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Abstract

We present a strongly compact version of the Supercompact Magidor forcing ([3]).
A variation of it is used to show that the following is consistent:

V ⊇ W are transitive models of ZFC+GCH with the same ordinals such that:

1. κ is an inaccessible in W ,

2. κ changes its cofinality to ω1 in V witnessed by a club ⟨κα | α < ω1⟩,
3. for every α < ω1, (κ

++
α )W < κ+α ,

4. (κ++)W = κ+.

1 Preliminary settings.

Assume GCH. Let κ be a κ+4−supercompact cardinal and j : V → M be a witnessing

embedding. Denote the normal measure over κ derived from j by U , i.e.

X ∈ U iff κ ∈ j(X).

We assume that

{α < κ | α is a κ++ − supercomact cardinal } ∈ U.

Let

i : V → N

be the ultrapower embedding and

k : N → M

be defined by k([f ]U) = j(f)(κ). Then it is elementary and the corresponding diagram is

commutative.

Pick some large enough χ >> κ which is a fixed point of k. We fix inside N a well-ordering
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≺ of Vχ such that ≺� η wellorders P(η) in order type η+, for each cardinal η < χ(of N).

Then k(≺) does the same in M .

We use j in a Radin fashion (see [4],[1]) to define a sequence of ultrafilters

⟨W (κ, β) | β < ω1⟩.

Set

X ∈ W (κ, 0) iff j”κ+3 ∈ j(X).

Suppose that β < ω1 and the sequence ⟨W (κ, β) | β′ < β⟩ is defined. Set

X ∈ W (κ, β) iff ⟨j”κ+3, ⟨W (κ, β) | β′ < β⟩⟩ ∈ j(X).

Then each W (κ, β) will be a κ−complete ultrafilter over Pκ(Vκ+3). W (κ, 0) will be a normal

ultrafilter over Pκ(κ
+3).

We denote by

jW (κ,β) : V → MW (κ,β)

the elementary embedding of W (κ, β) and let

kW (κ,β) : MW (κ,β) → M

be defined by setting

kW (κ,β)([f ]W (κ,β)) = j(f)(⟨j”κ+3, ⟨W (κ, β′) | β′ < β⟩⟩).

Then kW (κ,β) is elementary and the resulting diagram is commutative. Then

jW (κ,β)”κ
+3 ∈ MW (κ,β)

and, hence
κ+3

MW (κ,β) ⊆ MW (κ,β), and crit(kW (κ,β)) = (κ+5)MW (κ,β) .

In addition, if β′ < β < ω1, then

W (κ, β′) ∈ MW (κ,β)

and we have an elementary embedding

kW (κ,β′),W (κ,β) : MW (κ,β′) → MW (κ,β),
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where

kW (κ,β′),W (κ,β)([f ]W (κ,β′)) = jW (κ,β)(f)(⟨jW (κ,β)”κ
+3, ⟨W (κ, β′) | β′′ < β′⟩⟩).

Also all corresponding diagrams are commutative.

Let us now define a sequence of (κ, κ++)−extenders ⟨E(κ, β) | β < ω1⟩.
Let E(κ, 0) = ⟨E(κ, 0)(a) | a ∈ [κ++]<ω⟩ be the (κ, κ++)−extender derived from W (κ, 0),

i.e.

X ∈ E(κ, 0)(a) iff a ∈ jW (κ,0)(X).

Now,

crit(kW (κ,0)) = (κ+5)MW (κ,0) > (κ+4)MW (κ,0) = κ+4 ⊇ a.

Hence,

a ∈ jW (κ,0)(X) iff a ∈ j(X).

Clearly, E(κ, 0) is definable via W (κ, 0), and so, belongs to each MW (κ,β), β < ω1.

Denote by

iE(κ,0) : V → NE(κ,0) ≃ Ult(V,E(κ, 0))

the corresponding elementary embedding.

Let η0 < κ+5 be the ordinal which codes (corresponds to) W (κ, 0) in M (and, so in each

MW (κ,β), 0 < β < ω1) by k(≺).

Define E(κ, 1) = ⟨E(κ, 1)(a) | a ∈ [κ++ ∪ {η0}]<ω⟩ to be the extender derived from W (κ, 1),

i.e.

X ∈ E(κ, 1)(a) iff a ∈ jW (κ,1)(X).

Note that W (κ, 0) ∈ MW (κ,1), hence η0 < (κ+5)MW (κ,1) . Then,

crit(kW (κ,1)) = (κ+5)MW (κ,1) ⊇ a.

Hence,

a ∈ jW (κ,0)(X) iff a ∈ j(X).

Denote by

iE(κ,1) : V → NE(κ,1) ≃ Ult(V,E(κ, 1))

the corresponding elementary embedding. Let kE(κ,1) : NE(κ,1) → M be the corresponding

elementary embedding. The critical point of kE(κ,1) is (κ+3)NE(κ,1) . Denote by η10 the pre-

image of η0 by kE(κ,1).
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Let W 1(κ, 0) be the filter over Pκ(κ
+3) coded by η10 inside NE(κ,1). It is a normal ultrafilter

in NE(κ,1), but only a κ−complete filter in V .

We have

1. E(κ, 0) ∈ NE(κ,1),

2. E(κ, 0) = E(κ, 1) � κ++.

Continue by induction and define E(κ, β) for every β < ω1. Thus suppose that β < ω1

and for every β′ < β, E(κ, β′) is defined. Define E(κ, β).

Let ηβ′ < κ+5 be the ordinal which codes (corresponds) W (κ, β′) in M (and, so in each

MW (κ,γ), β ≤ γ < ω1) by k(≺), for every β′ < β. Pick η′β < κ+5 be the ordinal which codes

⟨ηβ′ | β′ < β⟩. We need this η′β in order to keep the ultrapower by the extender closed under

ω−sequences.

Define E(κ, β) = ⟨E(κ, β)(a) | a ∈ [κ++ ∪ {ηβ′ | β′ < β} ∪ {η′β}]<ω⟩ to be the extender

derived from W (κ, β), i.e.

X ∈ E(κ, β)(a) iff a ∈ jW (κ,β)(X).

Note that W (κ, β′) ∈ MW (κ,β), for every β′ < β. Hence η′β < (κ+5)MW (κ,β) . Then,

crit(kW (κ,β)) = (κ+5)MW (κ,β) ⊇ a.

Hence,

a ∈ jW (κ,β)(X) iff a ∈ j(X).

Denote by

iE(κ,β) : V → NE(κ,1) ≃ Ult(V,E(κ, 1))

the corresponding elementary embedding. Let kE(κ,β) : NE(κ,β) → M be the corresponding

elementary embedding. The critical point of kE(κ,β) is (κ+3)NE(κ,β) . Denote by ηββ′ the pre-

image of ηβ′ by kE(κ,β).

LetW β(κ, β′) be the filter over Pκ((Vκ+3)
NE(κ,β)) coded by ηββ′ inside NE(κ,β), for every β′ < β.

NE(κ,β) � W β(κ, β′) is an ultrafilter with the ultrapower closed under κ+3 − sequences .

However, in V , it is only a κ−complete fine filter over Pκ((Vκ+3)
NE(κ,β)).

Now, for every β′ < β, we have
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1. E(κ, β′) ∈ NE(κ,β),

2. E(κ, β′) = E(κ, β) � ηβ′ .

Denote the induced elementary embedding by

kE(κ,β′),E(κ,β) : NE(κ,β′) → NE(κ,β).

Let V denotes the ≺ −least normal ultrafilter over Pκ(i(κ
++)) in N (the ultrapower by

the normal measure U over κ). Denote the image of V in NE(κ,β) by Vβ, for every β < ω1.

Then the ≺ −least normal ultrafilter over Pκ(iE(κ,β)(κ
++)) in NE(κ,β).

Note that iE(κ,β)(κ
++) < κ+3, and so fine κ-complete ultrafilters over Pκ(κ

+3) can be used

in order to extend Vβ to an ultrafilter. However, we do not have any specific information

about functions which represent ordinals below κ++ in such extensions and this knowledge

will be important further in order to to link things over κ with those below. So, let us

deal not directly with Vβ’s, but rather replace them by iteration which starts with extenders

E(κ, β)’s.

Let β < ω1. Work inside NE(κ,β+1). We have there the extender E(κ, β) and Vβ+1 which

is a normal ultrafilter over Pκ(iE(κ,β+1)(κ
++)). Denote by

jVβ+1
: NE(κ,β+1) → MVβ+1

the corresponding elementary embedding.

Define

E(κ, β) ◦ Vβ+1.

It will be the iterated ultrapower first by Vβ+1 and then by E(κ, β). 1

We use Cohen functions from Pκ(κ
++) to κ in order to link the generator jVβ+1

”κ++ of Vβ+1

with the generators of E(κ, β). 2

Then, E(κ, β) ◦ Vβ+1 is a fine κ−complete ultrafilter over Pκ(iE(κ,β+1)(κ
++)) in NE(κ,β+1).

Let P be an element of its typical set of measure one. Then, P ∩κ is an inaccessible (even a

measurable) cardinal, but the projection of P to the normal measure over κ is not anymore

P ∩ κ, but rather an ordinal (cardinal) inside P ∩ κ.

Let now β + 1 < γ < ω1. Turn to NE(κ,γ). We have the extenders E(κ, β), E(κ, β + 1)

inside. So,

E(κ, β) ◦ Vβ+1 ∈ NE(κ,γ).

1Note that the resulting ultrapower will be the same if we change the order, i.e. first apply E(κ, β) and
then the image of Vβ+1.

2Assume that we forced such functions initially and now only use them changing some values.
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We useW γ(κ, β) to extend E(κ, β)◦Vβ+1 to a fine κ-complete ultrafilter over Pκ(iE(κ,β+1)(κ
++))

inside NE(κ,γ).

Let

jW γ(κ,β) : NE(κ,γ) → MW γ(κ,β) ≃ Ult(NE(κ,γ),W
γ(κ, β))

be the ultrapower embedding. Then

NE(κ,γ) |= MW γ(κ,β) is closed under κ+3 − sequences of its elements .

In particular,

jW γ(κ,β)”Vβ+1 ∈ MW γ(κ,β)

and it is a jW γ(κ,β)(κ)−complete filter there. Pick the least (in ≺)

Q ∈
∩

jW γ(κ,β)”Vβ+1.

Define an embedding

σ : Ult(NE(κ,β+1), E(κ, β) ◦ Vβ+1) → MW γ(κ,β)

as follows

σ([f ]E(κ,β)(a)◦Vβ+1)) = jW γ(κ,β)(a,Q).

It is not elementary, since NE(κ,β+1) ⊂ NE(κ,γ), but still preserves =,∈.
If X ∈ Vβ+1, then Q ∈ σ(jE(κ,β)◦Vβ+1

(X)).

Apply σ to Cohen functions. Changing value, say of jE(κ,β)◦Vβ+1
(fκ) on iE(κ,β)”[id]Vβ+1

to

κ will translates to changing the value of jW γ(κ,β)(fκ) on Q to κ. Similar for the rest of

generators of E(κ, β).3

Let W γ∗(κ, β) be the least such extension (in ≺).

Let now γ < δ < ω1. Then W γ∗(κ, β) ⊆ W δ∗(κ, β), since

kE(κ,γ),E(κ,δ)(W
γ∗(κ, β)) = W δ∗(κ, β).

Note that the critical point of kE(κ,γ),E(κ,δ) is (κ
+3)NE(κ,γ) > iE(κ,β+1)(κ

++).

Set

W ∗(κ, β) := kE(κ,γ)(W
γ∗(κ, β)).

Then W ∗(κ, β) is a fine κ-complete ultrafilter over Pκ(iE(κ,β+1)(κ
++)) in V . In addition it

extends every W δ∗(κ, β).

3We have κ++−many generators. For a generator τ we use the Cohen function fτ .
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Let β + 1 < γ < ω1. Denote by

jW γ∗(κ,β) : NE(κ,γ) → Mγ
W γ∗(κ,β) ≃ Ult(V,W γ∗(κ, β))

corresponding to W γ∗(κ, β) elementary embedding and ultrapower. Similar, let

jW ∗(κ,β) : V → MW ∗(κ,β) ≃ Ult(V,W ∗(κ, β))

corresponding to W ∗(κ, β) elementary embedding and ultrapower.

For every β′ < β, E(κ, β′) ∈ Mγ
W γ∗(κ,β) and E(κ, β′) ∈ MW ∗(κ,β), since E(κ, β′) ▹ E(κ, β) and

Mγ
W γ∗(κ,β),MW ∗(κ,β) start with the ultrapower by E(κ, β).

By definability, then

W γ∗(κ, β′) ∈ Mγ
W γ∗(κ,β) and W ∗(κ, β′) ∈ MW ∗(κ,β).

Also, for every β′ ≤ β and for every finite a with the measure E(κ, β′)(a) over κ|a| defined,

we have

E(κ, β′)(a) ≤RK W γ∗(κ, β) and E(κ, β′)(a) ≤RK W ∗(κ, β).

Again, this holds since the ultrapower starts with those by E(κ, β).

The above allows to reflect the sequences

⟨E(κ, β) | β < ω1⟩, ⟨W γ∗(κ, β) | β + 1 < γ < ω1⟩ and ⟨W ∗(κ, β) | β < ω1⟩

down below κ and to define

⟨E(α, β) | β < ω1⟩, ⟨W γ∗(α, β) | β + 1 < γ < ω1⟩ and ⟨W ∗(α, β) | β < ω1⟩,

for α < κ in a set A of measure one for the normal measure U over κ.

The point is that U is the normal measure over κ of every strongly compact measureW ∗(κ, β).

Denote the projection by to U by norβ. There are only ω1 many strongly compact measures

W ∗(κ, β), so we can assume that there is a single function nor that combines all norβ’s.

For every δ < ω1 there is a set Aδ of W
∗(κ, δ)−measure one such that for every P ∈ Aδ the

sequences

⟨E(κ, β) | β < δ⟩, ⟨W γ∗(κ, β) | β + 1 < γ < δ⟩ and ⟨W ∗(κ, β) | β < δ⟩

will reflect down an ordinal α = nor(P ). Let

B :=
∩
δ<ω1

nor”Aδ and A′
δ := Aδ ∩ nor−1”B.
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By shrinking A′
δ’s more, if necessary, we can assume that for any τ < δ < ω1 and any α ∈ B,

the restriction to τ of the sequences projected from A′
δ is exactly the the sequences projected

from A′
τ . Let A be such B.

Let β + 1 < γ < ω1. Consider kE(κ,β+1),E(κ,γ) : NE(κ,β+1) → NE(κ,γ). By elementarity,

kE(κ,β+1),E(κ,γ)(iE(κ,β+1)(κ
++)) = iE(κ,γ)(κ

++).

In addition,

kE(κ,β+1),E(κ,γ)”(iE(κ,β+1)(κ
++))

is unbounded in iE(κ,γ)(κ
++), since

iE(κ,β+1)(κ
++) = sup{iE(κ,β+1)(f)(κ) | f : κ → κ++}

and

iE(κ,γ)(κ
++) = sup{iE(κ,γ)(f)(κ) | f : κ → κ++}.

We will use kE(κ,β+1),E(κ,γ) to move from Pκ(iE(κ,β+1)(κ
++)) to Pκ(iE(κ,ξ)(κ

++)), once γ =

ξ + 1.

A crucial thing is that once we have β + 1 < γ, γ + 1 < δ < ω1, then kE(κ,β+1),E(κ,γ+1)

is in MW ∗(κ,δ) ≃ Ult(V,W ∗(κ, δ)), since it starts with E(κ, δ + 1) and kE(κ,β+1),E(κ,γ+1) is in

NE(κ,δ+1), the ultrapower by E(κ, δ + 1).

2 Forcing.

We define here a strongly compact version of the Magidor supercompact forcing based on

sequences of filters and ultrafilters

⟨W γ∗(κ, β) | β + 1 < γ < ω1⟩, ⟨W ∗(κ, β) | β < ω1⟩,

⟨W γ∗(α, β) | β + 1 < γ < ω1⟩ and ⟨W ∗(α, β) | β < ω1⟩,

for α < κ in A.

A major compensation on luck of normality here is that each W ∗(α, β) starts with

E(α, β), which is a coherent sequence of (α, α++)−extenders.

Further,once we decide to preserve κ++, then the extenders E(κ, β)’s κ will be replaced by

subextenders of lengthes below κ++ and ⟨W γ∗(κ, β) | β + 1 < γ < ω1⟩, ⟨W ∗(κ, β) | β < ω1⟩
will be redefined accordingly.
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For each α ∈ A ∪ {κ} let us fix disjoint sets

⟨A(α, β) | β < ω1⟩

such that A(α, β) ∈ W β+2∗(α, β). Recall that

W β+2∗(α, β) ⊆ W γ∗(α, β) ⊆ W ∗(α, β),

for every γ, β + 2 ≤ γ < ω1. Further, let us always shrink to subsets of A(α, β) once dealing

with sets of W γ∗(α, β)−measure one.

For P ∈
∪

β<ω1
A(α, β), denote by o(P ) the unique β with P ∈ A(α, β). Denote by nor(P )

the projection of P to the normal measure over κ, i.e. the image of P under the projection

map of W ∗(α, o(P )) to E(α, β)(α). Note that typically nor(P ) < P ∩ α.

Definition 2.1 Let α ∈ A ∪ {κ}, η = ω1, if α = κ and η < ω1, if α < κ. We call a subtree

of [Pα(θ)]
<ω (where θ is large enough) a nice (α, η)−tree iff

1. Lev0(T ) ∈
∩

β<η W
∗(α, β),

2. P ∈ T implies o(P ) < η,

3. for every P ∈ T , SucT (P ) ∈
∩

o(P )≤β<η W
∗(α, β).

Denote SucT (P ) ∩ A(α, β) by SucβT (P ).

4. For every P ∈ T which comes from a level > 0, and every β, o(P ) ≤ β < η, we require

SucβT (P ) ⊆ SucβT (P
−), where P− is the immediate predecessor of P in T .

Define now (α, η)−good sets by induction on α ∈ A ∪ {κ} and η ≤ ω1.

Definition 2.2 1. If η = 1, then an (α, η)−good set is just the same as a nice (α, η)−tree,

which in this case has splitting only in W ∗(α, 0).

2. if η ≥ 2, then an (α, η)−good set X is a pair ⟨T, F ⟩, where

(a) T is a nice (α, η)−tree,

(b) F is a function with domain {P ∈ T | o(P ) > 0} such that for every P ∈ dom(F ),

F (P ) is an (nor(P ), o(P ))−good set.

Define now a direct extension order. We deal first with trees.
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Definition 2.3 Let α ∈ A ∪ {κ}, η = ω1, if α = κ and η < ω1, if α < κ. Let T1, T2 be nice

(α, η)−trees. Set T1 ≤∗ T2 iff T2 is obtained from T1 by shrinking its levels.

Now we use induction in order to define a direct extension order on (α, η)−good sets.

Definition 2.4 Let X1 = ⟨T1, F1⟩, X2 = ⟨T2, F2⟩ be (α, η)−good sets. Set X1 ≤∗ X2 iff

1. T1 ≤∗ T2,

2. for every P ∈ dom(F2), F1(P ) ≤∗ F2(P ).

Let X = ⟨T, F ⟩ be an (α, η)−good set and P ∈ Lev0(T ). Define a one step extension

X⌢P of X by P .

Definition 2.5 Define X⌢P to be a pair ⟨T⌢P, F⌢P ⟩, where

1. T⌢P = {Q ∈ T | Q >T P},

2. F⌢P = (F � T⌢P ) ∪ {(P, F (P ))}.

Intuitively - the Magidor sequence will start now with P , everything in the tree T above

P will remain (we will be allowed to shrink things there). In addition, we would like to keep

the information below P , i.e. F (P ).

Let now X⌢P be a one step extension of an (α, η)−good set. Define a one step extension

of X⌢P as follows:

Definition 2.6 There are two possibilities:

1. Q ∈ SucT (P ) and we define X⌢P⌢Q to be a pair ⟨T⌢P⌢Q,F⌢P⌢Q⟩, where

(a) T⌢P⌢Q = {R ∈ T | R >T Q},

(b) F⌢P⌢Q = F � T⌢P⌢Q.

Or

2. Q ∈ Lev0(T
P ) (where F (P ) = ⟨T P , F P ⟩, i.e. T P denotes the tree part of F (P ) and

F P its function part)

and we define X⌢P⌢Q to be a pair ⟨T⌢P⌢Q,F⌢P⌢Q⟩, where

(a) T⌢P⌢Q = T⌢P,
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(b) F⌢P⌢Q = (F � T⌢P \ {⟨P, F (P )⟩}) ∪ {⟨P, F (P )⌢Q⟩} ∪ {⟨Q,F P (Q)⟩}.

The intuition behind the first item is clear. In the second one, we move from α to nor(P )

and add Q there. F P (Q) is a (nor(P ), o(Q))−good set. Its first coordinate is a tree. We

prefer not to add it to T explicitly in order to keep T fully over α and not to mix with

elements over nor(Q). However, it will be allowed to use elements of the tree of F P (Q) in

further extensions.

If the second possibility occurs, then instead of writing X⌢P⌢Q let us write X⌢Q⌢P ,

and this way preserve the sequence increasing.

If the first possibility occurs, then let us replace P with its modified version PQ which we

describe below. Note that if one prefer to dealing with ordinals instead of members of Pα(θ)

and to develop a non-normal version of Magidor forcing, then there is no need in PQ.

Set

PQ = (P ∩ nor(Q)) ∪ {Cη(Q) | η ∈ P \ nor(Q)},

where Cη is the Cohen function which links [id] with η. This way P is turned into a typical

member of a set of measure one over Pnor(Q)(Q ∩ α).

Continue by induction. Suppose that X⌢P⌢
1 ...⌢Pn is defined. Define n+ 1−extension.

Definition 2.7 1. Q ∈ SucT (Pn) and we define X⌢P⌢
1 ...⌢P⌢

n Q

to be a pair ⟨T⌢P⌢
1 ...⌢P⌢

n Q,F⌢P⌢
1 ...⌢P⌢

n Q⟩, where

(a) T⌢P⌢
1 ...⌢P⌢

n Q = {R ∈ T | R >T Q},

(b) F⌢P⌢
1 ...⌢P⌢

n Q = F � T⌢P⌢
1 ...⌢P⌢

n Q.

Or

2. Q ∈ Lev0(T
Pi), for some i, 1 ≤ i ≤ n (where F (Pi) = ⟨T Pi , F Pi⟩, i.e. T Pi denotes the

tree part of F (Pi) and F Pi its function part)

and we defineX⌢P1
⌢...⌢P⌢

n Q to be a pair ⟨T⌢P1
⌢...⌢P⌢

n Q,F⌢P⌢
1 ...⌢P⌢

n Q⟩, where

(a) T⌢P1
⌢...⌢P⌢

n Q = T⌢P⌢
1 ...⌢Pn,

(b) F⌢P1
⌢...⌢P⌢

n Q = (F � T⌢P1
⌢...⌢Pn \ {⟨Pi, F (Pi)⟩}) ∪ {⟨Pi, F (Pi)

⌢Q⟩} ∪
{⟨Q,F Pi(Q)⟩}.

Again, if the second possibility occurs, then instead of writing X⌢P⌢
1 ...⌢P⌢

n Q let us

write X⌢P⌢
1 ...⌢Pi−1

⌢Q⌢P⌢
i ...⌢Pn and this way preserve the sequence increasing.

11



If the first possibility occurs, then let us replace Pj, j ≤ i with their modified versions PQ
j as

it was done above.

Define a direct order extension ≤∗ on the set of n−extensions exactly as in Definition 2.4

Define now our forcing notion.

Definition 2.8 Let P consists of all n−extensions of all (κ, ω1)−good sets, for every n < ω.

Definition 2.9 Let X⌢P1
⌢...⌢Pn, Y

⌢Q1
⌢...⌢Qm ∈ P . Set

X⌢P1
⌢...⌢Pn ≥∗ Y ⌢Q1

⌢...⌢Qm

iff

1. n = m,

2. X⌢P1
⌢...⌢Pn ≥∗ Y ⌢Q1

⌢...⌢Qn, as n−extensions.

Define now the forcing order on P .

Definition 2.10 Let X⌢P1
⌢...⌢Pn, Y

⌢Q1
⌢...⌢Qm ∈ P . Set

X⌢P1
⌢...⌢Pn ≥ Y ⌢Q1

⌢...⌢Qm

iff

1. n ≥ m,

2. Pi = Qi, for every i, 1 ≤ i ≤ m,

3. Y ⌢P1
⌢...⌢Pm

⌢Pm+1
⌢...⌢Pn is an (n−m)−extension of Y ⌢P1

⌢...⌢Pm,

4. Y ⌢P1
⌢...⌢Pm

⌢Pm+1
⌢...⌢Pn ≤∗ X⌢P1

⌢...⌢Pm
⌢Pm+1

⌢...⌢Pn, as n−extensions.

Notation 2.11 Let us return to common notation and instead of writing X⌢P1
⌢...⌢Pn

write ⟨P1, ..., Pn, X⟩.

Lemma 2.12 ⟨P ,≤,≤∗ ⟩ satisfies the Prikry condition.

Proof. Let σ be a statement of the forcing language and p ∈ P . Suppose for simplicity that

the trunk of p is empty, i.e. p is of the form ⟨ <>,X⟩.
Let us call a condition ⟨P1, ..., Pn, Z⟩ a good condition iff all its 1–extensions which come

from the same measure conclude the same about σ, i.e.

12



• all of them force σ,

or

• all of them force ¬σ,
or

• all of them do not decide σ.

Claim 1 Let ⟨P1, ..., Pn, Y ⟩ ∈ P . Then there is ⟨P1, ..., Pn, Z⟩ ≥∗ ⟨P1, ..., Pn, Y ⟩ which is a

good condition.

Proof. Just shrink all relevant measure one sets.

� of the claim.

Claim 2 Let ⟨ <>, Y ⟩ ∈ P . Then there is ⟨ <>,Z⟩ ≥∗ ⟨ <>, Y ⟩ such that every

⟨P1, ..., Pn, Z
′⟩ ≥ ⟨ <>,Z⟩ is a good condition.

Proof. First apply Claim 1 to ⟨ <>, Y ⟩ and find a direct extension ⟨ <>,Z0⟩ which is good.

Then apply Claim 1 to each 1–element extension of ⟨ <>,Z0⟩ and find its direct extension

⟨ <>,Z1⟩ such that any one element extension of ⟨ <>,Z1⟩ is a good condition.

Continue by induction and for every n < ω find ⟨ <>,Zn⟩ such that any n−element extension

of ⟨ <>,Zn⟩ is a good condition.

Finally set Z =
∩

n<ω Zn.

� of the claim.

Let us turn now to two element extensions. In contrast to one element extensions, we

will have here a new principal situation to consider.

We call a condition ⟨P1, ..., Pn, Z⟩ a 2–good condition iff all its 2–extensions which come

from the same measures conclude the same about σ, i.e.

• all of them force σ,

or

• all of them force ¬σ,
or

• all of them do not decide σ.

13



Let ⟨ <>,Z⟩ be a condition as in Claim 2, i.e. such that every ⟨P1, ..., Pn, Z
′⟩ ≥ ⟨ <>,Z⟩

is a good condition. Denote by TZ the tree part of Z and by FZ its function part, i.e.

Z = ⟨TZ , FZ⟩. Suppose that ⟨P,Z⟩ is a one element extension of ⟨ <>,Z⟩ and we extend

it further by adding some Q from a higher measure than those of P . In such extension P

should be replaced by PQ. So this two element extension will be ⟨PQ, Q, Z⟩.
Now this can be done an other way around. Thus we can first extend by adding Q, i.e. to

⟨Q,Z⟩ and only then pick an element PQ from FZ(Q), assuming that it is there. Both ways

result in the same condition ⟨PQ, Q, Z⟩. So we need to argue either decides the same way.

Claim 3 Let ⟨ <>,Z⟩ be as above and β < γ < ω1. Then there is ⟨ <>,Z∗⟩ ≥∗ ⟨ <>,Z⟩
such that any two element extension of ⟨ <>,Z∗⟩ which comes from measures β and γ

provides the same conclusion about σ without any dependence on the way it was created.

Proof. First we shrink the γ−th measure one set of Lev0(TZ) such that for any Q1, Q2 the

decisions by β−th measure one set of Lev0(FZ(Q1)) and those of of Lev0(FZ(Q2)) are the

same. Denote the result by Z ′. Next we shrink Z ′ to Z ′′ such that for β−th measure one set

of Lev0(TZ′′) we will have the decisions by γ−th measure one set of SucTZ′′ (P1) and those of

of SucTZ′′ (P2) are the same, for any P1, P2 ∈ Lev0,β(TZ′′).

We claim now that Z∗ := Z ′′ is as desired. Suppose otherwise.

Then there are ⟨P1, Q1, Z
∗⟩, ⟨P2, Q2, Z

∗⟩ 2–element extensions of ⟨ <>,Z∗⟩ from measures

β, γ which disagree about σ, i.e. one, say ⟨P1, Q1, Z
∗⟩ decides σ and ⟨P2, Q2, Z

∗⟩ does not

decide it or decide σ in the opposite fashion. Let us assume that ⟨P1, Q1, Z
∗⟩  σ and

⟨P2, Q2, Z
∗⟩ does not decide σ.

This type of situation can occur only when this two conditions were obtained in the two

different ways. Split into two cases.

Case 1. ⟨P1, Q1, Z
∗⟩ was obtained by first picking an element of β and only then of γ.

Then ⟨P2, Q2, Z
∗⟩, necessarily, was obtained by first picking an element of γ and only then of

β. By goodness and the choice of Z∗, then any two element extension which was obtained by

first picking an element of β and only then of γ will force σ and any two element extension

which was obtained by first picking an element of γ and only then of β will not decide σ.

Denote Lev0γ(TZ∗) by A. For every Q ∈ A, denote Lev0β(TFZ∗ (Q)) by BQ. Then the

function Q 7→ BQ represents a set B ∈ W ∗γ(κ, β). But recall that W ∗γ(κ, β) ⊆ W ∗(κ, β).

Hence B ∈ W ∗(κ, β). In particular, B ∩ Lev0β(TZ∗) ̸= ∅. Pick some P ∈ B ∩ Lev0β(TZ∗).

Then the function Q 7→ PQ represents P in Ult(V,W ∗(κ, γ)). So, the set E := {Q | PQ ∈
BQ} is in W ∗(κ, γ). Pick now some Q ∈ A ∩ SucTZ∗,γ (P ) ∩ E. Then ⟨PQ, Q, Z∗⟩  σ, as
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two step extension of ⟨ <>,Z∗⟩ obtained by first picking an element of β and only then of

γ. On the other hand PQ ∈ BQ, and so ⟨PQ, Q, Z∗⟩ can be viewed as a step extension of

⟨ <>,Z∗⟩ obtained by first picking an element of γ and only then of β. But this contradicts

our assumption that extensions which are obtained this way do not decide σ.

Case 2. ⟨P1, Q1, Z
∗⟩ was obtained by first picking an element of γ and only then of β.

Similar to the previous case.

� of the claim.

Next we apply Claim 3 to all possible β < γ. As a result a condition

⟨ <>,Z2⟩ ≥∗ ⟨ <>,Z⟩ will be obtained such any two element extensions of it, which come

from same measures agree about σ.

We proceed further by straightforward induction from n−extensions to n+1−extensions.

Let us only deal with the following type of commutativity.

Consider 3−extensions. Let β < γ < δ < ω1. Suppose that Z⌢P⌢Q⌢R is a 3−element

extension of Z with P being from β−th measure, Q being from γ−th measure and R being

from δ−th measure. Now, if P was picked first, than Q and finally R, then the result will

be ⟨(PQ)R, QR, R, Z⟩. Note first that (PQ)R = PQ, since PQ ⊆ Q∩ κ < nor(R), and so it is

not effected by switching from Q to QR.

Suppose now that P was added first, R after it and only then QR. So we have now

⟨(PR)Q
R
, QR, R, Z⟩.

Let argue that for most Q’s, (PR)Q
R
= PQR

.

Consider the function R 7→ QR which represents Q in the ultrapower by the δ−th measure.

P is represented by R 7→ PR. Let us look at the function R 7→ (PR)Q
R
. It represents PQ.

But note that PQ ⊂ Q ∩ κ < nor(R) and (PR)Q
R ⊂ nor(R). So PQ does not move. Hence

(PR)Q
R
= PQ.

�
Let ⟨Pβ | β < ω1⟩ be a generic sequence. Denote nor(Pβ) by κβ, for every β < ω1.

The next lemma is obvious.

Lemma 2.13 The sequence ⟨κβ | β < ω1⟩ is an increasing continuous unbounded in κ

sequence.

Let us deal now with successors and double successors of κ′
βs.

Lemma 2.14 For every limit β < ω1, both (κ+
β )

V and (κ++
β )V change their cofinality to ω,

and both κ+ and κ++ change their cofinality to ω1.
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Proof. Let β < ω1 be a limit ordinal or β = ω1. In the last case κ will be just κω1 . We

use kE(κβ ,γ),E(κβ ,δ) in order to move Pγ to Pδ, for γ < δ < β. Note that, if γ < δ < η < β,

then kκβ ,γ,δ belongs basically to to the ultrapower with η−th measure. The direct limit of

the system

⟨⟨Pγ | γ < β⟩, ⟨kE(κβ ,γ),E(κβ ,δ) | γ < δ < β⟩⟩

will produce the desired cofinal sequence. Denote it by ⟨P β
γ | γ < β⟩.

The point is that the measures that are used start with (κβ, κ
++
β )−extenders. So we have

a nice representation of all the ordinals below κ++
β . Actually, the ordinals below κ+

β are

represented by the canonical functions, but in order to get to κ++
β the extenders are used.

Note that Pγ ∩κβ does not move. It is the most important over κ it self. Thus, we will need

P ω1
α ∩ (κ+)V , which cardinality is at least |Pα| >> nor(Pα)

++ (in V ), in order to cover the

set {sup(P ω1
γ ∩ (κ+)V ) | γ < α}, for a limit α < ω1. We refer to [2] where situations with

coverings of small cardinalities were studied.

Deal with the principal case β = ω1. The case β < ω1 is similar.

Let us proceed as follows. Consider P0, P1 and P2. We have P0 ∩ nor(P1) is an ordinal

below nor(P1). The rest of P0 is spread inside the interval [nor(P1), (nor(P1))
+3). Note that

(nor(P1))
+3 < P1 ∩ nor(P2).

We are interested in (P0 \ nor(P1)) ∩ (nor(P1))
++.

Recall that P0 ∈ Pnor(P1)((iE(nor(P1),o(P0))(nor(P1))
++)),

which corresponds over κ to Pκ(iE(κ,o(nor(P0))(κ
++)). The embedding kE(κ,o(P0)),E(κ,o(P1)) moves

the ordinal iE(κ,o(P0))(κ) to iE(κ,o(P1))(κ). The critical point of

kE(κ,o(P0)),E(κ,o(P1)) is (κ
+3)NE(κ,o(P0)) . So, κ++ does not move.

Let us denote iE(κ,o(Pγ))(κ) by ηγ, γ < ω1. Then, ηγ+κ++ will move to ηδ+κ++, whenever

γ ≤ δ < ω1. Each of Pγ’s will contribute its part in the interval [ηγ, ηγ + κ++) and this way

κ++ will be eventually covered.

By a simple density argument, for every τ < κ++ there will be n < ω, γ1 < ... < γn < ω1

and Q ∈ Pκ(iE(κ,o(Q))(κ
++)) such that

• ⟨Pγ1 , ..., Pγn , Q,X⟩ ∈ G(P),

• iE(κ,o(Q))(κ
++) + τ ∈ Q.

Suppose now that ⟨Pγ1 , ..., Pγn , Q,X⟩ ≤ ⟨Pγ1 , ..., Pγn , Q
R, R,X⟩ ∈ G(P). Then in R,

iE(κ,o(Q))(κ
++)+τ corresponds to iE(κ,o(Q))(κ

++)+τ . This means, in particular, that different

τ ’s will create different sequences (in the direct limit).

Now each sequence is generated by an element of one of Pγ’s, for γ < ω1. Hence,
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∪
γ<ω1

Pγ will actually cover a set of size κ++.

�
Our next tusk will be to change slightly the above setting in order to preserve κ++ while

still collapsing κ+
α , κ

++
α etc., for α’s below ω1.

It will be achieved by replacing the extenders E(κ, β), β < ω1, by their subextenders of

lengthes below κ++.

Let A be an elementary submodel of some Hθ, with θ big enough, of cardinality κ+,

closed under κ−sequences and with everything relevant inside. We cut all the extenders to

A. Namely each E(κ, β), β < ω1 is replaced by Ẽ(κ, β) = E(κ, β) � A := E(κ, β) � κ++ ∩ A.

Consider iẼ(κ,β) : V → NẼ(κ,β) ≃ Ult(V, Ẽ(κ, β)). Let η̃κβ = iẼ(κ,β)(κ
++ ∩ A).

Then we define filters and ultrafilters as before but instead of Pκ(ηκβ) they will be on Pκ(η̃κβ),

where ηκβ = iE(κ,β)(κ
++).

The definability of this filters and ultrafilters allows to apply elementary embedding

kẼ(κ,β),E(κ,β) : NẼ(κ,β) → NE(κ,β)

in order to move the things to NẼ(κ,β).

Define the forcing P as before only implementing the change made over κ. κ++ will not

be collapsed now since the present P satisfies κ++−c.c. The point is that η̃κβ < κ++, for

every β < ω1.
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