Non-homogeneity of Quotients of Prikry Forcings

Moti Gitik ${ }^{1}$ and Eyal Kaplan
Tel Aviv University

[^0]
Abstract

We study non-homogeneity of quotients of Prikry and tree Prikry forcings with non-normal ultrafilters over some natural distributive forcing notions.

Introduction

Let $\left\langle Q, \leq_{Q}\right\rangle$ be a κ-distributive forcing notion of cardinality κ. For $q \in Q$ let $Q / q=\left\{p \in Q \mid p>_{Q} q\right\}$. Consider $F_{Q / q}=\{D \subseteq Q / q \mid D$ is a dense open $\}$, for every $q \in Q$. It is a κ-complete filter over a set of cardinality κ. Assuming large cardinals, for example, if κ is a κ-compact cardinal, then every $F_{Q / q}$ extends to a κ-complete ultrafilter $F_{Q / q}^{*}$. Let $\vec{F}^{*}=\left\langle F_{Q / q}^{*} \mid q \in Q\right\rangle$.
Force with the corresponding tree Prikry forcing $P_{\vec{F}^{*}}$. There will be a V-generic subset of Q in the extension.

We will study the resulting quotient forcing.
Our goal will be to prove the consistency of a strong occurrence of non-homogeneity of this forcing:

Theorem. Consistently from κ^{+}-supercompactness of κ, for every non-trivial, κ-distributive forcing notion Q with $|Q|=\kappa$, there exists a choice of measures \vec{F}^{*}, such that the following property holds: Given two generic Prikry sequences $\left\langle p_{n}: n<\omega\right\rangle,\left\langle q_{n}: n<\omega\right\rangle$ for $P_{\vec{F}^{*}}$ such that $\left\langle q_{n}: n<\omega\right\rangle \in V\left[\left\langle p_{n}: n<\omega\right\rangle\right]$, it follows that $\left\langle p_{n}: n<\omega\right\rangle=\left\langle q_{n}: n<\omega\right\rangle$.

This extends the main result of Koepke, Rasch and Schlicht [5] which deals with normal measures only.

In the second chapter, we force with the standard Prikry forcing $P_{F^{*}}$, where $F^{*}=F_{Q}^{*}$ is a κ-complete ultrafilter which extends the filter of dense open subsets of Q. We will study the possible consequences of having-

$$
\left\langle q_{n}: n<\omega\right\rangle \in V\left[\left\langle p_{n}: n<\omega\right\rangle\right]
$$

for two disjoint generic Prikry sequences $\left\langle p_{n}: n<\omega\right\rangle,\left\langle q_{n}: n<\omega\right\rangle$. We will prove that this induces a non-trivial projection of $F^{* n}$ onto F^{*}, for some $n<\omega$.

Notations

1. Forcing: We force over the ground model V. Given a forcing notion $\left\langle Q,<_{Q}\right\rangle$ and elements $p, q \in Q, p>_{Q} q$ means " p extends q ". Let $Q / q=$ $\left\{p \in Q: p \geq_{Q} q\right\}$ be the cone of Q above q. If $G \subseteq Q$ is generic over V, then, for every P-name $\underset{\sim}{\sigma},(\underset{\sim}{\sigma})_{G}$ is the interpretation of $\underset{\sim}{\sigma}$ in $V[G]$.
2. Sequences: The set of finite increasing sequences of ordinals below a cardinal κ in denoted by $[\kappa]^{<\omega}$.

We extend this notation to strictly increasing finite sequences of elements in a forcing notion $\left\langle Q,<_{Q}\right\rangle:[Q]^{<\omega}$ is the set of sequences $\left\langle q_{0}, \ldots, q_{n}\right\rangle$, where $q_{i+1}>_{Q} q_{i}$ for every $0 \leq i \leq n-1$. The set $[Q]^{n}$ of increasing sequences of length n is defined similarly. In the case where $n=0,[Q]^{0}=$ $\{\rangle\}$, i.e., the set which includes only the empty sequence.

Given a sequence $\vec{a}=\left\langle a_{0}, \ldots, a_{n}\right\rangle$, we denote it's length by $\operatorname{lh}(\vec{a})=n+1$. The length of the empty sequence is 0 . If $\left\langle Q,<_{Q}\right\rangle$ is a forcing notion and $\vec{a} \in[Q]^{n}$, the maximal coordinate of \vec{a} is denoted by $\operatorname{mc}(\vec{a})=a_{n}$. If \vec{a} is the empty sequence, we set artificially $\operatorname{mc}(\vec{a})=0_{Q}$.

We use the notation \frown for concatenation of sequences: Given sequences $t=\left\langle\alpha_{0}, \ldots, \alpha_{n}\right\rangle, s=\left\langle\beta_{0}, \ldots, \beta_{n}\right\rangle$, let $t \subset s$ be the sequence -

$$
\left\langle\alpha_{0}, \ldots, \alpha_{n}, \beta_{0}, \ldots, \beta_{n}\right\rangle
$$

(of course, $[\kappa]^{<\omega}$ and $[Q]^{<\omega}$ are not closed under concatenations).
3. Trees: If $\left\langle T,\left\langle_{T}\right\rangle\right.$ is a tree and $t \in T$, then $\operatorname{Succ}_{T}(t)$ is the set of immediate successors of t in T. We mostly work with (sub-trees of) trees of the form $[Q]^{<\omega}$, where Q is a forcing notion, ordered by \triangleleft,

$$
\left\langle a_{0}, \ldots, a_{n}\right\rangle \triangleleft\left\langle b_{0}, \ldots, b_{m}\right\rangle
$$

if and only if $m \geq n$, and for every $0 \leq i \leq n, a_{i}=b_{i}$.
Under these settings, for every $t \in T$, we denote $T_{t}=\{s \in T: s \triangleleft t\}$.
4. Ultrafilters: Given an ultrafilter V on κ and a function $f: \kappa \rightarrow \kappa$, denote $f_{*} V=\left\{A \subseteq \kappa: f^{-1} A \in V\right\}$. Also, for ultrafilters V, W, denote $V \leq_{R K} W$ if for some function $f: \kappa \rightarrow \kappa, V=f_{*} W$ (this is the Rudin-Keisler order). If $V \leq_{R K} W \leq_{R K} V$, denote $V \equiv_{R K} W$.

Given a measure U on a cardinal κ and a function $f: \kappa \rightarrow V,[f]_{U}$ is the standard equivalence class of f in the ultrapower construction.

Preliminaries

We assume familiarity with forcing and large cardinals. We will use some standard arguments about distributive forcing notions, quotient forcings and limits of ultrafilters. For sake of completeness, we provide the relevant details in this section.

0.1 Distributivity

Definition 0.1.1. Given an uncountable cardinal κ, we say that a forcing notion $\left\langle Q,<_{Q}\right\rangle$ is κ-distributive if forcing with Q adds no new $<\kappa$ sequences of ordinals.

The following is a well known (See, for example, [4]):
Proposition 0.1.2. Let κ be an uncountable cardinal, and $\left\langle Q,<_{Q}\right\rangle$ a separative forcing notion. The following are equivalent:

1. Q is κ-distributive.
2. For every $\xi<\kappa$ and a sequence $\left\langle D_{\alpha}: \alpha<\xi\right\rangle$ of dense open subsets of Q,

$$
\bigcap_{\alpha<\xi} D_{\alpha}
$$

is dense and open.
3. For every $\xi<\kappa, q \in Q$ and for every sequence $\left\langle D_{\alpha}: \alpha<\xi\right\rangle$ of dense open subsets of Q above q,

$$
\bigcap_{\alpha<\xi} D_{\alpha}
$$

is dense and open above q.
Remark 0.1.3. The last proposition will be applied as follows: Given a separative, κ-distributive forcing notion, $\left\langle Q,<_{Q}\right\rangle$, and $q \in Q$, let -

$$
F_{q}=\{E \subseteq Q / q: E \text { contains a dense open subset } D \text { of } Q / q\}
$$

where $Q / q=\left\{p \in Q: p>_{Q} q\right\}$. Then F_{q} is a κ-complete filter on Q / q. Under a suitable large cardinal assumption, F_{q} can be extended to a κ-complete ultrafilter, F_{q}^{*}.

The following lemma will be useful later:
Lemma 0.1.4. Let Q be a separative, κ-distributive notion of forcing of cardinality κ. Then Q can be partitioned to κ-many disjoint dense subsets.

Proof. Assume that $Q=\left\{q_{\alpha}: \alpha<\kappa\right\}$. For every $A \subseteq Q$ with $|A|<\kappa$, let -

$$
E(A)=\bigcap_{q \in A}\left\{p \in Q: p>_{Q} q \text { or } p, q \text { are incompatible }\right\}
$$

Then $E(A)$ is a dense and open subset of Q, disjoint from A.
Let $G: \kappa \rightarrow \kappa \times \kappa$ be Godel's Pairing function. We define a sequence $\left\langle p_{\xi}: \xi<\right.$ $\kappa\rangle$ as follows: Assume that $\eta<\kappa$ and $\left\langle p_{\xi}: \xi<\eta\right\rangle$ were defined. Let us define p_{η}. Assume that $G(\eta)=(\alpha, \beta)$. Choose $p_{\eta} \in E\left(\left\{p_{\xi}: \xi<\eta\right\}\right)$ such that p_{η} extends q_{β}. This finishes the construction.

Set, for every $\alpha<\kappa, D_{\alpha}=\left\{p_{\xi}: \exists \beta<\kappa G(\xi)=(\alpha, \beta)\right\}$. We claim that D_{α} is dense for every $\alpha<\kappa$. Indeed, given $q_{\beta} \in Q$, let $\xi=G^{-1}(\alpha, \beta)$. Then $p_{\xi} \in D_{\alpha}$ and extends q_{β}.

By our construction, the dense sets $\left\langle D_{\alpha}: \alpha<\kappa\right\rangle$ are pairwise disjoint.

0.2 Quotient Forcings

Suppose that P, Q are two separative forcing notions, such that every generic extension $V[G]$ for P, contains a generic set $H \in V[G]$ for Q over V. Under these settings, we describe a forcing notion in $V[H]$ whose generic extensions could be obtained by forcing directly with P over V.

We assume here that Q is a complete boolean algebra. This will not be the case in further applications, but we can always replace Q with it's completion, $\mathrm{RO}(Q)$ (i.e., the complete boolean algebra in which Q densely embeds. To be precise, we should remove from $\mathrm{RO}(Q)$ the strongest element, ${ }^{0} \mathrm{RO}(Q)$.

Definition 0.2.1. A projection $\pi: P \rightarrow Q$ is a function which satisfies:

1. If p^{\prime} extends p, then $\pi\left(p^{\prime}\right)$ extends $\pi(p)$.
2. For every $p \in P, \pi^{\prime \prime}(P / p)$ is dense above $\pi(p)$ in Q.

We state some standard properties, which are presented with more details in [4], for example.

Proposition 0.2.2. Assume that P, Q are separative forcing notions. Suppose that $\underset{\sim}{H}$ is a P-name for a generic set for Q, and this is forced by the weakest condition in P. Define a function $\pi: P \rightarrow Q$ as follows: for every $p \in P$,

$$
\pi(p)=\prod\{q \in Q: p \Vdash \check{q} \in \underset{\sim}{\underset{\sim}{H}}\}
$$

Then π is a projection.
Definition 0.2.3. Suppose that P, Q are separative forcing notions, and $\pi: P \rightarrow$ Q is a projection. Assume that H is Q-generic over V. Define, in $V[H]$, the quotient forcing, $P / H=\{p \in P: \pi(p) \in H\}$, ordered by the order induced from P.

Proposition 0.2.4. Let P, Q be as in the last definition. Then every generic set G for P / H is generic for P over V as well. Also, $V[H][G]=V[G]$.

Claim 0.2.5. Let P, Q be as above. Assume that $\underset{\sim}{H}$ is a P-name, forced by the weakest condition in P to be Q-generic over V. Let $\pi: P \rightarrow Q$ be the induced projection. Let G be P-generic over V, and $(\underset{\sim}{H})_{G}=H$. Then for every generic set G^{\prime} for the quotient forcing P / H over $V[H],(\underset{\sim}{H})_{G^{\prime}}=H$.

Proof. Assume first that in $V\left[G^{\prime}\right], h \in(\underset{\sim}{H})_{G^{\prime}}$. Then for some $p \in G^{\prime}, p \Vdash$ $\check{h} \in \underset{\sim}{H}$. Therefore $\pi(p) \in H$, and $\pi(p)$ extends h; Thus, $h \in H$. So in $V\left[G^{\prime}\right]$, $(\underset{\sim}{H})_{G^{\prime}} \subseteq H$. But $(\underset{\sim}{H})_{G^{\prime}}, H$ are Q-generic over V, so $(\underset{\sim}{H})_{G^{\prime}}=H$.

0.3 Limits of Ultrafilters

Definition 0.3.1. Assume that U, W and V_{α}, for every $\alpha<\kappa$, are ultrafilters on κ. Then $U=W-\lim \left\langle V_{\alpha}: \alpha<\kappa\right\rangle$ means that, for every $X \subseteq \kappa$,

$$
X \in U \Longleftrightarrow\left\{\alpha<\kappa: X \in V_{\alpha}\right\} \in W
$$

Definition 0.3.2. A sequence $\left\langle V_{\alpha}: \alpha<\kappa\right\rangle$ of ultrafilters on κ is called discrete, if there exists a partition $\left\langle A_{\alpha}: \alpha<\kappa\right\rangle$ of κ such that $A_{\alpha} \in V_{\alpha}$ for every $\alpha<\kappa$.

The next lemma is well known:

Lemma 0.3.3. Every sequence of pairwise distinct normal ultrafilters is discrete.

Definition 0.3.4. Let U, W be ultrafilters on κ. We say that $W \leq_{R F} U$ (RudinFrolik order) if there exists a discrete sequence $\left\langle V_{\alpha}: \alpha<\kappa\right\rangle$ of ultrafilters on κ, such that $U=W-\lim \left\langle V_{\alpha}: \alpha<\kappa\right\rangle$.

The following lemmas are well known as well; For sake of completeness, we provide the proof here.

Lemma 0.3.5. $W \leq_{R F} U \rightarrow W \leq_{R K} U$.

Proof. Suppose that $\left\langle V_{\alpha}: \alpha<\kappa\right\rangle$ is a discrete sequence of ultrafilters such that $U=W-\lim \left\langle V_{\alpha}: \alpha<\kappa\right\rangle$. Let $\left\langle A_{\alpha}: \alpha<\kappa\right\rangle$ be a partition of κ, such that $A_{\alpha} \in V_{\alpha}$ for every $\alpha<\kappa$.

Let $h: \kappa \rightarrow \kappa$ be the function $h(x)=\alpha \Longleftrightarrow x \in A_{\alpha}$, i.e., $h(x)$ is the unique index α such that $x \in A_{\alpha}$. Then $X \in W \Longleftrightarrow h^{-1} X \in U$, since $h^{-1}(X)=\bigcup_{\alpha \in X} A_{\alpha}$. In particular, $W \leq_{R K} U$.
Proposition 0.3.6. Suppose that $U=W-\lim \left\langle V_{\alpha}: \alpha<\kappa\right\rangle$, where $\left\langle V_{\alpha}: \alpha<\kappa\right\rangle$ is a discrete sequence of ultrafilters measures on κ.

Let $M_{U} \simeq \operatorname{Ult}(V, U), M_{W} \simeq \operatorname{Ult}(V, W)$ be the ultrapowers of U, W, with corresponding elementary embeddings j_{U}, j_{W}. Define $V^{\prime} \in M_{W}$ as follows -

$$
V^{\prime}=j_{W}\left(V_{\alpha}: \alpha<\kappa\right)\left([I d]_{W}\right)
$$

Then V^{\prime} is a measure on $j_{W}(\kappa)$ and $M_{U} \simeq \operatorname{Ult}\left(M_{W}, V^{\prime}\right)$. Moreover, if j^{\prime} is the ultrapower embedding of V^{\prime}, then $j^{\prime} \circ j_{W}=j_{U}$.

Proof. By elementarity, V^{\prime} is a measure on $j_{W}(\kappa)$. It suffices to prove that Ult (V, U) and Ult $\left(M_{W}, V^{\prime}\right)$ are isomorphic, and thus have the same transitive collapse. We define an isomorphism, definable in $V, \phi: \operatorname{Ult}(V, U) \rightarrow$ Ult $\left(M_{W}, V^{\prime}\right)$, as follows:

$$
\phi\left([f]_{U}\right)=\left[j_{W}(f)\right]_{V^{\prime}}
$$

for every function f with domain κ. Let us prove that ϕ is well-defined, and an isomorphism. Suppose that $[f]_{U}=[g]_{U}$. Then $\{\alpha<\kappa: f(\alpha)=g(\alpha)\} \in U$, and in the ultrapower by W,

$$
\left\{\alpha<j_{W}(\kappa): j_{W}(f)(\alpha)=j_{W}(g)(\alpha)\right\} \in V^{\prime}
$$

thus, $\left[j_{W}(f)\right]_{V^{\prime}}=\left[j_{W}(g)\right]_{V^{\prime}}$.
Proving elementarity is similar. Let us prove that ϕ is onto. Assume that $[f]_{V^{\prime}} \in \operatorname{Ult}\left(M_{W}, V^{\prime}\right)$. For some $g: \kappa \rightarrow V, f=[g]_{W}$. Since $f: j_{W}(\kappa) \rightarrow M_{W}$ is a function, we can assume without loss of generality that, for every $\beta<\kappa, g(\beta)$ is a function from κ to V. Now, define $f^{\prime}: \kappa \rightarrow \kappa$ as follows: For every $\alpha<\kappa$, set $f^{\prime}(\alpha)=g\left(\beta_{\alpha}\right)(\alpha)$, where β_{α} is the unique index β such that $\alpha \in A_{\beta}$. We claim that $\phi\left(\left[f^{\prime}\right]_{U}\right)=[f]_{V^{\prime}}$. It suffices to prove that -

$$
\left\{\alpha<j_{W}(\kappa): j_{W}\left(f^{\prime}\right)(\alpha)=[g]_{W}(\alpha)\right\} \in V^{\prime}
$$

or -

$$
\left\{\beta<\kappa:\left\{\alpha<\kappa: f^{\prime}(\alpha)=g(\beta)(\alpha)\right\} \in V_{\beta}\right\} \in W
$$

This holds: Indeed, fix $\beta<\kappa$. Then $\left\{\alpha<\kappa: f^{\prime}(\alpha)=g(\beta)(\alpha)\right\} \supseteq A_{\beta} \in V_{\beta}$.
Let us prove the equality $j^{\prime} \circ j_{W}=j_{U}$. Denote, for every $x \in V$, the function $c_{x}: \kappa \rightarrow V$, defined as follows: $\forall \alpha<\kappa, c_{x}(\alpha)=x$. Now, for every $x \in V$,

$$
\phi\left(\left[c_{x}\right]_{U}\right)=\left[j_{W}\left(c_{x}\right)\right]_{V^{\prime}}=j^{\prime} \circ j_{W}(x)
$$

where the last equality can be easily checked (we slightly abused the notation and identified elements in $\operatorname{Ult}\left(M_{W}, V^{\prime}\right)$ with their image under the transitive collapse).

Chapter 1

Tree Prikry Forcing

1.1 Definitions and Basic Properties

Definition 1.1.1. κ is a κ-compact cardinal if every κ-complete filter on κ can be extended to a κ-complete ultrafilter on κ.

Let κ be a κ-compact cardinal. Consider a κ-distributive forcing notion $\left\langle Q,<_{Q}\right\rangle$ of cardinality κ. Let $[Q]^{<\omega}$ be the full tree of finite $<_{Q}$-increasing sequences of elements of Q, ordered by end-extensions, i.e.,

$$
[Q]^{<\omega}=\left\{\left\langle\nu_{1}, \ldots, \nu_{n}\right\rangle: n<\omega, \nu_{i} \in Q \text { and } \nu_{1}<_{Q} \nu_{2}<_{Q} \ldots<_{Q} \nu_{n}\right\}
$$

For $t=\left\langle a_{1}, \ldots, a_{n}\right\rangle, s=\left\langle b_{1}, \ldots, b_{m}\right\rangle \in[Q]^{<\omega}$, denote $t \triangleleft s$ if $n \leq m$ and for every $i=1, \ldots, n, a_{i}=b_{i}$. For every non-empty sequence $t=\left\langle a_{1}, \ldots, a_{n}\right\rangle \in$ $[Q]^{<\omega}$, set $\operatorname{mc}(t)=a_{n}$. If $t=\langle \rangle$, set artificially $\operatorname{mc}(t)=0_{Q}$, where 0_{Q} is the weakest condition of Q.

For every $q \in Q$, denote $Q / q=\left\{p \in Q: p \geq_{Q} q\right\}$. This is the cone of Q above q.

Remark 1.1.2. If Q is separative, then, for every $q \in Q,|Q / q|=\kappa$. Indeed, else, if $Q / q=\left\{p_{\alpha}: \alpha<\xi\right\}$ for some $\xi<\kappa$, define $D_{\alpha}=\left\{p \in Q: p>_{Q}\right.$ p_{α} or $\left.p \perp p_{\alpha}\right\}$. Since Q is separative, D_{α} is dense and open for every $\alpha<\xi$. Then $(Q / q) \cap \bigcap_{\alpha<\xi} D_{\alpha}=\emptyset$, a contradiction.

For every $t \in[Q]^{<\omega}$, let F_{t} be the κ-complete filter generated by the subsets of Q, which are dense and open above $\operatorname{mc}(t)-$

$$
F_{t}=\{E \subseteq Q / \operatorname{mc}(t): D \subseteq E \text { for some dense open subset } D \text { of } Q / \operatorname{mc}(t)\}
$$

By κ-compactness of κ, for every $t \in[Q]^{<\omega}$, there exists a κ-complete ultrafilter, F_{t}^{*}, which extends F_{t}. Denote $\vec{F}^{*}=\left\langle F_{t}^{*}: t \in[Q]^{<\omega}\right\rangle$ (in the next sections, we will assume κ^{+}-supercompactness of κ, and choose F_{t}^{*} more carefully).

Let us present a Prikry type forcing $P_{\vec{F}^{*}}$. We follow the presentation and notations from Gitik's handbook article [2].

Definition 1.1.3. Let $t \in[Q]^{<\omega}$. A tree $T \subseteq[Q]^{<\omega}$ is a $\left\langle F_{s}^{*}: s \in[Q]^{<\omega}\right\rangle$-tree with trunk t if -

1. $T \subseteq[Q]^{<\omega}$, ordered by end-extensions.
2. t is the trunk of T, i.e., for every $s \in T, s \triangleleft t$ or $t \triangleleft s$.
3. For every $s \in T$ such that $t \triangleleft s, \operatorname{Succ}_{T}(s)=\{q \in Q: s \frown\langle q\rangle \in T\} \in F_{s}^{*}$.

Let $\left\langle P_{\vec{F}^{*}}, \leq, \leq^{*}\right\rangle$, consist of elements of the form $\langle t, T\rangle$, where $t \in[Q]^{<\omega}$ and $T \subseteq[Q]^{<\omega}$ is a $\left\langle F_{s}^{*}: s \in[Q]^{<\omega}\right\rangle$-tree with trunk t. We say that $\langle t, T\rangle$ extends $\langle s, S\rangle$ if $T \subseteq S$ (in particular, $t \triangleright s$). If, in addition, $t=s$, we say that $\langle t, T\rangle$ is a Direct Extension of $\langle s, S\rangle$, and denote it by $\langle t, T\rangle \geq^{*}\langle s, S\rangle$.

We will show some Prikry-type properties of $\left\langle P_{\vec{F}^{*}}, \leq, \leq^{*}\right\rangle$. First, we define the Prikry sequence corresponding to a generic set $G \subseteq P$.

Lemma 1.1.4. Let G be a $P_{\vec{F}^{*}}$-generic set. Then-

$$
C=\cup\left\{t \in[Q]^{<\omega}: \exists T\langle t, T\rangle \in G\right\}
$$

is $a<_{Q}$-increasing ω-sequence (we refer to it as the Prikry sequence corresponding to G). Moreover, $V[G]=V[C]$, and $V[G]$ contains an ω-sequence of ordinals, which is cofinal in κ.

Proof. First, we show that the set C is, indeed, an ω-sequence. For every pair of compatible elements $\langle t, T\rangle,\langle s, S\rangle, t \triangleright s$ or $t \triangleleft s$. Therefore, the Prikry sequence $\cup\left\{t \in[Q]^{<\omega}: \exists T\langle t, T\rangle \in G\right\}$ is well defined. We also note that, given $n<\omega$, the set $D_{n}=\{\langle t, T\rangle: \operatorname{lh}(t) \geq n\}$ is dense in $P_{\vec{F}^{*}}$. Therefore, the length of the Prikry sequence is ω. Clearly, it's $<_{Q}$-increasing, as a union of such sequences. It's not hard to see that $G \in V[C]$, since $G=\left\{\langle t, T\rangle \in P_{\vec{F}^{*}}: \forall n<\omega C \upharpoonright n \in T\right\}$.

It remains to show that κ changes it's cofinality in $V[G]$. In V, fix a bijection $f: Q \rightarrow \kappa$. Let $\left\langle p_{n}: n<\omega\right\rangle \in V[G]$ be the Prikry sequence corresponding to G. We show that $\left\{f\left(p_{n}\right): n<\omega\right\}$ is cofinal in κ in $V[G]$. Let $\alpha<\kappa$. Define,
in V, the set $D_{\alpha}=\{\langle t, T\rangle: f(\operatorname{mc}(t)) \geq \alpha\}$. It suffices to prove that D_{α} is dense in $P_{\vec{F}^{*}}$. Indeed, Take arbitrary $\langle t, T\rangle \in P_{\vec{F}^{*}}$. We note that $f^{-1 \prime \prime} \alpha$ is of cardinality $<\kappa$, so $f^{-1 \prime \prime} \alpha \notin F_{t}^{*}$. Now, choose $q \in \operatorname{Succ}_{T}(t)$ with $f(q) \geq \alpha$. Then $\left\langle t^{\frown}\langle q\rangle, T\right\rangle \in D$.

Lemma 1.1.5. Let $T \subseteq[Q]^{<\omega}$ be a a $\left\langle F_{s}^{*}: s \in[Q]^{<\omega}\right\rangle$-tree with trunkt. Assume that $\alpha<\kappa$, and $f: T \rightarrow \alpha$ is some function. Then there exists $a\left\langle F_{s}^{*}: s \in\right.$ $\left.[Q]^{<\omega}\right\rangle$-tree $S \subseteq T$ with trunk t, such that, for every $n<\omega, f \upharpoonright \operatorname{Lev}_{n}(S)$ is constant.

Proof. Assume for simplicity that $t=\langle \rangle$. First, let us prove the claim for each $n<\omega$ separately. This is clear for $n=0$. We proceed by induction on $n<\omega$. Assume the claim holds for n, and let us prove it for $n+1$. For every $q \in \operatorname{Lev}_{1}(T)$, let $T_{q}=\left\{\left\langle q_{1}, \ldots, q_{m}\right\rangle \in[Q]^{<\omega}:\left\langle q, q_{1}, \ldots, q_{m}\right\rangle \in T\right\}$. Let $f_{q}: T_{q} \rightarrow \alpha$ be defined as follows: $f_{q}\left(\left\langle q_{1}, \ldots, q_{m}\right\rangle\right)=f\left(\left\langle q, q_{1}, \ldots, q_{m}\right\rangle\right)$. Then there exists $S_{q} \subseteq T_{q}$ and $\alpha_{q}<\alpha$ such that $f_{q}\left(\left\langle q_{1}, \ldots, q_{n}\right\rangle\right)=\alpha_{q}$ for every $\left\langle q_{1}, \ldots, q_{n}\right\rangle \in S_{q}$. Now, take $A \in F_{\langle \rangle}^{*}, A \subseteq \operatorname{Lev}_{1}(T)$ such that, for some $\beta<\kappa, \alpha_{q}=\beta$ for every $q \in A$.

Define $S=\left\{\left\langle q, q_{1}, \ldots, q_{m}\right\rangle: q \in A\right.$ and $\left.\left\langle q_{1}, \ldots, q_{m}\right\rangle \in S_{q}\right\}$. Let us claim that $f \upharpoonright \operatorname{Lev}_{n+1}(S)$ is constant. Let $\left\langle q, q_{1}, \ldots, q_{n}\right\rangle \in S$. Then $\left\langle q_{1}, \ldots, q_{n}\right\rangle \in S_{q}$, so $f\left(\left\langle q, q_{1}, \ldots, q_{n}\right\rangle\right)=\alpha_{q}=\beta$.

Now, assume that for every $n<\omega$ there exists a $\left\langle F_{s}^{*}: s \in[Q]^{<\omega}\right\rangle$-tree, $S_{n} \subseteq T$, such that $f \upharpoonright \operatorname{Lev}_{n}\left(S_{n}\right)$ is constant. Let $S=\bigcap_{n<\omega} S_{n}$. Then S is a $\left\langle F_{s}^{*}: s \in[Q]^{<\omega}\right\rangle$-tree as desired.

Now, in a standard fashion, we conclude the following:
Lemma 1.1.6. (The Prikry Condition) Let $\langle t, T\rangle \in P_{\vec{F}^{*}}$ and σ be a statement in the forcing language. Then there exists a direct extension $\langle t, S\rangle \geq^{*}\langle t, T\rangle$ such that $\langle t, S\rangle \| \sigma$.

Corollary 1.1.7. $P_{\vec{F}^{*}}$ preserves all cardinals.
The next lemmas will be applied in the next section.
Lemma 1.1.8. Assume that $A_{s} \in F_{s}^{*}$ for every $s \in[Q]^{<\omega}$, and $\left\langle p_{n}: n<\omega\right\rangle$ is a Prikry sequence for $P_{\vec{F}^{*}}$. Then for some $n_{0}<\omega$, and for every $n \geq n_{0}$, $p_{n+1} \in A_{\left\langle p_{0}, \ldots, p_{n}\right\rangle}$.

Proof. Assume that $G \subseteq P_{\vec{F}^{*}}$ is the generic set corresponding to $\left\langle p_{n}: n<\omega\right\rangle$. Define a dense set as follows:

$$
D=\left\{\langle t, T\rangle \in P_{\vec{F}^{*}}: \forall s \in T, s \triangleright t \rightarrow \operatorname{Succ}_{T}(s) \subseteq A_{s}\right\}
$$

D is dense in $P_{\vec{F}^{*}}$. Indeed, given a condition $\langle t, T\rangle \in P_{\vec{F}^{*}}$, define a $\left\langle F_{s}^{*}: s \in\right.$ $\left.[Q]^{<\omega}\right\rangle$-tree, T^{\prime}, such that for every $s \triangleright t, \operatorname{Succ}_{T^{\prime}}(s) \subseteq \operatorname{Succ}_{T}(s) \cap A_{s}$ (Applying the intersections inductively, shrinking T level-by-level). Then $\left\langle t, T^{\prime}\right\rangle \in D$ extends $\langle t, T\rangle$.

Now, take $\langle s, S\rangle \in G \cap D$. Then for every $n \geq \operatorname{lh}(s), p_{n+1} \in \operatorname{Succ}_{S}\left(p_{n}\right) \subseteq$ $A_{\left\langle p_{0}, \ldots, p_{n}\right\rangle}$.

Lemma 1.1.9. Assume that there exists a partition of $Q,\left\langle A_{s}: s \in[Q]^{<\omega}\right\rangle$, such that $A_{s} \in F_{s}^{*}$, for every $s \in[Q]^{<\omega}$. Let $\left\langle p_{n}: n<\omega\right\rangle,\left\langle q_{n}: n<\omega\right\rangle$ be a pair of different Prikry sequences for $P_{F^{*}}$ such that $\left\langle q_{n}: n<\omega\right\rangle \in V\left[\left\langle p_{n}: n<\omega\right\rangle\right]$. Then, for every $i<\omega$ there exists some $k<\omega, k \geq i$, such that $\left\{p_{n}: k<n<\right.$ $\omega\},\left\{q_{n}: k<n<\omega\right\}$ are disjoint.

Proof. First, apply the last lemma: Let $i_{0}<\omega$ be such that, for every $k \geq i_{0}$, $p_{k+1} \in A_{\left\langle p_{0}, \ldots, p_{k}\right\rangle}$, and $q_{k+1} \in A_{\left\langle q_{0}, \ldots, q_{k}\right\rangle}$. We can assume that $i_{0} \geq i$, or else, enlarge i_{0}.

Assume for contradiction, that for every $k \geq i_{0},\left\{p_{n}: k<n<\omega\right\},\left\{q_{n}: k<\right.$ $n<\omega\}$ are not disjoint; So $p_{n}=q_{m}$ for some $n, m \geq k$. In particular, $A_{\left\langle p_{0}, \ldots, p_{m-1}\right\rangle}$ is not disjoint from $A_{\left\langle q_{0}, \ldots, q_{n-1}\right\rangle}$, so $\left\langle p_{0}, \ldots, p_{m-1}\right\rangle=\left\langle q_{0}, \ldots, q_{n-1}\right\rangle$. This could be done for every $k \geq i_{0}$; Therefore, $\left\langle p_{n}: n<\omega\right\rangle=\left\langle q_{n}: n<\omega\right\rangle$.

Our next observation is that, given $G \subseteq P_{F^{*}}$ generic over V, there exists $H \in V[G]$ such that H is Q-generic over V.

Lemma 1.1.10. Given a generic Prikry sequence $\left\langle p_{n}: n<\omega\right\rangle$ for $P_{\vec{F}^{*}}$, define $H \in V\left[\left\langle p_{n}: n<\omega\right\rangle\right], H=\left\{q \in Q: \exists n<\omega q \leq p_{n}\right\}$. Then H is Q generic over V. In particular, if $\left\langle Q,<_{Q}\right\rangle$ is a separative forcing notion, then $P_{\vec{F}^{*}}$ is not minimal, i.e., every generic extension, obtained by forcing with $P_{\vec{F}^{*}}$ over V, has a non-trivial intermediate model.

Proof. First, we prove that H is Q-generic over V. The only non-trivial property is that, for every $D \subseteq Q$ dense and open, $D \cap H \neq \emptyset$. Indeed, given such D,
define, for every $s \in[Q]^{<\omega}, A_{s}=D \cap(Q / \operatorname{mc}(s))$. Then $A_{s} \in F_{s}^{*}$, and thus, for some n_{0}, and for every $n \geq n_{0}, p_{n} \in A_{\left\langle p_{0}, \ldots, p_{n-1}\right\rangle}$. In particular, $p_{n} \in D$.

Assuming that Q is separative, it follows that $H \notin V$. Moreover, $V[H] \subsetneq$ $V\left[\left\langle p_{n}: n<\omega\right\rangle\right]$, since, in $V[H], \kappa$ is still regular. Thus, $P_{\vec{F}^{*}}$ is not minimal.

Remark 1.1.11. By [5], $P_{\vec{F}^{*}}$ might be minimal. Consider $\left\langle Q,\left\langle_{Q}\right\rangle=\langle\kappa, \in\rangle\right.$. Assume that $\left\langle U_{\alpha}: \alpha<\kappa\right\rangle$ is a sequence of pairwise distinct normal ultrafilters. Set, for every $t \in[\kappa]^{<\omega}, F_{t}^{*}=U_{m c(t)}$ (more precisely, $F_{t}^{*}=\{A \cap$ $\left.\left.(\kappa \backslash m c(t)): A \in U_{m c(t)}\right\}\right)$. Under these conditions, it is proved in [5] that every generic extension, which is obtained by forcing with $P_{\vec{F}^{*}}$ over V, doesn't have non-trivial intermediate models, i.e., $P_{\vec{F}^{*}}$ is minimal. In particular, if $\left\langle p_{n}: n<\omega\right\rangle$ and $\left\langle q_{n}: n<\omega\right\rangle$ are generic Prikry sequences for $P_{\vec{F}^{*}}$, such that -

$$
\left\langle q_{n}: n<\omega\right\rangle \in V\left[\left\langle p_{n}: n<\omega\right\rangle\right]
$$

then-

$$
V\left[\left\langle q_{n}: n<\omega\right\rangle\right]=V\left[\left\langle p_{n}: n<\omega\right\rangle\right]
$$

By lemma 1.1.10, there exists a projection $\pi: P_{\overrightarrow{F^{*}}} \rightarrow \operatorname{RO}(Q)$. Given an arbitrary generic set $H \subseteq \operatorname{RO}(Q)$ over V, the quotient forcing $P_{\overrightarrow{F^{*}}} / H$ is nontrivial, since κ is still regular in $V[H]$.

Definition 1.1.12. We say that a forcing notion $\left\langle P,<_{P}\right\rangle$ is cone homogeneous, if for every $a, b \in P$ there are extensions $a^{\prime}>_{P} a, b^{\prime}>_{P} b$ such that P / a^{\prime} and P / b^{\prime} are isomorphic.

Proposition 1.1.13. Let $H \subseteq R O(Q)$ be generic over V. Suppose that $P_{\vec{F}^{*}} / H$ is cone homogeneous. Then there are two different Prikry sequences for $P_{\vec{F} *}$, $\left\langle p_{n}: n<\omega\right\rangle,\left\langle q_{n}: n<\omega\right\rangle$, such that $\left\langle q_{n}: n<\omega\right\rangle \in V\left[\left\langle p_{n}: n<\omega\right\rangle\right]$.

Proof. Since $P_{\vec{F}^{*}} / H$ is non-trivial, there are incompatible elements $\left\langle p_{0}, \ldots p_{n}, T\right\rangle$, $\left\langle q_{0}, \ldots q_{m}, S\right\rangle$ in $P_{\vec{F}^{*}} / H$. By extending those elements, we can assume that, for some $i<\omega, p_{i} \neq q_{i}$. By homogeneity, there exists an automorphism $\sigma \in V[H]$, mapping the cone of of $P_{\vec{F}^{*}} / H$ above an extension of $\left\langle p_{0}, \ldots p_{n}, T\right\rangle$, to the cone above some extension of $\left\langle q_{0}, \ldots q_{m}, S\right\rangle$. Thus, there are pair of Prikry sequences for $P_{\vec{F}^{*}} / H,\left\langle p_{n}: n<\omega\right\rangle,\left\langle q_{n}: n<\omega\right\rangle$, such that σ maps the generic
set (of $P_{\vec{F}^{*}} / H$, over $V[H]$) corresponding to $\left\langle p_{n}: n<\omega\right\rangle$ into the generic set corresponding to $\left\langle q_{n}: n<\omega\right\rangle$ (this follows by extending one sequence to a generic Prikry sequence for the quotient forcing, and then applying the pointwise image under $\sigma)$. Since $\sigma \in V[H],\left\langle q_{n}: n<\omega\right\rangle \in V[H]\left[\left\langle p_{n}: n<\omega\right\rangle\right]=$ $V\left[\left\langle p_{n}: n<\omega\right\rangle\right]$. It's clear that those sequences are different (because they have different initial segments).

Remark 1.1.14. The same argument as in the last proposition proves that if $P_{\vec{F}^{*}}$ itself is cone homogeneous, then there are two different Prikry sequences for $P_{\vec{F}^{*}},\left\langle p_{n}: n<\omega\right\rangle,\left\langle q_{n}: n<\omega\right\rangle$, such that $\left\langle q_{n}: n<\omega\right\rangle \in V\left[\left\langle p_{n}: n<\omega\right\rangle\right]$.

1.2 Prikry Sequences Inside Generic Extensions

Assume that $\left\langle p_{n}: n<\omega\right\rangle$ is P-generic over V. It's natural to ask if $V\left[\left\langle p_{n}: n<\omega\right\rangle\right]$ contains another Prikry sequence for $P_{\vec{F}^{*}},\left\langle q_{n}: n<\omega\right\rangle$. If it does, could $\left\langle p_{n}: n<\omega\right\rangle$ and $\left\langle q_{n}: n<\omega\right\rangle$ be disjoint, or "far" from each other in any other way?

By [5], there exists a variation of $P_{\vec{F}^{*}}$ which is minimal, i.e., every generic extension has no non-trivial intermediate models. We would like to consider variations of $P_{\vec{F}^{*}}$ which are not necessarily minimal, but still have the following property: If $\left\langle p_{n}: n<\omega\right\rangle,\left\langle q_{n}: n<\omega\right\rangle$ are Prikry sequences for $P_{\vec{F}^{*}}$, and-

$$
\left\langle q_{n}: n<\omega\right\rangle \in V\left[\left\langle p_{n}: n<\omega\right\rangle\right]
$$

then-

$$
\left\langle p_{n}: n<\omega\right\rangle=\left\langle q_{n}: n<\omega\right\rangle
$$

In particular, every generic extension, obtained by forcing with $P_{\vec{F}^{*}}$, doesn't have non-trivial intermediate models which are themselves generic extensions, obtained by forcing with $P_{\vec{F}^{*}}$ over V.

As a first example, we consider the case where the measures \vec{F}^{*} are pairwise distinct and normal. Then, we will consider the general case.

1.2.1 Trees With Pairwise Distinct Normal Measures

Suppose that $\left\langle Q,<_{Q}\right\rangle=\langle\kappa, \in\rangle$, and $\left\langle F_{t}^{*}: t \in[\kappa]^{<\omega}\right\rangle$ is a sequence of pairwise distinct normal ultrafilters. We note that, for every $t \in[\kappa]^{<\omega}$, any dense open
set of $Q / \operatorname{mc}(t)$ is an interval of ordinals of the form $[\alpha, \kappa)$ where $\alpha>\operatorname{mc}(t)$. Thus, any normal ultrafilter on κ will extend the κ-complete filter of dense and open sets above $\mathrm{mc}(t)$. Under these settings, we have the following property:

Theorem 1.2.1. Suppose that $\left\langle Q,\left\langle_{Q}\right\rangle=\langle\kappa, \in\rangle\right.$, and $\left\langle U_{t}: t \in[\kappa]^{<\omega}\right\rangle$ is a sequence of pairwise distinct normal ultrafilters. Consider the forcing $P_{\vec{U}}$ (which is the forcing $P_{\vec{F}^{*}}$, where, for every $\left.t \in[\kappa]^{<\omega}, F_{t}^{*}=\left\{A \cap(Q / m c(t)): A \in U_{t}\right\}\right)$. Then for every pair of Prikry sequences for $P_{\vec{U}},\left\langle p_{n}: n<\omega\right\rangle,\left\langle q_{n}: n<\omega\right\rangle$,

$$
\left\langle q_{n}: n<\omega\right\rangle \in V\left[\left\langle p_{n}: n<\omega\right\rangle\right] \Longleftrightarrow\left\langle p_{n}: n<\omega\right\rangle=\left\langle q_{n}: n<\omega\right\rangle
$$

Proof. Since $\left\langle U_{t}: t \in[Q]^{<\omega}\right\rangle$ are pairwise distinct normal ultrafilters, there exists a partition $\left\langle A_{s}: s \in[Q]^{<\omega}\right\rangle$ of Q, such that $A_{s} \in U_{s}$. Assume by contradiction that $\left\langle p_{n}: n<\omega\right\rangle,\left\langle q_{n}: n<\omega\right\rangle$ are two Prikry sequences, such that $\left\langle q_{n}: n<\omega\right\rangle \in V\left[\left\langle p_{n}: n<\omega\right\rangle\right]$.

Apply lemma 1.1.8 to find $i_{0}<\omega$ such that for every $i \geq i_{0}, q_{i+1} \in A_{\left\langle q_{0}, \ldots, q_{i}\right\rangle}$ and $p_{i+1} \in A_{\left\langle p_{0}, \ldots, p_{i}\right\rangle}$. Apply lemma 1.1.9 to find $k \geq i_{0}$ such that $\left\{p_{n}: k \leq n<\right.$ $\omega\},\left\{q_{n}: k \leq n<\omega\right\}$ are disjoint. Denote by G the generic set over V which corresponds to $\left\langle p_{n}: n<\omega\right\rangle$. Let $\underset{\sim}{ }$ be a P-name for the sequence $\left\langle q_{n}: n<\omega\right\rangle$. Let $\langle r, T\rangle \in G$ be an element which forces the following:

1. σ is a name of a P-generic Prikry sequence.
2. $\langle\underset{\sim}{\sigma}(n): k \leq n<\omega\rangle$ is disjoint from $\left\langle p_{n}: k \leq n<\omega\right\rangle$ (we use the canonical name of the generic set to express $\left.\left\langle p_{n}: k \leq n<\omega\right\rangle\right)$.
3. For every $k<i<\omega, \underset{\sim}{\sigma}(i) \in A_{\boldsymbol{\sigma} \backslash i}$.

For notational simplicity, let us assume that $r=\langle \rangle$.
For every $i<\omega$, define a partial function f_{i} from some subset of T to Q, as follows: Given $t \in T$,

$$
\begin{equation*}
f_{i}(t)=q \Longleftrightarrow \exists\left\langle t, T_{i}(t)\right\rangle \geq^{*}\left\langle t, T_{t}\right\rangle \text { s.t. }\left\langle t, T_{i}(t)\right\rangle \Vdash \underset{\sim}{\sigma}(\check{i})=\check{q} \tag{1.1}
\end{equation*}
$$

where $T_{t}=\{s \in T: t \triangleleft s\}$. We note that $f_{i}(t)$ is well defined, since $\left\langle t, T_{t}\right\rangle$ can't have two direct extensions which force different values for $\underset{\sim}{(}(\bar{i})$ (because any two such direct extensions are compatible). We proceed with several lemmas:

Lemma 1.2.2. The following properties hold:

1. Assume that $m<m^{\prime}$ and $m^{\prime} \geq k$. Then $\operatorname{dom}\left(f_{m^{\prime}}\right) \subseteq \operatorname{dom}\left(f_{m}\right)$.
2. For every $t \in T$ the set $\left\{m<\omega: t \in \operatorname{dom}\left(f_{m}\right)\right\}$ is finite.
3. Assume that $s=\left\langle f_{0}(t), \ldots, f_{m}(t)\right\rangle, m \geq k$ and $l h(t) \geq k$. Then s, t are \triangleleft-incompatible.

Proof. 1. Take $t \in \operatorname{dom}\left(f_{m^{\prime}}\right)$. Then for some $T_{i}(t)$ as in equation 1.1, $\left\langle t, T_{i}(t)\right\rangle \Vdash \underset{\sim}{\sigma}\left(\check{m}^{\prime}\right)=\overline{f_{m^{\prime}}(t)}$. There exists a unique $s \in[Q]^{<\omega}$ such that $f_{m^{\prime}}(t) \in A_{s}$. On the other hand, since $m^{\prime} \geq k, f_{m^{\prime}}(t) \in A_{\mathcal{\sigma} \mid m^{\prime}}$. Therefore, $\left\langle t, T_{i}(t)\right\rangle \Vdash \underset{\sim}{\sigma} \upharpoonright \check{m}^{\prime}=\check{s}$. In particular, $\left\langle t, T_{i}(t)\right\rangle \Vdash \underset{\sim}{\sigma}(\check{m})=\overline{s(m)}$.
2. Assume the contrary. Then, from property $1, t \in \operatorname{dom}\left(f_{m}\right)$ for every $m<\omega$. Take $H \subseteq P$ generic over V, such that $\left\langle t, T_{t}\right\rangle \in H$. Then the Prikry sequence $(\underset{\sim}{\sigma})_{H}$ belongs to V, since $\underset{\sim}{\sigma}(m)=f_{m}(t)$ for every $m<\omega$, a contradiction.
3. This follows since the weakest condition forces that $\langle\underset{\sim}{\sigma}(n): k \leq n<\omega\rangle$ is disjoint from the Prikry sequence derived from the canonical name of the generic set.

Lemma 1.2.3. There exists a $\left\langle F_{t}^{*}: t \in[Q]^{<\omega}\right\rangle$-tree $T^{*} \subseteq T$, such that, for every $m<\omega$ there exists $n<\omega$, for which $\operatorname{Lev}_{n}\left(T^{*}\right) \subseteq \operatorname{dom}\left(f_{m}\right)$, and, if $n \neq 0$, $\operatorname{Lev}_{n-1}\left(T^{*}\right) \cap \operatorname{dom}\left(f_{m}\right)=\emptyset$. Moreover, given $t \in \operatorname{Lev}_{n}\left(T^{*}\right),\left\langle t, T_{t}^{*}\right\rangle \Vdash \underset{\sim}{\sigma}(\check{m})=$ $\overline{f_{m}(t)}$.

Proof. First, fix some $i<\omega$. By applying lemma 1.1.5, there exists a $\left\langle F_{t}^{*}: t \in\right.$ $\left.[Q]^{<\omega}\right\rangle$-tree, $T_{i} \subseteq T$, with the following property: For every $n<\omega, \operatorname{Lev}_{n}\left(T_{i}\right)$ is entirely contained in $\operatorname{dom}\left(f_{i}\right)$, or disjoint from $\operatorname{dom}\left(f_{i}\right)$. Since all the trees T_{i} for $i<\omega$ have the same trunk, $T^{*}=\bigcap_{i<\omega} T_{i}$ is a $\left\langle F_{t}^{*}: t \in[Q]^{<\omega}\right\rangle$-tree.

Now, given $m<\omega$, there exists $n<\omega$, such that $\operatorname{Lev}_{n}\left(T_{m}\right) \subseteq \operatorname{dom}\left(f_{m}\right)$, since $\left\langle\left\rangle, T_{m}\right\rangle\right.$ has an extension which decides $\underset{\sim}{\sigma}(m)$. Take the first such n. Thus, $\operatorname{Lev}_{n}\left(T^{*}\right) \subseteq \operatorname{dom}\left(f_{m}\right)$. If $n \neq 0$, then $\operatorname{Lev}_{n-1}\left(T_{m}\right) \cap \operatorname{dom}\left(f_{m}\right)=\emptyset$; Thus, $\operatorname{Lev}_{n-1}\left(T^{*}\right) \cap \operatorname{dom}\left(f_{m}\right)=\emptyset$.

Given m and n as above, and $t \in \operatorname{Lev}_{n}\left(T^{*}\right)$, shrink T^{*} above t, such that every extension belongs to $T_{m}(t)$ (defined in equation 1.1). This ensures that $\left\langle t, T_{t}^{*}\right\rangle \Vdash \underset{\sim}{\sigma}(\check{m})=\overline{f_{m}(t)}$.

For every $i<\omega$, let $n_{i}<\omega$ be the first level of T^{*} contained in $\operatorname{dom}\left(f_{i}\right)$. We note that $\left\langle n_{i}: i<\omega\right\rangle$ is unbounded, and, from the index k, weakly increasing (this follows from lemma 1.2.2). Thus, there are unboundedly many i 's such that $n_{i}<n_{i+1}$.

For every $i<\omega$ such that $n_{i}<n_{i+1}$, and $\min \left\{i, n_{i}\right\}>k$, let us shrink $\operatorname{Lev}_{n_{i+1}}\left(T^{*}\right)$. Fix some $t \in \operatorname{Lev}_{n_{i+1}-1}\left(T^{*}\right)$. Then $t \in \operatorname{dom}\left(f_{i}\right)$ (since $n_{i+1}-1 \geq$ $\left.n_{i}\right)$. Denote $s=\left\langle f_{0}(t), \ldots, f_{i}(t)\right\rangle$. Since $\min \left\{n_{i}, i\right\}>k, s, t$ are \triangleleft-incompatible, and thus $U_{s} \neq U_{t}$ (this follows from property 3 in lemma 1.2.2).

We note that $\operatorname{Succ}_{T^{*}}(t) \subseteq \operatorname{dom}\left(f_{i+1}\right)$. Let $f_{i+1}^{*}: \operatorname{Succ}_{T^{*}}(t) \rightarrow Q$ be defined as follows:

$$
\forall q \in \operatorname{Succ}_{T^{*}}(t) \quad f_{i+1}^{*}(q)=f_{i+1}\left(t^{\frown}\langle q\rangle\right)
$$

Extend f_{i+1}^{*} arbitrarily to the domain $Q=\kappa$, and let us consider the ultrafilter $\left(f_{i+1}^{*}\right)_{*} U_{t}$. Then $U_{s} \neq\left(f_{i+1}^{*}\right)_{*} U_{t}$: Else, $U_{s} \leq_{R K} U_{t}$, and by normality, $U_{s}=U_{t}$, a contradiction. Thus, there are sets $B_{t} \in U_{t}, C_{t} \in U_{s}$ such that $f_{i+1}^{*}{ }^{\prime \prime} B_{t} \cap C_{t}=$ \emptyset.

Let $Z_{s}=\left\{t \in \operatorname{Lev}_{n_{i+1}-1}\left(T^{*}\right): s=\left\langle f_{0}(t), \ldots, f_{i}(t)\right\rangle\right\}$. We define a set $E_{s} \in$ U_{s}, and for every $t \in Z_{s}$, an ordinal δ_{t}, such that the following property holds: For every $a \in E_{s}$ with $a>\delta_{t}, a \in C_{t}$. Such a set E_{s} exists: If $\left|Z_{s}\right|<\kappa$, simply take $E_{s}=\bigcap_{t \in Z_{s}} C_{t}$, and $\delta_{t}=0$. Else, assume that $Z_{s}=\left\{t_{\alpha}: \alpha<\kappa\right\}$. For every $\alpha<\kappa$, choose $\delta_{t_{\alpha}}=\alpha$, and take $E_{s}=\underset{\alpha<\kappa}{\triangle} C_{t_{\alpha}}$ (note that δ_{t} depends only on t).

Now, we shrink T^{*} above every $t \in Z_{s}$ twice. First, shrink T^{*} such that $\operatorname{Succ}_{T^{*}}(t) \subseteq B_{t}$. Then, shrink T^{*} such that for every $t^{\prime} \in \operatorname{Lev}_{n_{i+1}}\left(T^{*}\right)$ with $t^{\prime} \triangleright t, f_{i+1}^{*}\left(t^{\prime}\right)>\delta_{t}$: This is possible, since otherwise, by κ-completeness, $\left\langle t, T_{t}^{*}\right\rangle$ would have had a direct extension which decides the value $\underset{\sim}{\sigma}(i+1)$, contradicting the minimality of n_{i+1}.

Let us describe a dense set in $P_{\vec{U}}$:
Claim 1.2.4. The set $D=\left\{\langle s, S\rangle \in P_{\vec{U}}: m c(s) \notin f_{l h(s)-1}^{\prime \prime} T^{*}\right\}$ is dense in $P_{\vec{U}}$.
Proof. Let $\langle s, S\rangle \in P_{\vec{U}}$. Assume that $\operatorname{lh}(s)=i+1$ for some $i<\omega$, such that $n_{i+1}>n_{i}$ and n_{i}, i are above k (else, extend $\langle s, S\rangle$). Take $q \in \operatorname{Succ}_{S}(s) \cap E_{s}$. Denote $s^{\prime}=s^{\frown}\langle q\rangle$.

Now, assume, for contradiction, that for some $t^{\prime} \in T^{*}, q^{\prime}=f_{i+1}\left(t^{\prime}\right)$. By extending or shrinking the sequence t^{\prime}, we can assume that $t^{\prime} \in \operatorname{Lev}_{n_{i+1}}\left(T^{*}\right)$. There exists $t \in \operatorname{Lev}_{n_{i+1}-1} T^{*}$, such that $t^{\prime} \triangleright t$. In particular, $\operatorname{mc}\left(t^{\prime}\right) \in B_{t}$. Therefore, $q^{\prime}=f_{i+1}\left(t^{\prime}\right) \notin C_{t}$. On the other hand, $q^{\prime}>\delta_{t}$ and $q^{\prime} \in E_{s}$, so $q^{\prime} \in C_{t}$. A contradiction.

Now, take a generic H such that $\left\langle\left\rangle, T^{*}\right\rangle \in H\right.$. Assume that $\left\langle q_{i}^{\prime}: i<\omega\right\rangle=$ $(\underset{\sim}{\sigma})_{H}$. Then, for every $m<\omega, q_{m}^{\prime} \in f_{m}^{\prime \prime}\left(T^{*}\right)$. Therefore, $\left\langle q_{0}^{\prime}, \ldots, q_{m}^{\prime}, S\right\rangle \notin D$, for every $\left\langle F_{t}^{*}: t \in[Q]^{<\omega}\right\rangle$-tree S with trunk $\left\langle q_{0}^{\prime}, \ldots, q_{m}^{\prime}\right\rangle$. A contradiction, since D is dense in $P_{\vec{U}}$.

1.2.2 Trees With Arbitrary Measures

Motivated by theorem 1.2.1, it's reasonable to ask whether a similar result exists under more general settings. It turns out that the situation is much more involved without the normality of the ultrafilters. Our goal will be to prove the following theorem:

Theorem 1.2.5. It's consistent, from κ^{+}-supercompactness of κ, that for every separative, κ-distributive notion of forcing Q with $|Q|=\kappa$, there exists a choice of pairwise distinct ultrafilters $\vec{F}^{*}=\left\langle F_{t}^{*}: t \in[Q]^{<\omega}\right\rangle$, such that $P_{\vec{F}^{*}}$ has the following property: For every pair of Prikry sequences for $P_{\vec{F}^{*}},\left\langle p_{n}: n<\omega\right\rangle$, $\left\langle q_{n}: n<\omega\right\rangle$,

$$
\left\langle q_{n}: n<\omega\right\rangle \in V\left[\left\langle p_{n}: n<\omega\right\rangle\right] \Longleftrightarrow\left\langle p_{n}: n<\omega\right\rangle=\left\langle q_{n}: n<\omega\right\rangle
$$

The proof of theorem 1.2 .5 will be presented in two steps: First, we assume that $\left\langle q_{n}: n<\omega\right\rangle \in V\left[\left\langle p_{n}: n<\omega\right\rangle\right]$, and show that a certain connection between the ultrafilters $\left\langle F_{t}^{*}: t \in[Q]^{<\omega}\right\rangle$ is induced (theorem 1.2.7). Then, we prove that the existence of a sequence of measures $\left\langle F_{t}^{*}: t \in[Q]^{<\omega}\right\rangle$ without this connection is consistent from κ^{+}-supercompactness of κ. The first step is presented in this section; The second step will be presented in the next section.

Definition 1.2.6. Let $t \in[Q]^{<\omega}$, and $n<\omega$ such that $\operatorname{lh}(t)<n$. Denote $n^{\prime}=n-l h(t)$. Define an ultrafilter $U_{n}(t)$ as follows: $A \in U_{n}(t)$ if and only if -
$\left\{\nu_{1} \in Q:\left\{\nu_{2} \in Q: \ldots\left\{\nu_{n^{\prime}} \in Q: t^{\frown}\left\langle\nu_{1}, \ldots, \nu_{n^{\prime}}\right\rangle \in A\right\} \in F_{t \checkmark\left\langle\nu_{1}, \ldots, \nu_{n^{\prime}-1}\right\rangle}^{*} \ldots\right\} \in F_{t \sim\left\langle\nu_{1}\right\rangle}^{*}\right\} \in F_{t}^{*}$ $U_{n}(t)$ is a non-trivial κ-complete ultrafilter on a set of cardinality κ -

$$
\left\{t^{\frown} \nu: \nu \in[Q / m c(t)]^{n^{\prime}}\right\}
$$

Our goal, in this section, will be to prove the following theorem:
Theorem 1.2.7. Let $\left\langle p_{n}: n<\omega\right\rangle,\left\langle q_{n}: n<\omega\right\rangle$ be two different Prikry sequences for $P_{\vec{F}^{*}}$, such that $\left\langle q_{n}: n<\omega\right\rangle \in V\left[\left\langle p_{n}: n<\omega\right\rangle\right]$. Assume:

1. $\pi: Q \rightarrow \kappa$ is a function such that, for every $t \in[Q]^{<\omega}$,

$$
[\pi \upharpoonright Q / m c(t)]_{F_{t}^{*}}=\kappa
$$

2. The ultrafilters $\left\langle F_{t}^{* n o r}: t \in[Q]^{<\omega}\right\rangle$ are pairwise distinct, where -

$$
F_{t}^{* n o r}=\left\{X \subseteq \kappa: \pi^{-1 \prime \prime} X \in F_{t}^{*}\right\}
$$

Then there are \triangleleft-incompatible sequences $s, t \in[Q]^{<\omega}, n>\operatorname{lh}(t)$ and functions $f, g: \cup U_{n}(t) \rightarrow Q$, such that -

$$
f_{*} U_{n}(t)=g_{*} U_{n}(t)-\lim \left\langle F_{s \smile\langle q\rangle}^{*}: q>_{Q} m c(s)\right\rangle
$$

and both $f_{*} U_{n}(t), g_{*} U_{n}(t)$ are non-trivial ultrafilters.
Proof. First, we note that there exists a partition $\left\langle A_{s}: s \in[Q]^{<\omega}\right\rangle$ of Q, such that $A_{s} \in F_{s}^{*}$: Indeed, fix a disjoint partition $\left\langle A_{s}^{\text {nor }}: s \in[Q]^{<\omega}\right\rangle$ such that for every $s \in[Q]^{<\omega}, A_{s}^{\text {nor }} \in F_{s}^{* n o r}$, and take $A_{s}=\pi^{-1} A_{s}^{\text {nor }}$.

We start with the same arguments applied in theorem 1.2.1. Assume that $\left\langle p_{n}: n<\omega\right\rangle,\left\langle q_{n}: n<\omega\right\rangle$ are two Prikry sequences, such that $\left\langle q_{n}: n<\omega\right\rangle \in$ $V\left[\left\langle p_{n}: n<\omega\right\rangle\right]$. Apply lemmas 1.1.8 and 1.1.9 to find $k<\omega$ such that for every $i \geq k, q_{i+1} \in A_{\left\langle q_{0}, \ldots, q_{i}\right\rangle}, p_{i+1} \in A_{\left\langle p_{0}, \ldots, p_{i}\right\rangle}$, and $\left\{p_{n}: k \leq n<\omega\right\},\left\{q_{n}: k \leq\right.$ $n<\omega\}$ are disjoint. Denote by G the generic set over V which corresponds to $\left\langle p_{n}: n\langle\omega\rangle\right.$. Let $\underset{\sim}{\sigma}$ be a P-name for the sequence $\left\langle q_{n}: n\langle\omega\rangle\right.$. Let $\langle r, T\rangle \in G$ be an element which forces the following:

1. σ is a name of a P-generic Prikry sequence.
2. $\langle\underset{\sim}{\sigma}(n): k \leq n<\omega\rangle$ is disjoint from $\left\langle p_{n}: k \leq n<\omega\right\rangle$ (we use the canonical name of the generic set to express $\left\langle p_{n}: k \leq n<\omega\right\rangle$).
3. For every $k \leq i<\omega, \underset{\sim}{\sigma}(i) \in A_{\mathcal{\sigma} \mid i}$.

For notational simplicity, let us assume that $r=\langle \rangle$.
For every $i<\omega$, define a partial function f_{i}, from some subset of T to Q, just as in the proof of theorem 1.2.1: Given $t \in T$,

$$
\begin{equation*}
f_{i}(t)=q \Longleftrightarrow \exists\left\langle t, T_{i}(t)\right\rangle \geq^{*}\langle t, T\rangle \text { s.t. }\left\langle t, T_{i}(t)\right\rangle \Vdash \underset{\sim}{\sigma}(\check{i})=\check{q} \tag{1.2}
\end{equation*}
$$

Lemma 1.2.2 holds here as well. Now, let us shrink T to a $\left\langle F_{t}^{*}: t \in[Q]^{<\omega}\right\rangle$-tree, T^{*}, as follows:

Lemma 1.2.8. There exists a $\left\langle F_{t}^{*}: t \in[Q]^{<\omega}\right\rangle$-tree, $T^{*} \subseteq T$, and strictly increasing sequences $\left\langle n_{i}: i<\omega\right\rangle,\left\langle m_{i}: i<\omega\right\rangle$, such that -

1. $\operatorname{Lev}_{n_{i}}\left(T^{*}\right) \subseteq \operatorname{dom}\left(f_{m_{i}}\right)$, and for every $t \in \operatorname{Lev}_{n_{i}}\left(T^{*}\right),\left\langle t, T^{*}\right\rangle \Vdash \underset{\sim}{\sigma}\left(\check{m}_{i}\right)=$ $\overline{f_{m_{i}}(t)}$.
2. $\operatorname{Lev}_{n_{i}}\left(T^{*}\right)$ and $\operatorname{dom}\left(f_{m_{i}+1}\right)$ are disjoint sets.
3. $k<m_{0}, n_{0}$.

Proof. First, fix some $i<\omega$. By applying lemma 1.1.5, there exists a $\left\langle F_{t}^{*}: t \in\right.$ $\left.[Q]^{<\omega}\right\rangle$-tree, $T_{i} \subseteq T$, with the following property: For every $n<\omega, \operatorname{Lev}_{n}\left(T_{i}\right)$ is entirely contained in $\operatorname{dom}\left(f_{i}\right)$, or disjoint to $\operatorname{dom}\left(f_{i}\right)$. Since all the trees T_{i} for $i<\omega$ have the same trunk, $T^{*}=\bigcap_{i<\omega} T_{i}$ is a $\left\langle F_{t}^{*}: t \in[Q]^{<\omega}\right\rangle$-tree.

Assume that $\left\langle n_{j}: j<i\right\rangle$ were defined, and let us define n_{i}. Take some extension $\left\langle t, T_{t}^{*}\right\rangle$ of $\left\langle\left\rangle, T^{*}\right\rangle\right.$ such that $t \in \operatorname{dom}\left(f_{i}\right)$ (such an extension exists, by extending the given condition to one which decides the value of $\underset{\sim}{q}(\check{i}))$. Assume that $\operatorname{lh}(t)>\sup \left\{n_{j}: j<i\right\}$ (Else - extend it). Set $n_{i}=\operatorname{lh}(t)$.

For every $i<\omega$ and $t \in \operatorname{Lev}_{n_{i}}\left(T^{*}\right)$, let $m_{t}<\omega$ be the maximum value of m such that $f_{m}(t)$ exists (such maximal value exists, by part 2 of lemma 1.2.2). By applying lemma 1.1.5 again, we can assume that m_{t} is constant on every level of T^{*} (else, shrink $\left.T^{*}\right)$. Let m_{i} be the constant value on level n_{i}. Then the sequence $\left\langle m_{i}: i<\omega\right\rangle$ is weakly-increasing, and for every $i<\omega, m_{i} \geq i$. By passing to a subsequence of $\left\langle n_{i}: i<\omega\right\rangle$, let us assume that $\left\langle m_{i}: i<\omega\right\rangle$ is strictly increasing, and $n_{0}, m_{0} \geq k$. We note that $\operatorname{Lev}_{n_{i}}\left(T^{*}\right) \subseteq \operatorname{dom}\left(f_{m_{i}}\right)$. Moreover, by maximality of m_{i}, for every $t \in \operatorname{Lev}_{n_{i}}\left(T^{*}\right), t \notin \operatorname{dom}\left(f_{m_{i}+1}\right)$.

Now, for every $i<\omega$ and $t \in \operatorname{Lev}_{n_{i}}\left(T^{*}\right)$, shrink T^{*} above t such that $\left\{t^{\prime} \in T^{*}: t^{\prime} \triangleright t\right\} \subseteq T_{i}(t)$, where $T_{i}(t)$ is as in equation 1.2. It follows that $\left\langle t, T_{t}^{*}\right\rangle \Vdash \underset{\sim}{\sigma}\left(\check{m}_{i}\right)=\overline{f_{m_{i}}(t)}$.

For every $s \in[Q]^{<\omega}$, with $\operatorname{lh}(s)=m_{i}+1$ for some $i<\omega$, define -

$$
Z_{s}=\left\{t \in \operatorname{Lev}_{n_{i}}\left(T^{*}\right): s=\left\langle f_{0}(t), \ldots, f_{m_{i}}(t)\right\rangle\right\}
$$

Inductively, for very $i<\omega$, let us shrink T^{*} above $\operatorname{Lev}_{n_{i}}\left(T^{*}\right)$. Fix such i and $t \in \operatorname{Lev}_{n_{i}}\left(T^{*}\right)$. Assume that $s=\left\langle f_{0}(t), \ldots, f_{m_{i}}(t)\right\rangle$. Then s, t are $\triangleleft-$ incompatible (they at least differ in the coordinate k, since $n_{0}, m_{0}>k$).

We construct a set $B^{\prime \prime}(t) \in U_{n_{i+2}}(t)$, and shrink T^{*} above t, such that, after shrinking, we have $\left\{t^{\prime} \in \operatorname{Lev}_{n_{i+2}}\left(T^{*}\right): t^{\prime} \triangleright t\right\} \subseteq B^{\prime \prime}(t)$. The first step to construct $B^{\prime \prime}(t)$ will be the following observation: if -

$$
\left(f_{m_{i}+2}\right)_{*} U_{n_{i+2}}(t)=\left(f_{m_{i}+1}\right)_{*} U_{n_{i+2}}(t)-\lim \left\langle F_{s-\langle q\rangle}^{*}: q>_{Q} \operatorname{mc}(s)\right\rangle
$$

(we assume that $f_{m_{i}+2}$ and $f_{m_{i}+1}$ were extended arbitrarily on elements of $\cup U_{n_{i+2}}(t)$ which don't belong to $\left.T^{*}\right)$, then this proves theorem 1.2.7. Indeed, s, t are \triangleleft-incompatible, and $\left(f_{m_{i}+2}\right)_{*} U_{n_{i+2}}(t),\left(f_{m_{i}+1}\right)_{*} U_{n_{i+2}}(t)$ are non-trivial (otherwise, t would have had a direct extension which decides the value of $\underset{\sim}{\sigma}\left(m_{i}+1\right)$. This is not possible, since $\left.t \in \operatorname{Lev}_{n_{i}}\left(T^{*}\right)\right)$. Thus, we can assume, for contradiction, that for every t, s as above,

$$
\left(f_{m_{i}+2}\right)_{*} U_{n_{i+2}}(t) \neq\left(f_{m_{i}+1}\right)_{*} U_{n_{i+2}}(t)-\lim \left\langle F_{s \leftharpoonup\langle q\rangle}^{*}: q>_{Q} \operatorname{mc}(s)\right\rangle
$$

so there exists $B(t) \in U_{n_{i+2}}(t)$ such that -

$$
X(t)=\left\{q \in Q / \operatorname{mc}(s): f_{m_{i}+2}^{\prime \prime} B(t) \cap A_{s \smile\langle q\rangle} \in F_{s \smile\langle q\rangle}^{*}\right\} \notin\left(f_{m_{i}+1}\right)_{*} U_{n_{i+2}}(t)
$$

Denote $B^{\prime}(t)=B(t) \backslash f_{m_{i}+1}^{-1}{ }^{\prime \prime} X(t)$.
Now, for every $q \in Q / \operatorname{mc}(s)$ and for every $t \in Z_{s}$, define a set $C_{q}(t)$ as follows: If $q \notin X(t)$, then we know that $f_{m_{i}+2}^{\prime \prime} B(t) \cap A_{s} \sim\langle q\rangle \notin F_{s<\langle q\rangle}^{*}$. Let $C_{q}(t) \in F_{s \smile\langle q\rangle}^{*}$ be a set disjoint from $f_{m_{i}+2}^{\prime \prime} B(t)$. Otherwise, take $C_{q}(t)=Q / q$.

Let us define a set $C_{q} \in F_{s \smile\langle q\rangle}^{*}$, and, for every $t \in Z_{s}$, an ordinal δ_{t} (which depends only on t), such that for every $a \in C_{q}$ with $\pi(a)>\delta_{t}, a \in C_{q}(t)$. Such a set exists: If $\left|Z_{s}\right|<\kappa$, simply take $C_{q}=\bigcap_{t \in Z_{s}} C_{q}(t)$, and $\delta_{t}=0$. Else, assume that $Z_{s}=\left\{t_{\alpha}: \alpha<\kappa\right\}$. For every $\alpha<\kappa$, choose $\delta_{t_{\alpha}}=\alpha$. Fix $q \in Q / \operatorname{mc}(s)$. Since $[\pi \upharpoonright Q / q]_{F_{s}^{*}\lceil\langle q\rangle}=\kappa$, the required set C_{q} could be defined as follows:

$$
C_{q}=\left\{a \in Q / q: \forall \alpha<\pi(a), a \in C_{q}\left(t_{\alpha}\right)\right\} \in F_{s}^{*} \frown\langle q\rangle
$$

Now, we finally define the set $B^{\prime \prime}(t)$ described above. Given $t \in \operatorname{Lev}_{n_{i}}\left(T^{*}\right)$ and $s=\left\langle f_{0}(t), \ldots, f_{m_{i}}(t)\right\rangle$, we claim that there exists a set $B^{\prime}(t) \in U_{n_{i+2}}(t)$, such that $B^{\prime \prime}(t) \subseteq B^{\prime}(t)$, and for every $t^{\prime} \in B^{\prime \prime}(t), \pi\left(f_{m_{i}+2}\right)\left(t^{\prime}\right)>\delta_{t}$: Indeed, else, by κ-completeness, there exists a direct extension of $\left\langle t, T^{*}\right\rangle$ which forces that $\pi\left(\underset{\sim}{\alpha}\left(m_{i}+2\right)\right)=\alpha^{*}$ for some $\alpha^{*}<\kappa$; There exists a unique s^{\prime} such that $\alpha^{*} \in A_{s^{\prime}}^{\text {nor }} . m_{i}+2 \geq k$, so the above direct extension forces in particular that $\underset{\sim}{\sigma} \upharpoonright m_{i}+2=s^{\prime}$, and therefore $t \in \operatorname{dom}\left(f_{m_{i}+1}\right)$. This is a contradiction, since $t \in \operatorname{Lev}_{n_{i}}\left(T^{*}\right)$. Therefore, there exists $B^{\prime \prime}(t)$ as described above. Shrink T^{*} above t using $B^{\prime \prime}(t) \in U_{n_{i+2}}(t)$.

Now, let us describe a dense subset D of $P_{\vec{F}^{*}}$. The density of D is a contradiction, just as in the end of the proof of theorem 1.2.1.

Claim 1.2.9. The set $D=\left\{\langle s, S\rangle \in P: m c(s) \notin f_{l h(s)-1}^{\prime \prime} T^{*}\right\}$ is dense in P.
Proof. Let $\langle s, S\rangle \in P$. Assume that $\operatorname{lh}(s)=m_{i}+1$ for some $i<\omega$ (else, extend it). Take $q \in \operatorname{Succ}_{S}(s)$, and $q^{\prime} \in \operatorname{Succ}_{S}(s \frown\langle q\rangle) \cap C_{q}$. Denote $s^{\prime}=s \frown\left\langle q, q^{\prime}\right\rangle$.

Now, assume, for contradiction, that for some $t^{\prime} \in T^{*}, q^{\prime}=f_{m_{i}+2}\left(t^{\prime}\right)$. By extending or shrinking the sequence t^{\prime}, we can assume that $t^{\prime} \in \operatorname{Lev}_{n_{i+2}}\left(T^{*}\right)$. There exists $t \in T^{*}, \operatorname{lh}(t)=n_{i}$, such that $t^{\prime} \triangleright t$. In particular, $t^{\prime} \in B^{\prime \prime}(t)$. Therefore, $\pi\left(q^{\prime}\right)>\delta_{t}$, so $q^{\prime} \in C_{q}(t)$. On the other hand, $q^{\prime}=f_{m_{i}+2}\left(t^{\prime}\right) \in$ $f_{m_{i}+2}^{\prime \prime} B(t)$. Therefore $C_{q}(t)$ and $f_{m_{i}+2}^{\prime \prime} B(t)$ are not disjoint, so $q \in X(t)$. But $q=f_{m_{i}+1}\left(t^{\prime}\right)$, so $t^{\prime} \in f_{m_{i}+1}^{-1}{ }^{\prime \prime} X(t)$. This is a contradiction to the definition of $B^{\prime}(t)$.

This finishes the proof of theorem 1.2.7.

1.3 Extension Of The Kunen-Paris Construction

Our goal in this section will be to prove the following:
Theorem 1.3.1. The following is consistent from κ^{+}-supercompactness of κ : For every separative, κ-distributive forcing notion Q with $|Q|=\kappa$, and for every $t \in[Q]^{<\omega}$, there exists a κ-complete ultrafilter F_{t}^{*} extending the filter of dense open subsets above $m c(t)$, such that there are no connections of the form:

$$
\begin{equation*}
f_{*} U_{n}(t)=g_{*} U_{n}(t)-\lim \left\langle F_{s \smile\langle q\rangle}^{*}: q \in Q / m c(s)\right\rangle \tag{1.3}
\end{equation*}
$$

for any pair of non-empty, \triangleleft-incompatible sequences $s, t \in[Q]^{<\omega}$, and for every $f, g: \cup U_{n}(t) \rightarrow Q$.

Assume GCH, and let κ be a κ^{+}-supercompact cardinal. Assume that $j: V \rightarrow M$ is an elementary embedding which witnesses the κ^{+}-supercompactness of κ, i.e., $\operatorname{crit}(j)=\kappa, \kappa^{\kappa^{+}} M \subseteq M$ and $j(\kappa)>\kappa^{+}$. Assume that this embedding is derived from a fine, normal measure on $\mathcal{P}_{\kappa} \kappa^{+}$; Thus,

Lemma 1.3.2. The following properties hold:

1. $V \models|j(\kappa)|=\kappa^{++}$
2. $\sup j^{\prime \prime} \kappa^{++}=j\left(\kappa^{++}\right)$
3. $j\left(\kappa^{+3}\right)=\kappa^{+3}$

This is a standard lemma; A detailed proof is presented, for example, in [1], section 4.

We would like to build a model which carries, for every $t \in[Q]^{<\omega}$, an elementary embedding j_{t}, which witnesses the κ^{+}-supercompactness of κ. Then, use the embedding j_{t} to extend F_{t} to a κ-complete ultrafilter F_{t}^{*} (the exact way in which this is done will be explained later). The main idea here is that using different elementary embeddings should prevent dependence between the ultrafilters $\left\langle F_{t}^{*}: t \in[Q]^{<\omega}\right\rangle$.

One possible way to construct many elementary embeddings, is to push forward a well known construction of Kunen and Paris, which maximalizes the number of normal measures on κ : Using κ^{+}-supercompactness of κ, we will construct a model which carries a definable sequence of elementary embeddings $\left\langle j_{\alpha}: \alpha<\kappa^{++}\right\rangle$, each one witnesses the κ^{+}-supercompactness of κ; This could be done such that the derived normal measures, $U_{\alpha}=\{X \subseteq$ $\left.\kappa: \kappa \in j_{\alpha}(X)\right\}$ are pairwise distinct, and, in a way, are "far" from each other.

Before we describe the construction, we fix a standard notation:
Notation. For a set S of ordinals, define -

$$
\text { Cohen }\left(\kappa^{+}, S\right)=\left\{f: \kappa^{+} \times S \rightarrow 2: f \text { is a partial function, }|f| \leq \kappa\right\}
$$

Define an iteration of length $\kappa+1,\left\langle P_{\alpha},{\underset{\sim}{\beta}}_{\beta}: \alpha \leq \kappa+1, \beta \leq \kappa\right\rangle$ with Easton support (direct limits are taken in regular limit stages, inverse limits elsewhere). For every inaccessible $\alpha \leq \kappa$, take ${\underset{\sim}{\alpha}}_{\alpha}$ to be a P_{α}-name for the forcing:

$$
\operatorname{Cohen}\left(\alpha^{+}, \alpha^{++}\right)=\left\{f: \alpha^{+} \times \alpha^{++} \rightarrow 2: f \text { is a partial function, }|f|<\alpha^{+}\right\}
$$

For every other value of α, let \underline{Q}_{α} name the trivial forcing. Denote for convenience $P=P_{\kappa+1}$.

Let G be P_{κ}-generic over V, and g be Cohen $\left(\kappa^{+}, \kappa^{++}\right)$-generic over $V[G]$. We will prove that the model $V[G, g]$ has a definable κ^{++}-sequence of elementary embeddings, as described above:

Theorem 1.3.3. The model $V[G, g]$ carries, for every $\alpha<\kappa^{++}$, a definable elementary embedding, $j_{\alpha}: V \rightarrow M_{\alpha}$, such that $j_{\alpha} \supseteq j$ and ${ }^{\kappa^{+}} M_{\alpha} \subseteq M_{\alpha}$, and the derived normal measures, $U_{\alpha}=\left\{X \subseteq \kappa: \kappa \in j_{\alpha}(X)\right\}$, are pairwise distinct.

As it turns out, constructing the ultrafilters F_{t}^{*} from the embeddings j_{α} will not be enough to rule out (1.3). Thus, we will construct another sequence of elementary embeddings, $\left\langle j_{t}: t \in[Q]^{<\omega}\right\rangle$, where, for every $t \in[Q]^{<\omega}, j_{t}$ is definable in some intermediate model $V\left[G, g_{t}\right] \subseteq V[G, g]$ (so, j_{t} will be an elementary embedding with domain $V\left[G, g_{t}\right]$ and not $\left.V[G, g]\right)$. Then, we will define the corresponding ultrafilters, F_{t}^{*}, each derived from j_{t} in $V\left[G, g_{t}\right]$. This method will reduce the amount of Cohen functions which F_{t}^{*} depends on; This will be necessary for our purposes.

In this section, we describe the constructions of the embeddings j_{α} and j_{t}, for $\alpha<\kappa^{++}$and $t \in[Q]^{<\omega}$. This will be done in subsections 1.3.1 and 1.3.2. The embeddings $\left\langle j_{\alpha}: \alpha<\kappa^{++}\right\rangle$will be applied to prove theorem 1.3.3; The embeddings $\left\langle j_{t}: t \in[Q]^{<\omega}\right\rangle$ will be applied to construct the ultrafilters $\left\langle F_{t}^{*}: t \in[Q]^{<\omega}\right\rangle$. In subsection 1.3.3 we confirm that (1.3) cannot hold.

In subsections 1.3.1, 1.3.2 we will use standard methods for extending elementary embeddings. We follow mainly Cummings' handbook article [1].

Notation. We fix some notations, which will be used throughout the entire section:

1. Assume that $Q \in V[G, g]$ is a non-trivial, κ-distributive forcing notion, with $|Q|=\kappa$. Since g is a generic set for a κ^{+}-distributive forcing notion, we can assume that $Q \in V[G]$ (by identifying Q with an isomorphic order on κ).
2. Denote, for every $\alpha<\kappa^{++}$, the function $g_{\alpha}: \kappa^{+} \rightarrow 2$, defined as follows:

$$
\forall x \in \kappa^{+} \quad g_{\alpha}(x)=g(x, \alpha)
$$

This is the α-th Cohen function which g adds.
3. Let $N=\operatorname{Ult}(V, U)$, where $U=\{X \subseteq \kappa: \kappa \in j(X)\}$. Let $i: V \rightarrow N$ be the corresponding elementary embedding. Then $\operatorname{crit}(i)=\kappa$ and ${ }^{\kappa} N \subseteq N$. We note that $\left(\kappa^{+}\right)^{N}=\kappa^{+}$and $\left(\kappa^{++}\right)^{N}<\kappa^{++}$.
4. Fix, in $V[G, g]$, a subset $X \subseteq \kappa^{++} \backslash\left(\kappa^{++}\right)^{N}$ with $|X|=\kappa$, and a bijection $\phi:[Q]^{<\omega} \rightarrow X$. By identifying Q with κ, we can actually assume that $\phi, Q, X \in V[G]$, since g is generic for a κ^{+}-closed forcing notion.
5. Denote $g \backslash X=g \cap\left(\kappa^{+} \times\left(\kappa^{++} \backslash X\right) \times 2\right)$. This is the set of the Cohen functions indexed by an element of $\kappa^{++} \backslash X$, i.e., not of the form $g_{\phi(t)}$ for some $t \in[Q]^{<\omega}$.
6. For every $t \in[Q]^{<\omega}$, we would like to extend $g \backslash X$ to a generic set for Cohen $\left(\kappa^{+}, \kappa^{++}\right)$, using only one Cohen function, $g_{\phi(t)}$. This could be done as follows: In $V[G]$, fix an isomorphism-

$$
\sigma: \text { Cohen }\left(\kappa^{+},\{\phi(t)\}\right) \rightarrow \operatorname{Cohen}\left(\kappa^{+}, X\right)
$$

For every $t \in[Q]^{<\omega}$, define a function $g_{t}: \kappa^{+} \times \kappa^{++} \rightarrow 2$,

$$
g_{t}=(\cup(g \backslash X)) \cup\left(\cup \sigma^{\prime \prime}\left(g_{\phi(t)}\right)\right)
$$

We identify g_{t} with the generic set for Cohen $\left(\kappa^{+}, \kappa^{++}\right)$, over $V[G]$ it defines. Clearly, $V\left[G, g_{t}\right] \subseteq V[G, g]$.

1.3.1 Extending N With a Generic Set For $i(P)$

Let us extend N with a generic set for $i(P) . i(P)$ is an Easton iteration of length $i(\kappa)+1 . i(P)_{\alpha}=P_{\alpha}$ for every $\alpha \leq \kappa$ (if $\alpha<\kappa$ this holds because $P_{\alpha} \in V_{\kappa}$. If $\alpha=\kappa$, this holds because a direct limit is taken at κ).

Since $N \subseteq V, G$ is P_{κ}-generic over N. We would like to extend $N[G]$ to a model of the form $N\left[G, g^{\prime}, H_{\alpha}, h_{\alpha}\right]$, for every $\alpha<\kappa^{++}$. Here:

1. g^{\prime} will be $\left(\operatorname{Cohen}\left(\kappa^{+}, \kappa^{++}\right)\right)^{N}$-generic over $N[G]$.
2. H_{α} will be $P_{[\kappa+1, i(\kappa))}$-generic over $N\left[G, g^{\prime}\right]$.
3. h_{α} will be Cohen $\left(i\left(\kappa^{+}\right), i\left(\kappa^{++}\right)\right)$-generic over $N\left[G, g^{\prime}, H_{\alpha}\right]$.

Remark 1.3.4. Every construction which will be done in this subsection could be applied on $V\left[G, g_{t}\right]$ instead of $V[G, g]$. So, in this subsection, we also extend $N[G]$ to a model of the form $N\left[G, g^{\prime}, H_{t}, h_{t}\right]$, for every $t \in[Q]^{<\omega}$. Here:

1. g^{\prime} will be the same $\left(\operatorname{Cohen}\left(\kappa^{+}, \kappa^{++}\right)\right)^{N}$-generic over $N[G]$.
2. H_{t} will be $P_{[\kappa+1, i(\kappa))}$-generic over $N\left[G, g^{\prime}\right]$.
3. h_{t} will be Cohen $\left(i\left(\kappa^{+}\right), i\left(\kappa^{++}\right)\right)$-generic over $N\left[G, g^{\prime}, H_{t}\right]$.

Claim 1.3.5. Given $X \in V[G]$ such that $|X| \leq \kappa$ and $X \subseteq N[G]$, it follows that $X \in N[G]$. In particular, $V[G] \vDash{ }^{\kappa} N[G] \subseteq N[G]$.

Proof. First, let us show that it suffices to prove the claim for X a set of ordinals: Given $X \subseteq N[G]$, define $X^{\prime}=\{\operatorname{rank}(x): x \in X\}$. Then $X^{\prime} \in N[G]$, and let $\alpha>\sup \left(X^{\prime}\right)$. In N, fix a cardinal μ and a bijection $\phi: V_{\alpha} \rightarrow \mu$; Then define $X^{\prime \prime}=\{\phi(x): x \in X\}$. So $X^{\prime \prime}$ is a set of ordinals, and therefore $X^{\prime \prime} \in N[G]$. Thus, $X=\phi^{-1} X^{\prime \prime} \in N[G]$.

Now, let us prove the claim for a set of ordinals X. So $X \in V[G]$, and $|X| \leq \kappa$. Since P_{κ} is κ-c.c., there exists a set of ordinals $X^{\prime} \in V$ such that $\left|X^{\prime}\right| \leq \kappa$ and $X \subseteq X^{\prime}$. Since ${ }^{\kappa} N \subseteq N, X^{\prime} \in N$. Assume that $\underset{\sim}{\sigma}$ is a $P_{\kappa^{-}}$ name for X. For every $\alpha \in X^{\prime}$, let A_{α} be an antichain, maximal among the antichains contained in $\left\{p \in P_{\kappa}: p \Vdash \check{\alpha} \in \underset{\sim}{\sigma}\right\}$. Then, for every $\alpha<\kappa,\left|A_{\alpha}\right|<\kappa$, so $A_{\alpha} \in N$. It follows that $\vec{A}=\left\langle A_{\alpha}: \alpha \in X^{\prime}\right\rangle \in N$. Now, define in $N[G]$ the set $\left\{\alpha \in X^{\prime}: G \cap \vec{A}(\alpha) \neq \emptyset\right\}$. We claim that this set is X (and, therefore, $X \in N[G])$. Clearly, $\left\{\alpha \in X^{\prime}: G \cap \vec{A}(\alpha) \neq \emptyset\right\} \subseteq X$. On the other hand, given $\alpha \in X$, there exists $p \in G$ such that $p \Vdash \check{\alpha} \in \underset{\sim}{\sigma}$; Now, we note that the following set is dense in $P_{\kappa^{-}}$

$$
D=\left\{q: q \text { extends some } r \in A_{\alpha}\right\} \cup\{q: q \text { and } p \text { are incompatible }\}
$$

So there exists $q \in G \cap D$, and since $p \in G, q$ extends some element in A_{α}. Therefore, $G \cap A_{\alpha} \neq \emptyset$.

Claim 1.3.6. Let $g^{\prime}=\left\{f \cap\left(\kappa^{+} \times\left(\kappa^{++}\right)^{N} \times 2\right): f \in g\right\}$. Then $g^{\prime} \subseteq N[G]$. Moreover, g^{\prime} is Cohen $\left(\kappa^{+}, \kappa^{++}\right)^{N[G]}$-generic over $N[G]$.

Proof. Let us prove that $g^{\prime} \subseteq N[G]$, i.e., for every $f \in g^{\prime}, f \in N[G]$. Denote $\mu=|\operatorname{dom}(f)| \leq \kappa . \operatorname{dom}(f) \in V[G]$ is a set of ordinals, so, by the last claim, $\operatorname{dom}(f) \in N[G]$. Let $h: \mu \rightarrow \operatorname{dom}(f)$ be a bijection in $V[G]$. So $h \in N[G]$. Define $F: \mu \rightarrow N[G]$ as follows: $F(\alpha)=f(h(\alpha))$. Then $F \in N[G]$. Therefore, $f \in N[G]$, since $f(\alpha)=F\left(h^{-1}(\alpha)\right)$.

We prove that g^{\prime} is Cohen $\left(\kappa^{+}, \kappa^{++}\right)^{N[G]}$-generic over $N[G]$. Clearly g^{\prime} is downwards closed, and any $f, f^{\prime} \in g^{\prime}$ are compatible. Given a dense subset $D^{\prime} \in N[G]$ of Cohen $\left(\kappa^{+}, \kappa^{++}\right)^{N[G]}$, we can define in $V[G]$ the set -

$$
D=\left\{f \in \operatorname{Cohen}\left(\kappa^{+}, \kappa^{++}\right): f \cap\left(\kappa^{+} \times\left(\kappa^{++}\right)^{N} \times 2\right) \in D^{\prime}\right\}
$$

It's routine to verify that $D \in V[G]$ is dense in Cohen $\left(\kappa^{+}, \kappa^{++}\right)$. Take $f \in g \cap D$. Then $f \cap\left(\kappa^{+} \times\left(\kappa^{++}\right)^{N} \times 2\right) \in N[G]$, and $f \cap\left(\kappa^{+} \times\left(\kappa^{++}\right)^{N} \times 2\right) \in g^{\prime} \cap D^{\prime}$.

Claim 1.3.7. Given $X \in V[G, g]$ such that $|X| \leq \kappa$ and $X \subseteq N\left[G, g^{\prime}\right]$, it follows that $X \in N\left[G, g^{\prime}\right]$. In particular, $V[G, g] \vDash{ }^{\kappa} N\left[G, g^{\prime}\right] \subseteq N\left[G, g^{\prime}\right]$.

Proof. We can assume that X is a set of ordinals. Then, $X \in V[G, g]$, and $|X| \leq \kappa$. Since $\operatorname{Cohen}\left(\kappa^{+}, \kappa^{++}\right)$is κ^{+}closed, it follows that $X \in V[G]$. As a set of ordinals, $X \subseteq N[G]$. Therefore, $X \in N[G]$.

Remark 1.3.8. Similarly, $V\left[G, g^{\prime}\right] \vDash{ }^{\kappa} N\left[G, g^{\prime}\right] \subseteq N\left[G, g^{\prime}\right]$, and, for every $t \in[Q]^{<\omega}, V\left[G, g_{t}\right] \vDash{ }^{\kappa} N\left[G, g^{\prime}\right] \subseteq N\left[G, g^{\prime}\right]$ (we note that $g^{\prime} \subseteq g_{t}$, since $\left.X \subseteq \kappa^{++} \backslash\left(\kappa^{++}\right)^{N}\right)$.

In $N\left[G, g^{\prime}\right]$, consider the quotient forcing $i(P) / G * g^{\prime}$. Denote it by $i(P)_{(\kappa, i(\kappa))}$. Our goal is to construct, for every $\alpha<\kappa^{++}$, a $i(P)_{(\kappa, i(\kappa))}$-generic set over $N\left[G, g^{\prime}\right], H_{\alpha}$, which belongs to $V[G, g]$. To do so, we need the following standard lemma:

Lemma 1.3.9. In N, let μ be the first inaccessible cardinal above κ. Then -

1. $N\left[G, g^{\prime}\right] \vDash " i(P)_{(\kappa, i(\kappa))}$ is μ-closed".
2. $V\left[G, g^{\prime}\right] \vDash{ }^{\prime} i(P)_{(\kappa, i(\kappa))}$ is κ^{+}-closed".

Proof. Let us prove 1. Work in $N\left[G, g^{\prime}\right]$. Then:

1. Every limit in $i(P)_{(\kappa, i(\kappa))}$ is either direct or inverse.
2. Every set of ordinals of size less then μ in $N\left[G, g^{\prime}\right]$, is covered by a set of size less then μ in N : Indeed, in $N, i(P)_{\kappa+1}$ is μ-c.c., since it has cardinality $<\mu$.
3. μ is a regular uncountable cardinal in $N\left[G, g^{\prime}\right]$.
4. For every $\gamma \in[\kappa+1, i(\kappa)), \Vdash_{P_{\gamma}} "{\underset{\sim}{Q}}_{\gamma}$ is κ closed": If $\underset{\sim}{Q_{\gamma}}$ names trivial forcing notion, this clearly holds; Else, $\gamma \geq \mu$, and then $\underset{\sim}{Q_{\gamma}}$ names a μ-closed forcing notion.
5. For every limit $\gamma \in[\kappa+1, i(\kappa)]$ with $\operatorname{cf}(\gamma)<\mu$, an inverse limit is taken in $i(P)_{i(\kappa)}$: Indeed, a direct limit is taken only at inaccessibles; Every inaccessible $\gamma \in[\kappa+1, i(\kappa))$ satisfies $\gamma \geq \mu$, so $\operatorname{cf}(\gamma)=\gamma \geq \mu$.

Now, for a regular uncountable μ such that conditions $1-5$ above hold, $\Vdash_{i(P)_{\kappa+1}}$ $" i(P)_{(\kappa, i(\kappa))}$ is μ closed" (see [1], section 7, for details). So-

$$
N\left[G, g^{\prime}\right] \vDash " i(P)_{(\kappa, i(\kappa))} \text { is } \mu \text {-closed" }
$$

As for 2 , it is known that $V\left[G, g^{\prime}\right] \vDash{ }^{\kappa} N\left[G, g^{\prime}\right] \subseteq N\left[G, g^{\prime}\right]$ and $V\left[G, g^{\prime}\right] \vDash$ $|\mu|=\kappa^{+}$. Therefore, $V\left[G, g^{\prime}\right] \vDash " i(P)_{(\kappa, i(\kappa))}$ is κ^{+}-closed".

Lemma 1.3.10. In $N\left[G, g^{\prime}\right]$, let Z be the set of maximal antichains in $i(P)_{(\kappa, i(\kappa))}$. Then $V\left[G, g^{\prime}\right] \vDash|Z|=\kappa^{+}$.

Proof. In $N\left[G, g^{\prime}\right],\left|i(P)_{(\kappa, i(\kappa))}\right|=i(\kappa)$, and $i(P)_{(\kappa, i(\kappa))}$ is $i(\kappa)$-c.c., since $i(\kappa)$ is Mahlo. Therefore, $N\left[G, g^{\prime}\right] \vDash|Z| \leq i(\kappa)^{<i(\kappa)}$. In order to calculate $i(\kappa)^{<i(\kappa)}$ in $N\left[G, g^{\prime}\right]$, let us prove that $i(\kappa)$ remains inaccessible in $N\left[G, g^{\prime}\right]$: Note that $i(P)_{\kappa+1}$ is μ-c.c., where μ is the first inaccessible in N above κ. We use a nice name argument: First, $V \vDash \forall \beta<\kappa\left|P_{\beta}\right|<\kappa$. Therefore, $N \vDash\left|i(P)_{\kappa+1}\right|<i(\kappa)$; Denote this cardinality by $\lambda<i(\kappa)$. It follows that there are at most λ^{μ} antichains in $i(P)_{\kappa+1}$. Now, for every $\tau<i(\kappa)$, there are, in N, at most $\left(\lambda^{\mu}\right)^{\tau}<i(\kappa)$ nice names for subsets of τ. Therefore, $N\left[G, g^{\prime}\right] \vDash \forall \tau<i(\kappa) 2^{\tau}<$
$i(\kappa)$. Also, $i(\kappa)>\mu$, so $i(\kappa)$ remains regular in $N\left[G, g^{\prime}\right]$. Thus, in $N\left[G, g^{\prime}\right]$, $i(\kappa)^{<i(\kappa)}=i(\kappa)$.

Up to now we proved that $N\left[G, g^{\prime}\right] \vDash|Z| \leq i(\kappa)$. Now, $V \vDash|i(\kappa)|=\kappa^{+}$, and so $V\left[G, g^{\prime}\right] \vDash|i(\kappa)|=\kappa^{+}$. Therefore, $V\left[G, g^{\prime}\right] \vDash|Z| \leq \kappa^{+}$.

Now, $V\left[G, g^{\prime}\right] \vDash|Z|=\kappa^{+}$: Otherwise, since-

$$
V\left[G, g^{\prime}\right] \vDash " i(P)_{(\kappa, i(\kappa))} \text { is } \kappa^{+} \text {closed } "
$$

there would exist a condition $p \in i(P)_{(\kappa, i(\kappa))}$ such that $\left\{q \in i(P)_{(\kappa, i(\kappa))}: q \leq p\right\}$ intersects every element of Z, and thus a generic set for $i(P)_{(\kappa, i(\kappa))}$, which belongs to $N\left[G, g^{\prime}\right]$; This is not possible since $i(P)_{(\kappa, i(\kappa))}$ is non-trivial.

Now, we can construct a generic set for $i(P)_{(\kappa, i(\kappa))}$ over $N\left[G, g^{\prime}\right]$, which belongs to $V[G, g]$. This is done in the next lemma.

Lemma 1.3.11. There exists an injection $A: 2^{<\kappa^{+}} \rightarrow i(P)_{(\kappa, i(\kappa))}, A \in V\left[G, g^{\prime}\right]$, such that, for every $\alpha<\kappa^{++}$, the following set, defined in $V[G, g]$,

$$
H_{\alpha}=\left\{p \in i(P)_{(\kappa . i(\kappa))}: \exists \beta<\kappa^{+} \quad p \leq_{P_{(\kappa, i(\kappa))}} A\left(g_{\alpha} \upharpoonright \beta\right)\right\}
$$

is generic for $i(P)_{(\kappa, i(\kappa))}$ over $N\left[G, g^{\prime}\right]$ (actually, H_{α} belongs to $V\left[G, g^{\prime} \cup g_{\alpha}\right]$).
Proof. Work In $V\left[G, g^{\prime}\right]$. Enumerate $Z=\left\{Z_{\alpha}: \alpha<\kappa^{+}\right\}$, where Z is as in the last claim. We construct a binary tree A of height κ^{+}, of conditions from $i(P)_{(\kappa, i(\kappa))}$. Each branch in A will be an increasing sequence of such conditions. We construct A as a function, $A: 2^{<\kappa^{+}} \rightarrow i(P)_{(\kappa, i(\kappa))}$.

Construction of A : Take the root $A(\rangle)$ to be an arbitrary element of $i(P)_{(\kappa, i(\kappa))}$. Now, given $\alpha<\kappa^{+}$and $f \in 2^{\alpha}$, assume that $A(f)=s$, and let us define $A(f \frown\langle 0\rangle), A(f \frown\langle 1\rangle)$. Take two incompatible elements $p, q \in i(P)_{(\kappa, i(\kappa))}$ above s. For p, there exists a unique $p^{\prime} \in Z_{\alpha}$ such that p, p^{\prime} are compatible. Let $p^{\prime \prime}$ extend both of them. Similarly, choose $q^{\prime \prime}$ which extends s and some element $q^{\prime} \in Z_{\alpha}$. Set $A(f \frown\langle 0\rangle)=p^{\prime \prime}, A(f \frown\langle 1\rangle)=q^{\prime \prime}$. For limit levels of A, we use κ^{+}-closeness of $i(P)_{(\kappa, i(\kappa))}$: Given a limit $\beta<\kappa^{+}$and $f \in 2^{\beta}$, assume that $A(f \upharpoonright \alpha)=s_{\alpha}$, for every $\alpha<\kappa^{+}$. There exists $s \in i(P)_{(\kappa, i(\kappa))}$ such that, for every $\alpha<\beta$, s extends s_{α}. Set $A(f)=s$.
A is injective: Suppose that $h_{1} \neq h_{2} \in 2^{<\kappa^{+}}$. If for some $x \in \operatorname{dom}\left(h_{2}\right)$, $h_{1}=h_{2} \upharpoonright x$, then $A\left(h_{2}\right)$ extends $A\left(h_{1}\right)$, so $A\left(h_{1}\right) \neq A\left(h_{2}\right)$. Therefore, let us
assume that there exists $x \in \operatorname{dom}\left(h_{1}\right) \cap \operatorname{dom}\left(h_{2}\right)$ such that $h_{1}(x) \neq h_{2}(x)$. Take the first such x. Then $A\left(h_{1} \upharpoonright x+1\right), A\left(h_{2} \upharpoonright x+1\right)$ are incompatible. Thus, $A\left(h_{1}\right) \neq A\left(h_{2}\right)$ (Since $A\left(h_{i}\right)$ extends, or is equal to $A\left(h_{i} \upharpoonright x+1\right)$).

Construction of H_{α} : Every maximal chain in the tree contains, for each $\beta<\kappa^{+}$, an extension of some element of Z_{β}. Given $\alpha<\kappa^{++}, H_{\alpha}$ is the downward closure of the branch which corresponds to g_{α}, and thus intersects every maximal antichain. H_{α} is defined in $V\left[G, g^{\prime} \cup g_{\alpha}\right]$ from A and g_{α}, and clearly is a generic set for $i(P)_{(\kappa, i(\kappa))}$ over $N\left[G, g^{\prime}\right]$.

We note that different Cohen functions $g_{\alpha}, g_{\alpha^{\prime}}$, induce different generic sets, $H_{\alpha}, H_{\alpha^{\prime}}$: This holds, since the first splitting point between two branches contains two incompatible elements.

Remark 1.3.12. Over $V\left[G, g^{\prime}\right], g_{\alpha}$ is reconstructible from H_{α} (this is trivial if $\left.\alpha<\left(\kappa^{++}\right)^{N}\right)$. More formally, fix $\alpha<\kappa^{++}$. then g_{α} can be defined by a formula with parameters A and H_{α}.

Proof. Fix $\alpha<\kappa^{++}$. Assume that $\beta<\kappa^{+}$, and let us compute $g_{\alpha}(\beta)$. Assume that $g_{\alpha}\left(\beta^{\prime}\right)$ was computed for every $\beta^{\prime}<\beta$. Let $p=A\left(g_{\alpha} \upharpoonright \beta\right)$. Assume that p_{0}, p_{1} are the two incompatible successors of p in A.

Exactly one of p_{0}, p_{1} belongs to H_{α}; Assume without loss of generality that $p_{0} \in H_{\alpha}$. Since A is injective, there exists a unique $h \in^{\beta+1} 2$ such that $A(h)=$ $p_{0}=A\left(g_{\alpha} \upharpoonright(\beta+1)\right)$. Thus, $g_{\alpha}(\beta)=h(\beta)$.

Lemma 1.3.13. For every $\alpha<\kappa^{++}, i: V \rightarrow N$ can be extended to an elementary embedding $i_{\alpha}: V[G] \rightarrow N\left[G, g^{\prime}, H_{\alpha}\right]$. Moreover, for every $x \in N\left[G, g^{\prime}, H_{\alpha}\right]$ there exists $f: \kappa \rightarrow V[G], f \in V[G]$, such that $x=i_{\alpha}(f)(\kappa)$.

Proof. We note that $i^{\prime \prime} G \subseteq G * g^{\prime} * H_{\alpha}$ for every $\alpha<\kappa$: Indeed, for every $p \in G$, there exists $\alpha<\kappa$ such that for every $\beta \in[\alpha, \kappa), p(\beta)=0$. Therefore, for every $\beta \in[\alpha, i(\kappa)), i(p)(\beta)=0$. Moreover, for every $\beta \leq \alpha, i(p)(\beta)=p(\beta)$. So $i(p) \in G * g^{\prime} * H_{\alpha}$.

Thus $i: V \rightarrow N$ may be extended to an elementary embedding $i_{\alpha}: V[G] \rightarrow$ $N\left[G, g^{\prime}, H_{\alpha}\right]$. Since $H_{\alpha} \in V\left[G, g^{\prime} \cup g_{\alpha}\right], i_{\alpha}$ is definable in $V\left[G, g^{\prime} \cup g_{\alpha}\right]$.

Now, given $x \in N\left[G, g^{\prime}, H_{\alpha}\right]$, assume that $\underset{\sim}{\sigma}$ is a $i\left(P_{\kappa}\right)$-name that is interpreted though $G * g^{\prime} * H_{\alpha}$ as $x: \underset{\sim}{\underset{\sim}{\sigma}}{\underset{G * g^{\prime} * H_{\alpha}}{ }=x \text {. Then there exists } F: \kappa \rightarrow V}$.
such that $i(F)(\kappa)=\underset{\sim}{\sigma}$. We can assume that for every $\alpha<\kappa, F(\alpha)$ is a P_{κ}-name. In $V[G]$, define $F^{\prime}: \kappa \rightarrow V[G]$, by setting $F^{\prime}(\alpha)=(F(\alpha))_{G}$ for every $\alpha<\kappa$. Then, by elementarity, $i\left(F^{\prime}\right)(\kappa)=(i(F)(\kappa))_{G * g^{\prime} * H_{\alpha}}=x$.

Remark 1.3.14. For the construction of $N\left[G, g^{\prime}, H_{t}, h_{t}\right]$, take $H_{t}=H_{\phi(t)}$, and $i_{t}=i_{\phi(t)}$.

We turn to defining h_{α}, the Cohen $\left(i\left(\kappa^{+}\right), i\left(\kappa^{++}\right)\right)$-generic set over $N\left[G, g^{\prime}, H_{\alpha}\right]$, for every $\alpha<\kappa^{++}$.

Lemma 1.3.15. In $V[G, g]$, define, for every $\alpha<\kappa^{++}$,

$$
h_{\alpha}=\left\{q \in\left(\operatorname{Cohen}\left(i\left(\kappa^{+}\right), i\left(\kappa^{++}\right)\right)\right)^{N\left[G, g^{\prime}, H_{\alpha}\right]}: q \subseteq \cup i_{\alpha}^{\prime \prime} g\right\}
$$

Then h_{α} is Cohen $\left(i\left(\kappa^{+}\right), i\left(\kappa^{++}\right)\right)$-generic over $N\left[G, g^{\prime}, H_{\alpha}\right]$. Moreover, there exists an elementary embedding definable in $V[G, g]$, which extends i_{α} (and therefore extends i),

$$
i_{\alpha}^{*}: V[G, g] \rightarrow N\left[G, g^{\prime}, H_{\alpha}, h_{\alpha}\right]
$$

and if $U_{\alpha}=\left\{X \subseteq \kappa: \kappa \in i_{\alpha}^{*}(X)\right\}$, then $N\left[G, g^{\prime}, H_{\alpha}, h_{\alpha}\right]=\operatorname{Ult}\left(V[G, g], U_{\alpha}\right)$.
Proof. Clearly, the elements of h_{α} are pairwise compatible, and h_{α} is downwards closed. Therefore, it suffices to prove that h_{α} intersects any set $D \in N\left[G, g^{\prime}, H_{\alpha}\right]$ which is dense and open in Cohen $\left(i\left(\kappa^{+}\right), i\left(\kappa^{++}\right)\right)$. Given such D, there exists $F: \kappa \rightarrow V[G]$ such that $D=i_{\alpha}(F)(\kappa)$. Assume without loss of generality that $F(\beta)$ is dense and open subset of Cohen $\left(\kappa^{+}, \kappa^{++}\right)$for every $\beta<\kappa$. Define, in $V[G]$,

$$
D^{\prime}=\bigcap_{\beta \in S} F(\beta)
$$

D^{\prime} is dense and open in $\operatorname{Cohen}\left(\kappa^{+}, \kappa^{++}\right)$. Take $p \in D^{\prime} \cap g$. So $i_{\alpha}(p) \in$ $i_{\alpha}(F)(\kappa)$. Therefore, $i_{\alpha}(p) \in i_{\alpha}^{\prime \prime} g \cap D$. This shows that h_{α} is indeed generic over $N\left[G, g^{\prime}, H_{\alpha}\right]$.

Now, we note that $i_{\alpha}^{\prime \prime} g \subseteq h_{\alpha}$, by the definition of h_{α}. Therefore, there exists an elementary embedding $i_{\alpha}^{*}: V[G, g] \rightarrow N\left[G, g^{\prime}, H_{\alpha}, h_{\alpha}\right]$ which extends i_{α}. Since $h_{\alpha} \in V[G, g], i_{\alpha}^{*}$ is definable in $V[G, g]$.
$N\left[G, g^{\prime}, H_{\alpha}, h_{\alpha}\right]=\operatorname{Ult}\left(V[G, g], U_{\alpha}\right)$ since for every $x \in N\left[G, g^{\prime}, H_{\alpha}, h_{\alpha}\right]$ there exists $f: \kappa \rightarrow V[G, g], f \in V[G, g]$, such that $x=i_{\alpha}^{*}(f)(\kappa)$. This is done exactly as in lemma 1.3.13.

The ultrafilters $\left\langle U_{\alpha}: \alpha<\kappa^{++}\right\rangle$are destined to be the normal ultrafilters derived from the extended embeddings j_{α}^{*}. The following proposition states that there are κ^{++}pairwise distinct ultrafilters among them:

Proposition 1.3.16. Assume that $\alpha \neq \beta$ in the interval $\left[\left(\kappa^{++}\right)^{N}, \kappa^{++}\right)$. Then $U_{\alpha} \neq U_{\beta}$.

Proof. Assume the contrary. Then $i_{U_{\alpha}}^{*}(G)=i_{U_{\beta}}^{*}(G)$, so $G * g^{\prime} * H_{\alpha}=G * g^{\prime} * H_{\beta}$. Thus, $H_{\alpha}=H_{\beta}$ (Indeed, assume that $q \in H_{\alpha}$, and q is an $i(P)_{\kappa+1}$-name for q, and $p \in G * g^{\prime}$ forces that $\underset{\sim}{q}$ belongs to $i(P)_{(\kappa, i(k))}$. Then $\langle p, q\rangle \in G * g^{\prime} * H_{\alpha}=$ $G * g^{\prime} * H_{\beta}$, so the interpretation of $\underset{\sim}{q}$ via $G * g^{\prime}$ belongs to H_{β}). Consider $V\left[G, g^{\prime} \cup g_{\alpha}\right]$. Since $H_{\alpha} \in V\left[G, g^{\prime} \cup g_{\alpha}\right]$, it follows that $H_{\beta} \in V\left[G, g^{\prime} \cup g_{\alpha}\right]$. Thus, by remark 1.3.12, $g_{\beta} \in V\left[G, g^{\prime} \cup g_{\alpha}\right]$. This is a contradiction, since $\alpha \neq \beta \geq\left(\kappa^{++}\right)^{N}$.

Finally, let us define h_{t} for every $t \in[Q]^{<\omega}$. Note that $h_{\phi(t)}$ and h_{t} are not defined in the same way.

Lemma 1.3.17. Assume that $t \in[Q]^{<\omega}$. In $V\left[G, g_{t}\right]$, define -

$$
h_{t}=\left\{q \in\left(\operatorname{Cohen}\left(i\left(\kappa^{+}\right), i\left(\kappa^{++}\right)\right)\right)^{N\left[G, g^{\prime}, H_{t}\right]}: q \subseteq \cup i_{t}^{\prime \prime} g_{t}\right\}
$$

Then h_{t} is Cohen $\left(i\left(\kappa^{+}\right), i\left(\kappa^{++}\right)\right)$-generic over $N\left[G, g^{\prime}, H_{t}\right]$. Moreover, there exists an elementary embedding definable in $V\left[G, g_{t}\right]$, which extends i_{t} (and therefore extends i),

$$
i_{t}^{*}: V\left[G, g_{t}\right] \rightarrow N\left[G, g^{\prime}, H_{t}, h_{t}\right]
$$

and if $U_{t}=\left\{X \subseteq \kappa: \kappa \in i_{t}^{*}(X)\right\}$, then $N\left[G, g^{\prime}, H_{t}, h_{t}\right]=U l t\left(V\left[G, g_{t}\right], U_{t}\right)$.
Proof. Just repeat the proof of lemma 1.3.15.
Remark 1.3.18. $U_{t}=U_{\phi(t)}$, since the subsets of κ are the same in $V[G, g], V\left[G, g_{t}\right]$ and $V[G]$, and $i_{\phi(t)}^{*}, i_{t}^{*}$ both extend $i_{\phi(t)}$.

1.3.2 Extending M With a Generic Set For $j(P)$

Now, let us define $H_{\alpha}^{*}, h_{\alpha}^{*}, H_{t}^{*}, h_{t}^{*}$. Clearly, for every $\alpha \leq \kappa, j(P)_{\alpha}=P_{\alpha}$. Indeed, if $\alpha<\kappa$, then $j(P)_{\alpha}=j\left(P_{\alpha}\right)=P_{\alpha}$. If $\alpha=\kappa$, then it is inaccessible in M, so a direct limit is taken at κ, and thus $j(P)_{\kappa}=P_{\kappa}$.

Claim 1.3.19. G is $j(P)_{\kappa}$ generic over M, and $V[G] \vDash \kappa^{+} M[G] \subseteq M[G]$. Moreover, g is Cohen $\left(\kappa^{+}, \kappa^{++}\right)$-generic over $M[G]$, and $V[G, g] \vDash \kappa^{+} M[G, g] \subseteq$ $M[G, g]$. Similarly, for every $t \in[Q]^{<\omega}, g_{t}$ is Cohen $\left(\kappa^{+}, \kappa^{++}\right)$-generic over $M[G]$, and $V\left[G, g_{t}\right] \vDash \kappa^{+} M\left[G, g_{t}\right] \subseteq M\left[G, g_{t}\right]$.

Proof. Every dense subset of $j(P)_{\kappa}=P_{\kappa}$ which belongs to M, belongs to V as well, so G is generic over $M . V[G] \models^{\kappa^{+}} M[G] \subseteq M[G]$ holds, since ${ }^{\kappa^{+}} M \subseteq M$, and $j(P)_{\kappa}$ is κ-c.c.; Just follow the proof of claim 1.3.5. Therefore $g \subseteq M[G]$. Now, since $\left(\kappa^{++}\right)^{M}=\kappa^{++}, g$ is $\left(\operatorname{Cohen}\left(\kappa^{+}, \kappa^{++}\right)\right)^{M[G]}$-generic over $M[G]$. Finally, $V[G, g] \vDash \kappa^{+} M[G, g] \subseteq M[G, g]$ follows similarly to claim 1.3.5, since $\operatorname{Cohen}\left(\kappa^{+}, \kappa^{++}\right)$is $\kappa^{++}-$c.c., and $M[G]$ is closed under κ^{+}-sequences.

In $M[G, g]$, consider the quotient forcing $j(P) / G * g$. Similarly, in $M\left[G, g_{t}\right]$, consider the quotient forcing $j(P) / G * g_{t}$, for every $t \in[Q]^{<\omega}$. We repeat (briefly) the same arguments as before:

Lemma 1.3.20. 1. $V[G, g] \vDash " j(P) / G * g$ is κ^{++}-closed".
2. For every $t \in[Q]^{<\omega}, V\left[G, g_{t}\right] \vDash " j(P) / G * g_{t}$ is κ^{++}-closed".

Proof. We prove only 1 , since 2 is completely analogous. In M, let μ be the first inaccessible cardinal above κ. Work in $M[G, g]$. Then, just as in lemma 1.3.9, $\Vdash_{j(P)_{\kappa+1}} " j(P) / G * g$ is μ closed". So $M[G, g] \vDash " j(P) / G * g$ is μ-closed". It is known that $V[G, g] \vDash \kappa^{+} M[G, g] \subseteq M[G, g]$, and $V[G, g] \vDash|\mu|=\kappa^{++}$. Therefore, $V[G, g] \vDash " j(P) / G * g$ is κ^{++}-closed".

Lemma 1.3.21. In $M[G, g]$, let Z be the set of maximal antichains in $j(P) / G *$ g. Then $V[G, g] \vDash|Z| \leq \kappa^{++}$. Similarly, if Z_{t} is the set of maximal antichains in $j(P) / G * g_{t}$, then $V\left[G, g_{t}\right] \vDash\left|Z_{t}\right| \leq \kappa^{++}$.

Proof. In $M[G, g],|j(P) / G * g|=j(\kappa)$, and $j(P) / G * g$ is $j(\kappa)$-c.c., since $j(\kappa)$ is Mahlo. Therefore, $M[G, g] \vDash|Z| \leq j(\kappa)^{<j(\kappa)}=j(\kappa)$. Now, $V \vDash|j(\kappa)|=\kappa^{++}$, and so $V[G, g] \vDash|j(\kappa)|=\kappa^{++}$. Therefore, $V[G, g] \vDash|Z| \leq \kappa^{++}$.

Lemma 1.3.22. There exist, for every $\alpha<\kappa^{++}$, a $j(P) / G * g$-generic set over $M[G, g], H_{\alpha}^{*}$, and two elementary embeddings, $j_{\alpha}: V[G] \rightarrow M\left[G, g, H_{\alpha}^{*}\right]$ and $k_{\alpha}: N\left[G, g^{\prime}, H_{\alpha}\right] \rightarrow M\left[G, g, H_{\alpha}^{*}\right]$, such that $j_{\alpha}=k_{\alpha} \circ i_{\alpha}$. The embeddings are definable in $V[G, g]$. Moreover, ${ }^{\kappa^{+}} M\left[G, g, H_{\alpha}^{*}\right] \subseteq M\left[G, g, H_{\alpha}^{*}\right]$.

Proof. Let $k: N \rightarrow M$ be the natural embedding, defined as follows:

$$
k(i(f)(\kappa))=j(f)(\kappa)
$$

Then $\operatorname{crit}(k)=\left(\kappa^{++}\right)^{N}$: This follows because $k(\kappa)=\kappa$, and $k\left(\left(\kappa^{+}\right)^{N}\right)=$ $\left(k(\kappa)^{+}\right)^{M}=\kappa^{+M}=\kappa^{+^{N}}$.

First, let us extend $k: N \rightarrow M$ to an elementary embedding $k^{*}: N\left[G, g^{\prime}\right] \rightarrow$ $M[G, g]$. Let us show that $k^{\prime \prime} G * g^{\prime} \subseteq G * g$. Given $\vec{q} \in G * g^{\prime}, k(\vec{q})$ has length $\kappa+1$. k fixes elements of G; As for elements of $g^{\prime}:$ Each $p \in \operatorname{Cohen}\left(\kappa^{+},\left(\kappa^{++}\right)^{N}\right)$ has cardinality $\leq \kappa$, so it's domain is bounded in $\kappa^{+} \times\left(\kappa^{++}\right)^{N}$. So $k(p)=p$. Therefore, k acts as identity on $G * g^{\prime}$, and thus $k: N \rightarrow M$ can be extended to $k^{*}: N\left[G, g^{\prime}\right] \rightarrow M[G, g]$.

Now, let us construct the generic set $H_{\alpha}^{*} . H_{\alpha}$ has cardinality $|i(\kappa)|=\left(\kappa^{+}\right)^{V}$. Let us consider $k^{* \prime \prime} H_{\alpha}$. For every $\vec{p} \in H_{\alpha}, \vec{p}$ is a condition in $i(P) / G * g^{\prime}$, so, by elementarity, $k^{*}(\vec{p})$ is a condition in $j(P) / G * g$.

In $V[G, g], k^{* \prime \prime} H_{\alpha} \in{ }^{\kappa^{+}} M$, so $k^{* \prime \prime} H_{\alpha} \in M[G, g]$. By κ^{++}-closedness of $j(P) / G * g$, there exists a condition $p_{\alpha} \in j(P) / G * g$ which extends every element in $k^{* \prime \prime} H_{\alpha}$. We note that $V[G, g]$ thinks that $j(P) / G * g$ is κ^{++}-closed, and has at most κ^{++}antichains (which all lie in $M[G, g]$), so we can find a generic H_{α}^{*} for $j(P) / G * g$ over $M[G, g]$, which belongs to $V[G, g]$, such that $p_{\alpha} \in H_{\alpha}^{*}$.

Now, since $j^{\prime \prime} G \subseteq G * g * H_{\alpha}^{*}$ (this holds because a direct limit is taken at κ), we can extend j to an elementary embedding $j_{\alpha}: V[G] \rightarrow M\left[G, g, H_{\alpha}^{*}\right]$.

As for k^{*}, we prove that-

$$
k^{* \prime \prime} G * g^{\prime} * H_{\alpha} \subseteq G * g * H_{\alpha}^{*}
$$

Indeed, assume that $\vec{p} \in G, s \in g^{\prime}$ and $\vec{q} \in H_{\alpha}$. Then $k^{*}(\vec{p} \complement\langle s\rangle \prec \vec{q})=$ $\vec{p} \frown\langle s\rangle \frown k^{*}(\vec{q})$; Now, $\vec{q} \in H_{\alpha}$, so p_{α} extends $k^{*}(\vec{q})$. Therefore, $k^{*}(\vec{q}) \in H_{\alpha}^{*}$. So $\vec{p} \curvearrowright\langle s\rangle \smile k^{*}(\vec{q}) \in G * g * H_{\alpha}^{*}$, as desired. Therefore, we can extend k^{*} to an embedding $k_{\alpha}: N\left[G, g^{\prime}, H_{\alpha}\right] \rightarrow M\left[G, g, H_{\alpha}^{*}\right]$.

Now, since $j=k \circ i$, we have, for every P_{κ}-name $\underset{\sim}{\sigma}$, and every $\alpha<\kappa^{++}$,

$$
k_{\alpha}\left(i_{\alpha}\left((\underset{\sim}{\sigma})_{G}\right)\right)=k_{\alpha}\left((i(\underset{\sim}{\sigma}))_{G * g^{\prime} * H_{\alpha}}\right)=\left((j(\underset{\sim}{\sigma}))_{G * g * H_{\alpha}^{*}}\right)=j_{\alpha}\left((\underset{\sim}{\sigma})_{G}\right)
$$

So $j_{\alpha}=k_{\alpha} \circ i_{\alpha}$.
Lastly, let us claim that ${ }^{\kappa^{+}} M\left[G, g, H_{\alpha}^{*}\right] \subseteq M\left[G, g, H_{\alpha}^{*}\right]$. Assume that $X \in$ $V[G, g]$ is a set of ordinals of cardinality κ^{+}, and $X \subseteq M\left[G, g, H_{\alpha}^{*}\right]$. In particular, $X \subseteq M[G, g]$, and thus $X \in M[G, g]$.

Remark 1.3.23. For every $t \in[Q]^{<\omega}$, the same proof yields a $j(P) / G * g_{t}$ generic set over $M\left[G, g_{t}\right], H_{t}^{*}$, which belongs to $V\left[G, g_{t}\right]$. Also, two elementary embeddings, $j_{t}: V[G] \rightarrow M\left[G, g_{t}, H_{t}^{*}\right]$ and $k_{t}: N\left[G, g^{\prime}, H_{t}\right] \rightarrow M\left[G, g_{t}, H_{t}^{*}\right]$, such that $j_{t}=k_{t} \circ i_{t}$. The embeddings are definable in $V\left[G, g_{t}\right]$. Moreover, $\kappa^{+} M\left[G, g_{t}, H_{t}^{*}\right] \subseteq M\left[G, g_{t}, H_{t}^{*}\right]$.

The next step will be to find a generic set for Cohen $\left(\kappa^{+}, \kappa^{++}\right)$over $M\left[G, g, H_{\alpha}^{*}\right]$. We use a technique of Magidor. The proof of the following theorem is basically given in [1], section 13:

Theorem 1.3.24. (Magidor) There exists $h_{\alpha}^{*} \in V[G, g]$ which is a generic set for -

$$
\operatorname{Cohen}\left(j\left(\kappa^{+}\right), j\left(\kappa^{++}\right)\right)
$$

over $M\left[G, g, H_{\alpha}\right]$, for every $\alpha<\kappa^{++}$. Moreover, $j: V \rightarrow M$ can be extended to an elementary embedding, definable in $V[G, g]$,

$$
j_{\alpha}^{*}: V[G, g] \rightarrow M\left[G, g, H_{\alpha}^{*}, h_{\alpha}^{*}\right]
$$

Claim 1.3.25. For every $\alpha<\kappa^{++}$, the embedding-

$$
k_{\alpha}: N\left[G, g^{\prime}, H_{\alpha}\right] \rightarrow M\left[G, g, H_{\alpha}^{*}\right]
$$

can be extended to-

$$
k_{\alpha}^{*}: N\left[G, g^{\prime}, H_{\alpha}, h_{\alpha}\right] \rightarrow M\left[G, g, H_{\alpha}^{*}, h_{\alpha}^{*}\right]
$$

Moreover, $k_{\alpha}^{*} \circ i_{\alpha}^{*}=j_{\alpha}^{*}$.
Proof. Let us claim that $k_{\alpha}^{\prime \prime} h_{\alpha} \subseteq h_{\alpha}^{*}$: Indeed, assume that $q \in h_{\alpha}$. Since h_{α} is the downwards closure of $i_{\alpha}^{\prime \prime} g, q \subseteq i_{\alpha}(p)$ for some $p \in g$. Thus, $k_{\alpha}(q) \subseteq$ $k_{\alpha}\left(i_{\alpha}(p)\right)=j_{\alpha}(p) \in h_{\alpha}^{*}$. So $k_{\alpha}(q) \in h_{\alpha}^{*}$.

Claim 1.3.26. $V[G, g] \vDash{ }^{\kappa^{+}} M\left[G, g, H_{\alpha}^{*}, h_{\alpha}^{*}\right] \subseteq M\left[G, g, H_{\alpha}^{*}, h_{\alpha}^{*}\right]$.
Proof. As usual, it's enough to consider only sets of ordinals. Assume that X is a set of ordinals, $X \subseteq M\left[G, g, H_{\alpha}^{*}, h_{\alpha}^{*}\right],|X| \leq \kappa^{+}$and $X \in V[G, g]$. In particular, since X is a set of ordinals, $X \subseteq M[G, g]$ (Actually, $X \subseteq M$, but we need less than that). Therefore, $X \in M[G, g]$.

This finishes the proof of theorem 1.3.3: For every $\alpha \in\left[\left(\kappa^{++}\right)^{N}, \kappa^{++}\right)$, there exists a definable embedding $j_{\alpha}^{*}: V[G, g] \rightarrow M_{\alpha}=M\left[G, g, H_{\alpha}^{*}, h_{\alpha}^{*}\right]$, such that $\operatorname{crit}\left(j_{\alpha}\right)=\kappa,{ }^{\kappa^{+}} M_{\alpha} \subseteq M_{\alpha}$, and the derived normal measures, $U_{\alpha}=\{X \subseteq$ $\left.\kappa: \kappa \in j_{\alpha}(X)\right\}$, are pairwise distinct.

Now, let us extend the embeddings j_{t} for $t \in[Q]^{<\omega}$. Magidor's method yields a generic set $h_{t}^{*} \in\left[G, g_{t}\right]$ for Cohen $\left(j\left(\kappa^{+}\right), j\left(\kappa^{++}\right)\right)$over $M\left[G, g_{t}, H_{t}^{*}\right]$; Just repeat the proof of theorem 1.3.24. We can extend $j_{t}: V[G] \rightarrow M\left[G, g_{t}, H_{t}^{*}\right]$, $k_{t}: N\left[G, g^{\prime}, H_{t}\right] \rightarrow M\left[G, g_{t}, H_{t}^{*}\right]$ embeddings $j_{t}^{*}: V\left[G, g_{t}\right] \rightarrow M\left[G, g_{t}, H_{t}^{*}, h_{t}^{*}\right]$, $k_{t}^{*}: N\left[G, g^{\prime}, H_{t}, h_{t}\right] \rightarrow M\left[G, g_{t}, H_{t}^{*}, h_{t}^{*}\right]$ definable in $V\left[G, g_{t}\right]$, and $k_{t}^{*} \circ i_{t}^{*}=j_{t}^{*}$.

1.3.3 Getting The Required Property

Work $V[G, g]$, the model built in the last section. Recall our goal: Given a separative, κ-distributive notion of forcing $Q \in V[G, g]$ with cardinality κ, we describe a method to extend each F_{t} to a κ-complete ultrafilter, such that the following situation is ruled out:

$$
f_{*} U_{n}(t)=g_{*} U_{n}(t)-\lim \left\langle F_{s \smile\langle q\rangle}^{*}: q \in Q / \operatorname{mc}(s)\right\rangle
$$

for any pair of non-empty, \triangleleft-incompatible sequences $s, t \in[Q]^{<\omega}$, and for every $f, g: \cup U_{n}(t) \rightarrow Q$.

We assumed that $Q \in V[G, g], Q$ is a set of ordinals (by passing to an isomorphic forcing notion). Therefore, by κ^{+}-closure of Cohen $\left(\kappa^{+}, \kappa^{++}\right)$,

$$
\left\langle Q, \leq_{Q}\right\rangle \in V[G]
$$

Recall also the subset $X \subseteq \kappa^{++} \backslash\left(\kappa^{++}\right)^{N}$ and the bijection $\phi:[Q]^{<\omega} \rightarrow X$. We assumed $X, \phi \in V[G, g]$ as well.

Proposition 1.3.27. There exists a sequence $\left\langle F_{t}^{*}: t \in[Q]^{<\omega}\right\rangle$ and a function $\pi: Q \rightarrow \kappa$ such that, for every $t \in[Q]^{<\omega}$,

1. F_{t}^{*} is a κ-complete ultrafilter which extends F_{t}.
2. $[\pi]_{F_{t}^{*}}=\kappa$.
3. $X \in U_{\phi(t)}$ if and only if $\{p \in Q / m c(t): \pi(p) \in X\} \in F_{t}^{*}$.
4. $F_{t}^{*} \in V\left[G, g_{t}\right]$.

Proof. Fix a partition of Q to dense subsets, $\left\langle D_{\xi}: \xi<\kappa\right\rangle \in V[G]$, as promised in lemma 0.1.4. Fix $t \in[Q]^{<\omega}$, and let us describe the construction of F_{t}^{*}. Work
in $V\left[G, g_{t}\right] . j_{t}^{\prime \prime} F_{t}$ belongs to $M\left[G, g, H_{t}^{*}, h_{t}^{*}\right]$, by closure under κ^{+}-sequences. Now, each $D \in j_{t}^{\prime \prime} F_{t}$ is a dense open subset of $j_{t}(Q)$, and by $j(\kappa)$-distributivity, $\bigcap j_{\alpha}^{\prime \prime} F_{t}$ is a dense open set. Denote $j_{t}\left(\left\langle D_{\xi}: \xi<\kappa\right\rangle\right)=\left\langle D_{\xi}^{\prime}: \xi<j(\kappa)\right\rangle$. Then each D_{ξ}^{\prime} is dense in $j_{t}(Q)$. Take $q_{t} \in D_{\kappa}^{\prime} \cap \bigcap j_{t}^{\prime \prime} F_{t}$. Now, let $F_{t}^{*}=\{X \subseteq$ $\left.Q / \mathrm{mc}(t): q_{t} \in j_{t}(X)\right\}$.

Then, in $V[G, g], F_{t}^{*}$ is a κ-complete ultrafilter extending F_{t}. Let $\pi: Q \rightarrow \kappa$ be the function which maps every $p \in Q$ to the unique β such that $q \in D_{\beta}$.

First, we note that $F_{t}^{*} \in V\left[G . g_{t}\right]$. Thus, $F_{t}^{*} \in V[G, g]$. It remains an ultrafilter in $V[G, g]$, since $V[G, g], V\left[G, g_{t}\right]$ have the same subsets of κ.

Assume that $X \subseteq Q, X \in F_{t}$. Then $q_{t} \in j_{t}(X)$, since $j_{t}(X) \in J_{t}^{\prime \prime} F_{t}$. So $F_{t} \subseteq F_{t}^{*}$. Now, recall that U_{α} is the normal ultrafilter on κ generated by j_{t}. Thus -

$$
\begin{aligned}
X \in U_{\alpha} \Longleftrightarrow \kappa \in j_{t}(X) & \Longleftrightarrow j_{t}(\pi)\left(q_{t}\right) \in j_{t}(X) \Longleftrightarrow \\
q_{t} \in j_{t}(\{p \in Q / \operatorname{mc}(t): \pi(p) \in X\}) & \Longleftrightarrow\{p \in Q / \operatorname{mc}(t): \pi(p) \in X\} \in F_{t}^{*}
\end{aligned}
$$

Let us claim that $[\pi \upharpoonright Q / \operatorname{mc}(t)]_{F_{t}^{*}}=\kappa$. We identify π with $\pi \upharpoonright Q / \operatorname{mc}(t)$. First, assume that $f \in V[G, g], f: Q / \operatorname{mc}(t) \rightarrow \kappa$ satisfies $[f]_{F_{t}^{*}}<[\pi]_{F_{t}^{*}}$. Then -

$$
\{p \in Q / \operatorname{mc}(t): f(p)<\pi(p)\} \in F_{t}^{*}
$$

This holds in $V[G, g]$; But we can assume that $f \in V[G]$, so this holds in $V\left[G, g_{t}\right]$ as well. Thus, in $V\left[G, g_{t}\right], q_{t} \in j_{t}(\{p \in Q / \operatorname{mc}(t): f(p)<\pi(p)\})$. Therefore, $j_{t}(f)\left(q_{t}\right)<j_{t}(\pi)\left(q_{t}\right)=\kappa$, so for some $\beta<\kappa$,

$$
p_{t} \in j_{t}(\{p \in Q / \operatorname{mc}(t): f(p)=\beta\})
$$

Thus, $[f]_{F_{t}^{*}}=\beta<\kappa$. This shows that $[\pi]_{F_{t}^{*}} \leq \kappa$. Now, if for some $\beta<\kappa$, $[\pi]_{F_{t}^{*}}=\beta$, then $q_{t} \in j_{t}(\{p \in Q / \operatorname{mc}(t): \pi(p)=\beta\})$; This is a contradiction since $j_{t}(\pi)\left(q_{t}\right)=\kappa>\beta$.

Now, let us demonstrate how independent the ultrafilters F_{t}^{*} are from each other.

Proposition 1.3.28. Assume that $s, t \in[Q]^{<\omega}$ are \triangleleft-incompatible and $n>$ $\operatorname{lh}(t)$. Then $F_{q}^{*} \not \leq_{R K} U_{n}(t)$.

Proof. Assume for contradiction that $F_{q}^{*} \leq_{R K} U_{n}(t)$. Define $I \subseteq \kappa^{++}$,

$$
I=\left(\kappa^{++} \backslash X\right) \cup\left\{\phi(r): r \in[Q]^{<\omega} \text { and } r, t \text { are } \triangleright \text {-compatible }\right\}
$$

Denote $g \upharpoonright I=g \cap\left(\kappa^{+} \times I \times 2\right)$. First, note that $U_{n}(t) \in V[G, g \upharpoonright I]$: This holds, since, for every $r \in[Q]^{<\omega}$ which is \triangleleft-incompatible with $t, F_{r}^{*} \in V[G, g \upharpoonright I]$ (because $F_{r}^{*} \in V\left[G, g_{r}\right] \subseteq V[G, g \upharpoonright I]$).

Now, denote $\alpha=\phi(q)$. Since $U_{\alpha} \leq F_{q}^{*}, U_{\alpha} \leq_{R K} U_{n}(t)$. There exists a Rudin-Keisler projection $h \in V[G, g]$ witnessing this; By κ^{+}-closure, $h \in$ $V[G, g \upharpoonright I]$. Therefore, $U_{\alpha} \in V[G, g \upharpoonright I]$. We will claim that this implies that $H_{\alpha} \in V[G, g \upharpoonright I]$. This is a contradiction, since, by Remark 1.3.12, it follows that $g_{\alpha} \in V[G, g \upharpoonright I]$, which cannot hold since $\alpha \notin I$.

Thus, it suffices to prove the following lemma:
Lemma 1.3.29. $H_{\alpha} \in V[G, g \upharpoonright I]$.
Proof. Denote $V_{0}=V[G, g \upharpoonright I], V_{1}=V[G . g]$. Then V_{1} is a generic extension of V_{0} with a generic set $g^{*}=g \backslash(g \upharpoonright I)$ for $\operatorname{Cohen}\left(\kappa^{+}, X \backslash I\right)$ over V_{0}. So $V_{1}=V_{0}\left[g^{*}\right]$.

Now, $U_{\alpha} \in V_{0}$ is a normal, κ-complete ultrafilter on κ; Thus, there are a definable model $N_{0} \simeq \operatorname{Ult}\left(V_{0}, U_{\alpha}\right)$ and an elementary embedding $i_{U_{\alpha}}: V_{0} \rightarrow N_{0}$. By the same methods of the previous subsections, the downwards closure of $i_{U_{\alpha}}{ }^{\prime \prime} g^{*}$ in $i_{U_{\alpha}}\left(\operatorname{Cohen}\left(\kappa^{+}, X \backslash I\right)\right)$ is generic over N_{0}; Denote $N_{1}=N_{0}\left[i_{U_{\alpha}}{ }^{\prime \prime} g^{*}\right]$, and extend $i_{U_{\alpha}}$ to an elementary embedding $i_{U_{\alpha}}^{*}: V_{1} \rightarrow N_{1}$, such that $i_{U_{\alpha}}^{*} \supseteq$ $i_{U_{\alpha}}$. Then, again, by the same methods of the previous subsections, $i_{U_{\alpha}}^{*}$ is the ultrapower embedding of the normal, κ-complete ultrafilter $\{X \subseteq \kappa: \kappa \in$ $\left.i_{U_{\alpha}}^{*}(X)\right\}$; This ultrafilter is exactly U_{α}, since for every $X \in V_{1}, X \subseteq \kappa$, it holds that $X \in V_{0}$ (by κ^{+}-closure). Thus, $i_{U_{\alpha}}^{*}=i_{\alpha}^{*}$.

Now, $G * g^{\prime} * H_{\alpha}=i_{\alpha}^{*}(G)$. Thus, $G * g^{\prime} * H_{\alpha}=i_{U_{\alpha}}(G)$, so $G * g^{\prime} * H_{\alpha} \in V_{0}$. Thus, $H_{\alpha} \in V_{0}$.

Remark 1.3.30. It was crucial, in the last proposition, that $F_{t}^{*} \in V[G, g \upharpoonright I]$. This might not hold if F_{t}^{*} depends on more Cohen function of g. This is the reason why we developed the embeddings j_{t} and used them to extend F_{t}.

Now, we can generalize proposition 1.3.28 and give a stronger evidence for the independence between the ultrafilters in $\left\langle F_{t}^{*}: t \in[Q]^{<\omega}\right\rangle$. The following theorem, together with theorem 1.2.7, finishes the proof of theorem 1.2.5.

Theorem 1.3.31. Assume that s, t are \triangleleft-incompatible. Then there are no $n>\operatorname{lh}(t)$ and functions f, g such that -

$$
f_{*} U_{n}(t)=g_{*} U_{n}(t)-\lim \left\langle F_{s \smile\langle q\rangle}^{*}: q \geq_{Q} m c(s)\right\rangle
$$

Proof. First, let us deal with the case that $g_{*} U_{n}(t)$ is trivial. This case is less significant, since theorem 1.2 .7 promises that $g_{*} U_{n}(t)$ is non-trivial; But the majority of work for this case was already done: If $g_{*} U_{n}(t)$ is trivial, then for some $q \in Q / \operatorname{mc}(s), f_{*} U_{n}(t)=F_{s \backsim\langle q\rangle}^{*}$. So $F_{s \backsim\langle q\rangle}^{*} \leq_{R K} U_{n}(t)$, and this is impossible by proposition 1.3.28.

We move forward to the general case. Recall that $U_{r}=U_{\phi(r)}$ for every $r \in[Q]^{<\omega}$. It would be simpler to work with the normal ultrafilters $U_{s} \sim\langle q\rangle$ instead $F_{s \backsim\langle q\rangle}^{*}$.

Lemma 1.3.32. By modifying f, we can assume, without loss of generality, that $f_{*} U_{n}(t)=g_{*} U_{n}(t)-\lim \left\langle U_{s}{ }^{\langle q\rangle}: q \geq_{Q} m c(s)\right\rangle$.

Proof. Assume that $f_{*} U_{n}(t)=g_{*} U_{n}(t)-\lim \left\langle F_{s-\langle q\rangle}^{*}: q \geq_{Q} \operatorname{mc}(s)\right\rangle$. Then -

$$
X \in f_{*} U_{n}(t) \Longleftrightarrow\left\{q \in Q / \mathrm{mc}(s): X \in F_{s}^{*} \frown\langle q\rangle\right) \in g_{*} U_{n}(t)
$$

Therefore,

$$
X \in(\pi \circ f)_{*} U_{n}(t) \Longleftrightarrow\left\{q \in Q / \operatorname{mc}(s): X \in U_{\phi(s \sim\langle q\rangle\}} \in g_{*} U_{n}(t)\right.
$$

So -

$$
(\pi \circ f)_{*} U_{n}(t)=g_{*} U_{n}(t)-\lim \left\langle U_{s \frown\langle q\rangle}: q \geq_{Q} \operatorname{mc}(s)\right\rangle
$$

So assume that $f_{*} U_{n}(t)=g_{*} U_{n}(t)-\lim \left\langle U_{s} \checkmark\langle q\rangle: q \geq_{Q} \mathrm{mc}(s)\right\rangle$, and $g_{*} U_{n}(t)$ is non-trivial. Denote -

$$
\begin{gathered}
I=\left(\kappa^{++} \backslash X\right) \cup\left\{\phi(r): r \in[Q]^{<\omega} \text { and } r, t \text { are } \triangleright \text {-compatible }\right\} \\
J=\left\{\phi\left(s\ulcorner\langle q\rangle): q \geq_{Q} \operatorname{mc}(s)\right\}\right.
\end{gathered}
$$

Then I, J are disjoint, $J \subseteq X \backslash I$ and $|J|=\kappa$. Denote $V_{0}=V[G, g \upharpoonright I]$, $V_{1}=V[G, g]$, where $g \upharpoonright I=g \cap\left(\kappa^{+} \times I \times 2\right)$. Then $V_{1}=V_{0}\left[g^{*}\right]$, where $g^{*}=g \cap\left(\kappa^{+} \times(X \backslash I) \times 2\right)$ is generic for Cohen $\left(\kappa^{+}, X \backslash I\right)$.

Note that for every $t \in \phi^{-1} I, F_{t}^{*} \in V_{0}$, so $U_{n}(t) \in V_{0}$.
Denote $U=f_{*} U_{n}(t), W=g_{*} U_{n}(t)$. Then f, g can be identified with functions $\in \kappa^{\kappa}$, so $f, g \in V[G]$. Thus, $U, W \in V_{0}$. Moreover, $W<_{R K} U$ by the discreteness of $F_{s\lceil\langle q\rangle}^{*}$. The Rudin-Keisler projection $h: \cup U \rightarrow \cup W$ belongs to $V[G]$, and thus to V_{0}.

Now, let $N_{W}=\operatorname{Ult}\left(V_{0}, W\right), N_{U}=\operatorname{Ult}\left(V_{0}, U\right)$. Let $i_{W}: V_{0} \rightarrow N_{W}, i_{U}: V_{0} \rightarrow$ N_{U} be the corresponding elementary embeddings. Define $k: N_{W} \rightarrow N_{U}$ as follows:

$$
k\left(i_{W}(f)\left([I d]_{W}\right)\right)=i_{U}(f)\left([h]_{U}\right)
$$

this is an elementary embedding, defined in V_{0}.

The downwards closure of $i_{W}^{\prime \prime} g^{*}$ is generic for $i_{W}\left(\operatorname{Cohen}\left(\kappa^{+}, \kappa^{++} \backslash I\right)\right)$ over N_{W} (by the same methods of previous subsections). Denote $N_{W}^{2}=N_{W}\left[i^{\prime \prime} g^{*}\right]$ (we identified $i_{W}^{\prime \prime} g^{*}$ with it's downwards closure). Let $i_{W}^{2}: V[G, g] \rightarrow N_{W}^{2}$ be an elementary embedding which extends i_{W}. Every element $x \in N_{W}^{2}$ is of the form $i_{W}^{2}(F)\left([I d]_{W}\right)$ for some $F: \kappa \rightarrow V[G, g], F \in V[G, g]$. Thus, $N_{W}^{2}=\operatorname{Ult}(V[G, g], W)$.

Similarly, define $i_{U}^{2}: V[G, g] \rightarrow N_{U}^{2}$, where $N_{U}^{2}=N_{U}\left[i_{U}^{\prime \prime} g *\right]=\operatorname{Ult}(V[G, g], U)$.

Note that for $p<i_{W}(q)$, where $q \in g^{*}, k(p)<i_{U}(q)$, and $i_{U}(q) \in i_{U}^{\prime \prime} g^{*}$.

Therefore, $k^{\prime \prime} i_{U}^{\prime \prime} g^{*} \subseteq i_{W}^{\prime \prime} g^{*}$. So we can extend k to $k^{2}: N_{W}^{2} \rightarrow N_{U}^{2}$. It can be easily checked that, in $V_{1}, i_{W}^{2} \circ k^{2}=i_{U}^{2}$.

We note that $\left([h]_{U}\right)^{V_{1}}=\left([h]_{U}\right)^{V_{0}}$ (here we identify the equivalence class and the transitive collapse): Both are ordinals in V_{1} (recall that we identified Q with $\kappa)$, and are isomorphic, since for every f such that $[f]_{U}<[h]_{U}$ in V_{1}, there exists $f^{*} \in V_{0}$ such that, in $V_{1},\left[f^{*}\right]_{U}=[f]_{U}$. Thus, we identify $[h]_{U}^{V_{0}}=[h]_{U}^{V_{1}}=[h]_{U}$. Similarly, $\left([I d]_{W}\right)^{V_{0}}=\left([I d]_{W}\right)^{V_{1}}$. Thus, in $V_{1}, k^{2}\left([I d]_{W}\right)=[h]_{U}$.

The following properties uniquely define k^{2} :

1. $k^{2}: N_{W}^{2} \rightarrow N_{U}^{2}$ is elementary.
2. $i_{W}^{2} \circ k^{2}=i_{U}^{2}$.
3. $k^{2}\left([I d]_{W}\right)=[h]_{U}$.

There exists another embedding which satisfies properties $1-3$ above, which is the ultrapower embedding of $\operatorname{Ult}\left(N_{W}^{2}, F\right)$, where -

$$
F=i_{W}^{2}\left(\left\langle U_{s \smile\langle q\rangle}: q \geq_{Q} \operatorname{mc}(s)\right\rangle\right)\left([I d]_{W}\right)
$$

(Recall that W is an ultrafilter on $Q / \mathrm{mc}(s)$, so $[I d]_{W} \in i_{W}(Q)$, and the last line makes sense). So k^{2} is the ultrapower embedding of F.

Lemma 1.3.33. Denote $\bar{g}=i_{W}^{2}\left(\left\langle g_{\alpha}: \alpha \in J\right\rangle\right)\left(i_{W}^{2}(\phi)\left([I d]_{W}\right)\right)$. Then $\bar{g} \in V_{0}$.
Proof. Work in V_{1}. Let $A, Z \in V\left[G, g^{\prime}\right]$ respectively be the binary tree and the set of antichains from lemma 1.3.11. By Remark 1.3.12, for every $\alpha<\kappa^{++}, g_{\alpha}$ is reconstructible from A and H_{α}. Note that $H_{\alpha}=i_{\alpha}(G) \upharpoonright(\kappa, i(\kappa))$, where i_{α} is the ultrapower embedding of U_{α}.

Thus, for every $q \in Q / \mathrm{mc}(s), g_{\phi(s \smile\langle q\rangle)}$ is reconstructible from A, Z and $i_{s \frown\langle q\rangle}(G)$. This is true in $V[G, g]$. Recall that W is an ultrafilter on $Q / \mathrm{mc}(s)$. By elementarity, in N_{W}^{2}, the function -

$$
\bar{g}=i_{W}^{2}\left(\left\langle g_{\alpha}: \alpha \in J\right\rangle\right)\left(i_{W}^{2}(\phi)\left([I d]_{W}\right)\right)
$$

can be reconstructed from $i_{W}^{2}(A)$ and $i_{F}^{2}\left(i_{W}^{2}(G)\right)=i_{U}^{2}(G)$.
But $A, Z, G \in V_{0}$. Thus \bar{g} can be reconstructed from $i_{W}(A), i_{W}(Z)$ and $i_{U}(G)$, which all belong to V_{0}.

Now, let us finish the proof by deriving a contradiction. Recall, from the beginning of the proof, the generic set g^{*} for Cohen $\left(\kappa^{+}, X \backslash I\right)$ over V_{0}. Recall that $J \subseteq X \backslash I$. Define, in V_{0}, a dense set in Cohen $\left(\kappa^{+}, X \backslash I\right)$:
$D=\left\{p \in \operatorname{Cohen}\left(\kappa^{+}, X \backslash I\right): \exists j \in\{0,1\} \exists \xi<\kappa^{+} \bar{g}\left(i_{W}(\xi)\right)=j\right.$ and $\left.\forall \beta \in J p(\xi, \beta) \neq j\right\}$

Let us prove that, indeed, D is dense in Cohen $\left(\kappa^{+}, X \backslash I\right)$: Take a condition $p: \kappa^{+} \times(X \backslash I) \rightarrow 2$ with $|p| \leq \kappa$. There exists $\xi<\kappa^{+}$such that, for every $\beta \in J,(\xi, \beta) \notin \operatorname{dom}(p)$. Denote $j=\bar{g}\left(i_{W}(\xi)\right)$. Define:

$$
p^{\prime}=p \cup\{(\xi, \beta, 1-j): \alpha \in J\}
$$

then $\bar{p} \in D, \bar{p} \supseteq p$.
Thus, D is dense in Cohen $\left(\kappa^{+}, X \backslash I\right)$. Then $g^{*} \cap D \neq \emptyset$. Take some element r in the intersection, and let $j \in\{0,1\}$ and $\xi<\kappa^{+}$be the parameters promised by $r \in D$. Then for every $\beta \in J, g^{*}(\xi, \beta)=1-j$. Thus, for every $\beta \in J$, $g_{\beta}(\xi)=1-j$.

On the other hand, $\bar{g}\left(i_{W}(\xi)\right)=j$, so $\left\{q \in Q / \mathrm{mc}(s): g_{\phi(s \sim\langle q\rangle)}(\xi)=j\right\} \in W$. Take q in this set, and denote $\beta=\phi(s \frown\langle q\rangle)$. Then $\beta \in J$, a contradiction.

1.4 Concluding Remarks

Given pair of different generic Prikry sequences for $P_{\vec{F}^{*}}$,

$$
\left\langle q_{n}: n<\omega\right\rangle,\left\langle p_{n}: n<\omega\right\rangle
$$

we proved that-

$$
\left\langle q_{n}: n<\omega\right\rangle \in V\left[\left\langle p_{n}: n<\omega\right\rangle\right]
$$

implies some connection between the ultrafilters $\left\langle F_{t}^{*}: t \in[Q]^{<\omega}\right\rangle$; We are not sure that this is the optimal connection.

Question 1.4.1. Does there exist any connection between the ultrafilters $\left\langle F_{t}^{*}: t \in\right.$ $\left.[Q]^{<\omega}\right\rangle$, which promises that, for pair of disjoint Prikry sequences as above,

$$
\left\langle q_{n}: n<\omega\right\rangle \in V\left[\left\langle p_{n}: n<\omega\right\rangle\right]
$$

As for the quotient forcing, by combining theorem 1.2.5 and proposition 1.1.13, it follows that the quotient forcing $P_{\vec{F}^{*}} / H$, described in the last section, is not homogeneous:

Corollary 1.4.2. It's consistent from κ^{+}-supercompactness of κ that for every separative, κ-distributive forcing notion Q with $|Q|=\kappa$, there exists a choice of measures \vec{F}^{*}, such that for every $H \subseteq Q$ generic over V, the the quotient forcing $P_{\vec{F}^{*}} / H$ is not homogeneous.

Question 1.4.3. Is it consistent, from some large cardinal assumption, that for every separative, κ-distributive forcing notion Q with $|Q|=\kappa$, there exists a choice of measures \vec{F}^{*} such that for every $H \subseteq Q$ generic over V, the quotient forcing $P_{\vec{F}^{*}} / H$ is homogeneous?

Chapter 2

Prikry Forcing With One Ultrafilter

2.1 Definitions and Basic Properties

Let κ be a κ-compact cardinal. Consider a separative, κ-distributive forcing notion $\left\langle Q,\left\langle_{Q}\right\rangle\right.$, with $| Q \mid=\kappa$. Let us assume that $h: Q \rightarrow \kappa$ is some function which satisfy -

$$
\forall \alpha<\kappa,|\{q \in Q: h(q)=\alpha\}|<\kappa
$$

Remark 2.1.1. For example, assuming that $Q \subseteq V_{\kappa}$, we may always take $h(q)=\operatorname{rank}(q)$. Alternatively, identify Q with κ and take h to be the identity map.

Let F be the κ-complete filter generated by the dense-open subsets of Q -

$$
F=\{E \subseteq Q: D \subseteq E \text { for some dense open subset } D \text { of } Q\}
$$

By κ-compactness of κ, there is a κ-complete ultrafilter F^{*} extending F. Let $j_{F^{*}}: V \rightarrow U l t\left(V, F^{*}\right)$ be the elementary embedding of V in it's ultrapower. Assume that $\pi: Q \rightarrow \kappa$ satisfies $[\pi]_{F^{*}}=\kappa$ (where $[f]_{F^{*}}$ is the equivalence class of the function $f: Q \rightarrow V$, under the natural equivalence relation derived from $\left.F^{*}\right)$. Let $U \leq_{R K} F^{*}$ be the non-trivial, normal, κ-complete ultrafilter on κ, derived from the Rudin-Keisler projection π, i.e. -

$$
\forall X \subseteq \kappa, X \in U \Longleftrightarrow \pi^{-1}(X) \in F^{*}
$$

In this section, we will develop a Prikry-type forcing $P_{F^{*}}$, which depends on the choice of F^{*}, the function h and the Rudin-Keisler projection π.

Definition 2.1.2. Let $\left\langle P_{F^{*}}, \leq, \leq^{*}\right\rangle$, consist of elements of the form $\left\langle p_{1}, \ldots, p_{n}, A\right\rangle$, where -

1. $p_{i} \in Q$
2. $A \in F^{*}$
3. For every $1<i \leq n, \pi\left(p_{i}\right)>h\left(p_{i-1}\right)$

We say that $\left\langle p_{1}, \ldots, p_{n}, A\right\rangle \geq\left\langle q_{1}, \ldots, q_{m}, B\right\rangle$, namely $\left\langle p_{1}, \ldots, p_{n}, A\right\rangle$ extends $\left\langle q_{1}, \ldots, q_{m}, B\right\rangle$, if and only if -

1. $n \geq m$
2. $\forall 1 \leq i \leq m \quad q_{i}=p_{i}$
3. $\forall m<i \leq n \quad p_{i} \in B$
4. $A \subseteq B$

If $n=m$, we say that $\left\langle p_{1}, \ldots, p_{n}, A\right\rangle$ is a Direct Extension of $\left\langle q_{1}, \ldots, q_{m}, B\right\rangle$, and denote it by $\left\langle p_{1}, \ldots, p_{n}, A\right\rangle \geq^{*}\left\langle q_{1}, \ldots, q_{m}, B\right\rangle$.

If $Q=\langle\kappa, \in\rangle, h$ is the identity, and F^{*} is some normal ultrafilter on κ, then $P_{F^{*}}$ is the standard Prikry forcing.

Remark 2.1.3. 1. $\{p \in Q: \pi(p) \leq h(p)\} \in F^{*}$.
2. For very $q \in Q,\{p \in Q: \pi(p)>h(q)\} \in F^{*}$. In particular, $P_{F^{*}}$ is separative.

Proof. 1. Otherwise, we would have had $[h]_{F^{*}}<\kappa$, so, for some $\alpha<\kappa$, $\{q \in Q: h(q)=\alpha\} \in F^{*}$, and in particular, $|\{q \in Q: h(q)=\alpha\}|=\kappa$.
2. given an element $q \in Q$, $\{\alpha<\kappa: \alpha>h(q)\} \in U$, and thus $\pi^{-1}\{\alpha<$ $\kappa: \alpha>h(q)\}=\{p \in Q: \pi(p)>h(q)\} \in F^{*}$.

We would like to prove some Prikry-type properties of $P_{F^{*}}$. Given a generic $G \subseteq P_{F^{*}}$, we may define a corresponding ω-sequence $\left\langle p_{i}: i<\omega\right\rangle \in V[G]$ of elements of Q, derived from -

$$
\bigcup\left\{\vec{p}: \exists A \in F^{*},\langle\vec{p}, A\rangle \in G\right\}
$$

By a simple density argument, the sequence $\left\langle h\left(p_{i}\right): i<\omega\right\rangle \in V[G]$ is cofinal in κ, so in $V[G], \kappa$ changes it's cofinality to ω. Moreover, $P_{F^{*}}$ preserves cardinals: For cardinals above κ this easily follows from $\kappa^{+}-$c.c. For κ and below, this will follow, by a standard argument, from the Prikry condition (Claim 2.1.8 below). Towards the proof of the Prikry condition, let us show that F^{*} admits some kind of a diagonal intersection:

Lemma 2.1.4. Let $A \in F^{*}$, and assume that for every $p \in A, A_{p} \in F^{*}$. Let-

$$
\underset{p \in A}{\Delta_{*}^{*}} A_{p}=\left\{x \in A: \forall p \in A h(p)<\pi(x) \rightarrow x \in A_{p}\right\}
$$

Then $\underset{p \in A}{\Delta^{*}} A_{p} \in F^{*}$.
Proof. For every $\gamma<\kappa$, let -

$$
B_{\gamma}= \begin{cases}\bigcap_{h(p)=\gamma} A_{p} & \exists p \in Q h(p)=\gamma \\ Q & \text { else }\end{cases}
$$

By the κ-completeness of $F^{*}, B_{\gamma} \in F^{*}$. Now, we may easily verify that -

$$
\underset{p \in A}{\Delta^{*}} A_{p} \supseteq\left\{x \in Q: \forall \gamma<\kappa \gamma<\pi(x) \rightarrow x \in B_{\gamma}\right\} \cap A
$$

So it suffices to prove that $\left\{x \in Q: \forall \gamma<\kappa \gamma<\pi(x) \rightarrow x \in B_{\gamma}\right\} \in F^{*}$. We note that by Los's theorem, it suffices to prove the following property in the ultrapower $\operatorname{Ult}\left(V, F^{*}\right)$:

$$
\forall \gamma<\kappa \quad[I d]_{F^{*}} \in j\left(B_{\gamma}\right)
$$

Where $j: V \rightarrow U l t\left(V, F^{*}\right)$ is the corresponding elementary embedding. Indeed, this property trivially holds since $B_{\gamma} \in F^{*}$.

Notation. For $A \subseteq Q$ and $n \in \omega$, denote by $\llbracket A \rrbracket^{n}$ the set of all finite sequences of the form $\left\langle q_{1}, \ldots, q_{n}\right\rangle \in A^{n}$, where -

1. $\forall i, q_{i} \in Q$
2. $\forall 1<i \leq n, \pi\left(q_{i}\right)>h\left(q_{i-1}\right)$

Set $\llbracket A \rrbracket^{0}=\{\langle \rangle\}$ (the empty sequence). Denote $\llbracket A \rrbracket^{<\omega}=\underset{n<\omega}{\bigcup} \llbracket A \rrbracket^{n}$.
Remark 2.1.5. We can generalize our form of diagonal intersection for sets indexed by finite sequences of elements of Q. Assume that for every $\vec{a} \in \llbracket Q \rrbracket^{<\omega}$ there exists a set $A_{\vec{a}} \in F^{*}$. Let -
$\underset{\vec{a} \in \llbracket Q \rrbracket^{<\omega}}{\Delta_{\vec{a}}^{*}} A_{\vec{a}}=\left\{x \in A_{\langle \rangle}: \forall \vec{a}=\left\langle a_{1}, \ldots, a_{n}\right\rangle \in \llbracket Q \rrbracket^{<\omega} \quad h\left(a_{n}\right)<\pi(x) \rightarrow x \in A_{\vec{a}}\right\}$
Then $\underset{\vec{a} \in \llbracket Q \rrbracket<\omega}{\Delta^{*}} A_{\vec{a}} \in F^{*}$.
Proof. For every $p \in A$, denote $S_{p}=\left\{\vec{a}=\left\langle a_{1}, \ldots, a_{n}\right\rangle \in S: a_{n}=p\right\}$, and let

$$
H_{p}=\bigcap_{\vec{a} \in S_{p}} A_{\vec{a}}
$$

Note that $\left|S_{p}\right|<\kappa$, since $|\{a \in Q: h(a) \leq \pi(p)\}|<\kappa$, so there are $<\kappa$ options for a_{n-1}; For each one of them, there are $<\kappa$ options for a_{n-2}, and so on. Therefore, by κ-completeness, $H_{p} \in F^{*}$. Now, set -

$$
H=\underset{p \in Q}{\Delta^{*}} H_{p}=\left\{x \in A: \forall p \in A h(p)<\pi(x) \rightarrow x \in H_{p}\right\}
$$

Then $H \in F^{*}$, and $H \subseteq \underset{\vec{a} \in \llbracket Q \rrbracket<\omega}{\Delta^{*}} A_{\vec{a}}$.
Recall that, given a measure F on κ and $1<n<\omega$,
$F^{n}=\left\{A \subseteq \kappa^{n}:\left\{\alpha_{1}<\kappa:\left\{\alpha_{2}<\kappa: \ldots\left\{\alpha_{n}<\kappa:\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle \in A\right\} \in F \ldots\right\} \in F\right\} \in F\right\}$
This is a κ-complete ultrafilter on $\kappa^{n} . F^{n}$, where F is an ultrafilter on Q, is defined similarly. The following property will be useful:

Lemma 2.1.6. For every $n<\omega$ and $Z \in F^{* n}$, there exists $A \in F^{*}$ such that $\llbracket A \rrbracket^{n} \subseteq Z$.

Proof. $Z \in F^{* n}$ means that -
$A_{\langle \rangle}=\left\{x_{1} \in Q:\left\{x_{2} \in Q: \ldots\left\{x_{n} \in Q:\left\langle x_{1}, \ldots, x_{n}\right\rangle \in Z\right\} \in F^{*} \ldots\right\} \in F^{*}\right\} \in F^{*}$
We define sets $A_{\vec{x}}$ recursively: Assume that $A_{\left\langle x_{1}, \ldots, x_{k}\right\rangle}$ was defined for $k<n-1$.
For every $x_{k+1} \in A_{\left\langle x_{1}, \ldots, x_{k}\right\rangle}$, set -
$A_{\left\langle x_{1}, \ldots x_{k}, x_{k+1}\right\rangle}=\left\{x_{k+2}:\left\{x_{k+3} \ldots\left\{x_{n}:\left\langle x_{1}, \ldots, x_{n}\right\rangle \in Z\right\} \in F^{*} \ldots\right\} \in F^{*}\right\} \in F^{*}$
For every $\vec{a} \in \llbracket Q \rrbracket^{<\omega}$ such that $A_{\vec{a}}$ has not been defined, take $A_{\vec{a}}=Q \in F^{*}$. Now just take $A=\underset{\vec{a} \in \llbracket Q \rrbracket<\omega}{\Delta_{\vec{a}}^{*}} A_{\vec{a}}$.

We will use the following generalization of Rowbottom's theorem:
Lemma 2.1.7. (Rowbottom's theorem for F^{*})
Assume $f: \llbracket Q \rrbracket^{<\omega} \rightarrow \alpha$ is a partition of $\llbracket Q \rrbracket^{<\omega}$, for some $\alpha<\kappa$. Then there exists $H \in F^{*}$ such that for every $n \in \mathbb{N}, f$ is constant on $\llbracket H \rrbracket^{n}$.

Proof. It suffices to prove that for every $n \in \mathbb{N}$, for every partition f, there exists $H_{n} \in F^{*}$ such that f is constant on $\llbracket H_{n} \rrbracket^{n}$ (and then set $H=\bigcap_{n \in \mathbb{N}} H_{n}$).

We prove this by induction on n. The case $n=1$ follows from κ-completeness. For $n+1$, given a partition $f: \llbracket Q \rrbracket^{<\omega} \rightarrow \alpha$, define, for every sequence $\vec{a}=$ $\left\langle a_{1}, \ldots, a_{n}\right\rangle \in \llbracket Q \rrbracket^{n}$, a function $f_{\vec{a}}: Q \rightarrow \alpha$, as follows -

$$
f_{\vec{a}}(q)= \begin{cases}f(\vec{a}, q) & \text { if } \pi(q)>h\left(a_{n}\right) \\ 0 & \text { otherwise }\end{cases}
$$

By the κ-completeness of F^{*}, for every $\vec{a} \in \llbracket Q \rrbracket^{n}$, there exist an ordinal $\gamma_{\vec{a}} \in \kappa$ and a set $H_{\vec{a}} \in F^{*}$ such that $f_{\vec{a}}$ gets the constant value $\gamma_{\vec{a}}$ on $H_{\vec{a}}$. Now, apply the induction hypothesis on the function $\vec{a} \mapsto \gamma_{\vec{a}}$: There is $\gamma<\kappa$ and a large set $Z \in F^{*}$ such that for all $\vec{a} \in \llbracket Z \rrbracket^{n}, \gamma_{\vec{a}}=\gamma$. Let -

$$
H=Z \cap \underset{\vec{a} \in \llbracket A \rrbracket^{n}}{\Delta_{\vec{a}}^{*}}
$$

We claim that f gets the constant value γ on $\llbracket H \rrbracket^{n+1}$.
Indeed, Let $\vec{a}=\left\langle a_{1}, \ldots, a_{n}, a_{n+1}\right\rangle \in \llbracket H \rrbracket^{n+1}$. We note that, by the definition of the diagonal intersection, $a_{n+1} \in H_{\left\langle a_{1}, \ldots, a_{n}\right\rangle}$. Therefore:

$$
f(\vec{a})=f_{\left\langle a_{1}, \ldots, a_{n}\right\rangle}\left(a_{n+1}\right)=\gamma_{\left\langle a_{1}, \ldots, a_{n}\right\rangle}=\gamma
$$

(the last equation follows from the fact that $\left\langle a_{1}, \ldots, a_{n}\right\rangle \in \llbracket Z \rrbracket^{n}$).

The next lemma follows in a standard fashion:
Lemma 2.1.8. (The Prikry Condition) Let σ be a statement in the forcing language of $P_{F^{*}}$. Let $\left\langle p_{1}, \ldots, p_{n}, B\right\rangle \in P_{F^{*}}$. Then there exists $A \in F^{*}, A \subseteq B$ such that $\left\langle p_{1}, \ldots, p_{n}, A\right\rangle \| \sigma\left(\right.$ i.e. $\left\langle p_{1}, \ldots, p_{n}, A\right\rangle \Vdash \sigma$ or $\left\langle p_{1}, \ldots, p_{n}, A\right\rangle \Vdash \neg \sigma$).

Lemma 2.1.9. Assume $\left\langle p_{n}: n<\omega\right\rangle$ is a Prikry sequence for $P_{F^{*}}$, generated from some generic $G \subseteq P_{F^{*}}$. Let $E \in F^{*}$. Then there exists $n_{0} \in \omega$ such that for every $n>n_{0}, p_{n} \in E$.

Proof. Let $D=\left\{\left\langle a_{0}, \ldots, a_{n}, A\right\rangle \in P_{F^{*}}: A \subseteq E\right\}$. D is clearly dense in $P_{F^{*}}$. Therefore, there exists some $n_{0}<\omega$ and some $A \in F^{*}, A \subseteq E$, such that -

$$
\left\langle p_{0}, \ldots, p_{n_{0}}, A\right\rangle \in G
$$

Therefore, for every $n>n_{0}, p_{n} \in E$.
Remark 2.1.10. Assume that $\left\langle p_{n}: n<\omega\right\rangle$ is a generic Prikry sequence for $P_{F^{*}}$, with a corresponding generic set G over V. Then $V[G]=V\left[\left\langle p_{n}: n<\omega\right\rangle\right]$.

Proof. It suffices to prove that $G \in V\left[\left\langle p_{n}: n<\omega\right\rangle\right]$. Let us argue that -

$$
G=\left\{\left\langle p_{0}, \ldots, p_{n}, A\right\rangle: n<\omega, A \in F^{*} \text { and for every } m>n, p_{m} \in A\right\}
$$

The inclusion \subseteq is clear; Now, given $\left\langle p_{0}, \ldots, p_{n}, A\right\rangle$ such that for every $m>n$, $p_{m} \in A$, it follows that $\left\langle p_{0}, \ldots, p_{n}, A\right\rangle$ is compatible with every element of G, and thus, belongs to G.

We will use the following observation as well:
Remark 2.1.11. Suppose that $\left\langle p_{n}: n<\omega\right\rangle$ is a Prikry sequence for $P_{F^{*}}$. Then, for every $m<\omega,\left\langle p_{n}: n>m\right\rangle$ is a Prikry sequence for $P_{F^{*}}$ as well.

Proof. Denote $t=\left\langle p_{0} \ldots, p_{m}\right\rangle$. Let G be the generic set corresponding to $\left\langle p_{n}: n<\omega\right\rangle$. Define -

$$
G^{\prime}=\left\{\left\langle p_{m+1}, \ldots, p_{n}, A\right\rangle: m<n<\omega \text { and for every } k>n, p_{k} \in A\right\}
$$

We claim that G^{\prime} is $P_{F^{*}}$-generic over V. It suffices to prove that G intersects every dense open set. Given $D^{\prime} \subseteq P_{F^{*}}$ dense and open, denote-

$$
D=\left\{t^{\frown}\left\langle q_{0}, \ldots, q_{n}, A\right\rangle:\left\langle q_{0}, \ldots, q_{n}, A\right\rangle \in D^{\prime} \text { and } \pi\left(q_{0}\right)>h\left(p_{m}\right)\right\}
$$

Then D is dense above $\langle t, Q\rangle \in G$. Thus, G contains an element of the from $t\left\ulcorner\left\langle q_{0}, \ldots, q_{n}, A\right\rangle\right.$ where $\left\langle q_{0}, \ldots, q_{n}, A\right\rangle \in D^{\prime}$. In particular, $\left\langle q_{0}, \ldots, q_{n}\right\rangle=$ $\left\langle p_{m+1}, \ldots, p_{n+m+1}\right\rangle$. Also, for every $k>n+m+1, p_{k} \in A$. Therefore, $\left\langle q_{0}, \ldots, q_{n}, A\right\rangle \in G^{\prime} \cap D^{\prime}$.

Remark 2.1.12. Assume that F^{*} is Rudin-Keisler equivalent to a normal ultrafilter on κ. Then every generic extension of V, obtained by forcing with $P_{F^{*}}$, is a generic extension of V obtained by forcing with the standard Prikry forcing.

Proof. Indeed, the function $h: Q \rightarrow \kappa$ defines a κ-complete, non-principal ultrafilter -

$$
W=h_{*}\left(F^{*}\right)=\left\{X \subseteq \kappa: h^{-1} X \in F^{*}\right\}
$$

Therefore $W \leq_{R K} F^{*}$, and by minimality of F^{*} in the Rudin-Keisler order, $W \equiv_{R K} F^{*}$, and $h: Q \rightarrow \kappa$ is injective on a large set $A \in F^{*}$. We can assume that W is normal (if not, take an injection $f: \kappa \rightarrow \kappa$ such that $f_{*} W$ is a normal ultrafilter, and replace W with $f_{*} W$ and h with $f \circ h$ for the rest of the proof).

Let $\left\langle p_{n}: n<\omega\right\rangle$ be a generic Prikry sequence for $P_{F^{*}}$. By lemma 2.1.9, we can assume without loss of generality that $p_{n} \in A$ for every $n<\omega$. Thus, $V\left[\left\langle p_{n}: n<\omega\right\rangle\right]=V\left[\left\langle h\left(p_{n}\right): n<\omega\right\rangle\right] .\left\langle h\left(p_{n}\right): n<\omega\right\rangle$ is an increasing sequence (this is true from some index, and we may cut the initial segment). For every $C \in W$, there exists $n_{0}<\omega$ such that, for every $n \geq n_{0}, h\left(p_{n}\right) \in C$ (this follows by lemma 2.1.9, again). Therefore, by the Mathias criterion (see [2], 1.12), $\left\langle h\left(p_{n}\right): n<\omega\right\rangle$ is a Prikry sequence for P_{W}, the standard Prikry forcing with the normal ultrafilter W.

2.2 Prikry Sequences Inside Generic Extensions

Fix a measure F on κ. A function $f: \kappa^{n} \rightarrow \kappa$ is called a projection of F^{n} onto F, if it's a Rudin-Keisler projection, i.e.,

$$
X \in F \Longleftrightarrow f^{-1} X \in F^{n}
$$

Given $1 \leq i \leq n$, let $\rho_{i}: \kappa^{n} \rightarrow \kappa$ be the projection on the i-th coordinate: $\rho_{i}\left(x_{1}, \ldots x_{n}\right)=x_{i}$. Clearly, every such a projection is a Rudin-Keisler projection of F^{n} onto F, since,

$$
A \in F \Longleftrightarrow\left\{x_{1} \in \kappa:\left\{x_{2} \in \kappa: \ldots\left\{x_{n} \in \kappa: x_{i} \in A\right\} \in F \ldots\right\} \in F\right.
$$

Definition 2.2.1. A projection $f: \kappa^{n} \rightarrow \kappa$ of F^{n} onto F is called non-trivial, if for every $1 \leq i \leq n,\left\{\vec{x} \in \kappa^{n}: f(\vec{x}) \neq \rho_{i}(\vec{x})\right\} \in F^{n}$.

Every projection $f: \kappa \rightarrow \kappa$ of F onto itself is trivial, i.e., $\{x \in \kappa: f(x)=$ $x\} \in F$. Therefore, the last definition makes sense for $n>1$.

Let $Q, F^{*}, P_{F^{*}}$ be as in the last section.

Theorem 2.2.2. Assume $\left\langle p_{n}: n<\omega\right\rangle,\left\langle q_{n}: n<\omega\right\rangle$ are two Prikry sequences for $P_{F^{*}}$, with a finite intersection, such that -

$$
\left\langle q_{n}: n<\omega\right\rangle \in V\left[\left\langle p_{n}: n<\omega\right\rangle\right]
$$

Then there exists $n>1$ and a non-trivial projection of $F^{* n}$ onto F^{*}.

Proof. By cutting a large enough initial segment, we may assume that the sequences $\left\langle p_{n}: n<\omega\right\rangle,\left\langle q_{n}: n<\omega\right\rangle$ are disjoint. In V, assume σ is a $P_{F^{*}-\text { name }}$ for $\left\langle q_{n}: n<\omega\right\rangle \in V\left[\left\langle p_{n}: n<\omega\right\rangle\right]$. We will use the following lemma:

Lemma 2.2.3. There are $m, n \in \omega, \vec{r} \in \llbracket Q \rrbracket^{<\omega}$ and $A \in F^{*}$, which satisfy the following property: For every $\vec{\nu}=\left\langle\nu_{1}, \ldots \nu_{n}\right\rangle \in \llbracket A \rrbracket^{n}$, there exists $p_{\vec{\nu}} \in Q$ and $B_{\vec{\nu}} \in F^{*}$, such that -

1. $\left\langle\vec{r}, \vec{\nu}, B_{\vec{\nu}}\right\rangle \in P_{F^{*}}$, and $\left\langle\vec{r}, \vec{\nu}, B_{\vec{\nu}}\right\rangle \Vdash \underset{\sim}{\sigma}(\check{m})=\check{p}_{\vec{\nu}}$
2. For every $B \in F^{*}, B \subseteq A$, $\left\{p_{\vec{\nu}}: \vec{\nu} \in \llbracket B \rrbracket^{n}\right\} \in F^{*}$

Proof. Assume otherwise. First, take $\langle\vec{r}, X\rangle \in P_{F^{*}}$, which forces that $\underset{\sim}{\sigma}$ is a generic Prikry sequence for $P_{F^{*}}$, disjoint from $\left\langle p_{n}: n<\omega\right\rangle$ (which could be expressed as the sequence generated from the canonical name for the generic set). In this proof, we work in $P_{F^{*}}$ above the condition $\langle\vec{r}, X\rangle$. For notational simplicity, let us assume that $\langle\vec{r}, X\rangle=\langle\langle \rangle, Q\rangle$ is the weakest condition. We will build an increasing sequence $\left\langle n_{i}: i<\omega\right\rangle$, and, for every $i \leq \omega$, large sets $B_{i} \in F^{*}, E_{i} \in F^{*}$, which satisfy the following property: For every $\vec{\nu} \in \llbracket B_{i} \rrbracket^{n_{i}}$, there exists $p_{i}(\vec{\nu}) \in Q$ and a set $B_{i}(\vec{\nu}) \in F^{*}$, such that:

1. $\left\langle\vec{\nu}, B_{i}(\vec{\nu})\right\rangle \Vdash \underset{\sim}{\sigma}(\check{i})=\overline{p_{i}(\vec{\nu})}$
2. $\left\{p_{i}(\vec{\nu}): \vec{\nu} \in \llbracket B_{i} \rrbracket^{n_{i}}\right\} \cap E_{i}=\emptyset$

We build those elements in the following way: On stage i, define a function $f_{i}: \llbracket Q \rrbracket^{<\omega} \rightarrow 2$ as follows: For every $\vec{\nu} \in \llbracket Q \rrbracket^{<\omega}$,

$$
f_{i}(\vec{\nu})= \begin{cases}1 & \exists p_{i}(\vec{\nu}) \in Q, B_{i}(\vec{\nu}) \in F^{*}, \text { s.t. }\left\langle\vec{\nu}, B_{i}(\vec{\nu})\right\rangle \Vdash \propto(\breve{i})=\overline{p_{i}(\vec{\nu})} \\ 0 & \text { otherwise }\end{cases}
$$

Let $H_{i} \in F^{*}$ be homogeneous for f_{i}. We use the following claim:
Claim. For every $n_{0}<\omega$, there exists some $n \geq n_{0}$, such that $f_{i} \llbracket_{\llbracket H_{i} \rrbracket^{n}}=1$.
Proof. Let $\vec{\nu} \in \llbracket H_{i} \rrbracket^{n_{0}}$. Take $p_{i}(\vec{\nu}) \in Q$ such that for some $\vec{\nu}^{\prime}, H^{\prime} \subseteq H_{i}$,

$$
\left\langle\vec{\nu}, H_{i}\right\rangle \leq\left\langle\vec{\nu}^{\prime}, H^{\prime}\right\rangle \Vdash \underset{\sim}{\sigma}(\check{i})=\overline{p_{i}(\vec{\nu})}
$$

Let $n=\ln \left(\vec{\nu}^{\prime}\right)$ be the length of $\vec{\nu}^{\prime}$. Then $f_{i}\left(\vec{\nu}^{\prime}\right)=1$. By the homogeneity of H_{i}, we get $f_{i} \upharpoonright_{\llbracket H_{i} \rrbracket^{n}}=1$.

Applying the claim, for every i, there exists some $n_{i}>\sup \left\{n_{j}: j<i\right\}$ such that, for every $\vec{\nu} \in \llbracket H_{i} \rrbracket^{n_{i}}$, there exists $p_{i}(\vec{\nu}) \in Q$ and a large set $B_{i}(\vec{\nu}) \in F^{*}$ which satisfy $\left\langle\vec{\nu}, B_{i}(\vec{\nu})\right\rangle \Vdash \underset{\sim}{\sigma}(\check{i})=\overline{p_{i}(\vec{\nu})}$. By our assumption, there are some $B_{i} \subseteq H_{i}, B_{i} \in F^{*}$ such that -

$$
\left\{p_{i}(\vec{\nu}): \vec{\nu} \in \llbracket B_{i} \rrbracket^{n_{i}}\right\} \notin F^{*}
$$

So, we may assume that this set is disjoint from some $E_{i} \in F^{*}$. This concludes stage i in the construction. Now, take -

$$
B=\bigcap_{i<\omega} B_{i}, E=\bigcap_{i<\omega} E_{i}
$$

Let us argue that -

$$
\langle\rangle, B\rangle \Vdash \forall n<\check{\omega} \exists i \geq n, \underset{\sim}{\sigma}(i) \notin \check{E} \quad(*)
$$

$(*)$ finishes the proof of the lemma, since it contradicts claim 2.1.9. To prove $(*)$, it suffices to show that the following sets are dense above $\langle\rangle, B\rangle$:

$$
D_{n}=\left\{p \in P_{F^{*}}: p \Vdash \exists i \geq \check{n}, \underset{\sim}{\sigma}(i) \notin \check{E}\right\}
$$

Indeed, fix $n<\omega$. Assume $\left\langle\vec{\nu}, B^{\prime}\right\rangle \geq\langle\langle \rangle, B\rangle$. By extending $\vec{\nu}$ if necessary, there exists some $i \geq n$ such that $\vec{\nu} \in \llbracket B_{i} \rrbracket^{n_{i}}$. Therefore:

$$
\left\langle\vec{\nu}, B^{\prime} \cap B_{i}(\vec{\nu})\right\rangle \Vdash \underset{\sim}{(\check{i})}=\overline{p_{i}(\vec{\nu})}
$$

(as an extension of $\left.\left\langle\vec{\nu}, B_{i}(\vec{\nu})\right\rangle\right)$. But $p_{i}(\vec{\nu}) \notin E$ by our construction. So -

$$
\left\langle\vec{\nu}, B^{\prime}\right\rangle \leq^{*}\left\langle\vec{\nu}, B^{\prime} \cap B_{i}(\vec{\nu})\right\rangle \Vdash \underset{\sim}{\sigma}(\check{i}) \notin \check{E}
$$

Now, fix n, m, A, \vec{r} as in the lemma, and denote by $f: \llbracket A \rrbracket^{n} \rightarrow Q$ the function $\vec{\nu} \mapsto p_{\vec{\nu}}$. We identify f with one of it's arbitrary extensions to the domain Q^{n}. We note that condition 2 of lemma 2.2.3 implies that $n>0$. Let us argue that f is a projection of $F^{* n}$ onto F^{*} :

Claim 2.2.4. $Y \in F^{*} \Longleftrightarrow\{\vec{\nu}: f(\vec{\nu}) \in Y\} \in F^{* n}$.
Proof. First, let us assume that for some $Y \in F^{*},\left\{\vec{\nu} \in \llbracket Q \rrbracket^{n}: f(\vec{\nu}) \notin Y\right\} \in F^{* n}$. Applying remark 2.1.6, let $X \in F^{*}$ be chosen such that for every $\vec{\nu} \in \llbracket X \rrbracket^{n}$, $f(\vec{\nu}) \notin Y$. By intersecting, assume $X \subseteq A$. By condition 2 of lemma 2.2.3, it follows that $Z=\left\{f(\vec{\nu}): \vec{\nu} \in \llbracket X \rrbracket^{n}\right\} \in F^{*}$, therefore $Z \cap Y \neq \emptyset$, a contradiction.

For the other direction, assume that $\{\vec{\nu}: f(\vec{\nu}) \in Y\} \in F^{* n}$. Take $Z \subseteq A$ such that $f^{\prime \prime} \llbracket Z \rrbracket^{n} \subseteq Y$. By condition 2 of lemma 2.2.3, $\left\{f(\vec{\nu}): \vec{\nu} \in \llbracket Z \rrbracket^{n}\right\} \in F^{*}$. Therefore $Y \in F^{*}$.

The non-triviality of f follows from the following claim:

Claim 2.2.5. For every $i \leq n,\left\{\vec{\nu} \in Q^{n}: f(\vec{\nu})=\nu_{i}\right\} \notin F^{* n}$.
Proof. Assume otherwise. So $\left\{\vec{\nu} \in Q^{n}: f(\vec{\nu})=\nu_{i}\right\} \in F^{* n}$. Therefore, by Remark 2.1.6, there exists a set $C \in F^{*}$ such that, for every $\vec{\nu} \in \llbracket C \rrbracket^{n}, f(\vec{\nu})=\nu_{i}$.
Assume that -

$$
C \subseteq\left(\underset{\vec{\nu} \in \llbracket A \rrbracket<\omega}{ } \Delta^{*} \quad B_{\vec{\nu}}\right) \cap A
$$

(else, intersect). Here, if $B_{\vec{\nu}}$ has not been defined, take $B_{\vec{\nu}}=Q$. Let us claim that -

$$
D=\left\{\langle\vec{r}, \vec{\nu}, S\rangle \in P_{F^{*}}: \operatorname{lh}(\vec{\nu}) \geq n \text { and }\langle\vec{r}, \vec{\nu}, S\rangle \Vdash \underset{\sim}{\sigma}(\check{m})=\check{\nu}_{i}\right\}
$$

is dense above $\langle\vec{r}, C\rangle$. Once we prove this, we are done: Just take $G \subseteq P_{F^{*}}$ such that $\langle\vec{r}, C\rangle \in G$. Choose $\langle\vec{r}, \vec{\nu}, S\rangle \in D \cap G$, where $\vec{\nu}=\left\langle\nu_{1}, \ldots, \nu_{k}\right\rangle$, for some $k<\omega, k \geq n$. So $\langle\vec{r}, \vec{\nu}, S\rangle \Vdash \underset{\sim}{\sigma}(\check{m})=\check{\nu}_{i}$, contradicting the disjointness of $\underset{\sim}{\sigma}$ and the Prikry sequence of G (recall that this disjointness was forced by $\langle\vec{r}, X\rangle$, where $C \subseteq X$. We assumed that $X=Q$; without this assumption, in the definition of C, we should intersect with X).

Therefore, it suffices to prove the density of D above $\langle\vec{r}, C\rangle$. Let $\langle\vec{r}, \vec{\nu}, S\rangle \in$ $P_{F^{*}}$ extend $\langle\vec{r}, C\rangle$, and assume that $\operatorname{lh}(\vec{\nu}) \geq n$ (else, extend it). Now, since -

$$
\left\langle\vec{r}, \vec{\nu}, S \cap B_{\left\langle\nu_{1}, \ldots, \nu_{n}\right\rangle}\right\rangle \geq\left\langle\vec{r}, \nu_{1}, \ldots, \nu_{n}, B_{\left\langle\nu_{1}, \ldots, \nu_{n}\right\rangle}\right\rangle \Vdash \underset{\sim}{\sigma}(\check{m})=\check{p}_{\left\langle\nu_{1}, \ldots, \nu_{n}\right\rangle}
$$

we get $\langle\vec{r}, \vec{\nu}, S\rangle \leq^{*}\left\langle\vec{r}, \vec{\nu}, S \cap B_{\left\langle\nu_{1}, \ldots, \nu_{n}\right\rangle}\right\rangle \Vdash \underset{\sim}{\sigma}(\check{m})=\check{p}_{\left\langle\nu_{1}, \ldots, \nu_{n}\right\rangle}=\check{\nu}_{i}$.
This shows that $f: Q^{n} \rightarrow Q$ is, indeed, a non-trivial projection. Clearly $n \neq 1$ (else, f was trivial).

Remark 2.2.6. Assume that F^{*} is Rudin-Keisler equivalent to a normal ultrafilter on κ. Then the assumptions of theorem 2.2.2 cannot hold. More precisely, if $\vec{p}=\left\langle p_{n}: n<\omega\right\rangle, \vec{q}=\left\langle q_{n}: n<\omega\right\rangle$ are two Prikry sequences for $P_{F^{*}}$, such that $\left\langle q_{n}: n<\omega\right\rangle \in V\left[\left\langle p_{n}: n<\omega\right\rangle\right]$, then \vec{p}, \vec{q} have infinitely many common elements. This follows from theorem 2.2.2 and from the following proposition:

Proposition 2.2.7. Let U be a normal ultrafilter on κ, and $1 \leq n<\omega$. Then any projection $f: \kappa^{n} \rightarrow \kappa$ of U^{n} onto U is trivial.

Proof. Assume the contrary. Let $n<\omega$ be the first such that U^{n} is projected on U via a non-trivial projection $f: \kappa^{n} \rightarrow \kappa$. We prove that $\left\{\vec{x} \in \kappa^{n}: f(\vec{x})=\right.$ $\left.\rho_{n}(\vec{x})\right\} \in U^{n}$. This follows from the following two claims:

Claim. $\left\{\vec{x}: f(\vec{x})<\rho_{n}(\vec{x})\right\} \notin U^{n}$
Proof. Otherwise, for some set $A \in U$, and for every $\vec{x}=\left\langle x_{1}, \ldots, x_{n}\right\rangle \in[A]^{n}$, $f(\vec{x})<x_{n}$ (this follows from lemma 2.1.6; here $[A]^{n}$ is the set of increasing n-sequences of elements of A).

Fix $\left\langle x_{1} \ldots, x_{n-1}\right\rangle \in[A]^{n-1}$. Then $\left\{x: f\left(x_{1}, \ldots, x_{n-1}, x\right)<x\right\} \in U$. By normality, for some $\alpha\left(x_{1}, \ldots, x_{n-1}\right)<\kappa$, and $A_{\left\langle x_{1}, \ldots, x_{n-1}\right\rangle} \in U$, for every $x \in$ $A_{\left\langle x_{1}, \ldots, x_{n-1}\right\rangle}$,

$$
f\left(x_{1}, \ldots, x_{n-1}, x\right)=\alpha\left(x_{1}, \ldots, x_{n-1}\right)
$$

Thus, the function $\alpha:[A]^{n-1} \rightarrow \kappa$ is a projection of U^{n-1} onto U : Indeed, given $B \in U$, there exists $C \in U$ such that $[C]^{n} \subseteq f^{-1} B$. We can assume that $C \subseteq A \cap \underset{\vec{x} \in[A]^{n-1}}{\triangle} A_{\vec{x}}$ (else, intersect). So for every $\vec{x}=\left\langle x_{1}, \ldots, x_{n}\right\rangle \in[C]^{n}$, $x_{n} \in A_{\left\langle x_{1}, \ldots, x_{n-1}\right\rangle}$, so $f\left(x_{1}, \ldots, x_{n}\right)=\alpha\left(x_{1}, \ldots, x_{n-1}\right)$. Thus, $\alpha^{-1} B \supseteq[C]^{n-1}$. So $\alpha^{-1} B \in U^{n-1}$.

The projection α is non-trivial (else, f was trivial), contradicting the minimality of n.

Claim. $\left\{\vec{x}: f(\vec{x})>\rho_{n}(\vec{x})\right\} \notin U^{n}$.

Proof. Assume otherwise. Fix $A \in U$ such that, for every $\vec{x}=\left\langle x_{1}, \ldots, x_{n}\right\rangle \in$ $[A]^{n}, f(\vec{x})>x_{n}$. Since f is a projection, and $[A]^{n} \in U^{n}, f^{\prime \prime}[A]^{n} \in U$.

Define a function g from some subset of κ to κ as follows: For every $y<\kappa$, if there exists $\vec{x}=\left\langle x_{1}, \ldots, x_{n}\right\rangle \in[A]^{n}$ such that $f(\vec{x})=y$, let -

$$
g(y)=\min \left\{x \in A: \exists \vec{t} \in[A \cap x]^{n-1} \quad f(\vec{t}, x)=y\right\}
$$

Note that $\operatorname{dom}(g) \supseteq f^{\prime \prime}[A]^{n}$, so $\operatorname{dom}(g) \in U$. Also, for every $y \in f^{\prime \prime}[A]^{n}$, there exists $\vec{x}=\left\langle x_{1}, \ldots, x_{n}\right\rangle \in[A]^{n}$ such that $f(\vec{x})=y$. Therefore, $x_{n}<y$. Thus, $g(y) \leq x_{n}<y$. So, on a set in U, g is regressive. By the normality of U, there exists $\alpha<\kappa$ such that, for some $Y \in U, g^{\prime \prime} Y=\{\alpha\}$. In particular, for every $y \in Y$, there exists $\vec{x} \in[A \cap(\alpha+1)]^{n}$ such that $f(\vec{x})=y$. In particular, $f^{\prime \prime}[A \cap(\alpha+1)]^{n} \supseteq Y$. But $\left|[A \cap(\alpha+1)]^{n}\right|<\kappa$, so $|Y|<\kappa$, a contradiction.

Let us recall our general context: $\left\langle Q,\left\langle_{Q}\right\rangle\right.$ is a κ-distributive forcing notion, with $|Q|=\kappa$. We consider the forcing $P_{F^{*}}$, where F^{*} extends the filter of dense open subsets of Q. Assume that $\left\langle p_{n}: n<\omega\right\rangle$ is a Prikry sequence for $P_{F^{*}}$.

Our next observation is that two disjoint Prikry sequences in $V\left[\left\langle p_{n}: n<\omega\right\rangle\right]$, disjoint from $\left\langle p_{n}: n<\omega\right\rangle$, induce two different non-trivial projections. Let us define the exact way in which two projections differ:

Definition 2.2.8. Suppose $1 \leq n<\omega$. Two projections $f: \kappa^{n} \rightarrow \kappa, g: \kappa^{n} \rightarrow \kappa$ of $F^{* n}$ onto F^{*} are called equivalent, if $\left\{\vec{x} \in Q^{n}: f(\vec{x})=g(\vec{x})\right\} \in F^{* n}$ (i.e., f, g represent the same element in the iterated ultrapower construction of $F^{* n}$).

Proposition 2.2.9. Assume that $\left\langle a_{n}: n<\omega\right\rangle,\left\langle b_{n}: n<\omega\right\rangle$ are two disjoint Prikry sequences in $V\left[\left\langle p_{n}: n<\omega\right\rangle\right]$, which are disjoint from $\left\langle p_{n}: n<\omega\right\rangle$. Then, for some $n<\omega$, there are two non-equivalent, non-trivial projections of $F^{* n}$ onto F^{*}.

Proof. Denote by $G \subseteq P_{F^{*}}$ the generic set corresponding to $\left\langle p_{n}: n<\omega\right\rangle$. Assume that $\underset{\sim}{\sigma_{1}}, \sigma_{2}$ are $P_{F^{*}}$-names for $\left\langle a_{n}: n<\omega\right\rangle,\left\langle b_{n}: n<\omega\right\rangle$. Choose $\langle\vec{r}, X\rangle \in G$ which forces that σ_{1}, σ_{2} are $P_{F^{*}}$-names for disjoint Prikry sequences, both disjoint from the sequence $\left\langle p_{n}: n<\omega\right\rangle$.

Apply lemma 2.2.3 and get parameters $n_{1}, m_{1}, A_{1} \subseteq X$ and $n_{2}, m_{2}, A_{2} \subseteq X$, such that, for every $i \in\{1,2\}$, the following property holds:

For every $\vec{\nu}=\left\langle\nu_{1}, \ldots \nu_{n_{i}}\right\rangle \in \llbracket A_{i} \rrbracket^{n_{i}}$, there exists $p_{\vec{\nu}}^{i} \in Q$ and $B_{\vec{\nu}}^{i} \in F^{*}$, such that -

1. $\left\langle\vec{r}, \vec{\nu}, B_{\vec{\nu}}^{i}\right\rangle \in P_{F^{*}}$, and $\left\langle\vec{r}, \vec{\nu}, B_{\vec{\nu}}^{i}\right\rangle \Vdash{\underset{\sim}{i}}_{i}\left(\check{m}_{i}\right)=\check{p}_{\vec{\nu}}^{i}$
2. For every $B \in F^{*}, B \subseteq A_{i},\left\{p_{\vec{\nu}}^{i}: \vec{\nu} \in \llbracket B \rrbracket^{n_{i}}\right\} \in F^{*}$

Assume that $n_{1} \leq n_{2}$. Denote, for $i \in\{1,2\}, f_{i}(\vec{\nu})=p_{\vec{\nu}}^{i}$. Extend f_{1}, f_{2} arbitrarily to domains $Q^{n_{1}}, Q^{n_{2}}$, respectively. Let $\rho_{n_{2}, n_{1}}: Q^{n_{2}} \rightarrow Q^{n_{1}}$ be the function $\rho_{n_{2}, n_{1}}\left(\nu_{1} \ldots, \nu_{n_{1}}, \ldots, \nu_{n_{2}}\right)=\left(\nu_{1} \ldots, \nu_{n_{1}}\right)$ (if $n_{1}=n_{2}, \rho_{n_{2}, n_{1}}$ is the identity). During the following proof, we denote $\rho=\rho_{n_{2}, n_{1}}$ for notational simplicity. Let us claim that $f_{2}, f_{1} \circ \rho$ are two non-equivalent, non-trivial projections of $F^{* n_{2}}$ onto F^{*}.

The non-triviality is similar to claim 2.2.5. Let us prove that $f_{2}, f_{1} \circ \rho$ are non-equivalent. Assume otherwise. Apply lemma 2.1.6 to find some $C \in F^{*}$,
such that for every $\vec{\nu} \in \llbracket C \rrbracket^{n_{2}}, f_{1}\left(\nu_{1}, \ldots, \nu_{n_{1}}\right)=f_{2}\left(\nu_{1}, \ldots, \nu_{n_{2}}\right)$. By intersecting, assume that-

$$
C \subseteq\left(\begin{array}{cc}
\vec{\nu} \in \llbracket A_{1} \rrbracket<\omega \\
\Delta_{\vec{\nu}}^{*} & B_{\vec{\nu}}^{1}
\end{array}\right) \cap\left(\begin{array}{cc}
\stackrel{\Delta}{\nu} \in \llbracket A_{2} \rrbracket<\omega \\
\Delta_{\vec{\nu}}^{*} & \left.B_{\vec{\nu}}^{2}\right) \cap A_{1} \cap A_{2} \cap X
\end{array}\right.
$$

Now, let us claim that the following set is dense above $\langle\vec{r}, C\rangle$:

$$
D=\left\{\langle\vec{r}, \vec{\nu}, S\rangle \in P_{F^{*}}: \operatorname{lh}(\vec{\nu})>n_{2} \text { and }\langle\vec{r}, \vec{\nu}, S\rangle \Vdash \underset{\sim}{\sigma}\left(\check{m}_{1}\right)=\underset{\sim}{\sigma} \sigma_{2}\left(\check{m}_{2}\right)\right\}
$$

This will finish the proof: Just take a generic $H \subseteq P_{F^{*}}$ such that $\langle\vec{r}, C\rangle \in H$. In particular, $\langle\vec{r}, X\rangle \in H$, and it forces that σ_{1} and σ_{2} are disjoint. This contradicts the density of D. Therefore, it suffices to prove that D is dense. Indeed, take some $\langle\vec{r}, \vec{\nu}, S\rangle$ above $\langle\vec{r}, C\rangle$. Assume that $\operatorname{lh}(\vec{\nu})>n_{2}$ (else, extend). Then -

$$
\left\langle\vec{r}, \vec{\nu}, S \cap B_{\left\langle\nu_{1}, \ldots, \nu_{n_{1}}\right\rangle}^{1}\right\rangle \geq\left\langle\vec{r}, \nu_{1}, \ldots, \nu_{n_{1}}, B_{\left\langle\nu_{1}, \ldots, \nu_{n_{1}}\right\rangle}^{1}\right\rangle \Vdash{\underset{\sim}{\sigma}}^{\sigma_{1}}\left(\check{m}_{1}\right)=f_{1}\left(\overline{\nu_{1}, \ldots,} \nu_{n_{1}}\right)
$$

and -

$$
\left\langle\vec{r}, \vec{\nu}, S \cap B_{\left\langle\nu_{1}, \ldots, \nu_{n_{2}}\right\rangle}^{2}\right\rangle \geq\left\langle\vec{r}, \nu_{1}, \ldots, \nu_{n_{2}}, B_{\left\langle\nu_{1}, \ldots, \nu_{n_{2}}\right\rangle}^{2}\right\rangle \Vdash{\underset{\sim}{\sigma}}^{\sigma_{2}}\left(\check{m}_{2}\right)=f_{2}\left(\overline{\nu_{1}, \ldots,} \nu_{n_{2}}\right)
$$

Therefore, $\left\langle\vec{r}, \vec{\nu}, S \cap B_{\left\langle\nu_{1}, \ldots, \nu_{n_{1}}\right\rangle}^{1} \cap B_{\left\langle\nu_{1}, \ldots, \nu_{n_{2}}\right\rangle}^{2}\right\rangle \Vdash \underset{\sim}{\sigma}\left(\check{m}_{1}\right)=\underset{\sim}{\sigma}\left(\check{m}_{2}\right)$.
It's straightforward to generalize proposition 2.2.9 to finitely many pairwise disjoint Prikry sequences in $V\left[\left\langle p_{n}: n<\omega\right\rangle\right]$; A generalization to infinitely many pairwise disjoint Prikry sequences could be done in the following way:

Proposition 2.2.10. Assume that $\left\langle p_{n}: n<\omega\right\rangle$ is a Prikry sequence for $P_{F^{*}}$. Assume that $\left\langle\left\langle p_{\xi}^{n}: n<\omega\right\rangle: \xi<\kappa\right\rangle$ is a set of pairwise disjoint Prikry sequences for $P_{F^{*}}$ in $V\left[\left\langle p_{n}: n<\omega\right\rangle\right]$, which are all disjoint from $\left\langle p_{n}: n<\omega\right\rangle$. Then for some $n<\omega$, there are κ-many non-equivalent, non-trivial projections of $F^{* n}$ onto F^{*}.

Proof. Denote by G the Prikry-generic set corresponding to $\left\langle p_{n}: n<\omega\right\rangle$. Let $\underset{\sim}{\sigma}$ be a $P_{F^{*}}$-name for $\left\langle\left\langle p_{\xi}^{n}: n<\omega\right\rangle: \xi<\kappa\right\rangle$. Assume that $\langle\vec{r}, X\rangle \in G$ forces that the elements of $\underset{\sim}{\sigma}$ are pairwise disjoint Prikry sequences for $P_{F^{*}}$, such that each one is disjoint from the Prikry sequence corresponding to the canonical name of the generic set. We slightly abuse the notation and denote $\sigma(\check{\xi})$ by σ_{ξ}.

Apply lemma 2.2.3, and get parameters $n_{\xi}, m_{\xi}, A_{\xi} \subseteq X$ such that, for every $\xi<\kappa$, the following property holds: For every $\vec{\nu}=\left\langle\nu_{1}, \ldots \nu_{n_{\xi}}\right\rangle \in \llbracket A_{\xi} \rrbracket^{n_{\xi}}$, there exist $p_{\vec{\nu}}^{\xi} \in Q$ and $B_{\vec{\nu}}^{\xi} \in F^{*}$, such that -

1. $\left\langle\vec{r}, \vec{\nu}, B_{\vec{\nu}}^{\xi}\right\rangle \in P_{F^{*}}$, and $\left\langle\vec{r}, \vec{\nu}, B_{\vec{\nu}}^{\xi}\right\rangle \Vdash \sigma_{\xi}\left(\check{m}_{\xi}\right)=\check{p}_{\vec{\nu}}^{\xi}$
2. For every $B \in F^{*}, B \subseteq A_{\xi},\left\{p_{\vec{\nu}}^{\xi}: \vec{\nu} \in \llbracket B \rrbracket^{n_{\xi}}\right\} \in F^{*}$

Let $I \subseteq \kappa$ be a set cardinality κ, such that for some $n<\omega$, and for every $\xi \in I$, $n_{\xi}=n$. For simplicity, let us assume that $I=\kappa$ for the rest of the proof.

Assume that for every $\xi<\kappa, f_{\xi}: Q^{n} \rightarrow Q$ is a function such that, for every $\vec{\nu} \in \llbracket A_{\xi} \rrbracket^{n}, f(\vec{\nu})=p_{\vec{\nu}}^{\xi}$. As in claim 2.2.5, each f_{ξ} is a non-trivial projection of $F^{* n}$ onto F^{*}.

We now prove that the projections f_{ξ} are pairwise non-equivalent. Let $\xi_{1} \neq$ ξ_{2}. It suffices to prove that $\left\{\vec{\nu} \in Q^{n}: f_{\xi_{1}}(\vec{\nu})=f_{\xi_{2}}(\vec{\nu})\right\} \notin F^{* n}$. Assume the opposite, and get $C \in F^{*}$ such that for every $\vec{\nu} \in \llbracket C \rrbracket^{n}, f_{\xi_{1}}(\vec{\nu})=f_{\xi_{2}}(\vec{\nu})$. By intersecting, assume that -

$$
C \subseteq\left(\underset{\vec{\nu} \in \llbracket A_{\xi_{1}} \rrbracket^{<\omega}}{\Delta^{*}} B_{\vec{\nu}}^{\xi_{1}}\right) \cap\left(\underset{\vec{\nu} \in \llbracket A_{\xi_{2}} \rrbracket}{\Delta^{*}} B_{\vec{\nu}}^{\xi_{2}}\right) \cap A_{\xi_{1}} \cap A_{\xi_{2}} \cap X
$$

Then, as before, the following set is dense above $\langle\vec{r}, C\rangle$:

And this is a contradiction, since $\langle\vec{r}, C\rangle$ extends $\langle\vec{r}, X\rangle$, which forces that the sequences ${\underset{\sim}{*}}_{\xi}$ are disjoint.

Remark 2.2.11. By [3], it's consistent from large cardinals that for $Q=\langle\kappa, \in\rangle$, there exists a κ-complete ultrafilter F^{*}, such that the forcing $P_{F^{*}}$ has a generic extension $V\left[\left\langle p_{n}: n<\omega\right\rangle\right]$, which carries a sequence-

$$
\left\langle\left\langle p_{\xi}^{n}: n<\omega\right\rangle: \xi<\kappa\right\rangle
$$

of pairwise disjoint Prikry sequences for $P_{F^{*}}$, which are also disjoint from $\left\langle p_{n}: n<\omega\right\rangle$.

2.3 The Quotient Forcing

Assume that G is $P_{F^{*}-\text { generic over }} V$, with a corresponding Prikry sequence $\left\langle p_{n}: n<\omega\right\rangle$. Assume that $H \in V\left[\left\langle p_{n}: n<\omega\right\rangle\right]$ is $\mathrm{RO}(Q)$-generic over V. Let us consider the quotient forcing $P_{F^{*}} / H$ (more details about the existence and definition of the quotient forcing are included in the preliminaries).

Definition 2.3.1. We say that two elements $\left\langle a_{1}, \ldots, a_{n}, A\right\rangle,\left\langle b_{1}, \ldots, b_{m}, B\right\rangle$ of $P_{F^{*}} / H$ can be balanced if they have extensions (in $\left.P_{F^{*}} / H\right),\left\langle a_{1}, \ldots, a_{n^{\prime}}, A\right\rangle$ and $\left\langle b_{1} \ldots, b_{m^{\prime}}, B\right\rangle$, such that $h\left(a_{n^{\prime}}\right)=h\left(b_{m^{\prime}}\right)$.

Definition 2.3.2. We say that a forcing notion $\left\langle P,{<_{P}}_{P}\right\rangle$ is cone homogeneous, if for every $a, b \in P$ there are extensions $a^{\prime}>_{P} a, b^{\prime}>_{P} b$ such that P / a^{\prime} and P / b^{\prime} are isomorphic.

Lemma 2.3.3. Assume that the quotient forcing $P_{F^{*}} / H$ is cone homogeneous.
Suppose that $\left\langle a_{1}, \ldots, a_{n}, A\right\rangle,\left\langle b_{1}, \ldots, b_{m}, B\right\rangle \in P_{F^{*}} / H$ can't be balanced. Then $\left\langle a_{1}, \ldots, a_{n}\right\rangle,\left\langle b_{1}, \ldots, b_{m}\right\rangle$ could be extended to Prikry sequences $\left\langle a_{n}: n<\omega\right\rangle$, $\left\langle b_{n}: n<\omega\right\rangle$ for $P_{F^{*}}$, which have a finite intersection, such that -

$$
V\left[\left\langle a_{n}: n<\omega\right\rangle\right]=V\left[\left\langle b_{n}: n<\omega\right\rangle\right]
$$

In particular, for some $n<\omega$, there exists a non-trivial projection of $F^{* n}$ onto F^{*}.

Proof. Let $p=\left\langle a_{1}, \ldots, a_{n^{\prime}}, A^{\prime}\right\rangle, q=\left\langle b_{1}, \ldots, b_{m^{\prime}}, B^{\prime}\right\rangle$ be some extensions of the given sequences, in $P_{F^{*}} / H$, such that, there exists an isomorphism $\sigma \in V[H]$, $\sigma:\left(P_{F^{*}} / H\right) / p \rightarrow\left(P_{F^{*}} / H\right) / q$. Extend both p, q to generic Prikry sequences for $P_{F^{*}} / H,\left\langle a_{n}: n<\omega\right\rangle,\left\langle b_{n}: n<\omega\right\rangle$, such that the image of one under σ gives the other. Then $V\left[\left\langle a_{n}: n<\omega\right\rangle\right]=V\left[\left\langle b_{n}: n<\omega\right\rangle\right]$, since $\sigma \in V[H]$. But the Prikry sequences $\left\langle a_{n}: n<\omega\right\rangle,\left\langle b_{n}: n<\omega\right\rangle$ have a finite intersection (because the initial sequences cannot be balanced). Therefore, by theorem 2.2.2, there exists a non-trivial projection of $F^{* n}$ onto F^{*}, for some $n<\omega$.

Lemma 2.3.4. Assume that every pair of elements of $P_{F^{*}} / H$ can be balanced, and that $P_{F^{*}} / H$ satisfies the following property:
(*) For every $\left\langle a_{1}, \ldots, a_{n}, X\right\rangle,\left\langle b_{1}, \ldots, b_{m}, X\right\rangle \in P_{F^{*}} / H$ with $h\left(a_{n}\right)=h\left(b_{m}\right)$, and for every $x_{1}, \ldots x_{k} \in X$ and $C \subseteq X,\left\langle a_{1}, \ldots, a_{n}, x_{1}, \ldots, x_{k}, C\right\rangle \in$ $P_{F^{*}} / H$ if and only if $\left\langle b_{1}, \ldots, b_{m}, x_{1}, \ldots, x_{k}, C\right\rangle \in P_{F^{*}} / H$.

Then $P_{F^{*}} / H$ is cone-homogeneous.
Proof. Assume that $\left\langle a_{1}, \ldots, a_{n}, A\right\rangle,\left\langle b_{1}, \ldots, b_{m}, B\right\rangle$ are two elements in $P_{F^{*}} / H$. $\left\langle a_{1}, \ldots, a_{n}, A\right\rangle$ can be extended to a Prikry sequence of the quotient forcing,
$\left\langle a_{i}: i<\omega\right\rangle$. By lemma 2.1.9, there exists $n_{0}>n$ such that for every $i \geq n_{0}$, $a_{i} \in B$. Therefore, $\left\langle a_{1}, \ldots, a_{n_{0}}, A \cap B\right\rangle$ belongs to the quotient forcing (indeed, if G is the generic set for $P_{F^{*}} / H$, which corresponds to $\left\langle a_{i}: i<\omega\right\rangle$, then G is generic over $P_{F^{*}}$ as well; Thus $\left\langle a_{1}, \ldots, a_{n_{0}}, A \cap B\right\rangle \in G$. In particular, $\left\langle a_{1}, \ldots, a_{n_{0}}, A \cap B\right\rangle$ belongs to $\left.P_{F^{*}} / H\right)$. Similarly, $\left\langle b_{1}, \ldots, b_{m}, B\right\rangle$ can be extended to $\left\langle b_{1}, \ldots, b_{m_{0}}, A \cap B\right\rangle$ that belongs to the quotient forcing. We can balance $\left\langle a_{1}, \ldots, a_{n_{0}}, A \cap B\right\rangle$ and $\left\langle b_{1}, \ldots, b_{m_{0}}, A \cap B\right\rangle$, and find extensions $\left\langle a_{1}, \ldots, a_{n^{\prime}}, A \cap B\right\rangle$ and $\left\langle b_{1} \ldots, b_{m^{\prime}}, A \cap B\right\rangle$, such that $h\left(a_{n^{\prime}}\right)=h\left(b_{m^{\prime}}\right)$. Now we simply apply $(*)$ to get the required isomorphism:

$$
\left\langle a_{1}, \ldots, a_{n^{\prime}}, x_{1}, \ldots, x_{k}, C\right\rangle \mapsto\left\langle b_{1}, \ldots, b_{m^{\prime}}, x_{1}, \ldots, x_{k}, C\right\rangle
$$

The condition $(*)$ of lemma 2.3.4 will hold in the natural examples which will be considered.

2.4 Forcing A Club Disjoint From Inaccessibles

Let us consider an example. In this section, consider-

$$
\begin{aligned}
Q=\{ & X \subseteq \kappa: X \text { is closed, bounded in } \kappa, \\
& \text { and doesn't contain any inaccessible cardinal }\}
\end{aligned}
$$

Ordered by $X_{1}<_{Q} X_{2} \Longleftrightarrow X_{2} \cap\left(\max X_{1}+1\right)=X_{1}$. This forcing is designed to turn κ into a non-Mahlo cardinal, preserving inaccessibles below it.

Notation. We use the following notation throughout this section: For every set Z of ordinals,

$$
\bar{Z}=Z \cup\{\alpha \leq \sup (Z): \sup (Z \cap \alpha)=\alpha\}
$$

Lemma 2.4.1. $\langle Q,<\rangle$ is κ-distributive.

Proof. Assume $\xi<\kappa$, and let $f: \xi \rightarrow O N$ belong to $M[H]$, where $H \subseteq Q$ is Q generic over V. It suffices to prove that $f \in V$. Assume without loss of generality that the weakest condition in Q forces that $\underset{\sim}{f}$ is a Q-name for a sequence on ordinals of length $\check{\xi}$. Let $q \in Q$, and let $p_{0} \in P$ be such that $\max \left(p_{0}\right)>\xi$, $p_{0} \geq q$ and $p_{0} \Vdash f(\check{0})=\check{\tau}_{0}$ for some ordinal τ_{0}. Proceed by induction. Assume
p_{β}, τ_{β} are chosen for every $\beta<\alpha$, where $\alpha \leq \xi$. If $\alpha=\alpha^{*}+1$ is a successor, pick some ordinal τ_{α} and $p_{\alpha} \geq p_{\alpha^{*}}$, such that $p_{\alpha} \Vdash \underset{\sim}{f}(\check{\alpha})=\check{\tau}_{\alpha}$. If α is limit, let-

$$
p_{\alpha}^{*}=\overline{\bigcup_{\xi<\alpha} p_{\xi}}=\left(\bigcup_{\xi<\alpha} p_{\xi}\right) \cup \sup \left(\bigcup_{\xi<\alpha} p_{\xi}\right)
$$

(we claim that p_{α}^{*} is a legitimate element of Q : It suffices to prove that max $\left(p_{\alpha}^{*}\right)$ is not an inaccessible. We note that $\max \left(p_{\alpha}^{*}\right)>\xi$, since $\max \left(p_{0}\right)>\xi$. If $\max \left(p_{\alpha}^{*}\right)$ was an inaccessible, it was above ξ, with cofinality $\leq c f(\alpha) \leq \alpha \leq \xi$, contradicting regularity). Now, pick some $p_{\alpha} \geq p_{\alpha}^{*}$ such that $\underset{\sim}{f}(\check{\alpha})$ is decided to be some ordinal τ_{α}. This finishes the construction.

We can repeat this construction above any $q \in Q$, so the elements of Q which force that $f \in V$ form a dense subset, and therefore intersect the generic set H. It follows that $f \in V$.

Note that $|Q|=\kappa$. Let F^{*} be a κ-complete ultrafilter which extends F, the filter of dense open subsets of Q. As before, let $\pi: Q \rightarrow \kappa$ be the such that $[\pi]_{F^{*}}=\kappa$. Define the mapping $h: Q \rightarrow \kappa$ by $x \mapsto \sup (x)=\max (x)$. Let $G \subseteq P_{F^{*}}$ be generic over V, and assume that $\left\langle p_{n}: n<\omega\right\rangle$ is the corresponding Prikry sequence.

Proposition 2.4.2. In $V[G]$, define $H^{*}=\left\{\overline{C^{*} \cap \alpha}: \alpha<\kappa\right\}$, where $C^{*}=$ $\bigcup_{n<\omega} p_{n}^{*}$, and p_{n}^{*} is defined recursively, as follows:

$$
p_{n}^{*}=\left\{\begin{array}{cc}
p_{0} & n=0 \tag{2.1}\\
p_{n} \backslash \max \left(p_{n-1}^{*}\right) & n>0
\end{array}\right.
$$

Then H^{*} is Q-generic over V. In particular, there exists a $P_{F^{*}-n a m e ~}^{{\underset{\sim}{r}}^{*}}$, such that the weakest condition in $P_{F^{*}}$ forces that ${\underset{\sim}{H}}^{+}$is Q-generic over V. Moreover, $\left({\underset{\sim}{H}}^{*}\right)_{G}=H^{*}$.

Proof. We prove first that H^{*} is Q-generic over V. The only non trivial property is that H^{*} intersects every dense open subset of Q. Let $D \subseteq Q$ be a dense open subset. Let -

$$
E=\left\{\left\langle q_{1}, \ldots, q_{n}, A\right\rangle \in P_{F^{*}}: \bigcup_{i=1}^{n} q_{i}^{*} \in D\right\}
$$

where q_{i}^{*} are defined as in equation 2.1. We claim that $E \subseteq P_{F^{*}}$ is dense. This promises that $H^{*} \cap D \neq \emptyset$: Simply take some $\left\langle p_{1}, \ldots, p_{m}, A\right\rangle \in G \cap E$. So, for
$\alpha=\max \left(p_{m}\right)$,

$$
\overline{C^{*} \cap \alpha}=\bigcup_{i=1}^{m} p_{i}^{*} \in H^{*} \cap D
$$

as desired.
As for the density of E : Assume that $\left\langle q_{1}, \ldots, q_{n}, A\right\rangle \in P_{F^{*}}$, and let $\delta=$ $\max \left(q_{n}\right)+1$. Define a subset of q :

$$
D_{\delta}=\{p \in D: \forall Z \subseteq \delta(p \backslash \delta) \cup \bar{Z} \in D\}
$$

Then -

$$
D_{\delta}=\bigcap_{Z \subseteq \delta} D_{\delta}(Z)
$$

Where $D_{\delta}(Z)=\{p \in D:(p \backslash \delta) \cup \bar{Z} \in D\}$.
Now, given $Z \subseteq \delta, D_{\delta}(Z)$ is dense and open. It's simple to prove that $D_{\delta}(Z)$ is open. For density, take $p \in Q$, let $p^{\prime} \in D$ be some extension of $(p \backslash \delta) \cup \bar{Z}$. Now, let $p^{\prime \prime} \in D$ be some extension of $\left(p^{\prime} \backslash \delta\right) \cup p$. Then $p^{\prime \prime}>_{Q} p$, and $p^{\prime \prime} \in D_{\delta}(Z)$.

If $\delta<\kappa$, then $2^{|\delta|}<\kappa$, since κ is inaccessible; Thus, by κ-distributivity of Q, D_{δ} is dense and open. Therefore $D_{\delta} \in F^{*}$. Choose some $q \in D_{\delta} \cap A$, such that $\pi(q)>\delta$. So -

$$
\left\langle q_{1}, \ldots, q_{n}, A\right\rangle \leq\left\langle q_{1}, \ldots, q_{n}, q, A\right\rangle
$$

and -

$$
\left(\bigcup_{i=1}^{n} q_{i}^{*}\right) \cup(q \backslash \delta) \in D
$$

so $\left\langle q_{1}, \ldots, q_{n}, q, A\right\rangle \in E$. This shows that E is dense in $P_{F^{*}}$, and proves that H^{*} is, indeed, Q-generic over V.

Clearly, there exists a $P_{F^{*}}$-name ${\underset{\sim}{*}}^{*}$ which is forced, by some condition in $P_{F^{*}}$, to be Q-generic over V; But we would like to choose ${\underset{\sim}{\mid}}^{*}$ such that it's genericity is forced by the weakest condition of $P_{F^{*}}$. This could be done using the maximal principle (see [6]): Let $\phi(x)$ be a formula which defines x from the canonical name of the generic set, in the same way H^{*} was defined from $\left\langle p_{n}: n<\omega\right\rangle$. The weakest condition of $P_{F^{*}}$ forces $\exists x \phi(x)$, so by the maximal principle, there exists a $P_{F^{*}}$-name ${\underset{\sim}{r}}_{\underset{\sim}{H}}$, for which $\phi\left({\underset{\sim}{r}}_{\underset{\sim}{*}}\right)$ is forced by every condition.

By distributivity of Q, every inaccessible cardinal below κ in V, remains inaccessible in $V\left[H^{*}\right]$. It's not hard to see that $C^{*}=\cup H^{*}$ is a club disjoint from the set of inaccessibles below κ. So κ is not Mahlo in $V[H]$.

Proposition 2.4.2 implies the existence of the quotient forcing, which we will denote $P_{F^{*}} / C^{*}$. Note that $P_{F^{*}} / C^{*}$ is a non-trivial forcing notion, since, in $V\left[H^{*}\right], \kappa$ is still regular.

Remark 2.4.3. Let us define the quotient forcing in a formal way. Denote by $R O(Q)$ the completion of Q to a complete boolean algebra, and let $i: Q \rightarrow R O(Q)$ be the corresponding dense embedding (to simplify notations, we write $R O(Q)$ instead $\left.R O(Q) \backslash\left\{0_{R O(Q)}\right\}\right)$. Then -

$$
\left\{q \in R O(Q): \text { for some } p \in H^{*}, i(p) \text { extends } q\right\}
$$

is $R O(Q)$-generic over V, and belongs to $V\left[H^{*}\right]$. Thus, there exists a projection $\pi: P_{F^{*}} \rightarrow R O(Q)$, and we can define in $V\left[H^{*}\right]$ the quotient forcing:

$$
\begin{equation*}
\left.P_{F^{*}} / C^{*}=\left\{q \in P_{F^{*}}: \text { for some } p \in H^{*}, i(p) \text { extends } \pi(q)\right\}\right\} \tag{2.2}
\end{equation*}
$$

The Definition of the quotient forcing in formula 2.2 is rather abstract, and it's hard to give a more explicit characterisation of $P_{F^{*}} / C^{*}$. Nevertheless, we can state some useful properties:

Lemma 2.4.4. Assume that $\left\langle a_{0}, \ldots, a_{n}, A\right\rangle \in P_{F^{*}} / C^{*}$. Define, for every $i \leq n$, an element $a_{i}^{*} \in Q$, as follows:

$$
a_{i}^{*}=\left\{\begin{array}{cl}
a_{0} & i=0 \\
a_{i} \backslash \max \left(a_{i-1}^{*}\right) & i>0
\end{array}\right.
$$

Then -

$$
\bigcup_{i=1}^{n} a_{i}^{*}=C^{*} \cap\left(\max \left(a_{n}\right)+1\right)
$$

Moreover, for every $\alpha<\kappa$, there exists an extension $\left\langle a_{0}, \ldots, a_{n^{\prime}}, A^{\prime}\right\rangle \in P_{F^{*}} / C^{*}$ of $\left\langle a_{0}, \ldots, a_{n}, A\right\rangle$, such that -

$$
\left(\bigcup_{i=1}^{n^{\prime}} a_{i}^{*}\right) \cap \alpha=C^{*} \cap \alpha
$$

Proof. We prove the "moreover" part, which implies that-

$$
\bigcup_{i=1}^{n} a_{i}^{*}=C^{*} \cap\left(\max \left(a_{n}\right)+1\right)
$$

by taking $\alpha=\max \left(a_{n}\right)+1$.
Assume that $\alpha<\kappa$. Let $G^{\prime} \subseteq P_{F^{*}} / C^{*}$ be a generic set for the quotient forcing, such that $\left\langle a_{0}, \ldots, a_{n}, A\right\rangle \in G^{\prime}$. Assume that $\left\langle a_{i}: i<\omega\right\rangle$ is the corresponding Prikry sequence. By claim 0.2.5,

$$
C^{*}=\bigcup_{i<\omega} a_{i}^{*}
$$

(a_{i}^{*} for $i>n$ are defined in the same way). Let $\left\langle a_{0}, \ldots, a_{n^{\prime}}, A^{\prime}\right\rangle \in G^{\prime}$ be some element with $\max a_{n^{\prime}} \geq \alpha$. Then -

$$
\left(\bigcup_{i=1}^{n^{\prime}} a_{i}^{*}\right) \cap \alpha=C^{*} \cap \alpha
$$

Our goal in this section is to show that in $P_{F^{*}} / C^{*}$ there are many pairs of elements which cannot be balanced. This will be proved in proposition 2.4.7, and will be applied in theorem 2.4.8.

We use standard notations: Consider the ultrapower $\operatorname{Ult}\left(V, F^{*}\right)$. For a function $f: Q \rightarrow \kappa$, we denote by $[f]_{F^{*}}$ the standard equivalence class of f in the ultrapower construction. Recall that $\pi: Q \rightarrow \kappa$ is a function such that $[\pi]_{F^{*}}=\kappa$. Let $I d: Q \rightarrow Q$ be the identity function. For ordinals α, β, denote $[\alpha, \beta]=\{\gamma \leq \beta: \gamma \geq \alpha\},(\alpha, \beta)=\{\gamma<\beta: \gamma>\alpha\}$.

Proposition 2.4.5. There exists a function $\pi^{*}: Q \rightarrow \kappa$, an ordinal $\alpha^{*}<\kappa$ and a set $E \in F^{*}$ such that:

1. For every $x \in E, \max (x)>\pi^{*}(x) \geq \pi(x)$
2. For every $x \in E, x \cap \pi^{*}(x)=x \cap \pi(x)$
3. For every $x \in E, \pi^{*}(x)<\min \left(x \backslash \alpha^{*}\right)$
4. For every $p, q \in E$, if $\max (p)=\max (q)$, and -

$$
p \cap[\pi(p), \max (p)]=q \cap[\pi(p), \max (p)]
$$

then $\pi^{*}(p)=\pi^{*}(q)$.

Proof. We begin by constructing a sequence of functions, $h_{i}: Q \rightarrow \kappa, \pi_{i}: \kappa \rightarrow \kappa$ for every $i \leq n$, where $n<\omega$ will be decided in the construction. We make sure during the construction that $\left[h_{i}\right]_{F^{*}}>\kappa$ and for every $\alpha<\kappa, \pi_{i}(\alpha)<\alpha$. Also, we define $\pi_{i}^{*}=\pi_{i} \circ h_{i}$.

Take $h_{0}(x)=\max (x)$. Note that $\left[h_{0}\right]_{F^{*}}>\kappa$ (equality cannot hold since the image of h doesn't contain any inaccessible cardinals). Define $W_{0}=\left(h_{0}\right)_{*} F^{*}$, and let $\pi_{0}: \kappa \rightarrow \kappa$ be a function such that $\left[\pi_{0}\right]_{W_{0}}=\kappa$. Then $\left[\pi_{0}\right]_{W_{0}}<[I d]_{W_{0}}$ (since otherwise, W_{0} was a normal ultrafilter, concentrating on the set of inaccessibles, and thus, for some $x \in Q, h_{0}(x)=\max (x)$ was inaccessible). Therefore, $\left\{\alpha<\kappa: \pi_{0}(\alpha)<\alpha\right\} \in W_{0}$, and by changing π_{0} on a set outside W_{0}, we can assume that for every $\alpha<\kappa, \pi_{0}(\alpha)<\alpha$.

Assume that h_{i} was constructed, such that $\left[h_{i}\right]_{F^{*}}>\kappa$. Let us define h_{i+1}. Set $W_{i}=\left(h_{i}\right)_{*} F^{*}$. Then W_{i} is a non-trivial ultrafilter. Let $\pi_{i}: \kappa \rightarrow \kappa$ be a function, such that $\left[\pi_{i}\right]_{W_{i}}=\kappa$. Denote $\pi_{i}^{*}=\pi_{i} \circ h_{i}$. Note that -

$$
\left\{\alpha \in \kappa: \pi_{i}(\alpha) \text { is inaccessible }\right\} \in W_{i}
$$

and thus -

$$
\left\{x \in Q: \pi_{i}^{*}(x) \text { is inaccessible }\right\} \in F^{*}
$$

so $\left[\pi_{i}^{*}\right]_{F^{*}}$ is inaccessible, and therefore $[I d]_{F^{*}} \cap\left[\pi_{i}^{*}\right]_{F^{*}}$ is bounded in $\left[\pi_{i}^{*}\right]_{F^{*}}$ (since $[I d]_{F^{*}}$ is closed and disjoint from inaccessibles). If -

$$
\max \left([I d]_{F^{*}} \cap\left[\pi_{i}^{*}\right]_{F^{*}}\right)<\kappa
$$

finish the construction, and fix some $\alpha^{*}<\kappa$ such that -

$$
[I d]_{F^{*}} \cap\left[\pi_{i}^{*}\right]_{F^{*}} \subseteq \alpha^{*}
$$

Else, define, for every $x \in Q, h_{i+1}(x)=\max \left(x \cap \pi_{i}^{*}(x)\right)$, and note that $\left[h_{i+1}\right]>$ κ (equality cannot hold, since κ is inaccessible).

We claim that this construction must stop after finitely many steps. It's enough to argue that if the construction doesn't stop, then for every $i<\omega$, $\left[\pi_{i+1}^{*}\right]_{F^{*}}<\left[\pi_{i}^{*}\right]_{F^{*}}$ (so $\left[\pi_{i}^{*}\right]_{F^{*}}$ is a strictly decreasing sequence of ordinals in the ultrapower, and thus necessarily finite). Indeed, for every x in some set in F^{*},

$$
\pi_{i+1}^{*}(x)=\pi_{i+1}\left(h_{i+1}(x)\right)<h_{i+1}(x)=\max \left(x \cap \pi_{i}^{*}(x)\right)<\pi_{i}^{*}(x)
$$

Assume that $n<\omega$ is the maximal such that π_{n}^{*} is defined. Denote $\pi^{*}=\pi_{n}^{*}$. Note that $\left[\pi_{n}^{*}\right]_{F^{*}} \geq \kappa$, since π_{n}^{*} projects F^{*} into a non-trivial ultrafilter. Thus,

$$
[I d]_{F^{*}} \cap\left[\pi^{*}\right]_{F^{*}}=[I d]_{F^{*}} \cap \kappa
$$

Take a set $E \in F^{*}$ such that for every $x \in E$,

1. $\pi^{*}(x)$ is inaccessible.
2. $x \cap \pi^{*}(x) \subseteq \alpha^{*}$
3. $x \cap \pi_{i}^{*}(x)=x \cap \pi(x) \quad \Longleftrightarrow \quad i=n$
4. $\max (x) \geq \pi_{1}^{*}(x)>\ldots>\pi_{n}^{*}(x) \geq \pi(x)$

Assume that $p, q \in E$ and $\max (p)=\max (q)$. Suppose that $i<n, \pi_{i}^{*}(p)=$ $\pi_{i}^{*}(q)$, and let us prove that $\pi_{i+1}^{*}(p)=\pi_{i+1}^{*}(q)$. It suffices to prove that $h_{i}(p)=$ $h_{i}(q)$. This is clear for $i=0$. For $i>0$, note that -

$$
\begin{equation*}
\max \left(p \cap \pi_{i}^{*}(p)\right)=\max \left(q \cap \pi_{i}^{*}(q)\right) \tag{2.3}
\end{equation*}
$$

indeed, since $i<n, p \cap \pi_{i}^{*}(p) \neq p \cap \pi(p)$, so $p \cap\left[\pi(p), \pi_{i}^{*}(p)\right] \neq \emptyset$. But -

$$
p \cap[\pi(p), \max (p)]=q \cap[\pi(p), \max (p)]
$$

and $\pi_{i}^{*}(q)=\pi_{i}^{*}(p) \geq \pi(p)$, so -

$$
p \cap\left[\pi(p), \pi_{i}^{*}(p)\right]=q \cap\left[\pi(p), \pi_{i}^{*}(q)\right] \neq \emptyset
$$

and 2.3 follows.
Now, let us prove that for every $x \in E, \pi^{*}(x)<\min \left(x \backslash \alpha^{*}\right)$. It's clear that the equality $\pi^{*}(x)=\min \left(x \backslash \alpha^{*}\right)$ cannot hold, since $\pi^{*}(x)$ is inaccessible. Thus, it suffices to prove that $\pi^{*}(x) \leq \min \left(x \backslash \alpha^{*}\right)$. This is clear as well, since otherwise,

$$
\min \left(x \backslash \alpha^{*}\right) \in x \cap \pi^{*}(x) \subseteq \alpha^{*}
$$

Lastly, for every $x \in E, \max (x) \neq \pi^{*}(x)$ (because $\pi^{*}(x)$ is inaccessible), and thus $\max (x)>\pi^{*}(x)$.

Lemma 2.4.6. The following set is dense in $P_{F^{*}} / C^{*}$:

$$
D=\left\{\langle\vec{q}, X\rangle:\left\{\max (a):\langle\vec{q}, a, X\rangle \in P_{F^{*}} / C^{*}\right\} \text { is unbounded in } \kappa\right\}
$$

Proof. Suppose otherwise. Let $\langle\vec{q}, X\rangle \in P_{F^{*}} / C^{*}$ be an element which has no extension in D. Define, for every $n<\omega$,

$$
S_{n}=\left\{\max (s): \text { for some } \vec{p} \in \llbracket Q \rrbracket^{n},\left\langle\vec{q} \curvearrowleft \vec{p}^{\curvearrowleft}\langle s\rangle, X\right\rangle \in P_{F^{*}} / C^{*}\right\}
$$

Let us argue, by induction on n, that $\left|S_{n}\right|<\kappa$. For $n=0$ this is clear. Assume that $\left|S_{n}\right|<\kappa$. Let $\alpha<\kappa$ be some upper bound of S_{n} (we work in $V\left[H^{*}\right]$, where κ is still regular, so S_{n} is bounded in κ). Let-

$$
A=\left\{\vec{p} \in \llbracket Q \rrbracket^{n}: \max (\operatorname{mc}(\vec{p})) \leq \alpha \text { and }\langle\vec{q} \curvearrowright \vec{p}, X\rangle \in P_{F^{*}} / C^{*}\right\}
$$

Note that $|A|<\kappa$, since there are less then κ sequences $\vec{p} \in \llbracket Q \rrbracket^{n}$ with $\max (\operatorname{mc}(\vec{p})) \leq \alpha$. Also, for every $\vec{p} \in A,\langle\vec{q} \sqcap \vec{p}, X\rangle$ extends $\langle\vec{q}, X\rangle$, and thus doesn't belong to D. Therefore, there exists an upper bound $\tau(\vec{p})<\kappa$ for the set-

$$
\left\{\max (a):\left\langle\vec{q} \vec{p}^{\frown}\langle a\rangle \in P_{F^{*}} / C^{*}\right\rangle\right\}
$$

Let $\tau<\kappa$ be an upper bound for the set $\{\tau(\vec{p}): \vec{p} \in A\}$. Thus-

$$
\left|S_{n+1}\right|<\kappa
$$

(since every element in S_{n+1} has a maximum less then τ), as required.
Denote $S=\underset{n<\omega}{\cup} S_{n}$. Then S is bounded in κ, assume that by some $\beta<\kappa$. Extend $\langle\vec{q}, X\rangle$ to a generic set G^{\prime} for $P_{F^{*}} / C^{*}$. Then G^{\prime} is generic for $P_{F^{*}}$ as well, but is disjoint from the dense set $\left\{\langle\vec{p}, A\rangle \in P_{F^{*}}: \max (\operatorname{mc}(\vec{p}))>\beta\right\}$.

Proposition 2.4.7. In $P_{F^{*}} / C^{*}$, every element has at least two extensions which cannot be balanced.

Proof. Let $\left\langle q_{0}, \ldots, q_{l}, X\right\rangle \in P_{F^{*}} / C^{*}$ be an arbitrary element. Fix a set $E \in F^{*}$ and an ordinal $\alpha^{*}<\kappa$ as in proposition 2.4.5, i.e., such that -

1. For every $x \in E, \max (x)>\pi^{*}(x) \geq \pi(x)$
2. For every $x \in E, x \cap \pi^{*}(x)=x \cap \pi(x)$
3. For every $x \in E, \pi^{*}(x)<\min \left(x \backslash \alpha^{*}\right)$
4. For every $p, q \in E$, if $\max (p)=\max (q)$, and -

$$
p \cap[\pi(p), \max (p)]=q \cap[\pi(p), \max (p)]
$$

then $\pi^{*}(p)=\pi^{*}(q)$.
Extend $\left\langle q_{0}, \ldots, q_{l}, X\right\rangle \in P_{F^{*}} / C^{*}$ to a Prikry generic sequence for $P_{F^{*}} / C^{*}$, $\left\langle q_{n}: n<\omega\right\rangle$. By claim 2.1.9, there exists $k<\omega$ such that for every $k^{\prime} \geq k, q_{k^{\prime}} \in$ E. Therefore, $\left\langle q_{0}, \ldots, q_{k}, E^{\prime}\right\rangle$ belongs to $P_{F^{*}} / C^{*}$ and extends $\left\langle q_{0}, \ldots, q_{l}, X\right\rangle$, for some $E^{\prime} \subseteq E, E^{\prime} \in F^{*}$. Assume that $\max \left(q_{k}\right)>\alpha^{*}$ (else, extend). Let D be the dense subset from lemma 2.4.6. Assume that $\left\langle q_{0}, \ldots, q_{k}, E^{\prime}\right\rangle \in D$ (else, extend). Denote $\vec{q}=\left\langle q_{0}, \ldots, q_{k}\right\rangle$. Let-

$$
s=\bigcup_{i=0}^{k} q_{i}^{*}
$$

where q_{i}^{*} is defined as in equation 2.1.
Assume that $\left\langle\vec{q}, a_{1}, \ldots, a_{n}, A\right\rangle$ and $\left\langle\vec{q}, b_{1}, \ldots, b_{m}, B\right\rangle$ both extend $\left\langle\vec{q}, E^{\prime}\right\rangle$ in $P_{F^{*}} / C^{*}$, such that $\max \left(a_{1}\right) \neq \max \left(b_{1}\right)$ (such a_{1}, b_{1} exists since $\left.\left\langle\vec{q}, E^{\prime}\right\rangle \in D\right)$. We prove that $\max \left(a_{i}\right) \neq \max \left(b_{j}\right)$ for every i, j. Assume the contrary, and let $n \in \mathbb{N}$ be the least index such that for some $m \in \mathbb{N}$, $\max \left(a_{n}\right)=\max \left(b_{m}\right)$. Take the least such m. It follows that -

$$
\begin{equation*}
s \cup\left(\bigcup_{i=1}^{n} a_{i}^{*} \backslash \max (s)\right)=s \cup\left(\bigcup_{i=1}^{m} b_{i}^{*} \backslash \max (s)\right) \tag{2.4}
\end{equation*}
$$

(by lemma 2.4.4). Consider the following cases:

1. $m=1, n>1$: By equation (2.4),

$$
a_{n} \cap\left(\max \left(a_{n-1}\right), \max \left(a_{n}\right)\right]=b_{1} \cap\left(\max \left(a_{n-1}\right), \max \left(a_{n}\right)\right]
$$

Now, since $\pi\left(a_{n}\right) \in\left(\max \left(a_{n-1}\right), \max \left(a_{n}\right)\right)$, it follows that -

$$
a_{n} \cap\left[\pi\left(a_{n}\right), \max \left(a_{n}\right)\right]=b_{1} \cap\left[\pi\left(a_{n}\right), \max \left(a_{n}\right)\right]
$$

and thus $\pi^{*}\left(a_{n}\right)=\pi^{*}\left(b_{1}\right)$. But this is a contradiction because -

$$
\begin{gathered}
\pi^{*}\left(b_{1}\right)<\min \left(b_{1} \backslash \alpha^{*}\right) \leq \max \left(a_{n-1}\right)<\pi^{*}\left(a_{n}\right) \\
\left(\min \left(b_{1} \backslash \alpha^{*}\right) \leq \max \left(a_{n-1}\right) \text { follows since } \max \left(a_{n-1}\right) \in b_{1} \backslash \alpha^{*}, \text { by } 2.4\right) .
\end{gathered}
$$

2. $n=1, m>1$: Simply use a symmetric argument to get a contradiction.
3. $m>1, n>1$: By minimality of m, n,

$$
\max \left(a_{n-1}\right) \neq \max \left(b_{m-1}\right)
$$

Assume without loss of generality that $\max \left(a_{n-1}\right)>\max \left(b_{m-1}\right)$. By equation (2.4),

$$
a_{n} \cap\left(\max \left(a_{n-1}\right), \max \left(a_{n}\right)\right]=b_{m} \cap\left(\max \left(a_{n-1}\right), \max \left(a_{n}\right)\right]
$$

and since $\pi\left(a_{n}\right) \in\left(\max \left(a_{n-1}\right), \max \left(a_{n}\right)\right)$, it follows that -

$$
a_{n} \cap\left[\pi\left(a_{n}\right), \max \left(a_{n}\right)\right]=b_{m} \cap\left[\pi\left(a_{n}\right), \max \left(a_{n}\right)\right]
$$

and thus $\pi^{*}\left(a_{n}\right)=\pi^{*}\left(b_{m}\right)$. Therefore,

$$
\max \left(a_{n-1}\right)=\max \left(C^{*} \cap \pi^{*}\left(a_{n}\right)\right)=\max \left(C^{*} \cap \pi^{*}\left(b_{m}\right)\right)=\max \left(b_{m-1}\right)
$$

a contradiction.

Theorem 2.4.8. Suppose that $P_{F^{*}} / C^{*}$ is homogeneous. Then $P_{F^{*}}$ has a generic extension which contains a set $\left\langle\left\langle\xi_{n}^{\alpha}: n<\omega\right\rangle: \alpha<\kappa\right\rangle$ of pairwise disjoint Prikry sequences for $P_{F^{*}}$.

Proof. Begin as in the last proposition: Let $\left\langle\xi_{0}, \ldots, \xi_{l}, X\right\rangle \in P_{F^{*}} / C^{*}$ be an arbitrary element in the quotient forcing. Take $E \in F^{*}$ and $\alpha^{*}<\kappa$ as in proposition 2.4.5. Find an extension $\left\langle\vec{\xi}, E^{\prime}\right\rangle=\left\langle\xi_{0}, \ldots, \xi_{m}, E^{\prime}\right\rangle \in P_{F^{*}} / C^{*}$ of $\left\langle\xi_{0}, \ldots, \xi_{l}, X\right\rangle$ such that $E^{\prime} \subseteq E$, and such that the following holds: There exists a set A,

$$
A \subseteq\left\{a:\left\langle\vec{\xi} \prec\langle a\rangle, E^{\prime}\right\rangle \in P_{F^{*}} / C^{*}\right\}
$$

for which $\{\max (a): a \in A\}$ is unbounded in κ (this is possible due to lemma 2.4.6). Then $|A|=\kappa$, since κ is still regular in $V\left[H^{*}\right]$, and by shrinking A, we can assume that $a \neq a^{\prime} \in A \rightarrow \max (a) \neq \max \left(a^{\prime}\right)$. Enumerate $A=\left\langle a_{\alpha}: \alpha<\kappa\right\rangle$.

For every $\alpha<\kappa$, denote $p_{\alpha}=\left\langle\vec{\xi} \vee\left\langle a_{\alpha}\right\rangle, E^{\prime}\right\rangle \in P_{F *} / C^{*}$. As in the last proposition, note that for $\alpha \neq \alpha^{\prime}, p_{\alpha}, p_{\alpha^{\prime}}$ cannot be balanced. Moreover, if we extend such $p_{\alpha}, p_{\alpha^{\prime}}$ to generic Prikry sequences for the quotient forcing, those sequences will be disjoint (aside from the constant initial segment $\vec{\xi}$ that they share).

Define-
$D_{\alpha}=\left\{q \in P_{F^{*}} / C^{*}:\right.$ for some extension p^{\prime} of $\left.p_{\alpha},\left(P_{F^{*}} / C^{*}\right) / q \simeq\left(P_{F^{*}} / C^{*}\right) / p^{\prime}\right\}$
(where \simeq denotes isomorphism between forcing notions). Then for every $\alpha<\kappa$, D_{α} is dense in $P_{F^{*}} / C^{*}$, by homogeneity of $P_{F^{*}} / C^{*}$. Enumerate-

$$
\vec{D}=\left\langle D_{\alpha}: \alpha<\kappa\right\rangle
$$

For every $\alpha<\kappa$ and $q \in D_{\alpha}$, fix an isomorphism $\sigma_{\alpha}(q) \in V\left[H^{*}\right]$ between $\left(P_{F^{*}} / C^{*}\right) / q$ and $\left(P_{F^{*}} / C^{*}\right) / p^{\prime}$, for some p^{\prime} above p_{α}.

Extend p_{0} to a generic Prikry sequence for $P_{F^{*}} / C^{*}$, with a corresponding generic set $G_{0} . G_{0}$ is a generic set for $P_{F^{*}}$ over V as well. Work in $V\left[G_{0}\right]$. Note that the enumerations $\left\langle p_{\alpha}: \alpha<\kappa\right\rangle,\left\langle D_{\alpha}: \alpha<\kappa\right\rangle$ and $\left\langle\sigma_{\alpha}(q): \alpha<\kappa, q \in D_{\alpha}\right\rangle$ belong to $V\left[G_{0}\right]$.

For every $0<\alpha<\kappa, G_{0} \cap D_{\alpha} \neq \emptyset$, because G_{0} is generic for $P_{F^{*}} / C^{*}$ over $V\left[C^{*}\right]$, and $D_{\alpha} \in V\left[C^{*}\right]$ is a dense subset. Let $g_{\alpha} \in P_{F^{*}} / C^{*}$ be an element in the intersection. Then the downwards closure, in $P_{F^{*}} / C^{*}$, of the set-

$$
\left\{\left(\sigma_{\alpha}\left(g_{\alpha}\right)\right)(p): p \in G_{0} \text { and } p \text { extends } g_{\alpha}\right\}
$$

is a generic set for $P_{F^{*}} / C^{*}$ over $V\left[C^{*}\right]$ which contains p_{α}; Denote it by G_{α}. Note that-

$$
\left\langle G_{\alpha}: 0<\alpha<\kappa\right\rangle \in V\left[G_{0}\right]
$$

Each G_{α} induces a generic Prikry sequence $\left\langle\xi_{n}^{\alpha}: n<\omega\right\rangle$ for the quotient forcing. Those are generic Prikry sequences for $P_{F^{*}}$ over V as well; We can assume that the sequences $\left\langle\left\langle\xi_{n}^{\alpha}: n<\omega\right\rangle: \alpha<\kappa\right\rangle$ are pairwise disjoint, by removing, from each one, the constant initial segment of length m that they all share (after removing the initial segments, each sequence will remain a Prikry sequence for $P_{F^{*}}$, not for $\left.P_{F^{*}} / C^{*}\right)$.

Corollary 2.4.9. Suppose that F^{*} is an ultrafilter which extends the filter the dense open subsets of Q, and such that the quotient forcing $P_{F^{*}} / C^{*}$ is homogeneous. Then for some $n<\omega$, there are κ-many non-equivalent, non-trivial projections of $F^{* n}$ onto F^{*}.

Proof. This is immediate from theorem 2.4.8 and proposition 2.2.10.

2.5 Cohen's Forcing

In this section, let us consider $Q=\{X \subseteq \kappa: \sup (X)<\kappa\}$, ordered by $X_{1}<_{Q}$ $X_{2} \Longleftrightarrow X_{2} \cap\left(\max X_{1}+1\right)=X_{1}$. Clearly, Q is κ-closed. This forcing could
be densely embedded in the standard Cohen's forcing,

$$
\operatorname{Cohen}(\kappa)=\{f: A \rightarrow 2: A \subseteq \kappa \text { and }|A|<\kappa\}
$$

(which is ordered by inclusion), so it generates the same generic extensions. In our context, it's simpler to use $\left\langle Q,<_{Q}\right\rangle$; Therefore, in this section, we refer to it as Cohen's forcing, instead of Cohen (κ).

As before, let F be the filter generated by the dense open subsets of Q. Assume κ is κ-compact, and let F^{*} be a κ-complete ultrafilter extending F. Let $\pi: Q \rightarrow \kappa$ represent κ in the ultrapower. Let $h: Q \rightarrow \kappa$ be the function $h(x)=\sup (x)$.

Consider the forcing $P_{F^{*}}$. Suppose that $\left\langle p_{n}: n<\omega\right\rangle$ is a Prikry sequence for $P_{F^{*}}$, with a corresponding generic set G over V. Set-

$$
H^{*}=\left\{C^{*} \cap \alpha: \alpha<\kappa\right\}
$$

where $C^{*}=\bigcup_{n<\omega} p_{n}^{*}$, and p_{n}^{*} are defined recursively, as follows:

$$
p_{n}^{*}=\left\{\begin{array}{cl}
p_{0} & n=0 \tag{2.5}\\
p_{n} \backslash\left(\sup \left(p_{n-1}^{*}\right)+1\right) & n>0
\end{array}\right.
$$

Proposition 2.5.1. $H^{*} \in V[G]$ is Q-generic over V. In particular, there exists a P-name ${\underset{\sim}{\mid r}}_{\underset{\sim}{*}}$, such that the weakest condition in $P_{F^{*}}$ forces that $\underset{\sim}{\underset{\sim}{\mid r}}$ is Q-generic over V. Moreover, $(\underset{\sim}{\underset{\sim}{H}})_{G}=H^{*}$.

Proof. We repeat the proof of proposition 2.4 .2 with minor changes. Given a dense open subset $D \subseteq Q$, let-

$$
E=\left\{\left\langle q_{1}, \ldots, q_{n}, A\right\rangle \in P_{F^{*}}: \bigcup_{i=1}^{n} q_{i}^{*} \in D\right\}
$$

Then it suffices to prove that E is dense in $P_{F^{*}}$. Indeed, given $\left\langle q_{0}, \ldots, q_{n}, A\right\rangle \in$ $P_{F^{*}}$, let $\delta=\sup \left(q_{n}\right)+1$. Define a subset of q :

$$
D_{\delta}=\{p \in D: \forall Z \subseteq \delta(p \backslash \delta) \cup Z \in D\}
$$

then D_{δ} is dense and open; Take $q \in A \cap D_{\delta}$ with $\pi(q)>\sup \left(q_{n}\right)$. Then-

$$
(q \backslash \delta) \cup\left(\bigcup_{i=1}^{n} q_{i}^{*}\right) \in D
$$

as desired.

From the last proposition, it follows that the quotient forcing $P_{F^{*}} / C^{*}$ could be defined the same way as in the last section. In particular, the following property holds:

Lemma 2.5.2. Assume that $\left\langle a_{0}, \ldots, a_{n}, A\right\rangle \in P_{F^{*}} / C^{*}$. Define, for every $i \leq n$, an element $a_{i}^{*} \in Q$, as follows:

$$
a_{i}^{*}=\left\{\begin{array}{cl}
a_{0} & i=0 \\
a_{i} \backslash\left(\sup \left(a_{i-1}^{*}\right)+1\right) & i>0
\end{array}\right.
$$

then -

$$
\bigcup_{i=1}^{n} a_{i}^{*}=C^{*} \cap\left(\sup \left(a_{n}\right)+1\right)
$$

Moreover, for every $\alpha<\kappa$, there exists an extension $\left\langle a_{0}, \ldots, a_{n^{\prime}}, A^{\prime}\right\rangle \in P_{F^{*}} / C^{*}$ of $\left\langle a_{0}, \ldots, a_{n}, A\right\rangle$, such that -

$$
\left(\bigcup_{i=1}^{n^{\prime}} a_{i}^{*}\right) \cap \alpha=C^{*} \cap \alpha
$$

Proof. Follow the same proof as in lemma 2.4.4 in order to prove the "moreover" part. The first part follows by taking $\alpha=\sup \left(a_{n}\right)+1$.

Let us argue that $P_{F^{*}} / C^{*}$ satisfies the property $(*)$ of lemma 2.3.4.
Lemma 2.5.3. For every $\left\langle a_{0}, \ldots, a_{n}, X\right\rangle,\left\langle b_{0}, \ldots, b_{m}, X\right\rangle \in P_{F^{*}} / C^{*}$ with $\sup \left(a_{n}\right)=\sup \left(b_{m}\right)$, and for every $x_{0}, \ldots, x_{k} \in X$ and $A \subseteq X$, $\left\langle a_{0}, \ldots, a_{n}, x_{0}, \ldots, x_{k}, A\right\rangle \in P_{F^{*}} / C^{*} \Longleftrightarrow\left\langle b_{0}, \ldots, b_{m}, x_{0}, \ldots, x_{k}, A\right\rangle \in P_{F^{*}} / C^{*}$ Proof. Let $\sigma: P_{F^{*}} /\left\langle a_{0}, \ldots, a_{n}, X\right\rangle \rightarrow P_{F^{*}} /\left\langle b_{0}, \ldots, b_{m}, X\right\rangle$ be the isomorphism-

$$
\sigma\left(\left\langle a_{0}, \ldots, a_{n}, x_{0}, \ldots, x_{k}, A\right\rangle\right)=\left\langle b_{0}, \ldots, b_{m}, x_{0}, \ldots, x_{k}, A\right\rangle
$$

(note that without the assumption that $\sup \left(a_{n}\right)=\sup \left(b_{m}\right), \sigma$ is not an isomorphism, since $\sigma\left(\left\langle a_{0}, \ldots, a_{n}, x_{0}, \ldots, x_{k}, A\right\rangle\right)$ is not necessarily an element of $P_{F^{*}}$).

Let $p=\left\langle a_{0}, \ldots, a_{n}, x_{0}, \ldots, x_{k}, A\right\rangle, q=\sigma(p)=\left\langle b_{0}, \ldots, b_{m}, x_{0}, \ldots, x_{k}, A\right\rangle$ be extensions of $\left\langle a_{0}, \ldots, a_{n}, X\right\rangle,\left\langle b_{0}, \ldots, b_{m}, X\right\rangle$, respectively. Let us prove that $p \in P_{F^{*}} / C^{*} \Longleftrightarrow q \in P_{F^{*}} / C^{*}$. Its enough to show that $\pi(p)=\pi(q)$, where π is the standard projection $\pi: P_{F^{*}} \rightarrow \mathrm{RO}(Q)$. It suffices to argue that, for every $a \in Q$,

$$
q \Vdash \check{a} \in{\underset{\sim}{H}}^{*} \Longleftrightarrow p \Vdash \check{a} \in{\underset{\sim}{H}}^{*}
$$

By symmetry, it's enough to prove one direction only. Assume that $a \in Q$, $q \Vdash \check{a} \in{\underset{\sim}{H}}^{*}$. Let $G^{\prime} \subseteq P_{F^{*}}$ be generic over V such that $p \in G^{\prime}$. Our goal is to prove that $a \in\left({\underset{\sim}{H}}^{*}\right)_{G^{\prime}}$. Define -

$$
G^{\prime \prime}=\left\{r \in P_{F^{*}}: \exists p^{\prime} \in G^{\prime} \cap\left(P_{F^{*}} / p\right), r \leq \sigma\left(p^{\prime}\right)\right\}
$$

Then $G^{\prime \prime}$ is $P_{F^{*}}$-generic over V : Indeed, given $D \subseteq P_{F^{*}}$ dense,

$$
\sigma^{-1}\left(D \cap\left(P_{F^{*}} / q\right)\right)
$$

is dense above p. Now, $p \in G^{\prime}$, so for some $s \in G^{\prime}, s>p$ and $\sigma(s) \in D \cap G^{\prime \prime}$. The other properties needed to be checked for genericity of $G^{\prime \prime}$ are straightforward.

Since $q \in G^{\prime \prime}$, it follows that $a \in\left({\underset{\sim}{H}}^{*}\right)_{G^{\prime \prime}}$. So its enough to argue that $\left({\underset{\sim}{H}}^{*}\right)_{G^{\prime \prime}}=\left({\underset{\sim}{H}}^{*}\right)_{G^{\prime}}$. Assume that -

$$
\left\langle a_{0}, \ldots, a_{n}\right\rangle \frown\left\langle x_{i}: i<\omega\right\rangle
$$

is the Prikry sequence corresponding to G^{\prime}. Then -

$$
\left\langle b_{0}, \ldots, b_{m}\right\rangle \frown\left\langle x_{i}: i<\omega\right\rangle
$$

is the Prikry sequence corresponding to $G^{\prime \prime}$. Let -

$$
s=\bigcup_{i=0}^{n} a_{i}^{*}=\bigcup_{i=0}^{m} b_{i}^{*}
$$

(the equality follows from lemma 2.4.4). Denote -

$$
C^{* *}=s \cup\left(\left(\bigcup_{i<\omega} x_{i}^{*}\right) \backslash(\sup (s)+1)\right)
$$

Then -

$$
\left({\underset{\sim}{H}}^{*}\right)_{G^{\prime}}=\left\{C^{* *} \cap \beta: \beta<\kappa\right\}=\left({\underset{\sim}{r}}^{*}\right)_{G^{\prime \prime}}
$$

Recall that property $(*)$ above could be used to prove homogeneity of $P_{F^{*}} / C^{*}$, under the assumption that every pair of elements in $P_{F^{*}} / C^{*}$ could be balanced. This might depend on F^{*}. Currently, we don't know if under some choice of F^{*}, every pair of elements could indeed be balanced. We actually could modify F^{*} such that there are many elements in $P_{F^{*}} / C^{*}$ which cannot be balanced, and
we will do so in this section; In any case, Modifying F^{*} will require κ to satisfy more then κ-compactness, and we will assume 2^{κ}-supercompactness of κ.

Assume that κ is 2^{κ}-supercompact. Therefore, there exists a definable embedding $j: V \rightarrow M$ such that $\operatorname{crit}(j)=\kappa, 2^{\kappa}<j(\kappa)$ and ${ }^{2^{\kappa}} M \subseteq M$. Work in M. For every dense open $E \subseteq Q, j(E)$ is dense open in $j(Q)$, which is $j(\kappa)$-distributive. Therefore,

$$
\begin{equation*}
D^{*}=\bigcap_{E \subseteq Q} j(E) \tag{2.6}
\end{equation*}
$$

is a dense open subset of $j(Q)$ (we note that it's an intersection of a 2^{κ}-sequence of elements of M, which belongs to M).

Definition 2.5.4. For every $p \in D^{*}$, define an ultrafilter F_{p} on Q as follows:

$$
\forall X \subseteq j(Q) \quad X \in F_{p} \Longleftrightarrow p \in j(X)
$$

F_{p} is a κ-complete ultrafilter on Q which extends F, the κ-complete filter generated by the dense-open subsets of Q,

$$
F=\{E \subseteq Q: X \subseteq E \text { for some dense open subset } X \text { of } Q\}
$$

Given $p \in D^{*}$, let $M_{p} \simeq \operatorname{Ult}\left(V, F_{p}\right)$ be the transitive collapse of the ultrapower, and $j_{p}: V \rightarrow M_{p}$ be the corresponding elementary embedding. Define an elementary embedding $k_{p}: M_{p} \rightarrow M$,

$$
k_{p}\left(j_{p}(f)\left([I d]_{F_{p}}\right)\right)=j(f)(p)
$$

for every $f: Q \rightarrow V$. Then $k_{p} \circ j_{p}=j$, and $k_{p}\left([I d]_{F_{p}}\right)=p$.
Remark 2.5.5. For every $p \in D^{*}, p \cap \kappa=[I d]_{F_{p}} \cap \kappa$.
Proof. Clearly $p \cap \kappa \subseteq k_{p}(p) \cap \kappa$, since for every $\alpha<\kappa$, $k_{p}(\alpha)=\alpha$. Now, given $\alpha \in k_{p}(p) \cap \kappa$, note that $k_{p}(\alpha)=\alpha \in k_{p}(p)$, so, by elementarity, $\alpha \in p \cap \kappa$.

Before describing a general method to choose F^{*}, such that many elements cannot be balanced in the quotient forcing, we state the following lemma:

Lemma 2.5.6. The following set is dense in $P_{F^{*}} / C^{*}$:

$$
D=\left\{\langle\vec{q}, X\rangle:\left\{\sup (a):\langle\vec{q}, a, X\rangle \in P_{F^{*}} / C^{*}\right\} \text { is unbounded in } \kappa\right\}
$$

Proof. Repeat the proof of lemma 2.4.6.

Theorem 2.5.7. Assume that κ is 2^{κ}-supercompact. There exists a κ-complete ultrafilter F^{*} which extends the filter of dense open sets of Q, such that $[I d]_{F^{*}} \cap \kappa$ is bounded in κ, and every condition in $P_{F^{*}} / C^{*}$ has two extensions which cannot be balanced.

Moreover, if $P_{F^{*}} / C^{*}$ is homogeneous, then $P_{F^{*}}$ has a generic extension which contains a set $\left\langle\left\langle\xi_{n}^{\alpha}: n<\omega\right\rangle: \alpha<\kappa\right\rangle$ of pairwise disjoint Prikry sequences for $P_{F^{*}}$.

Proof. We prove that there exists a set $E \in F^{*}$, an ordinal $\alpha^{*}<\kappa$ and a function $\pi: Q \rightarrow \kappa$, such that-

1. $[\pi]_{F^{*}}=\kappa$
2. For every $x \in E, x$ has a maximum $\max (x)$.
3. For every $x \in E, \max (x) \geq \pi(x)$
4. For every $x \in E, \pi(x)<\min \left(x \backslash \alpha^{*}\right)$
5. For every $p, q \in E$, if $\max (p)=\max (q)$ then $\pi(p)=\pi(q)$.

Let $I \subseteq \kappa$ be a bounded subset. Let $\alpha^{*}<\kappa$ be such that $\sup (I)<\alpha^{*}$. Define-

$$
D^{* *}=\left\{p \in D^{*}: p \cap \kappa=I\right\}
$$

(where D^{*} is the dense open subset of $j(Q)$, defined in equation (2.6)). It's clear that $D^{* *}$ is open, since D^{*} is open. $D^{* *}$ is not dense, but it is dense and open above $I^{\prime}=I \cup\{\kappa+1\}$.

In V, let $\left\langle A_{\alpha}: \alpha<\kappa\right\rangle$ be a partition of κ to pairwise disjoint unbounded subsets. Denote $j\left(\left\langle A_{\alpha}: \alpha<\kappa\right\rangle\right)=\left\langle A_{\alpha}^{\prime}: \alpha<j(\kappa)\right\rangle$. There exists an extension p of I^{\prime} such that p has a maximum, $\max (p) \in A_{\kappa}^{\prime}$ and $p \in D^{* *}$. Let $F^{*}=F_{p}$. Let $\pi: Q \rightarrow \kappa$ be defined as follows:

$$
\pi(x)=\alpha \Longleftrightarrow \sup (x) \in A_{\alpha}
$$

(it's well defined, since $\left\langle A_{\alpha}: \alpha<\kappa\right\rangle$ is a partition of κ). Clearly, for every $p, q \in Q$,

$$
\sup (p)=\sup (q) \rightarrow \pi(p)=\pi(q)
$$

Note that $p \in j(\{x \in Q: \max (x)$ exists $\})$. So-

$$
E_{1}=\{x \in Q: \max (x) \text { exists }\} \in F^{*}
$$

Therefore, for every $p, q \in E_{1}, \max (p)=\max (q) \rightarrow \pi(p)=\pi(q)$.
Next, we note that the property $j(\pi)(p)=\kappa$ implies $[\pi]_{F^{*}}=\kappa$. Also, $j(\pi)(p)<\min \left(p \backslash \alpha^{*}\right)$ implies that-

$$
p \in j\left(\left\{x \in Q: \pi(x)<\min \left(x \backslash \alpha^{*}\right)\right\}\right)
$$

so-

$$
E_{2}=\left\{x \in Q: \pi(x)<\min \left(x \backslash \alpha^{*}\right)\right\} \in F^{*}
$$

Finally, for every $\beta<\kappa$,

$$
\{x \in Q: \sup (x)>\beta\} \in F^{*}
$$

so-

$$
E_{3}=\{x \in Q: \sup (x) \geq \pi(x)\} \in F^{*}
$$

Take $E=E_{1} \cap E_{2} \cap E_{3}$ to get the required properties, $1-5$ above. Note that these properties, together with lemma 2.5.6, are enough to argue that, under the homogeneity assumption about $P_{F^{*}} / C^{*}, P_{F^{*}}$ has a generic extension which contains a set $\left\langle\left\langle\xi_{n}^{\alpha}: n<\omega\right\rangle: \alpha<\kappa\right\rangle$ of pairwise disjoint Prikry sequences: Simply repeat the proof of theorem 2.4.8.

The last theorem deals with the case where, in $\operatorname{Ult}\left(V, F^{*}\right),[I d]_{F^{*}} \cap \kappa$ is bounded in κ. We give a similar result in the other case, where $[I d]_{F^{*}} \cap \kappa$ is unbounded in κ.

Theorem 2.5.8. Assume that κ is 2^{κ}-supercompact. There exists a κ-complete ultrafilter F^{*} which extends the filter of dense open sets of Q, such that $[I d]_{F^{*}} \cap \kappa$ is unbounded in κ, and every condition in $P_{F^{*}} / C^{*}$ has two extensions which cannot be balanced.

Moreover, if $P_{F^{*}} / C^{*}$ is homogeneous, then $P_{F^{*}}$ has a generic extension which contains a set $\left\langle\left\langle\xi_{n}^{\alpha}: n<\omega\right\rangle: \alpha<\kappa\right\rangle$ of pairwise disjoint Prikry sequences for $P_{F^{*}}$.

Proof. Let us choose F^{*}, a set $E \in F^{*}$ and a function $\pi: Q \rightarrow \kappa$, such that-

1. $[\pi]_{F^{*}}=\kappa$.
2. For every $x \in E, \sup (x)>\pi(x)$
3. For every $x \in E, x \cap \pi(x)=[I d]_{F^{*}} \cap \pi(x)$.
4. For every $x \in E$ and $\alpha<\sup (x),\left(x \triangle[I d]_{F^{*}}\right) \cap(\alpha, \sup (x)) \neq \emptyset$ (in particular, $\sup (x)$ is limit).
5. For every $p, q \in E$, if $\sup (p)=\sup (q)$ then $\pi(p)=\pi(q)$.
(where D^{*} is the dense open subset of $j(Q)$, defined in equation (2.6)). Assume $I \subseteq \kappa$ is unbounded in κ, and let -

$$
D^{* *}=\left\{p \in D^{*}: p \cap \kappa=I \wedge \forall \alpha<\sup (p) \exists \beta>\alpha, \beta<\sup (p), \beta \in j(I) \backslash p\right\}
$$

Since $j(I)$ is unbounded in $j(\kappa), D^{*}$ is dense above I.
In V, let $\left\langle A_{\alpha}: \alpha<\kappa\right\rangle$ be a partition of κ to pairwise disjoint unbounded subsets, where A_{0} is the set of inaccessibles below κ. Denote $j\left(\left\langle A_{\alpha}: \alpha<\kappa\right\rangle\right)=$ $\left\langle A_{\alpha}^{\prime}: \alpha<j(\kappa)\right\rangle$. There exists an extension p of I such that $\sup (p) \in A_{\kappa}^{\prime}$, (in particular, $\sup (p)$ is not an inaccessible cardinal) and $p \in D^{* *}$. Take $F^{*}=F_{p}$. Let $I_{1}=[I d]_{F^{*}}$. Then by remark 2.5.5, $I=p \cap \kappa=I_{1} \cap \kappa$. Thus -

$$
\begin{aligned}
p \in j & (\{q \in Q: \forall \alpha<\sup (q) \exists \beta>\alpha, \beta<\sup (q), \beta \in I \backslash q\})= \\
& j\left(\left\{q \in Q: \forall \alpha<\sup (q) \exists \beta>\alpha, \beta<\sup (q), \beta \in I_{1} \backslash q\right\}\right)
\end{aligned}
$$

therefore, by the definition of $F^{*}=F_{p}$,

$$
E_{1}=\left\{q \in Q: \forall \alpha<\sup (q) \exists \beta>\alpha, \beta<\sup (q), \beta \in I_{1} \triangle q\right\} \in F^{*}
$$

Let $\pi: Q \rightarrow \kappa$ be defined as follows: For every $q \in Q$,

$$
\pi(q)=\alpha \Longleftrightarrow \sup (q) \in A_{\alpha}
$$

then $[\pi]_{F^{*}}=\kappa$. Thus, for every $p, q \in Q$, if $\sup (p)=\sup (q)$ then $\pi(p)=\pi(q)$. Moreover, note that-

$$
E_{2}=\left\{x \in Q: x \cap \pi(x)=I_{1} \cap \pi(x)\right\} \in F^{*}
$$

Indeed, if $j_{F^{*}}$ is the ultrapower embedding of F^{*}, then in $\operatorname{Ult}\left(V, F^{*}\right)$,

$$
I_{1} \cap \kappa=j_{F^{*}}\left(I_{1}\right) \cap \kappa
$$

since $j_{F^{*}} \upharpoonright \kappa$ is the identity. Finally, clearly $\{x \in Q: \sup (x) \geq \pi(x)\} \in F^{*}$; We claim that $E_{3}=\{x \in Q: \sup (x)>\pi(x)\} \in F^{*}$. Else,

$$
p \in j(\{x: \sup (x) \text { is an inaccessible }\})
$$

a contradiction.
Take $E=E_{1} \cap E_{2} \cap E_{3}$. Let $\left\langle q_{0}, \ldots, q_{l}, X\right\rangle$ be an arbitrary element in $P_{F^{*}} / C^{*} ;$ Extend it to $\left\langle q_{0}, \ldots, q_{k}, E^{\prime}\right\rangle$ where $E^{\prime} \subseteq X \cap E$, and such that the set-

$$
A=\left\{\sup (a): a \in E^{\prime} \text { and }\left\langle q_{0}, \ldots, q_{k}, a, E^{\prime}\right\rangle \in P_{F^{*}} / C^{*}\right\}
$$

is unbounded. Denote-

$$
s=\bigcup_{i=0}^{k} q_{i}^{*}
$$

(where q_{i}^{*} are defined as in (2.5)). Take $a_{1}, a_{2} \in A$ with $\sup \left(a_{1}\right) \neq \sup \left(a_{2}\right)$, and let us prove that-

$$
\left\langle\vec{q}, a_{1}, E^{\prime}\right\rangle,\left\langle\vec{q}, b_{1}, E^{\prime}\right\rangle
$$

cannot be balanced. This suffices to finish the proof, exactly as in theorem 2.4.8. Suppose for contrary that-

$$
\left\langle\vec{q}, a_{1}, \ldots, a_{n}, E\right\rangle,\left\langle\vec{q}, b_{1}, \ldots, b_{m}, E\right\rangle \in P_{F^{*}} / H^{*}
$$

and $\sup \left(a_{n}\right)=\sup \left(b_{m}\right)$. Let $n \in \mathbb{N}$ be the least index such that for some $m \in \mathbb{N}$, $\sup \left(a_{n}\right)=\sup \left(a_{m}\right)$. Take the least such m. Then, by lemma 2.5.2-

$$
\begin{equation*}
s \cup\left(\bigcup_{i=1}^{n} a_{i}^{*} \backslash(\sup (s)+1)\right)=s \cup\left(\bigcup_{i=1}^{m} b_{i}^{*} \backslash(\sup (s)+1)\right) \tag{2.7}
\end{equation*}
$$

Let us derive a contradiction. We consider the following cases:

1. $m=1, n>1:$ Since $\sup \left(a_{n}\right)=\sup \left(b_{1}\right)$, it follows that $\pi\left(a_{n}\right)=\pi\left(b_{1}\right)$. In particular, $\pi\left(b_{1}\right)>\sup \left(a_{n-1}\right)$. Now, $b_{1} \cap \pi\left(b_{1}\right)=I_{1} \cap \pi\left(b_{1}\right)$. Take an arbitrary $\alpha \in\left(\pi\left(a_{n-1}\right), \sup \left(a_{n-1}\right)\right)$. We remark that such α exists since $\sup \left(a_{n-1}\right)$ is limit. By equation (2.7), and since $\pi\left(b_{1}\right)>\sup \left(a_{n-1}\right)$,

$$
\left(a_{n-1} \triangle I_{1}\right) \cap\left(\alpha, \sup \left(a_{n-1}\right)\right)=\emptyset
$$

a contradiction.
2. $n=1, m>1$: Apply the symmetric argument to get a contradiction.
3. $m>1, n>1:$ Since $\sup \left(a_{n}\right)=\sup \left(b_{m}\right)$, it follows that $\pi\left(a_{n}\right)=\pi\left(b_{m}\right)$. By minimality of m, n, it follows that $\sup \left(a_{n-1}\right) \neq \sup \left(b_{m-1}\right)$. Assume without loss of generality that $\sup \left(a_{n-1}\right)<\sup \left(b_{m-1}\right)$. Take an arbitrary $\alpha \in\left(\sup \left(a_{n-1}\right), \sup \left(b_{m-1}\right)\right)$. By equation (2.7),

$$
\begin{equation*}
a_{n} \cap\left(\alpha, \sup \left(b_{m-1}\right)\right)=b_{m-1} \cap\left(\alpha, \sup \left(b_{m-1}\right)\right) \tag{2.8}
\end{equation*}
$$

But $\sup \left(b_{m-1}\right)<\pi\left(a_{n}\right)$, so -

$$
\begin{equation*}
a_{n} \cap\left(\alpha, \sup \left(b_{m-1}\right)\right)=I_{1} \cap\left(\alpha, \sup \left(b_{m-1}\right)\right) \tag{2.9}
\end{equation*}
$$

Combining (2.8) and (2.9),

$$
\left(b_{m-1} \triangle I_{1}\right) \cap\left(\alpha, \sup \left(b_{m-1}\right)\right)=\emptyset
$$

a contradiction.

Corollary 2.5.9. For the ultrafilters F^{*} from theorems 2.5.7, 2.5.8, suppose that $P_{F^{*}} / C^{*}$ is homogeneous. Then there are κ-many, non-equivalent, nontrivial projections of $F^{* n}$ onto F^{*}, for some $n<\omega$.

Proof. Combine the theorems with proposition 2.2.10.

We currently don't know if the following interesting scenario is possible: $P_{F^{*}} / C^{*}$ is homogeneous, where F^{*} is one of the ultrafilters from theorems 2.5.7, 2.5.8. This promises a generic extension for $P_{F^{*}}$, which contains a set $\left\langle\left\langle\xi_{n}^{\alpha}: n<\right.\right.$ $\omega\rangle: \alpha<\kappa\rangle$ of pairwise disjoint Prikry sequences for $P_{F^{*}}$. Under this scenario, $P_{F^{*}} / C^{*}$ contains many pairs of elements which cannot be balanced, so property $(*)$ of lemma 2.3.4 can't be applied to prove homogeneity.

2.6 Concluding Remarks

Suppose that $V\left[p_{n}: n<\omega\right]=V\left[q_{n}: n<\omega\right]$, where $\left\langle p_{n}: n<\omega\right\rangle,\left\langle q_{n}: n<\omega\right\rangle$ are pairwise disjoint Prikry sequence for $P_{F^{*}}$ over V. Then, as we proved, F^{*} is a non-normal ultrafilter, and, for some $n<\omega, F^{* n}$ can be projected onto F^{*}, in a non-trivial way.

Question 2.6.1. (Under suitable large cardinal axioms) Given a κ-complete filter F on κ, could F be extended to a κ-complete ultrafilter F^{*} on κ, such that $F^{* n}$ cannot be projected onto F^{*} in a non-trivial way, for every $n<\omega$?

A positive answer promises that $V\left[p_{n}: n<\omega\right] \neq V\left[q_{n}: n<\omega\right]$, whenever $\left\langle p_{n}: n<\omega\right\rangle,\left\langle q_{n}: n<\omega\right\rangle$ are pairwise disjoint Prikry sequences for $P_{F^{*}}$. Another question is natural from our analysis:

Question 2.6.2. Even if we allow non-trivial projections of $F^{* n}$ onto F^{*}, can we choose F^{*} such that there are less then κ such projections, up to equivalence?

Doing this for the forcing notion which adds a club disjoint from inaccessibles, promises that the quotient forcing is non-homogeneous.

We remark that by [3], it's consistent, from large cardinals, that for some non-normal, κ-complete ultrafilter F on κ, there are κ many non-trivial projections of F^{2} onto F.

Property $(*)$ from lemma 2.3.4 holds in the natural examples we considered: The proof we gave in the last section, holds both in the context of Cohen's forcing, and the forcing which adds a club disjoint from inaccessibles. This is because the generic sets for both forcing notions were created, more or less, in the same way. However, for the forcing which adds a club disjoint from inaccessibles, lemma 2.3 .4 could not be applied to prove homogeneity of the quotient forcing, because there are many elements which cannot be balanced. As for Cohen's forcing:

Question 2.6.3. Suppose that $Q=$ Cohen (κ) is Cohen's forcing. Does there exist a choice of a measure F^{*} which extends the filter of dense open subsets of Q, and a generic set $H \subseteq Q$ over V, such that every pair of elements in the quotient forcing $P_{F^{*}} / H$ can be balanced?

A positive answer to this question, results in an homogeneous quotient forcing. ${ }^{1}$

[^1]
References

[1] James Cummings. Iterated forcing and elementary embeddings. In Handbook of set theory, pages 775-883. Springer, 2010.
[2] Moti Gitik. Prikry-type forcings. In Handbook of set theory, pages 13511447. Springer, 2010.
[3] Moti Gitik. Strange ultrafilters. Archive for Mathematical Logic, To Appear.
[4] Thomas Jech. Set theory. the third millennium edition. Springer Monographs in Mathematics. Springer-Verlag, 2003.
[5] Peter Koepke, Karen Rasch, and Philipp Schlicht. A minimal prikry-type forcing for singularizing a measurable cardinal. The Journal of Symbolic Logic, 78(1):85100, 2013.
[6] Kenneth Kunen. Set theory an introduction to independence proofs, volume 102. Elsevier, 2014.

[^0]: ${ }^{1}$ The work was partially supported by Israel Science Foundation Grant No. 58/14. We are grateful to Arthur Apter for stimulating discussions on the subject of the paper.

[^1]: ${ }^{1}$ It looks like the negative answer is consistent. We plan to address this issue in a further paper.

