 0)(a)$$
 iff $a \in j_{W(\kappa, 0)}(X)$.

Now,

$$\operatorname{crit}(k_{W(\kappa,0)}) = (\kappa^{+5})^{M_{W(\kappa,0)}} > (\kappa^{+4})^{M_{W(\kappa,0)}} = \kappa^{+4} \supseteq a.$$

Hence,

$$a \in j_{W(\kappa,0)}(X)$$
 iff $a \in j(X)$.

Clearly, $E(\kappa, 0)$ is definable via $W(\kappa, 0)$, and so, belongs to each $M_{W(\kappa,\beta)}, \beta < \omega_1$. Denote by

$$i_{E(\kappa,0)}: V \to N_{E(\kappa,0)} \simeq \text{Ult}(V, E(\kappa,0))$$

the corresponding elementary embedding.

Let $\eta_0 < \kappa^{+5}$ be the ordinal which codes (corresponds to) $W(\kappa, 0)$ in M (and, so in each $M_{W(\kappa,\beta)}, 0 < \beta < \omega_1$) by $k(\prec)$. Define $E(\kappa, 1) = \langle E(\kappa, 1)(a) \mid a \in [\kappa^{++} \cup \{\eta_0\}]^{<\omega} \rangle$ to be the extender derived from $W(\kappa, 1)$,

Define $E(\kappa, 1) = \langle E(\kappa, 1)(a) | a \in [\kappa^{++} \cup \{\eta_0\}]^{<\omega} \rangle$ to be the extender derived from $W(\kappa, 1)$, i.e.

$$X \in E(\kappa, 1)(a)$$
 iff $a \in j_{W(\kappa, 1)}(X)$.

Note that $W(\kappa, 0) \in M_{W(\kappa, 1)}$, hence $\eta_0 < (\kappa^{+5})^{M_{W(\kappa, 1)}}$. Then,

$$\operatorname{crit}(k_{W(\kappa,1)}) = (\kappa^{+5})^{M_{W(\kappa,1)}} \supseteq a.$$

Hence,

$$a \in j_{W(\kappa,0)}(X)$$
 iff $a \in j(X)$.

Denote by

$$i_{E(\kappa,1)}: V \to N_{E(\kappa,1)} \simeq \text{Ult}(V, E(\kappa,1))$$

the corresponding elementary embedding. Let $k_{E(\kappa,1)} : N_{E(\kappa,1)} \to M$ be the corresponding elementary embedding. The critical point of $k_{E(\kappa,1)}$ is $(\kappa^{+3})^{N_{E(\kappa,1)}}$. Denote by η_0^1 the preimage of η_0 by $k_{E(\kappa,1)}$. Let $W^1(\kappa, 0)$ be the filter over $\mathcal{P}_{\kappa}(\kappa^{+3})$ coded by η_0^1 inside $N_{E(\kappa,1)}$. It is a normal ultrafilter in $N_{E(\kappa,1)}$, but only a κ -complete filter in V. We have

- 1. $E(\kappa, 0) \in N_{E(\kappa, 1)}$,
- 2. $E(\kappa, 0) = E(\kappa, 1) \upharpoonright \kappa^{++}$.

Continue by induction and define $E(\kappa,\beta)$ for every $\beta < \omega_1$. Thus suppose that $\beta < \omega_1$ and for every $\beta' < \beta$, $E(\kappa,\beta')$ is defined. Define $E(\kappa,\beta)$.

Let $\eta_{\beta'} < \kappa^{+5}$ be the ordinal which codes (corresponds) $W(\kappa, \beta')$ in M (and, so in each $M_{W(\kappa,\gamma)}, \beta \leq \gamma < \omega_1$) by $k(\prec)$, for every $\beta' < \beta$. Pick $\eta'_{\beta} < \kappa^{+5}$ be the ordinal which codes $\langle \eta_{\beta'} | \beta' < \beta \rangle$. We need this η'_{β} in order to keep the ultrapower by the extender closed under ω -sequences.

Define $E(\kappa,\beta) = \langle E(\kappa,\beta)(a) \mid a \in [\kappa^{++} \cup \{\eta_{\beta'} \mid \beta' < \beta\} \cup \{\eta'_{\beta}\}]^{<\omega} \rangle$ to be the extender derived from $W(\kappa,\beta)$, i.e.

$$X \in E(\kappa, \beta)(a)$$
 iff $a \in j_{W(\kappa, \beta)}(X)$.

Note that $W(\kappa, \beta') \in M_{W(\kappa,\beta)}$, for every $\beta' < \beta$. Hence $\eta'_{\beta} < (\kappa^{+5})^{M_{W(\kappa,\beta)}}$. Then,

$$\operatorname{crit}(k_{W(\kappa,\beta)}) = (\kappa^{+5})^{M_{W(\kappa,\beta)}} \supseteq a.$$

Hence,

$$a \in j_{W(\kappa,\beta)}(X)$$
 iff $a \in j(X)$.

Denote by

$$i_{E(\kappa,\beta)}: V \to N_{E(\kappa,1)} \simeq \text{Ult}(V, E(\kappa,1))$$

the corresponding elementary embedding. Let $k_{E(\kappa,\beta)} : N_{E(\kappa,\beta)} \to M$ be the corresponding elementary embedding. The critical point of $k_{E(\kappa,\beta)}$ is $(\kappa^{+3})^{N_{E(\kappa,\beta)}}$. Denote by $\eta_{\beta'}^{\beta}$ the preimage of $\eta_{\beta'}$ by $k_{E(\kappa,\beta)}$.

Let $W^{\beta}(\kappa, \beta')$ be the filter over $\mathcal{P}_{\kappa}((V_{\kappa+3})^{N_{E(\kappa,\beta)}})$ coded by $\eta^{\beta}_{\beta'}$ inside $N_{E(\kappa,\beta)}$, for every $\beta' < \beta$.

 $N_{E(\kappa,\beta)} \models W^{\beta}(\kappa,\beta')$ is an ultrafilter with the ultrapower closed under κ^{+3} – sequences.

However, in V, it is only a κ -complete fine filter over $\mathcal{P}_{\kappa}((V_{\kappa+3})^{N_{E(\kappa,\beta)}})$. Now, for every $\beta' < \beta$, we have

- 1. $E(\kappa, \beta') \in N_{E(\kappa,\beta)},$
- 2. $E(\kappa, \beta') = E(\kappa, \beta) \upharpoonright \eta_{\beta'}$.

Denote the induced elementary embedding by

$$k_{E(\kappa,\beta'),E(\kappa,\beta)}: N_{E(\kappa,\beta')} \to N_{E(\kappa,\beta)}.$$

Let \mathcal{V} denotes the \prec -least normal ultrafilter over $\mathcal{P}_{\kappa}(i(\kappa^{++}))$ in N (the ultrapower by the normal measure U over κ). Denote the image of \mathcal{V} in $N_{E(\kappa,\beta)}$ by \mathcal{V}_{β} , for every $\beta < \omega_1$. Then the \prec -least normal ultrafilter over $\mathcal{P}_{\kappa}(i_{E(\kappa,\beta)}(\kappa^{++}))$ in $N_{E(\kappa,\beta)}$.

Note that $i_{E(\kappa,\beta)}(\kappa^{++}) < \kappa^{+3}$, and so fine κ -complete ultrafilters over $\mathcal{P}_{\kappa}(\kappa^{+3})$ can be used in order to extend \mathcal{V}_{β} to an ultrafilter. However, we do not have any specific information about functions which represent ordinals below κ^{++} in such extensions and this knowledge will be important further in order to to link things over κ with those below. So, let us deal not directly with \mathcal{V}_{β} 's, but rather replace them by iteration which starts with extenders $E(\kappa, \beta)$'s.

Let $\beta < \omega_1$. Work inside $N_{E(\kappa,\beta+1)}$. We have there the extender $E(\kappa,\beta)$ and $\mathcal{V}_{\beta+1}$ which is a normal ultrafilter over $\mathcal{P}_{\kappa}(i_{E(\kappa,\beta+1)}(\kappa^{++}))$. Denote by

$$j_{\mathcal{V}_{\beta+1}}: N_{E(\kappa,\beta+1)} \to M_{\mathcal{V}_{\beta+1}}$$

the corresponding elementary embedding. Define

$$E(\kappa,\beta) \circ \mathcal{V}_{\beta+1}$$

It will be the iterated ultrapower first by $\mathcal{V}_{\beta+1}$ and then by $E(\kappa,\beta)$.¹

We use Cohen functions from $\mathcal{P}_{\kappa}(\kappa^{++})$ to κ in order to link the generator $j_{\mathcal{V}_{\beta+1}}$ " κ^{++} of $\mathcal{V}_{\beta+1}$ with the generators of $E(\kappa, \beta)$.²

Then, $E(\kappa,\beta) \circ \mathcal{V}_{\beta+1}$ is a fine κ -complete ultrafilter over $\mathcal{P}_{\kappa}(i_{E(\kappa,\beta+1)}(\kappa^{++}))$ in $N_{E(\kappa,\beta+1)}$. Let P be an element of its typical set of measure one. Then, $P \cap \kappa$ is an inaccessible (even a measurable) cardinal, but the projection of P to the normal measure over κ is not anymore $P \cap \kappa$, but rather an ordinal (cardinal) inside $P \cap \kappa$.

Let now $\beta + 1 < \gamma < \omega_1$. Turn to $N_{E(\kappa,\gamma)}$. We have the extenders $E(\kappa,\beta), E(\kappa,\beta+1)$ inside. So,

$$E(\kappa,\beta) \circ \mathcal{V}_{\beta+1} \in N_{E(\kappa,\gamma)}.$$

¹Note that the resulting ultrapower will be the same if we change the order, i.e. first apply $E(\kappa,\beta)$ and then the image of $\mathcal{V}_{\beta+1}$.

²Assume that we forced such functions initially and now only use them changing some values.

We use $W^{\gamma}(\kappa,\beta)$ to extend $E(\kappa,\beta) \circ \mathcal{V}_{\beta+1}$ to a fine κ -complete ultrafilter over $\mathcal{P}_{\kappa}(i_{E(\kappa,\beta+1)}(\kappa^{++}))$ inside $N_{E(\kappa,\gamma)}$.

Let

$$j_{W^{\gamma}(\kappa,\beta)}: N_{E(\kappa,\gamma)} \to M_{W^{\gamma}(\kappa,\beta)} \simeq \text{Ult}(N_{E(\kappa,\gamma)}, W^{\gamma}(\kappa,\beta))$$

be the ultrapower embedding. Then

$$N_{E(\kappa,\gamma)} \models M_{W^{\gamma}(\kappa,\beta)}$$
 is closed under κ^{+3} – sequences of its elements .

In particular,

$$j_{W^{\gamma}(\kappa,\beta)}$$
" $\mathcal{V}_{\beta+1} \in M_{W^{\gamma}(\kappa,\beta)}$

and it is a $j_{W^{\gamma}(\kappa,\beta)}(\kappa)$ -complete filter there. Pick the least (in \prec)

$$Q \in \bigcap j_{W^{\gamma}(\kappa,\beta)} \mathcal{V}_{\beta+1}.$$

Define an embedding

$$\sigma: \mathrm{Ult}(N_{E(\kappa,\beta+1)}, E(\kappa,\beta) \circ \mathcal{V}_{\beta+1}) \to M_{W^{\gamma}(\kappa,\beta)}$$

as follows

$$\sigma([f]_{E(\kappa,\beta)(a)\circ\mathcal{V}_{\beta+1})}) = j_{W^{\gamma}(\kappa,\beta)}(a,Q).$$

It is not elementary, since $N_{E(\kappa,\beta+1)} \subset N_{E(\kappa,\gamma)}$, but still preserves $=, \in$.

If $X \in \mathcal{V}_{\beta+1}$, then $Q \in \sigma(j_{E(\kappa,\beta)}\circ\mathcal{V}_{\beta+1}(X))$.

Apply σ to Cohen functions. Changing value, say of $j_{E(\kappa,\beta)\circ\mathcal{V}_{\beta+1}}(f_{\kappa})$ on $i_{E(\kappa,\beta)}$ " $[id]_{\mathcal{V}_{\beta+1}}$ to κ will translates to changing the value of $j_{W^{\gamma}(\kappa,\beta)}(f_{\kappa})$ on Q to κ . Similar for the rest of generators of $E(\kappa,\beta)$.³

Let $W^{\gamma*}(\kappa,\beta)$ be the least such extension (in \prec).

Let now $\gamma < \delta < \omega_1$. Then $W^{\gamma*}(\kappa, \beta) \subseteq W^{\delta*}(\kappa, \beta)$, since

$$k_{E(\kappa,\gamma),E(\kappa,\delta)}(W^{\gamma*}(\kappa,\beta)) = W^{\delta*}(\kappa,\beta).$$

Note that the critical point of $k_{E(\kappa,\gamma),E(\kappa,\delta)}$ is $(\kappa^{+3})^{N_{E(\kappa,\gamma)}} > i_{E(\kappa,\beta+1)}(\kappa^{++})$.

Set

$$W^*(\kappa,\beta) := k_{E(\kappa,\gamma)}(W^{\gamma*}(\kappa,\beta)).$$

Then $W^*(\kappa, \beta)$ is a fine κ -complete ultrafilter over $\mathcal{P}_{\kappa}(i_{E(\kappa,\beta+1)}(\kappa^{++}))$ in V. In addition it extends every $W^{\delta*}(\kappa, \beta)$.

³We have κ^{++} -many generators. For a generator τ we use the Cohen function f_{τ} .

Let $\beta + 1 < \gamma < \omega_1$. Denote by

$$j_{W^{\gamma*}(\kappa,\beta)}: N_{E(\kappa,\gamma)} \to M^{\gamma}_{W^{\gamma*}(\kappa,\beta)} \simeq \mathrm{Ult}(V, W^{\gamma*}(\kappa,\beta))$$

corresponding to $W^{\gamma*}(\kappa,\beta)$ elementary embedding and ultrapower. Similar, let

$$j_{W^*(\kappa,\beta)}: V \to M_{W^*(\kappa,\beta)} \simeq \text{Ult}(V, W^*(\kappa,\beta))$$

corresponding to $W^*(\kappa,\beta)$ elementary embedding and ultrapower. For every $\beta' < \beta$, $E(\kappa,\beta') \in M^{\gamma}_{W^{\gamma*}(\kappa,\beta)}$ and $E(\kappa,\beta') \in M_{W^*(\kappa,\beta)}$, since $E(\kappa,\beta') \triangleleft E(\kappa,\beta)$ and $M^{\gamma}_{W^{\gamma*}(\kappa,\beta)}$, $M_{W^*(\kappa,\beta)}$ start with the ultrapower by $E(\kappa,\beta)$. By definability, then

$$W^{\gamma*}(\kappa,\beta') \in M^{\gamma}_{W^{\gamma*}(\kappa,\beta)}$$
 and $W^*(\kappa,\beta') \in M_{W^*(\kappa,\beta)}$

Also, for every $\beta' \leq \beta$ and for every finite *a* with the measure $E(\kappa, \beta')(a)$ over $\kappa^{|a|}$ defined, we have

 $E(\kappa, \beta')(a) \leq_{RK} W^{\gamma*}(\kappa, \beta) \text{ and } E(\kappa, \beta')(a) \leq_{RK} W^*(\kappa, \beta).$

Again, this holds since the ultrapower starts with those by $E(\kappa, \beta)$.

The above allows to reflect the sequences

$$\langle E(\kappa,\beta) \mid \beta < \omega_1 \rangle, \langle W^{\gamma*}(\kappa,\beta) \mid \beta + 1 < \gamma < \omega_1 \rangle \text{ and } \langle W^*(\kappa,\beta) \mid \beta < \omega_1 \rangle$$

down below κ and to define

$$\langle E(\alpha,\beta) \mid \beta < \omega_1 \rangle, \langle W^{\gamma*}(\alpha,\beta) \mid \beta + 1 < \gamma < \omega_1 \rangle \text{ and } \langle W^*(\alpha,\beta) \mid \beta < \omega_1 \rangle,$$

for $\alpha < \kappa$ in a set \mathcal{A} of measure one for the normal measure U over κ .

The point is that U is the normal measure over κ of every strongly compact measure $W^*(\kappa, \beta)$. Denote the projection by to U by nor_{β} . There are only ω_1 many strongly compact measures $W^*(\kappa, \beta)$, so we can assume that there is a single function *nor* that combines all nor_{β} 's. For every $\delta < \omega_1$ there is a set A_{δ} of $W^*(\kappa, \delta)$ -measure one such that for every $P \in A_{\delta}$ the sequences

$$\langle E(\kappa,\beta) \mid \beta < \delta \rangle, \langle W^{\gamma*}(\kappa,\beta) \mid \beta + 1 < \gamma < \delta \rangle \text{ and } \langle W^*(\kappa,\beta) \mid \beta < \delta \rangle$$

will reflect down an ordinal $\alpha = nor(P)$. Let

$$B := \bigcap_{\delta < \omega_1} nor A_{\delta} \text{ and } A'_{\delta} := A_{\delta} \cap nor^{-1} B.$$

By shrinking A'_{δ} 's more, if necessary, we can assume that for any $\tau < \delta < \omega_1$ and any $\alpha \in B$, the restriction to τ of the sequences projected from A'_{δ} is exactly the the sequences projected from A'_{τ} . Let \mathcal{A} be such B.

Let $\beta + 1 < \gamma < \omega_1$. Consider $k_{E(\kappa,\beta+1),E(\kappa,\gamma)} : N_{E(\kappa,\beta+1)} \to N_{E(\kappa,\gamma)}$. By elementarity,

$$k_{E(\kappa,\beta+1),E(\kappa,\gamma)}(i_{E(\kappa,\beta+1)}(\kappa^{++})) = i_{E(\kappa,\gamma)}(\kappa^{++}).$$

In addition,

$$k_{E(\kappa,\beta+1),E(\kappa,\gamma)}$$
" $(i_{E(\kappa,\beta+1)}(\kappa^{++}))$

is unbounded in $i_{E(\kappa,\gamma)}(\kappa^{++})$, since

$$i_{E(\kappa,\beta+1)}(\kappa^{++}) = \sup\{i_{E(\kappa,\beta+1)}(f)(\kappa) \mid f : \kappa \to \kappa^{++}\}$$

and

$$i_{E(\kappa,\gamma)}(\kappa^{++}) = \sup\{i_{E(\kappa,\gamma)}(f)(\kappa) \mid f : \kappa \to \kappa^{++}\}.$$

We will use $k_{E(\kappa,\beta+1),E(\kappa,\gamma)}$ to move from $\mathcal{P}_{\kappa}(i_{E(\kappa,\beta+1)}(\kappa^{++}))$ to $\mathcal{P}_{\kappa}(i_{E(\kappa,\xi)}(\kappa^{++}))$, once $\gamma = \xi + 1$.

A crucial thing is that once we have $\beta + 1 < \gamma, \gamma + 1 < \delta < \omega_1$, then $k_{E(\kappa,\beta+1),E(\kappa,\gamma+1)}$ is in $M_{W^*(\kappa,\delta)} \simeq \text{Ult}(V, W^*(\kappa,\delta))$, since it starts with $E(\kappa,\delta+1)$ and $k_{E(\kappa,\beta+1),E(\kappa,\gamma+1)}$ is in $N_{E(\kappa,\delta+1)}$, the ultrapower by $E(\kappa,\delta+1)$.

2 Forcing.

We define here a strongly compact version of the Magidor supercompact forcing based on sequences of filters and ultrafilters

$$\langle W^{\gamma*}(\kappa,\beta) \mid \beta+1 < \gamma < \omega_1 \rangle, \langle W^*(\kappa,\beta) \mid \beta < \omega_1 \rangle,$$
$$\langle W^{\gamma*}(\alpha,\beta) \mid \beta+1 < \gamma < \omega_1 \rangle \text{ and } \langle W^*(\alpha,\beta) \mid \beta < \omega_1 \rangle,$$

for $\alpha < \kappa$ in \mathcal{A} .

A major compensation on luck of normality here is that each $W^*(\alpha, \beta)$ starts with $E(\alpha, \beta)$, which is a coherent sequence of (α, α^{++}) -extenders.

Further, once we decide to preserve κ^{++} , then the extenders $E(\kappa, \beta)$'s κ will be replaced by subextenders of lengthes below κ^{++} and $\langle W^{\gamma*}(\kappa, \beta) | \beta + 1 < \gamma < \omega_1 \rangle, \langle W^*(\kappa, \beta) | \beta < \omega_1 \rangle$ will be redefined accordingly.

For each $\alpha \in \mathcal{A} \cup \{\kappa\}$ let us fix disjoint sets

$$\langle A(\alpha,\beta) \mid \beta < \omega_1 \rangle$$

such that $A(\alpha, \beta) \in W^{\beta+2*}(\alpha, \beta)$. Recall that

$$W^{\beta+2*}(\alpha,\beta) \subseteq W^{\gamma*}(\alpha,\beta) \subseteq W^*(\alpha,\beta),$$

for every $\gamma, \beta + 2 \leq \gamma < \omega_1$. Further, let us always shrink to subsets of $A(\alpha, \beta)$ once dealing with sets of $W^{\gamma*}(\alpha, \beta)$ -measure one.

For $P \in \bigcup_{\beta < \omega_1} A(\alpha, \beta)$, denote by o(P) the unique β with $P \in A(\alpha, \beta)$. Denote by nor(P) the projection of P to the normal measure over κ , i.e. the image of P under the projection map of $W^*(\alpha, o(P))$ to $E(\alpha, \beta)(\alpha)$. Note that typically $nor(P) < P \cap \alpha$.

Definition 2.1 Let $\alpha \in \mathcal{A} \cup \{\kappa\}$, $\eta = \omega_1$, if $\alpha = \kappa$ and $\eta < \omega_1$, if $\alpha < \kappa$. We call a subtree of $[\mathcal{P}_{\alpha}(\theta)]^{<\omega}$ (where θ is large enough) a nice (α, η) -tree iff

- 1. Lev₀(T) $\in \bigcap_{\beta < \eta} W^*(\alpha, \beta)$,
- 2. $P \in T$ implies $o(P) < \eta$,
- 3. for every $P \in T$, $\operatorname{Suc}_T(P) \in \bigcap_{o(P) \leq \beta < \eta} W^*(\alpha, \beta)$. Denote $\operatorname{Suc}_T(P) \cap A(\alpha, \beta)$ by $\operatorname{Suc}_T^{\beta}(P)$.
- 4. For every $P \in T$ which comes from a level > 0, and every $\beta, o(P) \leq \beta < \eta$, we require $\operatorname{Suc}_T^{\beta}(P) \subseteq \operatorname{Suc}_T^{\beta}(P^-)$, where P^- is the immediate predecessor of P in T.

Define now (α, η) -good sets by induction on $\alpha \in \mathcal{A} \cup \{\kappa\}$ and $\eta \leq \omega_1$.

- **Definition 2.2** 1. If $\eta = 1$, then an (α, η) -good set is just the same as a nice (α, η) -tree, which in this case has splitting only in $W^*(\alpha, 0)$.
 - 2. if $\eta \geq 2$, then an (α, η) -good set X is a pair $\langle T, F \rangle$, where
 - (a) T is a nice (α, η) -tree,
 - (b) F is a function with domain $\{P \in T \mid o(P) > 0\}$ such that for every $P \in \text{dom}(F)$, F(P) is an (nor(P), o(P))-good set.

Define now a direct extension order. We deal first with trees.

Definition 2.3 Let $\alpha \in \mathcal{A} \cup \{\kappa\}$, $\eta = \omega_1$, if $\alpha = \kappa$ and $\eta < \omega_1$, if $\alpha < \kappa$. Let T_1, T_2 be nice (α, η) -trees. Set $T_1 \leq^* T_2$ iff T_2 is obtained from T_1 by shrinking its levels.

Now we use induction in order to define a direct extension order on (α, η) -good sets.

Definition 2.4 Let $X_1 = \langle T_1, F_1 \rangle, X_2 = \langle T_2, F_2 \rangle$ be (α, η) -good sets. Set $X_1 \leq^* X_2$ iff

- 1. $T_1 \leq^* T_2$,
- 2. for every $P \in \text{dom}(F_2)$, $F_1(P) \leq F_2(P)$.

Let $X = \langle T, F \rangle$ be an (α, η) -good set and $P \in \text{Lev}_0(T)$. Define a one step extension $X^{\frown}P$ of X by P.

Definition 2.5 Define $X^{\frown}P$ to be a pair $\langle T^{\frown}P, F^{\frown}P \rangle$, where

1.
$$T^{\frown}P = \{Q \in T \mid Q >_T P\},\$$

2. $F \cap P = (F \upharpoonright T \cap P) \cup \{(P, F(P))\}.$

Intuitively - the Magidor sequence will start now with P, everything in the tree T above P will remain (we will be allowed to shrink things there). In addition, we would like to keep the information below P, i.e. F(P).

Let now $X \cap P$ be a one step extension of an (α, η) -good set. Define a one step extension of $X \cap P$ as follows:

Definition 2.6 There are two possibilities:

- 1. $Q \in \operatorname{Suc}_T(P)$ and we define $X^{\frown}P^{\frown}Q$ to be a pair $\langle T^{\frown}P^{\frown}Q, F^{\frown}P^{\frown}Q \rangle$, where
 - (a) $T^{\frown}P^{\frown}Q = \{R \in T \mid R >_T Q\},\$

(b)
$$F^{\frown}P^{\frown}Q = F \upharpoonright T^{\frown}P^{\frown}Q$$
.

Or	
Or	

2. $Q \in \text{Lev}_0(T^P)$ (where $F(P) = \langle T^P, F^P \rangle$, i.e. T^P denotes the tree part of F(P) and F^P its function part)

and we define $X^{\frown}P^{\frown}Q$ to be a pair $\langle T^{\frown}P^{\frown}Q, F^{\frown}P^{\frown}Q \rangle$, where

(a) $T^{\frown}P^{\frown}Q = T^{\frown}P$,

(b) $F^{\frown}P^{\frown}Q = (F \upharpoonright T^{\frown}P \setminus \{\langle P, F(P) \rangle\}) \cup \{\langle P, F(P)^{\frown}Q \rangle\} \cup \{\langle Q, F^{P}(Q) \rangle\}.$

The intuition behind the first item is clear. In the second one, we move from α to nor(P)and add Q there. $F^P(Q)$ is a (nor(P), o(Q))-good set. Its first coordinate is a tree. We prefer not to add it to T explicitly in order to keep T fully over α and not to mix with elements over nor(Q). However, it will be allowed to use elements of the tree of $F^P(Q)$ in further extensions.

If the second possibility occurs, then instead of writing $X^{\frown}P^{\frown}Q$ let us write $X^{\frown}Q^{\frown}P$, and this way preserve the sequence increasing.

If the first possibility occurs, then let us replace P with its modified version P^Q which we describe below. Note that if one prefer to dealing with ordinals instead of members of $\mathcal{P}_{\alpha}(\theta)$ and to develop a non-normal version of Magidor forcing, then there is no need in P^Q . Set

$$P^Q = (P \cap nor(Q)) \cup \{C_\eta(Q) \mid \eta \in P \setminus nor(Q)\},\$$

where C_{η} is the Cohen function which links [id] with η . This way P is turned into a typical member of a set of measure one over $\mathcal{P}_{nor(Q)}(Q \cap \alpha)$.

Continue by induction. Suppose that $X^{\frown}P_1^{\frown}...^{\frown}P_n$ is defined. Define n+1-extension.

- **Definition 2.7** 1. $Q \in \operatorname{Suc}_T(P_n)$ and we define $X^{\frown}P_1^{\frown}...^{\frown}P_n^{\frown}Q$ to be a pair $\langle T^{\frown}P_1^{\frown}...^{\frown}P_n^{\frown}Q, F^{\frown}P_1^{\frown}...^{\frown}P_n^{\frown}Q \rangle$, where
 - (a) $T^{\frown}P_1^{\frown}...^{\frown}P_n^{\frown}Q = \{R \in T \mid R >_T Q\},$ (b) $F^{\frown}P_1^{\frown}...^{\frown}P_n^{\frown}Q = F \upharpoonright T^{\frown}P_1^{\frown}...^{\frown}P_n^{\frown}Q.$

Or

- 2. $Q \in \text{Lev}_0(T^{P_i})$, for some $i, 1 \leq i \leq n$ (where $F(P_i) = \langle T^{P_i}, F^{P_i} \rangle$, i.e. T^{P_i} denotes the tree part of $F(P_i)$ and F^{P_i} its function part) and we define $X^{\frown}P_1^{\frown}...^{\frown}P_n^{\frown}Q$ to be a pair $\langle T^{\frown}P_1^{\frown}...^{\frown}P_n^{\frown}Q, F^{\frown}P_1^{\frown}...^{\frown}P_n^{\frown}Q \rangle$, where
 - (a) $T^{-}P_{1}^{-}...^{-}P_{n}^{-}Q = T^{-}P_{1}^{-}...^{-}P_{n},$
 - (b) $F^{\frown}P_1^{\frown}...^{\frown}P_n^{\frown}Q = (F \upharpoonright T^{\frown}P_1^{\frown}...^{\frown}P_n \setminus \{\langle P_i, F(P_i) \rangle\}) \cup \{\langle P_i, F(P_i)^{\frown}Q \rangle\} \cup \{\langle Q, F^{P_i}(Q) \rangle\}.$

Again, if the second possibility occurs, then instead of writing $X^{\frown}P_1^{\frown}...^{\frown}P_n^{\frown}Q$ let us write $X^{\frown}P_1^{\frown}...^{\frown}P_{i-1}^{\frown}Q^{\frown}P_i^{\frown}...^{\frown}P_n$ and this way preserve the sequence increasing.

If the first possibility occurs, then let us replace $P_j, j \leq i$ with their modified versions P_j^Q as it was done above.

Define a direct order extension \leq^* on the set of n-extensions exactly as in Definition 2.4 Define now our forcing notion.

Definition 2.8 Let \mathcal{P} consists of all *n*-extensions of all (κ, ω_1) -good sets, for every $n < \omega$.

Definition 2.9 Let $X^{\frown}P_1^{\frown}...^{\frown}P_n, Y^{\frown}Q_1^{\frown}...^{\frown}Q_m \in \mathcal{P}$. Set

 $X^{\frown}P_1^{\frown}...^{\frown}P_n \geq^* Y^{\frown}Q_1^{\frown}...^{\frown}Q_m$

iff

- 1. n = m,
- 2. $X^{\frown}P_1^{\frown}...^{\frown}P_n \geq^* Y^{\frown}Q_1^{\frown}...^{\frown}Q_n$, as *n*-extensions.

Define now the forcing order on \mathcal{P} .

Definition 2.10 Let $X^{\frown}P_1^{\frown}...^{\frown}P_n, Y^{\frown}Q_1^{\frown}...^{\frown}Q_m \in \mathcal{P}$. Set

$$X^{\frown}P_1^{\frown}...^{\frown}P_n \ge Y^{\frown}Q_1^{\frown}...^{\frown}Q_m$$

iff

- 1. $n \ge m$,
- 2. $P_i = Q_i$, for every $i, 1 \le i \le m$,
- 3. $Y \cap P_1 \cap \ldots \cap P_m \cap P_{m+1} \cap \ldots \cap P_n$ is an (n-m)-extension of $Y \cap P_1 \cap \ldots \cap P_m$,
- 4. $Y \cap P_1 \cap \ldots \cap P_m \cap P_{m+1} \cap \ldots \cap P_n \leq^* X \cap P_1 \cap \ldots \cap P_m \cap P_{m+1} \cap \ldots \cap P_n$, as *n*-extensions.

Notation 2.11 Let us return to common notation and instead of writing $X^{P_1} \dots^{P_n}$ write $\langle P_1, \dots, P_n, X \rangle$.

Lemma 2.12 $\langle \mathcal{P}, \leq, \leq^* \rangle$ satisfies the Prikry condition.

Proof. Let σ be a statement of the forcing language and $p \in \mathcal{P}$. Suppose for simplicity that the trunk of p is empty, i.e. p is of the form $\langle \langle \rangle, X \rangle$.

Let us call a condition $\langle P_1, ..., P_n, Z \rangle$ a good condition iff all its 1–extensions which come from the same measure conclude the same about σ , i.e.

- all of them force σ , or
- all of them force $\neg \sigma$, or
- all of them do not decide σ .

Claim 1 Let $\langle P_1, ..., P_n, Y \rangle \in \mathcal{P}$. Then there is $\langle P_1, ..., P_n, Z \rangle \geq^* \langle P_1, ..., P_n, Y \rangle$ which is a good condition.

Proof. Just shrink all relevant measure one sets. \Box of the claim.

Claim 2 Let $\langle \langle \rangle, Y \rangle \in \mathcal{P}$. Then there is $\langle \langle \rangle, Z \rangle \geq^* \langle \langle \rangle, Y \rangle$ such that every $\langle P_1, ..., P_n, Z' \rangle \geq \langle \langle \rangle, Z \rangle$ is a good condition.

Proof. First apply Claim 1 to $\langle \langle \rangle, Y \rangle$ and find a direct extension $\langle \langle \rangle, Z_0 \rangle$ which is good. Then apply Claim 1 to each 1-element extension of $\langle \langle \rangle, Z_0 \rangle$ and find its direct extension $\langle \langle \rangle, Z_1 \rangle$ such that any one element extension of $\langle \langle \rangle, Z_1 \rangle$ is a good condition.

Continue by induction and for every $n < \omega$ find $\langle \langle \rangle, Z_n \rangle$ such that any *n*-element extension of $\langle \langle \rangle, Z_n \rangle$ is a good condition.

Finally set $Z = \bigcap_{n < \omega} Z_n$.

 \Box of the claim.

Let us turn now to two element extensions. In contrast to one element extensions, we will have here a new principal situation to consider.

We call a condition $\langle P_1, ..., P_n, Z \rangle$ a 2–good condition iff all its 2–extensions which come from the same measures conclude the same about σ , i.e.

• all of them force σ ,

or

- all of them force $\neg \sigma$, or
- all of them do not decide σ .

Let $\langle \langle \rangle, Z \rangle$ be a condition as in Claim 2, i.e. such that every $\langle P_1, ..., P_n, Z' \rangle \geq \langle \langle \rangle, Z \rangle$ is a good condition. Denote by T_Z the tree part of Z and by F_Z its function part, i.e. $Z = \langle T_Z, F_Z \rangle$. Suppose that $\langle P, Z \rangle$ is a one element extension of $\langle \langle \rangle, Z \rangle$ and we extend it further by adding some Q from a higher measure than those of P. In such extension P should be replaced by P^Q . So this two element extension will be $\langle P^Q, Q, Z \rangle$.

Now this can be done an other way around. Thus we can first extend by adding Q, i.e. to $\langle Q, Z \rangle$ and only then pick an element P^Q from $F_Z(Q)$, assuming that it is there. Both ways result in the same condition $\langle P^Q, Q, Z \rangle$. So we need to argue either decides the same way.

Claim 3 Let $\langle \langle \rangle, Z \rangle$ be as above and $\beta \langle \gamma \rangle \langle \omega_1$. Then there is $\langle \langle \rangle, Z^* \rangle \geq^* \langle \langle \rangle, Z \rangle$ such that any two element extension of $\langle \langle \rangle, Z^* \rangle$ which comes from measures β and γ provides the same conclusion about σ without any dependence on the way it was created.

Proof. First we shrink the γ -th measure one set of $\text{Lev}_0(T_Z)$ such that for any Q_1, Q_2 the decisions by β -th measure one set of $\text{Lev}_0(F_Z(Q_1))$ and those of of $\text{Lev}_0(F_Z(Q_2))$ are the same. Denote the result by Z'. Next we shrink Z' to Z'' such that for β -th measure one set of $\text{Lev}_0(T_{Z''})$ we will have the decisions by γ -th measure one set of $\text{Suc}_{T_{Z''}}(P_1)$ and those of of $\text{Suc}_{T_{Z''}}(P_2)$ are the same, for any $P_1, P_2 \in \text{Lev}_{0,\beta}(T_{Z''})$.

We claim now that $Z^* := Z''$ is as desired. Suppose otherwise.

Then there are $\langle P_1, Q_1, Z^* \rangle$, $\langle P_2, Q_2, Z^* \rangle$ 2-element extensions of $\langle \langle \rangle, Z^* \rangle$ from measures β, γ which disagree about σ , i.e. one, say $\langle P_1, Q_1, Z^* \rangle$ decides σ and $\langle P_2, Q_2, Z^* \rangle$ does not decide it or decide σ in the opposite fashion. Let us assume that $\langle P_1, Q_1, Z^* \rangle \Vdash \sigma$ and $\langle P_2, Q_2, Z^* \rangle$ does not decide σ .

This type of situation can occur only when this two conditions were obtained in the two different ways. Split into two cases.

Case 1. $\langle P_1, Q_1, Z^* \rangle$ was obtained by first picking an element of β and only then of γ . Then $\langle P_2, Q_2, Z^* \rangle$, necessarily, was obtained by first picking an element of γ and only then of β . By goodness and the choice of Z^* , then any two element extension which was obtained by first picking an element of β and only then of γ will force σ and any two element extension which was obtained by first picking an element of γ and only then of γ and only then of γ .

Denote $\operatorname{Lev}_{0\gamma}(T_{Z^*})$ by A. For every $Q \in A$, denote $\operatorname{Lev}_{0\beta}(T_{F_{Z^*}(Q)})$ by B_Q . Then the function $Q \mapsto B_Q$ represents a set $B \in W^{*\gamma}(\kappa, \beta)$. But recall that $W^{*\gamma}(\kappa, \beta) \subseteq W^*(\kappa, \beta)$. Hence $B \in W^*(\kappa, \beta)$. In particular, $B \cap \operatorname{Lev}_{0\beta}(T_{Z^*}) \neq \emptyset$. Pick some $P \in B \cap \operatorname{Lev}_{0\beta}(T_{Z^*})$. Then the function $Q \mapsto P^Q$ represents P in $\operatorname{Ult}(V, W^*(\kappa, \gamma))$. So, the set $E := \{Q \mid P^Q \in B_Q\}$ is in $W^*(\kappa, \gamma)$. Pick now some $Q \in A \cap \operatorname{Suc}_{T_{Z^*,\gamma}}(P) \cap E$. Then $\langle P^Q, Q, Z^* \rangle \Vdash \sigma$, as two step extension of $\langle \langle \rangle, Z^* \rangle$ obtained by first picking an element of β and only then of γ . On the other hand $P^Q \in B_Q$, and so $\langle P^Q, Q, Z^* \rangle$ can be viewed as a step extension of $\langle \langle \rangle, Z^* \rangle$ obtained by first picking an element of γ and only then of β . But this contradicts our assumption that extensions which are obtained this way do not decide σ .

Case 2. $\langle P_1, Q_1, Z^* \rangle$ was obtained by first picking an element of γ and only then of β . Similar to the previous case.

 \Box of the claim.

Next we apply Claim 3 to all possible $\beta < \gamma$. As a result a condition $\langle \langle \rangle, Z_2 \rangle \geq^* \langle \langle \rangle, Z \rangle$ will be obtained such any two element extensions of it, which come

from same measures agree about σ .

We proceed further by straightforward induction from n-extensions to n+1-extensions. Let us only deal with the following type of commutativity.

Consider 3-extensions. Let $\beta < \gamma < \delta < \omega_1$. Suppose that $Z^{\frown}P^{\frown}Q^{\frown}R$ is a 3-element extension of Z with P being from β -th measure, Q being from γ -th measure and R being from δ -th measure. Now, if P was picked first, than Q and finally R, then the result will be $\langle (P^Q)^R, Q^R, R, Z \rangle$. Note first that $(P^Q)^R = P^Q$, since $P^Q \subseteq Q \cap \kappa < nor(R)$, and so it is not effected by switching from Q to Q^R .

Suppose now that P was added first, R after it and only then Q^R . So we have now $\langle (P^R)^{Q^R}, Q^R, R, Z \rangle$.

Let argue that for most Q's, $(P^R)^{Q^R} = P^{Q^R}$.

Consider the function $R \mapsto Q^R$ which represents Q in the ultrapower by the δ -th measure. P is represented by $R \mapsto P^R$. Let us look at the function $R \mapsto (P^R)^{Q^R}$. It represents P^Q . But note that $P^Q \subset Q \cap \kappa < nor(R)$ and $(P^R)^{Q^R} \subset nor(R)$. So P^Q does not move. Hence $(P^R)^{Q^R} = P^Q$.

Let $\langle P_{\beta} | \beta < \omega_1 \rangle$ be a generic sequence. Denote $nor(P_{\beta})$ by κ_{β} , for every $\beta < \omega_1$. The next lemma is obvious.

Lemma 2.13 The sequence $\langle \kappa_{\beta} \mid \beta < \omega_1 \rangle$ is an increasing continuous unbounded in κ sequence.

Let us deal now with successors and double successors of κ'_{β} s.

Lemma 2.14 For every limit $\beta < \omega_1$, both $(\kappa_{\beta}^+)^V$ and $(\kappa_{\beta}^{++})^V$ change their cofinality to ω , and both κ^+ and κ^{++} change their cofinality to ω_1 .

Proof. Let $\beta < \omega_1$ be a limit ordinal or $\beta = \omega_1$. In the last case κ will be just κ_{ω_1} . We use $k_{E(\kappa_{\beta},\gamma),E(\kappa_{\beta},\delta)}$ in order to move P_{γ} to P_{δ} , for $\gamma < \delta < \beta$. Note that, if $\gamma < \delta < \eta < \beta$, then $k_{\kappa_{\beta},\gamma,\delta}$ belongs basically to to the ultrapower with η -th measure. The direct limit of the system

$$\langle \langle P_{\gamma} \mid \gamma < \beta \rangle, \langle k_{E(\kappa_{\beta},\gamma),E(\kappa_{\beta},\delta)} \mid \gamma < \delta < \beta \rangle \rangle$$

will produce the desired cofinal sequence. Denote it by $\langle P_{\gamma}^{\beta} | \gamma < \beta \rangle$.

The point is that the measures that are used start with $(\kappa_{\beta}, \kappa_{\beta}^{++})$ -extenders. So we have a nice representation of all the ordinals below κ_{β}^{++} . Actually, the ordinals below κ_{β}^{+} are represented by the canonical functions, but in order to get to κ_{β}^{++} the extenders are used.

Note that $P_{\gamma} \cap \kappa_{\beta}$ does not move. It is the most important over κ it self. Thus, we will need $P_{\alpha}^{\omega_1} \cap (\kappa^+)^V$, which cardinality is at least $|P_{\alpha}| >> nor(P_{\alpha})^{++}$ (in V), in order to cover the set $\{\sup(P_{\gamma}^{\omega_1} \cap (\kappa^+)^V) \mid \gamma < \alpha\}$, for a limit $\alpha < \omega_1$. We refer to [2] where situations with coverings of small cardinalities were studied.

Deal with the principal case $\beta = \omega_1$. The case $\beta < \omega_1$ is similar.

Let us proceed as follows. Consider P_0, P_1 and P_2 . We have $P_0 \cap nor(P_1)$ is an ordinal below $nor(P_1)$. The rest of P_0 is spread inside the interval $[nor(P_1), (nor(P_1))^{+3})$. Note that $(nor(P_1))^{+3} < P_1 \cap nor(P_2)$.

We are interested in $(P_0 \setminus nor(P_1)) \cap (nor(P_1))^{++}$.

Recall that $P_0 \in \mathcal{P}_{nor(P_1)}((i_{E(nor(P_1),o(P_0))}(nor(P_1))^{++})),$

which corresponds over κ to $\mathcal{P}_{\kappa}(i_{E(\kappa,o(nor(P_0))}(\kappa^{++})))$. The embedding $k_{E(\kappa,o(P_0)),E(\kappa,o(P_1))}$ moves the ordinal $i_{E(\kappa,o(P_0))}(\kappa)$ to $i_{E(\kappa,o(P_1))}(\kappa)$. The critical point of

 $k_{E(\kappa,o(P_0)),E(\kappa,o(P_1))}$ is $(\kappa^{+3})^{N_{E(\kappa,o(P_0))}}$. So, κ^{++} does not move.

Let us denote $i_{E(\kappa,o(P_{\gamma}))}(\kappa)$ by $\eta_{\gamma}, \gamma < \omega_1$. Then, $\eta_{\gamma} + \kappa^{++}$ will move to $\eta_{\delta} + \kappa^{++}$, whenever $\gamma \leq \delta < \omega_1$. Each of P_{γ} 's will contribute its part in the interval $[\eta_{\gamma}, \eta_{\gamma} + \kappa^{++})$ and this way κ^{++} will be eventually covered.

By a simple density argument, for every $\tau < \kappa^{++}$ there will be $n < \omega, \gamma_1 < \ldots < \gamma_n < \omega_1$ and $Q \in \mathcal{P}_{\kappa}(i_{E(\kappa,o(Q))}(\kappa^{++}))$ such that

- $\langle P_{\gamma_1}, ..., P_{\gamma_n}, Q, X \rangle \in G(\mathcal{P}),$
- $i_{E(\kappa,o(Q))}(\kappa^{++}) + \tau \in Q.$

Suppose now that $\langle P_{\gamma_1}, ..., P_{\gamma_n}, Q, X \rangle \leq \langle P_{\gamma_1}, ..., P_{\gamma_n}, Q^R, R, X \rangle \in G(\mathcal{P})$. Then in R, $i_{E(\kappa,o(Q))}(\kappa^{++}) + \tau$ corresponds to $i_{E(\kappa,o(Q))}(\kappa^{++}) + \tau$. This means, in particular, that different τ 's will create different sequences (in the direct limit).

Now each sequence is generated by an element of one of P_{γ} 's, for $\gamma < \omega_1$. Hence,

 $\bigcup_{\gamma < \omega_1} P_{\gamma} \text{ will actually cover a set of size } \kappa^{++}.$

Our next tusk will be to change slightly the above setting in order to preserve κ^{++} while still collapsing $\kappa_{\alpha}^{+}, \kappa_{\alpha}^{++}$ etc., for α 's below ω_{1} .

It will be achieved by replacing the extenders $E(\kappa,\beta), \beta < \omega_1$, by their subextenders of lengthes below κ^{++} .

Let \mathfrak{A} be an elementary submodel of some H_{θ} , with θ big enough, of cardinality κ^+ , closed under κ -sequences and with everything relevant inside. We cut all the extenders to \mathfrak{A} . Namely each $E(\kappa,\beta), \beta < \omega_1$ is replaced by $\tilde{E}(\kappa,\beta) = E(\kappa,\beta) \upharpoonright \mathfrak{A} := E(\kappa,\beta) \upharpoonright \kappa^{++} \cap \mathfrak{A}$. Consider $i_{\tilde{E}(\kappa,\beta)} : V \to N_{\tilde{E}(\kappa,\beta)} \simeq \text{Ult}(V, \tilde{E}(\kappa,\beta))$. Let $\tilde{\eta}_{\kappa\beta} = i_{\tilde{E}(\kappa,\beta)}(\kappa^{++} \cap \mathfrak{A})$.

Then we define filters and ultrafilters as before but instead of $\mathcal{P}_{\kappa}(\eta_{\kappa\beta})$ they will be on $\mathcal{P}_{\kappa}(\tilde{\eta}_{\kappa\beta})$, where $\eta_{\kappa\beta} = i_{E(\kappa,\beta)}(\kappa^{++})$.

The definability of this filters and ultrafilters allows to apply elementary embedding

$$k_{\tilde{E}(\kappa,\beta),E(\kappa,\beta)}: N_{\tilde{E}(\kappa,\beta)} \to N_{E(\kappa,\beta)}$$

in order to move the things to $N_{\tilde{E}(\kappa,\beta)}$.

Define the forcing \mathcal{P} as before only implementing the change made over κ . κ^{++} will not be collapsed now since the present \mathcal{P} satisfies κ^{++} -c.c. The point is that $\tilde{\eta}_{\kappa\beta} < \kappa^{++}$, for every $\beta < \omega_1$.

References

- [1] M. Foreman and H. Woodin, The generalized continuum hypothesis can fail everywhere, Ann. of Math., (2) 133(1991), no. 1, 135.
- [2] M. Gitik, Silver type theorems for collapses.
- [3] M. Magidor, On the singular cardinal problem I, Israel J. Math.28(1977),no1-2,1-31.
- [4] L. Radin, Adding closed cofinal sequences to large cardinals, Ann. Math. Logic 22(1982), no. 3, 243-261.