Strongly compact Magidor forcing.

Moti Gitik

June 25, 2014

Abstract

We present a strongly compact version of the Supercompact Magidor forcing ([3]). A variation of it is used to show that the following is consistent: $V \supseteq W$ are transitive models of ZFC +GCH with the same ordinals such that: 1. κ is an inaccessible in W, 2. κ changes its cofinality to ω_{1} in V witnessed by a club $\left\langle\kappa_{\alpha} \mid \alpha<\omega_{1}\right\rangle$, 3. for every $\alpha<\omega_{1},\left(\kappa_{\alpha}^{++}\right)^{W}<\kappa_{\alpha}^{+}$, 4. $\left(\kappa^{++}\right)^{W}=\kappa^{+}$.

1 Preliminary settings.

Assume GCH. Let κ be a κ^{+4}-supercompact cardinal and $j: V \rightarrow M$ be a witnessing embedding. Denote the normal measure over κ derived from j by U, i.e.

$$
X \in U \text { iff } \kappa \in j(X) .
$$

We assume that

$$
\left\{\alpha<\kappa \mid \alpha \text { is a } \kappa^{++}-\text {supercomact cardinal }\right\} \in U .
$$

Let

$$
i: V \rightarrow N
$$

be the ultrapower embedding and

$$
k: N \rightarrow M
$$

be defined by $k\left([f]_{U}\right)=j(f)(\kappa)$. Then it is elementary and the corresponding diagram is commutative.
Pick some large enough $\chi \gg \kappa$ which is a fixed point of k. We fix inside N a well-ordering
\prec of V_{χ} such that $\prec \upharpoonright \eta$ wellorders $\mathcal{P}(\eta)$ in order type η^{+}, for each cardinal $\eta<\chi$ (of $\left.N\right)$. Then $k(\prec)$ does the same in M.

We use j in a Radin fashion (see [4],[1]) to define a sequence of ultrafilters

$$
\left\langle W(\kappa, \beta) \mid \beta<\omega_{1}\right\rangle .
$$

Set

$$
X \in W(\kappa, 0) \text { iff } j " \kappa^{+3} \in j(X)
$$

Suppose that $\beta<\omega_{1}$ and the sequence $\left\langle W(\kappa, \beta) \mid \beta^{\prime}<\beta\right\rangle$ is defined. Set

$$
X \in W(\kappa, \beta) \text { iff }\left\langle j " \kappa^{+3},\left\langle W(\kappa, \beta) \mid \beta^{\prime}<\beta\right\rangle\right\rangle \in j(X) .
$$

Then each $W(\kappa, \beta)$ will be a κ-complete ultrafilter over $\mathcal{P}_{\kappa}\left(V_{\kappa+3}\right) . W(\kappa, 0)$ will be a normal ultrafilter over $\mathcal{P}_{\kappa}\left(\kappa^{+3}\right)$.
We denote by

$$
j_{W(\kappa, \beta)}: V \rightarrow M_{W(\kappa, \beta)}
$$

the elementary embedding of $W(\kappa, \beta)$ and let

$$
k_{W(\kappa, \beta)}: M_{W(\kappa, \beta)} \rightarrow M
$$

be defined by setting

$$
k_{W(\kappa, \beta)}\left([f]_{W(\kappa, \beta)}\right)=j(f)\left(\left\langle j^{\prime \prime} \kappa^{+3},\left\langle W\left(\kappa, \beta^{\prime}\right) \mid \beta^{\prime}<\beta\right\rangle\right\rangle\right) .
$$

Then $k_{W(\kappa, \beta)}$ is elementary and the resulting diagram is commutative. Then

$$
j_{W(\kappa, \beta)} " \kappa^{+3} \in M_{W(\kappa, \beta)}
$$

and, hence

$$
{ }^{\kappa^{+3}} M_{W(\kappa, \beta)} \subseteq M_{W(\kappa, \beta)}, \text { and } \operatorname{crit}\left(k_{W(\kappa, \beta)}\right)=\left(\kappa^{+5}\right)^{M_{W(\kappa, \beta)}} .
$$

In addition, if $\beta^{\prime}<\beta<\omega_{1}$, then

$$
W\left(\kappa, \beta^{\prime}\right) \in M_{W(\kappa, \beta)}
$$

and we have an elementary embedding

$$
k_{W\left(\kappa, \beta^{\prime}\right), W(\kappa, \beta)}: M_{W\left(\kappa, \beta^{\prime}\right)} \rightarrow M_{W(\kappa, \beta)},
$$

where

$$
\left.k_{W\left(\kappa, \beta^{\prime}\right), W(\kappa, \beta)}\left([f]_{W\left(\kappa, \beta^{\prime}\right)}\right)=j_{W(\kappa, \beta)}(f)\left(\left\langle j_{W(\kappa, \beta)}\right) \kappa^{+3},\left\langle W\left(\kappa, \beta^{\prime}\right) \mid \beta^{\prime \prime}<\beta^{\prime}\right\rangle\right\rangle\right) .
$$

Also all corresponding diagrams are commutative.
Let us now define a sequence of $\left(\kappa, \kappa^{++}\right)$-extenders $\left\langle E(\kappa, \beta) \mid \beta<\omega_{1}\right\rangle$.
Let $E(\kappa, 0)=\left\langle E(\kappa, 0)(a) \mid a \in\left[\kappa^{++}\right]^{<\omega}\right\rangle$ be the $\left(\kappa, \kappa^{++}\right)$-extender derived from $W(\kappa, 0)$, i.e.

$$
X \in E(\kappa, 0)(a) \text { iff } a \in j_{W(\kappa, 0)}(X)
$$

Now,

$$
\operatorname{crit}\left(k_{W(\kappa, 0)}\right)=\left(\kappa^{+5}\right)^{M_{W(\kappa, 0)}}>\left(\kappa^{+4}\right)^{M_{W(\kappa, 0)}}=\kappa^{+4} \supseteq a .
$$

Hence,

$$
a \in j_{W(\kappa, 0)}(X) \text { iff } a \in j(X) .
$$

Clearly, $E(\kappa, 0)$ is definable via $W(\kappa, 0)$, and so, belongs to each $M_{W(\kappa, \beta)}, \beta<\omega_{1}$.
Denote by

$$
i_{E(\kappa, 0)}: V \rightarrow N_{E(\kappa, 0)} \simeq \operatorname{Ult}(V, E(\kappa, 0))
$$

the corresponding elementary embedding.
Let $\eta_{0}<\kappa^{+5}$ be the ordinal which codes (corresponds to) $W(\kappa, 0)$ in M (and, so in each $\left.M_{W(\kappa, \beta)}, 0<\beta<\omega_{1}\right)$ by $k(\prec)$.
Define $E(\kappa, 1)=\left\langle E(\kappa, 1)(a) \mid a \in\left[\kappa^{++} \cup\left\{\eta_{0}\right\}\right]^{<\omega}\right\rangle$ to be the extender derived from $W(\kappa, 1)$, i.e.

$$
X \in E(\kappa, 1)(a) \text { iff } a \in j_{W(\kappa, 1)}(X)
$$

Note that $W(\kappa, 0) \in M_{W(\kappa, 1)}$, hence $\eta_{0}<\left(\kappa^{+5}\right)^{M_{W(\kappa, 1)}}$. Then,

$$
\operatorname{crit}\left(k_{W(\kappa, 1)}\right)=\left(\kappa^{+5}\right)^{M_{W(\kappa, 1)}} \supseteq a .
$$

Hence,

$$
a \in j_{W(\kappa, 0)}(X) \text { iff } a \in j(X)
$$

Denote by

$$
i_{E(\kappa, 1)}: V \rightarrow N_{E(\kappa, 1)} \simeq \operatorname{Ult}(V, E(\kappa, 1))
$$

the corresponding elementary embedding. Let $k_{E(\kappa, 1)}: N_{E(\kappa, 1)} \rightarrow M$ be the corresponding elementary embedding. The critical point of $k_{E(\kappa, 1)}$ is $\left(\kappa^{+3}\right)^{N_{E(\kappa, 1)}}$. Denote by η_{0}^{1} the preimage of η_{0} by $k_{E(\kappa, 1)}$.

Let $W^{1}(\kappa, 0)$ be the filter over $\mathcal{P}_{\kappa}\left(\kappa^{+3}\right)$ coded by η_{0}^{1} inside $N_{E(\kappa, 1)}$. It is a normal ultrafilter in $N_{E(\kappa, 1)}$, but only a κ-complete filter in V.
We have

1. $E(\kappa, 0) \in N_{E(\kappa, 1)}$,
2. $E(\kappa, 0)=E(\kappa, 1) \upharpoonright \kappa^{++}$.

Continue by induction and define $E(\kappa, \beta)$ for every $\beta<\omega_{1}$. Thus suppose that $\beta<\omega_{1}$ and for every $\beta^{\prime}<\beta, E\left(\kappa, \beta^{\prime}\right)$ is defined. Define $E(\kappa, \beta)$.

Let $\eta_{\beta^{\prime}}<\kappa^{+5}$ be the ordinal which codes (corresponds) $W\left(\kappa, \beta^{\prime}\right)$ in M (and, so in each $\left.M_{W(\kappa, \gamma)}, \beta \leq \gamma<\omega_{1}\right)$ by $k(\prec)$, for every $\beta^{\prime}<\beta$. Pick $\eta_{\beta}^{\prime}<\kappa^{+5}$ be the ordinal which codes $\left\langle\eta_{\beta^{\prime}} \mid \beta^{\prime}<\beta\right\rangle$. We need this η_{β}^{\prime} in order to keep the ultrapower by the extender closed under ω-sequences.
Define $E(\kappa, \beta)=\left\langle E(\kappa, \beta)(a) \mid a \in\left[\kappa^{++} \cup\left\{\eta_{\beta^{\prime}} \mid \beta^{\prime}<\beta\right\} \cup\left\{\eta_{\beta}^{\prime}\right\}\right]^{<\omega}\right\rangle$ to be the extender derived from $W(\kappa, \beta)$, i.e.

$$
X \in E(\kappa, \beta)(a) \text { iff } a \in j_{W(\kappa, \beta)}(X) .
$$

Note that $W\left(\kappa, \beta^{\prime}\right) \in M_{W(\kappa, \beta)}$, for every $\beta^{\prime}<\beta$. Hence $\eta_{\beta}^{\prime}<\left(\kappa^{+5}\right)^{M_{W(\kappa, \beta)}}$. Then,

$$
\operatorname{crit}\left(k_{W(\kappa, \beta)}\right)=\left(\kappa^{+5}\right)^{M_{W(\kappa, \beta)}} \supseteq a .
$$

Hence,

$$
a \in j_{W(\kappa, \beta)}(X) \text { iff } a \in j(X)
$$

Denote by

$$
i_{E(\kappa, \beta)}: V \rightarrow N_{E(\kappa, 1)} \simeq \operatorname{Ult}(V, E(\kappa, 1))
$$

the corresponding elementary embedding. Let $k_{E(\kappa, \beta)}: N_{E(\kappa, \beta)} \rightarrow M$ be the corresponding elementary embedding. The critical point of $k_{E(\kappa, \beta)}$ is $\left(\kappa^{+3}\right)^{N_{E(\kappa, \beta)}}$. Denote by $\eta_{\beta^{\prime}}^{\beta}$ the preimage of $\eta_{\beta^{\prime}}$ by $k_{E(\kappa, \beta)}$.
Let $W^{\beta}\left(\kappa, \beta^{\prime}\right)$ be the filter over $\mathcal{P}_{\kappa}\left(\left(V_{\kappa+3}\right)^{\left.N_{E(\kappa, \beta)}\right)}\right.$ coded by $\eta_{\beta^{\prime}}^{\beta}$ inside $N_{E(\kappa, \beta)}$, for every $\beta^{\prime}<\beta$.
$N_{E(\kappa, \beta)} \vDash W^{\beta}\left(\kappa, \beta^{\prime}\right)$ is an ultrafilter with the ultrapower closed under κ^{+3} - sequences .
However, in V, it is only a κ-complete fine filter over $\mathcal{P}_{\kappa}\left(\left(V_{\kappa+3}\right)^{N_{E(\kappa, \beta)}}\right)$.
Now, for every $\beta^{\prime}<\beta$, we have

1. $E\left(\kappa, \beta^{\prime}\right) \in N_{E(\kappa, \beta)}$,
2. $E\left(\kappa, \beta^{\prime}\right)=E(\kappa, \beta) \upharpoonright \eta_{\beta^{\prime}}$.

Denote the induced elementary embedding by

$$
k_{E\left(\kappa, \beta^{\prime}\right), E(\kappa, \beta)}: N_{E\left(\kappa, \beta^{\prime}\right)} \rightarrow N_{E(\kappa, \beta)} .
$$

Let \mathcal{V} denotes the \prec-least normal ultrafilter over $\mathcal{P}_{\kappa}\left(i\left(\kappa^{++}\right)\right)$in N (the ultrapower by the normal measure U over κ). Denote the image of \mathcal{V} in $N_{E(\kappa, \beta)}$ by \mathcal{V}_{β}, for every $\beta<\omega_{1}$. Then the \prec-least normal ultrafilter over $\mathcal{P}_{\kappa}\left(i_{E(\kappa, \beta)}\left(\kappa^{++}\right)\right)$in $N_{E(\kappa, \beta)}$.
Note that $i_{E(\kappa, \beta)}\left(\kappa^{++}\right)<\kappa^{+3}$, and so fine κ-complete ultrafilters over $\mathcal{P}_{\kappa}\left(\kappa^{+3}\right)$ can be used in order to extend \mathcal{V}_{β} to an ultrafilter. However, we do not have any specific information about functions which represent ordinals below κ^{++}in such extensions and this knowledge will be important further in order to to link things over κ with those below. So, let us deal not directly with \mathcal{V}_{β} 's, but rather replace them by iteration which starts with extenders $E(\kappa, \beta)$'s.

Let $\beta<\omega_{1}$. Work inside $N_{E(\kappa, \beta+1)}$. We have there the extender $E(\kappa, \beta)$ and $\mathcal{V}_{\beta+1}$ which is a normal ultrafilter over $\mathcal{P}_{\kappa}\left(i_{E(\kappa, \beta+1)}\left(\kappa^{++}\right)\right)$. Denote by

$$
j_{\mathcal{V}_{\beta+1}}: N_{E(\kappa, \beta+1)} \rightarrow M_{\mathcal{V}_{\beta+1}}
$$

the corresponding elementary embedding.
Define

$$
E(\kappa, \beta) \circ \mathcal{V}_{\beta+1}
$$

It will be the iterated ultrapower first by $\mathcal{V}_{\beta+1}$ and then by $E(\kappa, \beta) .{ }^{1}$
We use Cohen functions from $\mathcal{P}_{\kappa}\left(\kappa^{++}\right)$to κ in order to link the generator $j_{\mathcal{V}_{\beta+1}}$ " κ^{++}of $\mathcal{V}_{\beta+1}$ with the generators of $E(\kappa, \beta) .{ }^{2}$
Then, $E(\kappa, \beta) \circ \mathcal{V}_{\beta+1}$ is a fine κ-complete ultrafilter over $\mathcal{P}_{\kappa}\left(i_{E(\kappa, \beta+1)}\left(\kappa^{++}\right)\right)$in $N_{E(\kappa, \beta+1)}$. Let P be an element of its typical set of measure one. Then, $P \cap \kappa$ is an inaccessible (even a measurable) cardinal, but the projection of P to the normal measure over κ is not anymore $P \cap \kappa$, but rather an ordinal (cardinal) inside $P \cap \kappa$.

Let now $\beta+1<\gamma<\omega_{1}$. Turn to $N_{E(\kappa, \gamma)}$. We have the extenders $E(\kappa, \beta), E(\kappa, \beta+1)$ inside. So,

$$
E(\kappa, \beta) \circ \mathcal{V}_{\beta+1} \in N_{E(\kappa, \gamma)} .
$$

[^0]We use $W^{\gamma}(\kappa, \beta)$ to extend $E(\kappa, \beta) \circ \mathcal{V}_{\beta+1}$ to a fine κ-complete ultrafilter over $\mathcal{P}_{\kappa}\left(i_{E(\kappa, \beta+1)}\left(\kappa^{++}\right)\right)$ inside $N_{E(\kappa, \gamma)}$.

Let

$$
j_{W^{\gamma}(\kappa, \beta)}: N_{E(\kappa, \gamma)} \rightarrow M_{W^{\gamma}(\kappa, \beta)} \simeq \operatorname{Ult}\left(N_{E(\kappa, \gamma)}, W^{\gamma}(\kappa, \beta)\right)
$$

be the ultrapower embedding. Then

$$
N_{E(\kappa, \gamma)} \models M_{W^{\gamma}(\kappa, \beta)} \text { is closed under } \kappa^{+3} \text { - sequences of its elements . }
$$

In particular,

$$
j_{W^{\gamma}(\kappa, \beta)} " \mathcal{V}_{\beta+1} \in M_{W^{\gamma}(\kappa, \beta)}
$$

and it is a $j_{W^{\gamma}(\kappa, \beta)}(\kappa)$-complete filter there. Pick the least (in \prec)

$$
Q \in \bigcap j_{W^{\gamma}(\kappa, \beta)} " \mathcal{V}_{\beta+1} .
$$

Define an embedding

$$
\sigma: \operatorname{Ult}\left(N_{E(\kappa, \beta+1)}, E(\kappa, \beta) \circ \mathcal{V}_{\beta+1}\right) \rightarrow M_{W^{\gamma}(\kappa, \beta)}
$$

as follows

$$
\sigma\left([f]_{\left.E(\kappa, \beta)(a) \circ \mathcal{V}_{\beta+1}\right)}\right)=j_{W^{\gamma}(\kappa, \beta)}(a, Q)
$$

It is not elementary, since $N_{E(\kappa, \beta+1)} \subset N_{E(\kappa, \gamma)}$, but still preserves $=, \in$. If $X \in \mathcal{V}_{\beta+1}$, then $Q \in \sigma\left(j_{E(\kappa, \beta) \circ \mathcal{V}_{\beta+1}}(X)\right)$.
Apply σ to Cohen functions. Changing value, say of $j_{E(\kappa, \beta) \circ \nu_{\beta+1}}\left(f_{\kappa}\right)$ on $i_{E(\kappa, \beta)} "[i d]_{\nu_{\beta+1}}$ to κ will translates to changing the value of $j_{W^{\gamma}(\kappa, \beta)}\left(f_{\kappa}\right)$ on Q to κ. Similar for the rest of generators of $E(\kappa, \beta) .{ }^{3}$

Let $W^{\gamma^{*}}(\kappa, \beta)$ be the least such extension (in \prec).
Let now $\gamma<\delta<\omega_{1}$. Then $W^{\gamma *}(\kappa, \beta) \subseteq W^{\delta *}(\kappa, \beta)$, since

$$
k_{E(\kappa, \gamma), E(\kappa, \delta)}\left(W^{\gamma *}(\kappa, \beta)\right)=W^{\delta *}(\kappa, \beta) .
$$

Note that the critical point of $k_{E(\kappa, \gamma), E(\kappa, \delta)}$ is $\left(\kappa^{+3}\right)^{N_{E(\kappa, \gamma)}}>i_{E(\kappa, \beta+1)}\left(\kappa^{++}\right)$.
Set

$$
W^{*}(\kappa, \beta):=k_{E(\kappa, \gamma)}\left(W^{\gamma *}(\kappa, \beta)\right) .
$$

Then $W^{*}(\kappa, \beta)$ is a fine κ-complete ultrafilter over $\mathcal{P}_{\kappa}\left(i_{E(\kappa, \beta+1)}\left(\kappa^{++}\right)\right)$in V. In addition it extends every $W^{\delta *}(\kappa, \beta)$.

[^1]Let $\beta+1<\gamma<\omega_{1}$. Denote by

$$
j_{W^{\gamma *}(\kappa, \beta)}: N_{E(\kappa, \gamma)} \rightarrow M_{W^{\gamma *}(\kappa, \beta)}^{\gamma} \simeq \operatorname{Ult}\left(V, W^{\gamma *}(\kappa, \beta)\right)
$$

corresponding to $W^{\gamma *}(\kappa, \beta)$ elementary embedding and ultrapower. Similar, let

$$
j_{W^{*}(\kappa, \beta)}: V \rightarrow M_{W^{*}(\kappa, \beta)} \simeq \operatorname{Ult}\left(V, W^{*}(\kappa, \beta)\right)
$$

corresponding to $W^{*}(\kappa, \beta)$ elementary embedding and ultrapower.
For every $\beta^{\prime}<\beta, E\left(\kappa, \beta^{\prime}\right) \in M_{W^{\gamma *}(\kappa, \beta)}^{\gamma}$ and $E\left(\kappa, \beta^{\prime}\right) \in M_{W^{*}(\kappa, \beta)}$, since $E\left(\kappa, \beta^{\prime}\right) \triangleleft E(\kappa, \beta)$ and $M_{W^{\gamma *}(\kappa, \beta)}^{\gamma}, M_{W^{*}(\kappa, \beta)}$ start with the ultrapower by $E(\kappa, \beta)$.
By definability, then

$$
W^{\gamma^{*}}\left(\kappa, \beta^{\prime}\right) \in M_{W^{\gamma *}(\kappa, \beta)}^{\gamma} \text { and } W^{*}\left(\kappa, \beta^{\prime}\right) \in M_{W^{*}(\kappa, \beta)} .
$$

Also, for every $\beta^{\prime} \leq \beta$ and for every finite a with the measure $E\left(\kappa, \beta^{\prime}\right)(a)$ over $\kappa^{|a|}$ defined, we have

$$
E\left(\kappa, \beta^{\prime}\right)(a) \leq_{R K} W^{\gamma^{*}}(\kappa, \beta) \text { and } E\left(\kappa, \beta^{\prime}\right)(a) \leq_{R K} W^{*}(\kappa, \beta) .
$$

Again, this holds since the ultrapower starts with those by $E(\kappa, \beta)$.
The above allows to reflect the sequences

$$
\left\langle E(\kappa, \beta) \mid \beta<\omega_{1}\right\rangle,\left\langle W^{\gamma^{*}}(\kappa, \beta) \mid \beta+1<\gamma<\omega_{1}\right\rangle \text { and }\left\langle W^{*}(\kappa, \beta) \mid \beta<\omega_{1}\right\rangle
$$

down below κ and to define

$$
\left\langle E(\alpha, \beta) \mid \beta<\omega_{1}\right\rangle,\left\langle W^{\gamma *}(\alpha, \beta) \mid \beta+1<\gamma<\omega_{1}\right\rangle \text { and }\left\langle W^{*}(\alpha, \beta) \mid \beta<\omega_{1}\right\rangle,
$$

for $\alpha<\kappa$ in a set \mathcal{A} of measure one for the normal measure U over κ.
The point is that U is the normal measure over κ of every strongly compact measure $W^{*}(\kappa, \beta)$.
Denote the projection by to U by $n o r_{\beta}$. There are only ω_{1} many strongly compact measures $W^{*}(\kappa, \beta)$, so we can assume that there is a single function nor that combines all nor ${ }_{\beta}$'s. For every $\delta<\omega_{1}$ there is a set A_{δ} of $W^{*}(\kappa, \delta)$-measure one such that for every $P \in A_{\delta}$ the sequences

$$
\langle E(\kappa, \beta) \mid \beta<\delta\rangle,\left\langle W^{\gamma^{*}}(\kappa, \beta) \mid \beta+1<\gamma<\delta\right\rangle \text { and }\left\langle W^{*}(\kappa, \beta) \mid \beta<\delta\right\rangle
$$

will reflect down an ordinal $\alpha=\operatorname{nor}(P)$. Let

$$
B:=\bigcap_{\delta<\omega_{1}} n o r " A_{\delta} \text { and } A_{\delta}^{\prime}:=A_{\delta} \cap n o r^{-1 "} B
$$

By shrinking A_{δ}^{\prime} 's more, if necessary, we can assume that for any $\tau<\delta<\omega_{1}$ and any $\alpha \in B$, the restriction to τ of the sequences projected from A_{δ}^{\prime} is exactly the the sequences projected from A_{τ}^{\prime}. Let \mathcal{A} be such B.

Let $\beta+1<\gamma<\omega_{1}$. Consider $k_{E(\kappa, \beta+1), E(\kappa, \gamma)}: N_{E(\kappa, \beta+1)} \rightarrow N_{E(\kappa, \gamma)}$. By elementarity,

$$
k_{E(\kappa, \beta+1), E(\kappa, \gamma)}\left(i_{E(\kappa, \beta+1)}\left(\kappa^{++}\right)\right)=i_{E(\kappa, \gamma)}\left(\kappa^{++}\right) .
$$

In addition,

$$
k_{E(\kappa, \beta+1), E(\kappa, \gamma)} "\left(i_{E(\kappa, \beta+1)}\left(\kappa^{++}\right)\right)
$$

is unbounded in $i_{E(\kappa, \gamma)}\left(\kappa^{++}\right)$, since

$$
i_{E(\kappa, \beta+1)}\left(\kappa^{++}\right)=\sup \left\{i_{E(\kappa, \beta+1)}(f)(\kappa) \mid f: \kappa \rightarrow \kappa^{++}\right\}
$$

and

$$
i_{E(\kappa, \gamma)}\left(\kappa^{++}\right)=\sup \left\{i_{E(\kappa, \gamma)}(f)(\kappa) \mid f: \kappa \rightarrow \kappa^{++}\right\} .
$$

We will use $k_{E(\kappa, \beta+1), E(\kappa, \gamma)}$ to move from $\mathcal{P}_{\kappa}\left(i_{E(\kappa, \beta+1)}\left(\kappa^{++}\right)\right)$to $\mathcal{P}_{\kappa}\left(i_{E(\kappa, \xi)}\left(\kappa^{++}\right)\right)$, once $\gamma=$ $\xi+1$.

A crucial thing is that once we have $\beta+1<\gamma, \gamma+1<\delta<\omega_{1}$, then $k_{E(\kappa, \beta+1), E(\kappa, \gamma+1)}$ is in $M_{W^{*}(\kappa, \delta)} \simeq \operatorname{Ult}\left(V, W^{*}(\kappa, \delta)\right)$, since it starts with $E(\kappa, \delta+1)$ and $k_{E(\kappa, \beta+1), E(\kappa, \gamma+1)}$ is in $N_{E(\kappa, \delta+1)}$, the ultrapower by $E(\kappa, \delta+1)$.

2 Forcing.

We define here a strongly compact version of the Magidor supercompact forcing based on sequences of filters and ultrafilters

$$
\begin{gathered}
\left\langle W^{\gamma^{*}}(\kappa, \beta) \mid \beta+1<\gamma<\omega_{1}\right\rangle,\left\langle W^{*}(\kappa, \beta) \mid \beta<\omega_{1}\right\rangle, \\
\left\langle W^{\gamma^{*}}(\alpha, \beta) \mid \beta+1<\gamma<\omega_{1}\right\rangle \text { and }\left\langle W^{*}(\alpha, \beta) \mid \beta<\omega_{1}\right\rangle,
\end{gathered}
$$

for $\alpha<\kappa$ in \mathcal{A}.
A major compensation on luck of normality here is that each $W^{*}(\alpha, \beta)$ starts with $E(\alpha, \beta)$, which is a coherent sequence of $\left(\alpha, \alpha^{++}\right)$-extenders.
Further, once we decide to preserve κ^{++}, then the extenders $E(\kappa, \beta)$'s κ will be replaced by subextenders of lengthes below κ^{++}and $\left\langle W^{\gamma *}(\kappa, \beta) \mid \beta+1<\gamma<\omega_{1}\right\rangle,\left\langle W^{*}(\kappa, \beta) \mid \beta<\omega_{1}\right\rangle$ will be redefined accordingly.

For each $\alpha \in \mathcal{A} \cup\{\kappa\}$ let us fix disjoint sets

$$
\left\langle A(\alpha, \beta) \mid \beta<\omega_{1}\right\rangle
$$

such that $A(\alpha, \beta) \in W^{\beta+2 *}(\alpha, \beta)$. Recall that

$$
W^{\beta+2 *}(\alpha, \beta) \subseteq W^{\gamma *}(\alpha, \beta) \subseteq W^{*}(\alpha, \beta)
$$

for every $\gamma, \beta+2 \leq \gamma<\omega_{1}$. Further, let us always shrink to subsets of $A(\alpha, \beta)$ once dealing with sets of $W^{\gamma *}(\alpha, \beta)-$ measure one.
For $P \in \bigcup_{\beta<\omega_{1}} A(\alpha, \beta)$, denote by $o(P)$ the unique β with $P \in A(\alpha, \beta)$. Denote by $n o r(P)$ the projection of P to the normal measure over κ, i.e. the image of P under the projection map of $W^{*}(\alpha, o(P))$ to $E(\alpha, \beta)(\alpha)$. Note that typically $\operatorname{nor}(P)<P \cap \alpha$.

Definition 2.1 Let $\alpha \in \mathcal{A} \cup\{\kappa\}, \eta=\omega_{1}$, if $\alpha=\kappa$ and $\eta<\omega_{1}$, if $\alpha<\kappa$. We call a subtree of $\left[\mathcal{P}_{\alpha}(\theta)\right]^{<\omega}$ (where θ is large enough) a nice (α, η)-tree iff

1. $\operatorname{Lev}_{0}(T) \in \bigcap_{\beta<\eta} W^{*}(\alpha, \beta)$,
2. $P \in T$ implies $o(P)<\eta$,
3. for every $P \in T, \operatorname{Suc}_{T}(P) \in \bigcap_{o(P) \leq \beta<\eta} W^{*}(\alpha, \beta)$. Denote $\operatorname{Suc}_{T}(P) \cap A(\alpha, \beta)$ by $\operatorname{Suc}_{T}^{\beta}(P)$.
4. For every $P \in T$ which comes from a level >0, and every $\beta, o(P) \leq \beta<\eta$, we require $\operatorname{Suc}_{T}^{\beta}(P) \subseteq \operatorname{Suc}_{T}^{\beta}\left(P^{-}\right)$, where P^{-}is the immediate predecessor of P in T.

Define now (α, η)-good sets by induction on $\alpha \in \mathcal{A} \cup\{\kappa\}$ and $\eta \leq \omega_{1}$.
Definition 2.2 1. If $\eta=1$, then an $(\alpha, \eta)-\operatorname{good}$ set is just the same as a nice $(\alpha, \eta)-$ tree, which in this case has splitting only in $W^{*}(\alpha, 0)$.
2. if $\eta \geq 2$, then an $(\alpha, \eta)-\operatorname{good}$ set X is a pair $\langle T, F\rangle$, where
(a) T is a nice (α, η)-tree,
(b) F is a function with domain $\{P \in T \mid o(P)>0\}$ such that for every $P \in \operatorname{dom}(F)$, $F(P)$ is an $(\operatorname{nor}(P), o(P))-\operatorname{good}$ set.

Define now a direct extension order. We deal first with trees.

Definition 2.3 Let $\alpha \in \mathcal{A} \cup\{\kappa\}, \eta=\omega_{1}$, if $\alpha=\kappa$ and $\eta<\omega_{1}$, if $\alpha<\kappa$. Let T_{1}, T_{2} be nice $(\alpha, \eta)-$ trees. Set $T_{1} \leq^{*} T_{2}$ iff T_{2} is obtained from T_{1} by shrinking its levels.

Now we use induction in order to define a direct extension order on $(\alpha, \eta)-\operatorname{good}$ sets.
Definition 2.4 Let $X_{1}=\left\langle T_{1}, F_{1}\right\rangle, X_{2}=\left\langle T_{2}, F_{2}\right\rangle$ be $(\alpha, \eta)-\operatorname{good}$ sets. Set $X_{1} \leq^{*} X_{2}$ iff

1. $T_{1} \leq{ }^{*} T_{2}$,
2. for every $P \in \operatorname{dom}\left(F_{2}\right), F_{1}(P) \leq^{*} F_{2}(P)$.

Let $X=\langle T, F\rangle$ be an $(\alpha, \eta)-\operatorname{good}$ set and $P \in \operatorname{Lev}_{0}(T)$. Define a one step extension $X \subset P$ of X by P.

Definition 2.5 Define $X^{\wedge} P$ to be a pair $\left\langle T^{\wedge} P, F^{\wedge} P\right\rangle$, where

1. $T \subset P=\left\{Q \in T \mid Q>_{T} P\right\}$,
2. $F^{\frown} P=\left(F \upharpoonright T^{\frown} P\right) \cup\{(P, F(P))\}$.

Intuitively - the Magidor sequence will start now with P, everything in the tree T above P will remain (we will be allowed to shrink things there). In addition, we would like to keep the information below P, i.e. $F(P)$.

Let now $X \subset P$ be a one step extension of an $(\alpha, \eta)-$ good set. Define a one step extension of $X \subset P$ as follows:

Definition 2.6 There are two possibilities:

1. $Q \in \operatorname{Suc}_{T}(P)$ and we define $X^{\wedge} P^{\wedge} Q$ to be a pair $\left\langle T \subset P^{\wedge} Q, F^{\wedge} P^{\wedge} Q\right\rangle$, where
(a) $T \subset P \subset Q=\left\{R \in T \mid R>_{T} Q\right\}$,
(b) $F^{\frown} P^{\subset} Q=F \upharpoonright T^{\wedge} P^{\frown} Q$.

Or
2. $Q \in \operatorname{Lev}_{0}\left(T^{P}\right)$ (where $F(P)=\left\langle T^{P}, F^{P}\right\rangle$, i.e. T^{P} denotes the tree part of $F(P)$ and F^{P} its function part)
and we define $X^{\wedge} P^{\wedge} Q$ to be a pair $\left\langle T^{\wedge} P^{\wedge} Q, F^{\wedge} P^{\wedge} Q\right\rangle$, where
(a) $T^{\wedge} P^{\wedge} Q=T^{\wedge} P$,
(b) $F^{\frown} P \subset Q=\left(F \upharpoonright T^{\frown} P \backslash\{\langle P, F(P)\rangle\}\right) \cup\{\langle P, F(P) \subset Q\rangle\} \cup\left\{\left\langle Q, F^{P}(Q)\right\rangle\right\}$.

The intuition behind the first item is clear. In the second one, we move from α to $\operatorname{nor}(P)$ and add Q there. $F^{P}(Q)$ is a $(\operatorname{nor}(P), o(Q))$-good set. Its first coordinate is a tree. We prefer not to add it to T explicitly in order to keep T fully over α and not to mix with elements over $\operatorname{nor}(Q)$. However, it will be allowed to use elements of the tree of $F^{P}(Q)$ in further extensions.

If the second possibility occurs, then instead of writing $X \subset P \subset Q$ let us write $X^{\wedge} Q^{\wedge} P$, and this way preserve the sequence increasing.
If the first possibility occurs, then let us replace P with its modified version P^{Q} which we describe below. Note that if one prefer to dealing with ordinals instead of members of $\mathcal{P}_{\alpha}(\theta)$ and to develop a non-normal version of Magidor forcing, then there is no need in P^{Q}.
Set

$$
P^{Q}=(P \cap \operatorname{nor}(Q)) \cup\left\{C_{\eta}(Q) \mid \eta \in P \backslash \operatorname{nor}(Q)\right\}
$$

where C_{η} is the Cohen function which links $[i d]$ with η. This way P is turned into a typical member of a set of measure one over $\mathcal{P}_{\text {nor }(Q)}(Q \cap \alpha)$.

Continue by induction. Suppose that $X \frown P_{1} \frown \ldots \frown P_{n}$ is defined. Define $n+1-$ extension.
Definition 2.7 1. $Q \in \operatorname{Suc}_{T}\left(P_{n}\right)$ and we define $X \frown P_{1} \frown \ldots P_{n} Q$ to be a pair $\left\langle T^{\wedge} P_{1}^{\frown} \ldots \frown P_{n}\left(Q, F^{\frown} P_{1}^{\frown} \ldots P_{n}^{\complement} Q\right\rangle\right.$, where
(a) $T^{\frown} P_{1} \subset \ldots P_{n} \subset Q=\left\{R \in T \mid R>_{T} Q\right\}$,
(b) $F \frown P_{1}^{\frown} \ldots \frown P_{n} Q=F \upharpoonright T \frown P_{1} _\ldots \frown P_{n} Q$.

Or
2. $Q \in \operatorname{Lev}_{0}\left(T^{P_{i}}\right)$, for some $i, 1 \leq i \leq n$ (where $F\left(P_{i}\right)=\left\langle T^{P_{i}}, F^{P_{i}}\right\rangle$, i.e. $T^{P_{i}}$ denotes the tree part of $F\left(P_{i}\right)$ and $F^{P_{i}}$ its function part)

(a) $T \frown P_{1} \frown \ldots \frown P_{n} Q=T \frown P_{1} \ldots \frown P_{n}$,
(b) $F \subset P_{1} \frown \ldots \frown P_{n} Q=\left(F \upharpoonright T \frown P_{1} \frown \ldots \frown P_{n} \backslash\left\{\left\langle P_{i}, F\left(P_{i}\right)\right\rangle\right\}\right) \cup\left\{\left\langle P_{i}, F\left(P_{i}\right) \subset Q\right\rangle\right\} \cup$ $\left\{\left\langle Q, F^{P_{i}}(Q)\right\rangle\right\}$.

Again, if the second possibility occurs, then instead of writing $X \subset P_{1}^{\frown} \ldots P_{n}(Q$ let us write $X \frown P_{1}^{\frown} \ldots \frown P_{i-1} \frown Q \frown P_{i} \frown \ldots P_{n}$ and this way preserve the sequence increasing.

If the first possibility occurs, then let us replace $P_{j}, j \leq i$ with their modified versions P_{j}^{Q} as it was done above.

Define a direct order extension \leq^{*} on the set of n-extensions exactly as in Definition 2.4
Define now our forcing notion.

Definition 2.8 Let \mathcal{P} consists of all n-extensions of all $\left(\kappa, \omega_{1}\right)$-good sets, for every $n<\omega$.
Definition 2.9 Let $X \frown P_{1} \frown \ldots \frown P_{n}, Y \frown Q_{1} \frown \ldots \frown Q_{m} \in \mathcal{P}$. Set

$$
X \frown P_{1} \frown \ldots \frown P_{n} \geq^{*} Y \frown Q_{1} \frown \ldots \frown Q_{m}
$$

iff

1. $n=m$,
2. $X \subset P_{1} \frown \ldots \frown P_{n} \geq^{*} Y \frown Q_{1} \frown \ldots \frown Q_{n}$, as $n-$ extensions.

Define now the forcing order on \mathcal{P}.

Definition 2.10 Let $X \frown P_{1} \frown \ldots \frown P_{n}, Y \frown Q_{1} \frown \ldots \frown Q_{m} \in \mathcal{P}$. Set

$$
X^{\frown} P_{1} \frown \ldots \frown P_{n} \geq Y^{\frown} Q_{1} \frown \ldots \frown Q_{m}
$$

iff

1. $n \geq m$,
2. $P_{i}=Q_{i}$, for every $i, 1 \leq i \leq m$,
3. $Y^{\wedge} P_{1} \frown \ldots \frown P_{m} \frown P_{m+1} \frown \ldots \frown P_{n}$ is an $(n-m)-$ extension of $Y \frown P_{1} \frown \ldots \frown P_{m}$,
4. $Y \frown P_{1} \frown \ldots \frown P_{m} \frown P_{m+1} \frown \ldots \frown P_{n} \leq^{*} X \frown P_{1} \frown \ldots \frown P_{m} \frown P_{m+1} \frown \ldots \frown P_{n}$, as n-extensions.

Notation 2.11 Let us return to common notation and instead of writing $X \subset P_{1} \frown \ldots \frown P_{n}$ write $\left\langle P_{1}, \ldots, P_{n}, X\right\rangle$.

Lemma $2.12\left\langle\mathcal{P}, \leq, \leq^{*}\right\rangle$ satisfies the Prikry condition.
Proof. Let σ be a statement of the forcing language and $p \in \mathcal{P}$. Suppose for simplicity that the trunk of p is empty, i.e. p is of the form $\langle<\rangle, X\rangle$.
Let us call a condition $\left\langle P_{1}, \ldots, P_{n}, Z\right\rangle$ a good condition iff all its 1-extensions which come from the same measure conclude the same about σ, i.e.

- all of them force σ, or
- all of them force $\neg \sigma$, or
- all of them do not decide σ.

Claim 1 Let $\left\langle P_{1}, \ldots, P_{n}, Y\right\rangle \in \mathcal{P}$. Then there is $\left\langle P_{1}, \ldots, P_{n}, Z\right\rangle \geq^{*}\left\langle P_{1}, \ldots, P_{n}, Y\right\rangle$ which is a good condition.

Proof. Just shrink all relevant measure one sets.of the claim.
Claim 2 Let $\left\langle\rangle, Y\rangle \in \mathcal{P}\right.$. Then there is $\left\langle\rangle, Z\rangle \geq^{*}\langle\langle \rangle, Y\rangle\right.$ such that every $\left\langle P_{1}, \ldots, P_{n}, Z^{\prime}\right\rangle \geq\langle\langle \rangle, Z\rangle$ is a good condition.

Proof. First apply Claim 1 to $\left\langle\rangle, Y\rangle\right.$ and find a direct extension $\left\langle\left\rangle, Z_{0}\right\rangle\right.$ which is good. Then apply Claim 1 to each 1-element extension of $\left\langle\left\rangle, Z_{0}\right\rangle\right.$ and find its direct extension $\left\langle\left\rangle, Z_{1}\right\rangle\right.$ such that any one element extension of $\left\langle\left\rangle, Z_{1}\right\rangle\right.$ is a good condition.
Continue by induction and for every $n<\omega$ find $\left\langle\left\rangle, Z_{n}\right\rangle\right.$ such that any n-element extension of $\left\langle\left\rangle, Z_{n}\right\rangle\right.$ is a good condition.
Finally set $Z=\bigcap_{n<\omega} Z_{n}$.
\square of the claim.
Let us turn now to two element extensions. In contrast to one element extensions, we will have here a new principal situation to consider.

We call a condition $\left\langle P_{1}, \ldots, P_{n}, Z\right\rangle$ a 2 -good condition iff all its 2-extensions which come from the same measures conclude the same about σ, i.e.

- all of them force σ,
or
- all of them force $\neg \sigma$, or
- all of them do not decide σ.

Let $\left\langle\rangle, Z\rangle\right.$ be a condition as in Claim 2, i.e. such that every $\left\langle P_{1}, \ldots, P_{n}, Z^{\prime}\right\rangle \geq\langle\langle \rangle, Z\rangle$ is a good condition. Denote by T_{Z} the tree part of Z and by F_{Z} its function part, i.e. $Z=\left\langle T_{Z}, F_{Z}\right\rangle$. Suppose that $\langle P, Z\rangle$ is a one element extension of $\langle\rangle, Z\rangle$ and we extend it further by adding some Q from a higher measure than those of P. In such extension P should be replaced by P^{Q}. So this two element extension will be $\left\langle P^{Q}, Q, Z\right\rangle$.
Now this can be done an other way around. Thus we can first extend by adding Q, i.e. to $\langle Q, Z\rangle$ and only then pick an element P^{Q} from $F_{Z}(Q)$, assuming that it is there. Both ways result in the same condition $\left\langle P^{Q}, Q, Z\right\rangle$. So we need to argue either decides the same way.

Claim 3 Let $\left\langle\rangle, Z\rangle\right.$ be as above and $\beta<\gamma<\omega_{1}$. Then there is $\left\langle\left\rangle, Z^{*}\right\rangle \geq^{*}\langle\langle \rangle, Z\rangle\right.$ such that any two element extension of $\left\langle\left\rangle, Z^{*}\right\rangle\right.$ which comes from measures β and γ provides the same conclusion about σ without any dependence on the way it was created.

Proof. First we shrink the γ-th measure one set of $\operatorname{Lev}_{0}\left(T_{Z}\right)$ such that for any Q_{1}, Q_{2} the decisions by β-th measure one set of $\operatorname{Lev}_{0}\left(F_{Z}\left(Q_{1}\right)\right)$ and those of of $\operatorname{Lev}_{0}\left(F_{Z}\left(Q_{2}\right)\right)$ are the same. Denote the result by Z^{\prime}. Next we shrink Z^{\prime} to $Z^{\prime \prime}$ such that for β-th measure one set of $\operatorname{Lev}_{0}\left(T_{Z^{\prime \prime}}\right)$ we will have the decisions by $\gamma-$ th measure one set of $\operatorname{Suc}_{T_{Z^{\prime \prime}}}\left(P_{1}\right)$ and those of of $\operatorname{Suc}_{T_{Z^{\prime \prime}}}\left(P_{2}\right)$ are the same, for any $P_{1}, P_{2} \in \operatorname{Lev}_{0, \beta}\left(T_{Z^{\prime \prime}}\right)$.
We claim now that $Z^{*}:=Z^{\prime \prime}$ is as desired. Suppose otherwise.
Then there are $\left\langle P_{1}, Q_{1}, Z^{*}\right\rangle,\left\langle P_{2}, Q_{2}, Z^{*}\right\rangle$ 2-element extensions of $\left\langle\left\rangle, Z^{*}\right\rangle\right.$ from measures β, γ which disagree about σ, i.e. one, say $\left\langle P_{1}, Q_{1}, Z^{*}\right\rangle$ decides σ and $\left\langle P_{2}, Q_{2}, Z^{*}\right\rangle$ does not decide it or decide σ in the opposite fashion. Let us assume that $\left\langle P_{1}, Q_{1}, Z^{*}\right\rangle \Vdash \sigma$ and $\left\langle P_{2}, Q_{2}, Z^{*}\right\rangle$ does not decide σ.
This type of situation can occur only when this two conditions were obtained in the two different ways. Split into two cases.

Case 1. $\left\langle P_{1}, Q_{1}, Z^{*}\right\rangle$ was obtained by first picking an element of β and only then of γ. Then $\left\langle P_{2}, Q_{2}, Z^{*}\right\rangle$, necessarily, was obtained by first picking an element of γ and only then of β. By goodness and the choice of Z^{*}, then any two element extension which was obtained by first picking an element of β and only then of γ will force σ and any two element extension which was obtained by first picking an element of γ and only then of β will not decide σ.

Denote $\operatorname{Lev}_{0 \gamma}\left(T_{Z^{*}}\right)$ by A. For every $Q \in A$, denote $\operatorname{Lev}_{0 \beta}\left(T_{F_{Z^{*}}(Q)}\right)$ by B_{Q}. Then the function $Q \mapsto B_{Q}$ represents a set $B \in W^{* \gamma}(\kappa, \beta)$. But recall that $W^{* \gamma}(\kappa, \beta) \subseteq W^{*}(\kappa, \beta)$. Hence $B \in W^{*}(\kappa, \beta)$. In particular, $B \cap \operatorname{Lev}_{0 \beta}\left(T_{Z^{*}}\right) \neq \emptyset$. Pick some $P \in B \cap \operatorname{Lev}_{0 \beta}\left(T_{Z^{*}}\right)$. Then the function $Q \mapsto P^{Q}$ represents P in $\operatorname{Ult}\left(V, W^{*}(\kappa, \gamma)\right)$. So, the set $E:=\left\{Q \mid P^{Q} \in\right.$ $\left.B_{Q}\right\}$ is in $W^{*}(\kappa, \gamma)$. Pick now some $Q \in A \cap \operatorname{Suc}_{T_{Z^{*}, \gamma}}(P) \cap E$. Then $\left\langle P^{Q}, Q, Z^{*}\right\rangle \Vdash \sigma$, as
two step extension of $\left\langle\left\rangle, Z^{*}\right\rangle\right.$ obtained by first picking an element of β and only then of γ. On the other hand $P^{Q} \in B_{Q}$, and so $\left\langle P^{Q}, Q, Z^{*}\right\rangle$ can be viewed as a step extension of $\left\langle\left\rangle, Z^{*}\right\rangle\right.$ obtained by first picking an element of γ and only then of β. But this contradicts our assumption that extensions which are obtained this way do not decide σ.

Case 2. $\left\langle P_{1}, Q_{1}, Z^{*}\right\rangle$ was obtained by first picking an element of γ and only then of β. Similar to the previous case.
\square of the claim.
Next we apply Claim 3 to all possible $\beta<\gamma$. As a result a condition $\left\langle\left\rangle, Z_{2}\right\rangle \geq^{*}\langle\langle \rangle, Z\rangle\right.$ will be obtained such any two element extensions of it, which come from same measures agree about σ.

We proceed further by straightforward induction from n-extensions to $n+1$-extensions. Let us only deal with the following type of commutativity.
Consider 3-extensions. Let $\beta<\gamma<\delta<\omega_{1}$. Suppose that $Z^{\wedge} P^{\wedge} Q^{\wedge} R$ is a 3-element extension of Z with P being from β-th measure, Q being from $\gamma-$ th measure and R being from δ-th measure. Now, if P was picked first, than Q and finally R, then the result will be $\left\langle\left(P^{Q}\right)^{R}, Q^{R}, R, Z\right\rangle$. Note first that $\left(P^{Q}\right)^{R}=P^{Q}$, since $P^{Q} \subseteq Q \cap \kappa<\operatorname{nor}(R)$, and so it is not effected by switching from Q to Q^{R}.
Suppose now that P was added first, R after it and only then Q^{R}. So we have now $\left\langle\left(P^{R}\right)^{Q^{R}}, Q^{R}, R, Z\right\rangle$.
Let argue that for most Q 's, $\quad\left(P^{R}\right)^{Q^{R}}=P^{Q^{R}}$.
Consider the function $R \mapsto Q^{R}$ which represents Q in the ultrapower by the δ-th measure. P is represented by $R \mapsto P^{R}$. Let us look at the function $R \mapsto\left(P^{R}\right)^{Q^{R}}$. It represents P^{Q}. But note that $P^{Q} \subset Q \cap \kappa<\operatorname{nor}(R)$ and $\left(P^{R}\right)^{Q^{R}} \subset \operatorname{nor}(R)$. So P^{Q} does not move. Hence $\left(P^{R}\right)^{Q^{R}}=P^{Q}$.

Let $\left\langle P_{\beta} \mid \beta<\omega_{1}\right\rangle$ be a generic sequence. Denote $\operatorname{nor}\left(P_{\beta}\right)$ by κ_{β}, for every $\beta<\omega_{1}$. The next lemma is obvious.

Lemma 2.13 The sequence $\left\langle\kappa_{\beta} \mid \beta<\omega_{1}\right\rangle$ is an increasing continuous unbounded in κ sequence.

Let us deal now with successors and double successors of κ_{β}^{\prime} s.
Lemma 2.14 For every limit $\beta<\omega_{1}$, both $\left(\kappa_{\beta}^{+}\right)^{V}$ and $\left(\kappa_{\beta}^{++}\right)^{V}$ change their cofinality to ω, and both κ^{+}and κ^{++}change their cofinality to ω_{1}.

Proof. Let $\beta<\omega_{1}$ be a limit ordinal or $\beta=\omega_{1}$. In the last case κ will be just $\kappa_{\omega_{1}}$. We use $k_{E\left(\kappa_{\beta}, \gamma\right), E\left(\kappa_{\beta}, \delta\right)}$ in order to move P_{γ} to P_{δ}, for $\gamma<\delta<\beta$. Note that, if $\gamma<\delta<\eta<\beta$, then $k_{\kappa_{\beta}, \gamma, \delta}$ belongs basically to to the ultrapower with η-th measure. The direct limit of the system

$$
\left\langle\left\langle P_{\gamma} \mid \gamma<\beta\right\rangle,\left\langle k_{E\left(\kappa_{\beta}, \gamma\right), E\left(\kappa_{\beta}, \delta\right)} \mid \gamma<\delta<\beta\right\rangle\right\rangle
$$

will produce the desired cofinal sequence. Denote it by $\left\langle P_{\gamma}^{\beta} \mid \gamma<\beta\right\rangle$.
The point is that the measures that are used start with $\left(\kappa_{\beta}, \kappa_{\beta}^{++}\right)$-extenders. So we have a nice representation of all the ordinals below κ_{β}^{++}. Actually, the ordinals below κ_{β}^{+}are represented by the canonical functions, but in order to get to κ_{β}^{++}the extenders are used.
Note that $P_{\gamma} \cap \kappa_{\beta}$ does not move. It is the most important over κ it self. Thus, we will need $P_{\alpha}^{\omega_{1}} \cap\left(\kappa^{+}\right)^{V}$, which cardinality is at least $\left|P_{\alpha}\right| \gg \operatorname{nor}\left(P_{\alpha}\right)^{++}$(in V), in order to cover the set $\left\{\sup \left(P_{\gamma}^{\omega_{1}} \cap\left(\kappa^{+}\right)^{V}\right) \mid \gamma<\alpha\right\}$, for a limit $\alpha<\omega_{1}$. We refer to [2] where situations with coverings of small cardinalities were studied.

Deal with the principal case $\beta=\omega_{1}$. The case $\beta<\omega_{1}$ is similar.
Let us proceed as follows. Consider P_{0}, P_{1} and P_{2}. We have $P_{0} \cap \operatorname{nor}\left(P_{1}\right)$ is an ordinal below $\operatorname{nor}\left(P_{1}\right)$. The rest of P_{0} is spread inside the interval $\left[\operatorname{nor}\left(P_{1}\right),\left(\operatorname{nor}\left(P_{1}\right)\right)^{+3}\right)$. Note that $\left(\operatorname{nor}\left(P_{1}\right)\right)^{+3}<P_{1} \cap \operatorname{nor}\left(P_{2}\right)$.
We are interested in $\left(P_{0} \backslash \operatorname{nor}\left(P_{1}\right)\right) \cap\left(\operatorname{nor}\left(P_{1}\right)\right)^{++}$.
Recall that $P_{0} \in \mathcal{P}_{\text {nor }\left(P_{1}\right)}\left(\left(i_{E\left(\operatorname{nor}\left(P_{1}\right), o\left(P_{0}\right)\right)}\left(\operatorname{nor}\left(P_{1}\right)\right)^{++}\right)\right)$,
which corresponds over κ to $\mathcal{P}_{\kappa}\left(i_{E\left(\kappa, o\left(n o r\left(P_{0}\right)\right)\right.}\left(\kappa^{++}\right)\right)$. The embedding $k_{E\left(\kappa, o\left(P_{0}\right)\right), E\left(\kappa, o\left(P_{1}\right)\right)}$ moves the ordinal $i_{E\left(\kappa, o\left(P_{0}\right)\right)}(\kappa)$ to $i_{E\left(\kappa, o\left(P_{1}\right)\right)}(\kappa)$. The critical point of $k_{E\left(\kappa, o\left(P_{0}\right)\right), E\left(\kappa, o\left(P_{1}\right)\right)}$ is $\left(\kappa^{+3}\right)^{N_{E\left(\kappa, o\left(P_{0}\right)\right)}}$. So, κ^{++}does not move.

Let us denote $i_{E\left(\kappa, o\left(P_{\gamma}\right)\right)}(\kappa)$ by $\eta_{\gamma}, \gamma<\omega_{1}$. Then, $\eta_{\gamma}+\kappa^{++}$will move to $\eta_{\delta}+\kappa^{++}$, whenever $\gamma \leq \delta<\omega_{1}$. Each of P_{γ} 's will contribute its part in the interval $\left[\eta_{\gamma}, \eta_{\gamma}+\kappa^{++}\right)$and this way κ^{++}will be eventually covered.
By a simple density argument, for every $\tau<\kappa^{++}$there will be $n<\omega, \gamma_{1}<\ldots<\gamma_{n}<\omega_{1}$ and $Q \in \mathcal{P}_{\kappa}\left(i_{E(\kappa, o(Q))}\left(\kappa^{++}\right)\right)$such that

- $\left\langle P_{\gamma_{1}}, \ldots, P_{\gamma_{n}}, Q, X\right\rangle \in G(\mathcal{P})$,
- $i_{E(\kappa, o(Q))}\left(\kappa^{++}\right)+\tau \in Q$.

Suppose now that $\left\langle P_{\gamma_{1}}, \ldots, P_{\gamma_{n}}, Q, X\right\rangle \leq\left\langle P_{\gamma_{1}}, \ldots, P_{\gamma_{n}}, Q^{R}, R, X\right\rangle \in G(\mathcal{P})$. Then in R, $i_{E(\kappa, o(Q))}\left(\kappa^{++}\right)+\tau$ corresponds to $i_{E(\kappa, o(Q))}\left(\kappa^{++}\right)+\tau$. This means, in particular, that different τ 's will create different sequences (in the direct limit).
Now each sequence is generated by an element of one of P_{γ} 's, for $\gamma<\omega_{1}$. Hence,
$\bigcup_{\gamma<\omega_{1}} P_{\gamma}$ will actually cover a set of size κ^{++}.

Our next tusk will be to change slightly the above setting in order to preserve κ^{++}while still collapsing $\kappa_{\alpha}^{+}, \kappa_{\alpha}^{++}$etc., for α 's below ω_{1}.
It will be achieved by replacing the extenders $E(\kappa, \beta), \beta<\omega_{1}$, by their subextenders of lengthes below κ^{++}.

Let \mathfrak{A} be an elementary submodel of some H_{θ}, with θ big enough, of cardinality κ^{+}, closed under κ-sequences and with everything relevant inside. We cut all the extenders to \mathfrak{A}. Namely each $E(\kappa, \beta), \beta<\omega_{1}$ is replaced by $\tilde{E}(\kappa, \beta)=E(\kappa, \beta) \upharpoonright \mathfrak{A}:=E(\kappa, \beta) \upharpoonright \kappa^{++} \cap \mathfrak{A}$. Consider $i_{\tilde{E}(\kappa, \beta)}: V \rightarrow N_{\tilde{E}(\kappa, \beta)} \simeq \operatorname{Ult}(V, \tilde{E}(\kappa, \beta))$. Let $\tilde{\eta}_{\kappa \beta}=i_{\tilde{E}(\kappa, \beta)}\left(\kappa^{++} \cap \mathfrak{A}\right)$.
Then we define filters and ultrafilters as before but instead of $\mathcal{P}_{\kappa}\left(\eta_{\kappa \beta}\right)$ they will be on $\mathcal{P}_{\kappa}\left(\tilde{\eta}_{\kappa \beta}\right)$, where $\eta_{\kappa \beta}=i_{E(\kappa, \beta)}\left(\kappa^{++}\right)$.
The definability of this filters and ultrafilters allows to apply elementary embedding

$$
k_{\tilde{E}(\kappa, \beta), E(\kappa, \beta)}: N_{\tilde{E}(\kappa, \beta)} \rightarrow N_{E(\kappa, \beta)}
$$

in order to move the things to $N_{\tilde{E}(\kappa, \beta)}$.
Define the forcing \mathcal{P} as before only implementing the change made over $\kappa . \kappa^{++}$will not be collapsed now since the present \mathcal{P} satisfies κ^{++}c.c. . The point is that $\tilde{\eta}_{\kappa \beta}<\kappa^{++}$, for every $\beta<\omega_{1}$.

References

[1] M. Foreman and H. Woodin, The generalized continuum hypothesis can fail everywhere, Ann. of Math., (2) 133(1991), no. 1, 135.
[2] M. Gitik, Silver type theorems for collapses.
[3] M. Magidor, On the singular cardinal problem I, Israel J. Math.28(1977),no1-2,1-31.
[4] L. Radin, Adding closed cofinal sequences to large cardinals, Ann. Math. Logic 22(1982), no. 3, 243-261.

[^0]: ${ }^{1}$ Note that the resulting ultrapower will be the same if we change the order, i.e. first apply $E(\kappa, \beta)$ and then the image of $\mathcal{V}_{\beta+1}$.
 ${ }^{2}$ Assume that we forced such functions initially and now only use them changing some values.

[^1]: ${ }^{3}$ We have κ^{++}-many generators. For a generator τ we use the Cohen function f_{τ}.

