Sets in Prikry and Magidor Generic Extensions

Tom Benhamou and Moti Gitik*

May 3, 2017

Abstract

We generalize the result of Gitik-Kanovei-Koepke [?] from Prikry forcing over κ to Magidor forcing and characterize all intermediate extensions of Magidor generic extensions. We also investigate how the cofinality of κ is effected when adding a set from a Prikry or Magidor extension.

Introduction

Menachem Magidor introduced "Magidor forcing" in his paper Changing the cofinality of cardinals [?]. This forcing was designated to change the cofinality of a measurable cardinal to a regular cardinal larger than ω. Formerly, the main method to change cofinality of measurables was using Prikry forcing, which injects an ω-sequence to that measurable [?].
The process of determining a generic set in both forcings, describes a formation of a cofinal sequence in a target measurable. Partial information about the final sequence yields intermediate extensions. Naturally, the question which arises:

Are these all possible intermediate extensions?

It is well known that if \mathbb{P} is a forcing notion and G is \mathbb{P}-generic, then any intermediate ZFC model $V \subseteq N \subseteq V[G]$ is of the form $N=V[X]$ where $X \in V[G]$ is a generic set for some forcing in V. Therefore, the question can be reduced to

$$
\text { Is there } C^{\prime} \subseteq C_{G} \text { such that } V[X]=V\left[C^{\prime}\right] \text { ? }
$$

[^0]Where C_{G} is a Magidor sequence corresponding to the generic set G. As proved in 2010 by Gitik-Kanovei-Koepke [?], if the forcing subjected is Prikry forcing the answer to this question is positive. In some sense, Magidor forcing is a generalization of Prikry forcing, one may conjecture that it is possible to generalize the theorem. Asserting the conjecture is the main result of this paper.

Theorem 3.3 Let \vec{U} be a coherent sequence in $V,\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle$ be a sequence such that $o^{\vec{U}}\left(\kappa_{i}\right)<$ $\min \left(\nu \mid 0<o^{\vec{U}}(\nu)\right)$, let G be $\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]$-generic ${ }^{1}$ and let $A \in V[G]$ be a set of ordinals. Then there exists $C^{\prime} \subseteq C_{G}$ such that $V[A]=V\left[C^{\prime}\right]$.

One of the main methods used in the proof was the construction of a forcing $\mathbb{M}_{I}[\vec{U}] \in V$, which is a projection of Magidor forcing $\mathbb{M}[\vec{U}]$. This forcing is a Magidor type forcing which uses only measures from \vec{U} with index $i \in I$. Moreovere, $\mathbb{M}_{I}[\vec{U}]$ adds a prescribed subsequence $C_{I}:=\left(C_{G}\right) \upharpoonright I$ as a generic object, where $I \subseteq \lambda_{0}$ is a set of indexes in $\lambda_{0}=\operatorname{otp}\left(C_{G}\right)$. Hence, we may examine the intermediate extensions $V \subseteq V\left[C_{I}\right] \subseteq V\left[C_{G}\right]$ as an iteration of two forcing, which resemble $\mathbb{M}[\vec{U}]$ and behave well.

An important consequence of this theorem is the classification of all complete subforcings of $\mathbb{M}[\vec{U}]$, this will be discussed in chapter 5 .

By Theorem 3.3, if $A \in V[G] \backslash V$ then $V[A] \models \kappa$ is singular. When we don't assume that the measures involved are normal, the situation is more complex, chapter 6 is devoted for this investigation. The main theorem of this chapter is

Theorem 6.7 Let $\mathbb{U}=\left\langle U_{a} \mid a \in[\kappa]^{<\omega}\right\rangle$ consists of P-point ultrafilters over κ. Then for every new set of ordinals A in $V^{P(\mathbb{U})}, \kappa$ has cofinality ω in $V[A]^{2}$.

In chapter 7 we give an example for a set A such that κ stays regular in $V[A]$ (even measurable).

[^1]
Notations

- V denotes the ground model.
- For any set $A, V[A]$ denote the minimal model of ZFC containing V and $\{A\}$
- $\prod_{j=1}^{n} A_{j}$ increasing sequences $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ where $a_{i} \in A_{i}$
- $\prod_{i=1}^{m} \prod_{j=1}^{n} A_{i, j}$ left-lexicographically increasing sequences (which is denoted by $\leq_{L E X}$)
- $[\kappa]^{\alpha}$ increasing sequences of length α
- $[\kappa]^{<\omega}=\bigcup_{n<\omega}[\kappa]^{n}$
- ${ }^{\alpha}[\kappa]$ not necessarily increasing sequences, i.e functions with domain α and range κ
- ${ }^{\omega>}[\kappa]=\bigcup_{n<\omega}{ }^{n}[\kappa]$
- $\langle\alpha, \beta\rangle$ an ordered pair of ordinals. (α, β) the interval between α and β.
- $\vec{\alpha}=\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle,|\vec{\alpha}|=n, \vec{\alpha} \backslash\left\langle\alpha_{i}\right\rangle=\left\langle\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_{n}\right\rangle$
- For every $\alpha<\beta$, The Cantor normal form (abbreviated C.N.F) equation is $\alpha+\omega^{\nu_{1}}+$ $\ldots+\omega^{\nu_{m}}=\beta, \nu_{1} \geq \ldots \geq \nu_{m}$ are unique. If $\alpha=0$ this is the C.N.F of β, otherwise, this is the C.N.F difference of α, β.
- $o(\alpha)=\gamma$ where $\alpha=\omega^{\gamma_{1}}+\ldots+\omega^{\gamma_{n}}+\omega^{\gamma}$ (C.N.F).
- $\operatorname{Lim}(A)=\{\alpha \in A \mid \sup (A \cap \alpha)=\alpha\}$
- $\operatorname{Succ}(A)=\{\alpha \in A \mid \sup (A \cap \alpha)<\alpha\}$
- $\biguplus_{i \in I} A_{i}$ is the union of $\left\{A_{i} \mid i \in I\right\}$ with the requirement that A_{i} 's are pairwise disjoint.
- If $f: A \rightarrow B$ is a function then for every $A^{\prime} \subseteq A, B^{\prime} \subseteq B$

$$
f^{\prime \prime} A^{\prime}=\left\{f(x) \mid x \in A^{\prime}\right\}, f^{-1 \prime \prime} B^{\prime}=\left\{x \in A \mid f(x) \in B^{\prime}\right\}
$$

- Let $B \subseteq\left\langle\alpha_{\xi} \mid \xi<\delta\right\rangle=A$ be sequences of ordinals,

$$
\operatorname{Index}(B, A)=\left\{\xi<\delta \mid \exists b \in B \alpha_{\xi}=b\right\}
$$

- Let \mathbb{P} be a forcing notion, σ a formula in the forcing language and $p \in \mathbb{P}$. If $\underset{\sim}{A}$ is a \mathbb{P}-name, then

$$
p \| \underset{\sim}{A} \text { means "there is } a \in V \text { such that } p \Vdash \stackrel{\vee}{a}=\underset{\sim}{A} "
$$

- Let $p, q \in \mathbb{P}$ then $" p, q$ are compatible in \mathbb{P} " if there exists $r \in \mathbb{P}$ such that $p, q \leq_{\mathbb{P}} r$. Otherwise, if they are incompatible denote it by $p \perp q$.
- In any forcing notion, $p \leq q$ means " q extends p ".
- The notion of complete subforcing, complete embedding and projection is used as defined in [?]

1 Magidor forcing

Definition 1.1 A coherent sequence is a sequence
$\vec{U}=\left\langle U(\alpha, \beta) \mid \beta<o^{\vec{U}}(\alpha), \alpha \leq \kappa\right\rangle$ such that:

1. $U(\alpha, \beta)$ is a normal ultrafilter over α.
2. Let $j: V \rightarrow U l t(U(\alpha, \beta), V)$ be the corresponding elementary embedding, then $j(\vec{U}) \upharpoonright$ $\alpha=\vec{U} \upharpoonright\langle\alpha, \beta\rangle$.

Where

$$
\begin{gathered}
\vec{U} \upharpoonright \alpha=\left\langle U(\gamma, \delta) \mid \delta<o^{\vec{U}}(\gamma), \gamma \leq \alpha\right\rangle \\
\vec{U} \upharpoonright\langle\alpha, \beta\rangle=\left\langle U(\gamma, \delta) \mid\left(\delta<o^{\vec{U}}(\gamma), \gamma<\alpha\right) \vee(\delta<\beta, \gamma=\alpha)\right\rangle
\end{gathered}
$$

Fix \vec{U}, a coherent sequence of ultrafilters with maximal element κ. We shall assume that $o^{\vec{U}}(\kappa)<\min \left(\nu \mid o^{\vec{U}}(\nu)>0\right):=\delta_{0}$. Let $\alpha \leq \kappa$ with $o^{\vec{U}}(\alpha)>0$, define

$$
\bigcap U(\alpha, i)=\bigcap_{i<o^{\vec{U}}(\alpha)} U(\alpha, i)
$$

We will follow the description of Magidor forcing as presented in [?].

Definition 1.2 $\mathbb{M}[\vec{U}]$ consist of elements p of the form $p=\left\langle t_{1}, \ldots, t_{n},\langle\kappa, B\rangle\right\rangle$. For every $1 \leq i \leq n, t_{i}$ is either an ordinal κ_{i} if $o^{\vec{U}}\left(\kappa_{i}\right)=0$ or a pair $\left\langle\kappa_{i}, B_{i}\right\rangle$ if $o^{\vec{U}}\left(\kappa_{i}\right)>0$.

1. $B \in \bigcap_{\xi<O^{\vec{U}}(\kappa)} U(\kappa, \xi), \quad \min (B)>\kappa_{n}$
2. for every $1 \leq i \leq n$
(a) $\left\langle\kappa_{1}, \ldots, \kappa_{n}\right\rangle \in[\kappa]^{<\omega}$
(b) $B_{i} \in \bigcap_{\xi<o^{\vec{U}}\left(\kappa_{i}\right)} U\left(\kappa_{i}, \xi\right)$
(c) $\min \left(B_{i}\right)>\kappa_{i-1} \quad(i>1)$

We shall adopt the following notations:

- $t_{0}=0, t_{n+1}=\langle\kappa, B\rangle$
- $o^{\vec{U}}\left(t_{i}\right)=o^{\vec{U}}\left(\kappa\left(t_{i}\right)\right)$
- $o^{\vec{U}}\left(t_{i}\right)>0$ then $t_{i}=\left\langle\kappa_{i}, B_{i}\right\rangle=\left\langle\kappa\left(t_{i}\right), B\left(t_{i}\right)\right\rangle$
- $o^{\vec{U}}\left(t_{i}\right)=0$ then $t_{i}=\kappa_{i}=\kappa\left(t_{i}\right)$
- $\kappa(p)=\left\{\kappa\left(t_{1}\right), \ldots, \kappa\left(t_{n}\right)\right\}$
- $B(p)=\biguplus_{i=1}^{n+1} B\left(t_{i}\right)$

The ordinals κ_{i} are designated to form the eventual Magidor sequence and candidates for the sequence's missing elements in the interval $\left(\kappa\left(t_{i-1}\right), \kappa\left(t_{i}\right)\right)$ (where $t_{0}=0, \kappa\left(t_{n+1}\right)=\kappa$) are provided by the sets $B\left(t_{i}\right)$.

Definition 1.3 For $p=\left\langle t_{1}, t_{2}, \ldots, t_{n},\langle\kappa, B\rangle\right\rangle, q=\left\langle s_{1}, \ldots, s_{m},\langle\kappa, C\rangle\right\rangle \in \mathbb{M}[\vec{U}]$, define $p \leq q$ (q extends p) iff:

1. $n \leq m$
2. $B \supseteq C$
3. $\exists 1 \leq i_{1}<\ldots<i_{n} \leq m$ such that for every $1 \leq j \leq m$:
(a) If $\exists 1 \leq r \leq n$ such that $i_{r}=j$ then $\kappa\left(t_{r}\right)=\kappa\left(s_{i_{r}}\right)$ and $C\left(s_{i_{r}}\right) \subseteq B\left(t_{r}\right)$
(b) Otherwise $\exists 1 \leq r \leq n+1$ such that $i_{r-1}<j<i_{r}$ then
i. $\kappa\left(s_{j}\right) \in B\left(t_{r}\right)$
ii. $o^{\vec{U}}\left(s_{j}\right)<o^{\vec{U}}\left(t_{r}\right)$
iii. $B\left(s_{j}\right) \subseteq B\left(t_{r}\right) \cap \kappa\left(s_{j}\right)$

We also use p directly extends $q, p \leq^{*} q$ if:

1. $p \leq q$
2. $n=m$

Remarks:

1. Let $p=\left\langle t_{1}, \ldots, t_{n},\langle\kappa, B\rangle\right\rangle$. Assume we would like to add an element s_{j} to p between t_{r-1} and t_{r}. It is possible only if $o^{\vec{U}}\left(t_{r}\right)>0$. Moreover, let $\xi=o^{\vec{U}}\left(s_{j}\right)$, then

$$
s_{j} \in\left\{\alpha \in B\left(t_{r}\right) \mid o^{\vec{U}}(\alpha)=\xi\right\}
$$

If $s_{j}=\kappa\left(s_{j}\right)$ (i.e. $\xi=0$), then any s_{j} satisfying this requirement can be added. If $s_{j}=\left\langle\kappa\left(s_{j}\right), B\left(s_{j}\right)\right\rangle$ (i.e. $\xi>0$), Then according to definition 1.3 (3.b.iii) s_{j} can be added iff

$$
B\left(t_{r}\right) \cap \kappa\left(s_{j}\right) \in \bigcap_{\xi^{\prime}<\xi} U\left(\kappa\left(s_{j}\right), \xi^{\prime}\right)
$$

2. If $p=\left\langle t_{1}, \ldots, t_{n},\langle\kappa, B\rangle\right\rangle \in \mathbb{M}[\vec{U}]$. Fix some $1 \leq j \leq n$ with $o^{\vec{U}}\left(t_{j}\right)>0$. Then t_{j} yields a Magidor forcing in the interval $\left(\kappa\left(t_{j-1}\right), \kappa\left(t_{j}\right)\right)$ with the coherent sequence $\vec{U} \upharpoonright \kappa\left(t_{j}\right)$. t_{j} acts autonomously in the sense that the sequence produced by it is independent of how the sequence develops in other parts. This observation becomes handy when manipulating p, since we can make local changes at t_{j} with no impact on the t_{i} 's.

Let $Y=\left\{\alpha \leq \kappa \mid o^{\vec{U}}(\alpha)<\delta_{0}\right\}$. From Coherency of \vec{U} it follows that $Y \in \bigcap U(\kappa, i)$. For every $\beta \in Y$ with $o^{\vec{U}}(\beta)>0$ and $i<\delta_{0}$ define

$$
Y(i)=\left\{\alpha<\kappa \mid o^{\vec{U}}(\alpha)=i\right\} \text { and } Y[\beta]=\biguplus_{i<o^{\vec{U}}(\beta)} Y(i)
$$

It follows that for every $\beta \in Y$ and $i<o^{\vec{U}}(\beta), Y(i) \cap \beta \in U(\beta, i)$. To see this take $\beta \leq \kappa$ in Y and $j_{\beta i}: V \rightarrow U l t(U(\beta, i), V)$.

$$
Y(i) \cap \beta \in U(\beta, i) \Leftrightarrow \beta \in j_{\beta i}(Y(i) \cap \beta)
$$

By coherency, $o^{j_{\beta i}(\vec{U})}(\beta)=i$ and therefore

$$
\beta \in j_{\beta i}(Y(i) \cap \beta)=\left\{\alpha<j_{\beta i}(\beta) \mid o^{j_{i}(\vec{U})}(\alpha)=j_{\beta i}(i)=i\right\} .
$$

Consequently, $Y[\beta] \cap \beta \in \bigcap_{i<o^{\vec{U}}(\beta)} U(\beta, i)$.
For $B \in \bigcap_{i<o^{0}(\beta)} U(\beta, i)$ define recursively, $B^{(0)}=B$

$$
B^{(n+1)}=\left\{\alpha \in B^{(n)} \mid\left(o^{\vec{U}}(\alpha)=0\right) \vee\left(B^{(n)} \cap \alpha \in \cap U(\alpha, i)\right)\right\}
$$

Let $B^{\star}=\bigcap_{n<\omega} B^{(n)}$ it follows by induction that for all $n<\omega$

$$
\mathrm{B}^{(n)} \in \bigcap_{i<\sigma^{U}(\beta)} U(\beta, i)
$$

By β-completeness $B^{\star} \in \bigcap_{i<\sigma^{(}(\beta)} U(\beta, i) . B^{\star}$ has the feature that

$$
\forall \alpha \in B^{\star} \alpha \cap B^{\star} \in \bigcap_{i<\sigma^{\tilde{U}}(\alpha)} U(\alpha, i)
$$

The previous paragraph indicates that by restricting to a dense subset of $\mathbb{M}[\vec{U}]$ we can assume that given $p=\left\langle t_{1}, t_{2}, \ldots, t_{n},\langle\kappa, B\rangle\right\rangle \in \mathbb{M}[\vec{U}]$, every choice of ordinal in $B\left(t_{r}\right)$ automatically satisfies the requirement that we discussed in remark (2). Formally, we work above $\left\langle\rangle,\langle\kappa, Y\rangle\rangle\right.$ and we directly-extend any $p=\left\langle t_{1}, t_{2}, \ldots, t_{n},\langle\kappa, B\rangle\right\rangle$ as follows:
For every $1 \leq r \leq n+1$ and $i<o^{\vec{U}}\left(t_{r}\right)$ define

$$
B\left(t_{r}, i\right):=Y(i) \cap B\left(t_{r}\right)^{\star} \in U\left(\kappa\left(t_{r}\right), i\right)
$$

It follows that

$$
B^{\star}\left(t_{r}\right):=\underset{i<o^{\tilde{U}}\left(t_{r}\right)}{\biguplus} B\left(t_{r}, i\right) \in \bigcap_{i<\bar{\sigma}^{\hat{U}}\left(t_{r}\right)} U\left(\kappa\left(t_{r}\right), i\right) .
$$

Shrink $B\left(t_{r}\right)$ to $B^{\star}\left(t_{r}\right)$ to obtain

$$
\begin{gathered}
p \leq^{*} p^{*}=\left\langle t_{1}^{\prime}, \ldots, t_{n}^{\prime},\left\langle\kappa, B^{\star}\right\rangle\right\rangle \\
t_{r}^{\prime}=\left\{\begin{array}{cc}
t_{r} & o^{\vec{U}}\left(t_{r}\right)=0 \\
\left\langle\kappa\left(t_{r}\right), B^{\star}\left(t_{r}\right)\right\rangle & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

This dense subset also simplifies \leq to

$$
p \leq q \text { iff } \kappa(p) \subseteq \kappa(q), B(p) \subseteq B(q)
$$

When applying the revised approach regarding the large sets, it is apparent that $B\left(t_{r}, i\right)$ provide candidates, precisely, for the i-limit indexes in the final sequence C_{G} (defined in p.10) i.e. of indexes γ such that $o(\gamma)=i$ (for the definition of $o(\gamma)$ see Notations). This is stated formally in proposition 1.5 .
Recall that:

- $\mathbb{M}[\vec{U}]$ satisfies $\kappa^{+}-$c.c.
- Let $p=\left\langle t_{1}, \ldots, t_{n},\langle\kappa, B\rangle\right\rangle \in \mathbb{M}[\vec{U}]$ and denote $\nu=\kappa\left(t_{j}\right)$ where j is the minimal such that $o^{\vec{U}}\left(t_{j}\right)>0$. Then above p there is $\nu-_{\leq_{*}}$ closure.
- $\mathbb{M}[\vec{U}]$ satisfies the Prikry condition.

Let $G \subseteq \mathbb{M}[\vec{U}]$ be generic, define

$$
C_{G}=\bigcup\{\kappa(p) \mid p \in G\}
$$

We will abuse notation by considering C_{G} as a the canonical enumeration of the set C_{G}. C_{G} is closed and unbounded in κ. Therefore, The order type of C_{G} determines the cofinality of κ in $V[G]$. The next propositions can be found in [?].

Proposition 1.4 Let $G \subseteq \mathbb{M}[\vec{U}]$ be generic. Then G can be reconstructed from C_{G} as follows

$$
G=\left\{p \in \mathbb{M}[\vec{U}] \mid\left(\kappa(p) \subseteq C_{G}\right) \wedge\left(C_{G} \backslash \kappa(p) \subseteq B(p)\right)\right\}
$$

Therefore $V[G]=V\left[C_{G}\right]$.

Proposition 1.5 Let G be $\mathbb{M}[\vec{U}]$-generic and C_{G} the corresponding Magidor sequence. Let $\left\langle t_{1}, \ldots, t_{n},\langle\kappa, B\rangle\right\rangle \in G$, then

$$
\operatorname{otp}\left(\left(\kappa\left(t_{i}\right), \kappa\left(t_{i+1}\right)\right) \cap C_{G}\right)=\omega^{o^{\vec{U}}\left(\kappa\left(t_{i+1}\right)\right)}
$$

Thus if $\kappa\left(t_{i+1}\right)=C_{G}(\gamma)$ then $o(\gamma)=o^{\vec{U}}\left(t_{i+1}\right)$.

Corollary $1.6 c f^{V[G]}(\kappa)=c f\left(o^{\vec{U}}(\kappa)\right)$

Let $p=\left\langle t_{1}, \ldots, t_{n},\langle\kappa, B\rangle\right\rangle \in G$. By proposition 1.5, for each $i \leq n$ one can determine the position of $\kappa\left(t_{i}\right)$ in C_{G}. Namely, $C_{G}(\gamma)=\kappa\left(t_{i}\right)$ where

$$
\begin{equation*}
\gamma=\sum_{j \leq i} \omega^{o^{\vec{U}}\left(t_{j}\right)}=: \gamma\left(t_{i}, p\right) \in \omega^{o^{\vec{U}}(\kappa)} \tag{}
\end{equation*}
$$

Addition and power are of ordinals. The equetion $\left(^{*}\right)$ induces a C.N.F equation

$$
\begin{equation*}
\gamma=\sum_{r=1}^{m} \omega^{o^{\vec{U}}\left(t_{j_{r}}\right)} \tag{C.N.F}
\end{equation*}
$$

This indicates the close connection between Cantor normal form of the index γ in $\operatorname{otp}\left(C_{G}\right)$ and the important elements $t_{j_{1}}, \ldots, t_{j_{m}}$ to determine that $\gamma\left(t_{i}, p\right)=\gamma$. Now let $q=\left\langle s_{1}, \ldots, s_{m},\left\langle\kappa, B^{\prime}\right\rangle\right\rangle$ be another condition, by definition 1.3 (3.b.ii), if s_{j} is an element of q which was added to p in the interval $\left(\kappa\left(t_{r}\right), \kappa\left(t_{r+1}\right)\right)$ then $o^{\vec{U}}\left(s_{j}\right)<o^{\vec{U}}\left(t_{r+1}\right)$. Consequently

$$
p \leq q \Rightarrow \gamma\left(t_{r}, p\right)=\gamma\left(s_{i_{r}}, q\right)
$$

2 Combinatorial properties

The combinatorial nature of $\mathbb{M}[\vec{U}]$ is most clearly depicted through the language of stepextensions as presented below.
To perform a one step extension of $p=\left\langle t_{1}, t_{2}, \ldots, t_{n},\langle\kappa, B\rangle\right\rangle$

1. choose $1 \leq r \leq n+1$ with $0<o^{\vec{U}}\left(t_{r}\right)$
2. choose $i<o^{\vec{U}}\left(t_{r}\right)$
3. choose an ordinal $\alpha \in B\left(t_{r}, i\right)$
4. shrink the $B\left(t_{s}, j\right)$'s to $C\left(t_{s}, j\right) \in U\left(t_{s}, j\right)$ for every $1 \leq s \leq n+1$ and $C\left(t_{s}\right)=$

$$
\biguplus_{j<0^{\vec{U}}\left(t_{i}\right)} C_{s}(j)
$$

5. For $j<o^{\vec{U}}(\alpha)$ pick $C(\alpha, j) \in U(\alpha, j), C(\alpha, j) \subseteq B\left(t_{r}, j\right) \cap \alpha$ to obtain

$$
C(\alpha)=\biguplus_{j<o^{\vec{U}}(\alpha)}^{\biguplus} C(\alpha, j)
$$

6. cut $C\left(t_{r}\right)$ above α

Extend p to

$$
\begin{gathered}
p \smile\left\langle\alpha,\left(C\left(t_{s}\right)\right)_{s=1}^{n+1}, C(\alpha)\right\rangle=\left\langle t_{1}^{\prime}, \ldots, t_{i-1}^{\prime},\langle\alpha, C(\alpha)\rangle, t_{i}^{\prime}, \ldots, t_{n}^{\prime},\left\langle\kappa, C\left(t_{n+1}\right)\right\rangle\right\rangle \\
t_{r}^{\prime}=\left\{\begin{array}{cc}
t_{r} & o^{\vec{U}}\left(t_{r}\right)=0 \\
\left\langle\kappa\left(t_{r}\right), C\left(t_{r}\right)\right\rangle & o . w .
\end{array}\right.
\end{gathered}
$$

It is clear that every extension of p with only one ordinal added is a one step extension. Next we introduce some notations which will describe a general step extension. The idea is simply to classify extensions according to the order of the measures the new elements of the sequence are chosen from.

Definition 2.1 Let $p=\langle t_{1}, t_{2}, \ldots, t_{n}, \underbrace{\langle\kappa, B\rangle}_{t_{n+1}}\rangle \in \mathbb{M}[\vec{U}]$

1. For $1 \leq i \leq n+1$ define the tree $\left.T_{i}(p)={ }^{\omega}\right\rangle\left[O^{\vec{U}}\left(t_{i}\right)\right]$, with the ordering $\left\langle x_{1}, \ldots, x_{m}\right\rangle \preceq$ $\left\langle x_{1}^{\prime}, \ldots, x_{m^{\prime}}^{\prime}\right\rangle$ iff $\exists 1 \leq i_{1}<\ldots<i_{m} \leq m^{\prime}$ such that for every $1 \leq j \leq m^{\prime}$:
(a) if $\exists 1 \leq r \leq m$ such that $i_{r}=j$ then $x_{r}=x_{j}^{\prime}$
(b) otherwise $\exists 1 \leq r \leq n+1$ such that if $i_{r-1}<j<i_{r}$ then $x_{j}^{\prime}<x_{r}$

We think of x_{r} 's as placeholders of ordinals from $B\left(t_{i}, x_{r}\right)$. With this in mind, the ordering is induced by definition 1.3 (3).
2. $T(p)=\prod_{i=1}^{n+1} T_{i}(p)$ with \preceq as the product order.
3. $\operatorname{Let} X_{i} \in T_{i}(p) \quad 1 \leq i \leq n+1,\left|X_{i}\right|=l_{i}, X=\left\langle X_{1}, \ldots, X_{n+1}\right\rangle \in T(p)$.
4. Let

$$
\vec{\alpha}_{i}=\left\langle\alpha_{1}, \ldots, \alpha_{l_{i}}\right\rangle \in \prod_{j=1}^{l_{i}} B\left(t_{i}, X_{i}(j)\right)=: B\left(p, X_{i}\right)
$$

X_{i} is called an extension-type below t_{i} and $\left\langle\alpha_{1}, \ldots, \alpha_{l_{i}}\right\rangle$ is of type X_{i}.
5. Let

$$
\vec{\alpha}=\left\langle\overrightarrow{\alpha_{1}}, \ldots, \overrightarrow{\alpha_{n+1}}\right\rangle \in \prod_{i=1}^{n+1} \prod_{j=1}^{l_{i}} B\left(t_{i}, X_{i}(j)\right)=: B(p, X)
$$

X is called an extension-type of p and $\vec{\alpha}$ is of type X.

Notice that by our assumption $|T(p)|<\min \left(\nu \mid 0<o^{\vec{U}}(\nu)\right)=\delta_{0}$. We also use:

- $\left|X_{i}\right|=l_{i}$
- $l_{x}=\max \left(i \mid X_{i} \neq \emptyset\right)$
- $x_{i, j}=X_{i}(j) \alpha_{i, j}=\vec{\alpha}_{i}(j)$
- $x_{i, l_{i}+1}=o^{\vec{U}}\left(t_{i}\right)$ and $\alpha_{i, n+1}=\kappa\left(t_{i}\right)$
- $x_{m c}=x_{l_{X}, l_{l_{X}}}$ (i.e. the last element of X)
- $o^{\vec{U}}(\vec{\alpha})=\left\langle o^{\vec{U}}\left(\alpha_{i, j}\right) \mid x_{i, j} \in X\right\rangle$ is the type of $\vec{\alpha}$.

A general extension of \mathbf{p} of type \mathbf{X} would be of the form:

$$
p \preceq\left\langle\vec{\alpha},\left(C\left(x_{i, j}\right)\right)_{x_{i, j} \in X},\left(C\left(t_{r}\right)\right)_{r=1}^{n+1}\right\rangle=p \preceq\left\langle\vec{\alpha},\left(C\left(x_{i, j}\right)\right)_{\substack{i \leq n+n+1 \\ j \leq l_{i}+1}}\right\rangle
$$

where

$$
p^{\complement}\left\langle\vec{\alpha},\left(C\left(x_{i, j}\right)\right)_{\substack{i \leq n+1 \\ j \leq l_{i}+1}}\right\rangle=\left\langle\overrightarrow{s_{1}}, t_{1}^{\prime}, \ldots, \overrightarrow{s_{n}}, t_{n}^{\prime}, \overrightarrow{s_{n+1}},\langle\kappa, C\rangle\right\rangle
$$

1. $\vec{\alpha} \in B(p, X)$ (X is uniquely determined by $\vec{\alpha}$).
2. $t_{s}^{\prime}=\left\{\begin{array}{cc}t_{s} & o^{\vec{U}}\left(t_{s}\right)=0 \\ \left\langle\kappa\left(t_{s}\right), C\left(t_{s}\right)\right\rangle & o . w .\end{array}\right.$

For some pre-chosen sets $C\left(t_{s}\right) \in \bigcap_{\xi<o^{\vec{U}}\left(t_{s}\right)} U\left(\kappa\left(t_{s}\right), \xi\right), C\left(t_{s}\right) \subseteq B\left(t_{s}\right)$.
3. $\vec{s}_{i}(j)=\left\{\begin{array}{cc}\alpha_{i, j} & x_{i, j}=0 \\ \left\langle\alpha_{i, j}, C\left(x_{i, j}\right)\right\rangle & \text { o.w. }\end{array}\right.$

For some pre-chosen sets $C\left(x_{i, j}\right) \in \bigcap_{\xi<x_{i, j}} U\left(\alpha_{i, j}, \xi\right), C\left(x_{i, j}\right) \subseteq B\left(t_{i}\right) \cap \alpha_{i, j}$.
4. $C \in \bigcap_{\xi<o^{\vec{U}}(\kappa)} U(\kappa, \xi)$ and $\min (C)>\max \left(\vec{s}_{n+1}\right)$

Keeping in mind the development succeeding definition 1.3,

$$
p^{\curvearrowleft}\left\langle\vec{\alpha},\left(C\left(x_{i, j}\right)\right)_{\substack{i \leq n+1 \\ j \leq l_{i}+1}}\right\rangle \in \mathbb{M}[\vec{U}]
$$

holds due to the α 's being meticulously handpicked. We will more frequently use $p \subset\langle\vec{\alpha}\rangle$ with the same definition as above except we do not shrink any sets and simply take $\alpha_{i, j} \cap B\left(t_{i}\right)=$ $C\left(x_{i, j}\right)$. Define

$$
p^{\frown} X=\left\{p^{\complement}\langle\vec{\alpha}\rangle \mid \vec{\alpha} \in B(p, X)\right\}
$$

The $p^{\frown} X^{\prime}$'s induces a partition of $\mathbb{M}[\vec{U}]$ above p as stated in the next proposition which is well known and follows directly from definition 1.3.

Proposition 2.2 Let $p \in \mathbb{M}[\vec{U}]$ be any condition and $p \leq q \in \mathbb{M}[\vec{U}]$. Then there exists a unique $\vec{\alpha} \in B(p, X)$ such that $p^{\frown}\langle\vec{\alpha}\rangle \leq^{*} q$.

Example:

Let

$$
\begin{aligned}
& p=\langle\underbrace{\left\langle\left\langle\kappa\left(t_{1}\right), B\left(t_{1}\right)\right\rangle\right.}_{t_{1}}, \underbrace{\kappa\left(t_{2}\right)}_{t_{2}}, \underbrace{\left\langle\kappa\left(t_{3}\right), B\left(t_{3}\right)\right\rangle}_{t_{3}}, \underbrace{\left\langle\kappa\left(t_{4}\right), B\left(t_{4}\right)\right\rangle}_{t_{4}}, \underbrace{\langle\kappa, B\rangle\rangle}_{t_{5}}\rangle \\
& o^{\vec{U}}\left(t_{1}\right)=1, o^{\vec{U}}\left(t_{2}\right)=0, o^{\vec{U}}\left(t_{3}\right)=2, o^{\vec{U}}\left(t_{4}\right)=1, o^{\vec{U}}(\kappa)=3
\end{aligned}
$$

Let

$$
\begin{aligned}
& q=p^{\complement}\langle\underbrace{\left\langle\alpha_{1,1}, \alpha_{1,2}\right.}_{\overrightarrow{\alpha_{1}}}\rangle, \underbrace{\langle \rangle}_{\overrightarrow{\alpha_{2}}}, \underbrace{\left\langle\alpha_{3,1}, \alpha_{3,2}, \alpha_{3,3}\right\rangle}_{\overrightarrow{\alpha_{3}}}, \underbrace{\left\langle\alpha_{4,1}\right\rangle}_{\overrightarrow{\alpha_{4}}}, \underbrace{\left\langle\alpha_{5,1}, \alpha_{5,2}, \alpha_{5,3}\right\rangle}_{\overrightarrow{\alpha_{5}}}\rangle \\
& o^{\vec{U}}\left(\alpha_{i, j}\right)=\left\{\begin{array}{c}
0 \\
\langle i, j\rangle=\langle 1,1\rangle,\langle 1,2\rangle, \\
\langle 3,2\rangle,\langle 4,1\rangle,\langle 5,1\rangle \\
1 \\
\langle i, j\rangle=\langle 3,1\rangle,\langle 3,3\rangle, \\
\langle 5,2\rangle
\end{array},\right.
\end{aligned}
$$

Then the extention-type of q is

$$
X=\langle\underbrace{\langle\langle 0,0\rangle}_{X_{1}}, \underbrace{\langle \rangle}_{X_{2}}, \underbrace{\langle 1,0,1\rangle}_{X_{3}}, \underbrace{\langle 0\rangle}_{X_{4}}, \underbrace{\langle 0,1,2\rangle}_{X_{5}}\rangle
$$

This can be illustrated as following:

As presented in proposition 2.2, a choice from the set $p^{\wedge} X$ is essentially a choice from some $\prod_{i=1}^{n} A_{i}, A_{i} \in U_{i}$ and $\kappa_{1} \leq \kappa_{2} \leq \ldots \leq \kappa_{n}$ are measurable cardinals with normal measures U_{1}, \ldots, U_{n}, Namely, $\prod_{i=1}^{n} A_{i}=B(p, X)$. We will need some properties of those sets.

Lemma 2.3 Let $\kappa_{1} \leq \kappa_{2} \leq \ldots \leq \kappa_{n}$ be any collection of measurable cardinals with normal measures U_{1}, \ldots, U_{n} respectively. Assume $F: \prod_{i=1}^{n} A_{i} \longrightarrow \nu$ where $\nu<\kappa_{1}$ and $A_{i} \in U_{i}$. Then there exists $H_{i} \subseteq A_{i} \quad H_{i} \in U_{i}$ such that $\prod_{i=1}^{n} H_{i}$ is homogeneous for F.

Proof: By induction on n, the case $n=1$ is known. Assume that the lemma holds for $n-1$, and fix $\vec{\eta}=\left\langle\eta_{1}, \ldots, \eta_{n-1}\right\rangle \in \prod_{i=1}^{n-1} A_{i}$. Define

$$
\begin{gathered}
F_{\vec{\eta}}: A_{n} \backslash\left(\eta_{n-1}+1\right) \longrightarrow \nu \\
F_{\vec{\eta}}(\xi)=F\left(\eta_{1}, \ldots, \eta_{n-1}, \xi\right)
\end{gathered}
$$

By the case $\mathrm{n}=1$ there exists a homogeneous $A_{n} \supseteq H(\vec{\eta}) \in U_{n}$ with color $C(\vec{\eta})<\nu$. Define

$$
\underset{\vec{\eta} \in \prod_{i=1}^{n-1} A_{i}}{\Delta} H(\vec{\eta})=: H_{n}
$$

By the induction hypotheses, $C: \prod_{i=1}^{n-1} A_{i} \rightarrow \nu$ has a homogeneous set of the form $\prod_{i=1}^{n-1} H_{i}$ where $A_{i} \supseteq H_{i} \in U_{i}$. To see that $\prod_{i=1}^{n} H_{i}$ is homogeneous for F, let $\overrightarrow{\eta^{\prime}}=\left\langle\eta_{1}^{\prime}, \ldots, \eta_{n}^{\prime}\right\rangle, \vec{\eta}=\left\langle\eta_{1}, \ldots, \eta_{n}\right\rangle \in \prod_{i=1}^{n} H_{i}$. We have

$$
\begin{gathered}
F(\vec{\eta})=F_{\vec{\eta} \backslash\left\langle\eta_{n}\right\rangle}\left(\eta_{n}\right) \underset{\substack{\eta_{n} \in H\left(\vec{\eta} \backslash\left\langle\eta_{n}\right\rangle\right)}}{\overline{=}} F^{\prime}\left(\vec{\eta} \backslash\left\langle\eta_{n}\right\rangle\right) \quad \underset{\vec{\eta}}{\bar{\eta} \backslash\left\langle\eta_{n}\right\rangle, \overrightarrow{\eta^{\prime}} \backslash\left\langle\eta_{n}^{\prime}\right\rangle \in \prod_{i=1}^{n-1} H_{i}} \\
=F^{\prime}\left(\overrightarrow{\eta^{\prime}} \backslash\left\langle\eta_{n}^{\prime}\right\rangle\right)=\ldots=F\left(\overrightarrow{\eta^{\prime}}\right) .
\end{gathered}
$$

Lemma 2.4 Let $\kappa_{1} \leq \kappa_{2} \leq \ldots \leq \kappa_{n}$ be a non descending finite sequence of measurable cardinals with normal measures U_{1}, \ldots, U_{n} respectively. Assume $F: \prod_{i=1}^{n} A_{i} \longrightarrow B$ where B is any set, and $A_{i} \in U_{i}$. Then there exists $H_{i} \subseteq A_{i} H_{i} \in U_{i}$ and set of important coordinates $I \subseteq\{1, \ldots, n\}$ such that $F \upharpoonright \prod_{i=1}^{n} H_{i}$ is well defined modulo the equivalence relation:

$$
\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle \sim\left\langle\alpha_{1}^{\prime}, \ldots, \alpha_{n}^{\prime}\right\rangle \quad \text { iff } \forall i \in I \quad \alpha_{i}=\alpha_{i}^{\prime}
$$

and the induced function, \bar{F}, is injective.

Proof: By induction on n, if $n=1$ then it is immediate since for any $f: A \rightarrow B$ such that $A \in U$ where U is a normal measure on a measurable cardinal κ, B is any set, then there exists $A \supseteq A^{\prime} \in U$ for which $F \upharpoonright A^{\prime}$ is either constant or injective. Assume that the lemma holds for $n-1, n>1$ and let $F: \prod_{i=1}^{n} A_{i} \longrightarrow B$ be a function satisfying the conditions of the lemma. Define for every $x_{1} \in A_{1}, F_{x_{1}}: \prod_{i=2}^{n} A_{i} \backslash\left(x_{1}+1\right) \longrightarrow B$

$$
F_{x_{1}}\left(x_{2}, \ldots, x_{n}\right)=F\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

By the induction hypothesis, for every $x_{1} \in A_{1}$ there are $A_{i} \supseteq A_{i}\left(x_{1}\right) \in U_{i}$ and set of important coordinates $I\left(x_{1}\right) \subseteq\{2, \ldots, n\}$. The function
$I: A_{1} \rightarrow P(\{2, \ldots, n\})$ is constant on $A_{1}^{\prime} \in U_{1}$ with value I^{\prime}. For every $i=2, \ldots, n$ define $A_{i}^{\prime}={ }_{x_{1} \in A_{1}}^{\Delta} A_{i}\left(x_{1}\right)$. So far, $\prod_{i=1}^{n} A_{i}^{\prime}$ has the property:
(1) for any $\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle,\left\langle x_{1}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right\rangle \in \prod_{i=1}^{n} A_{i}^{\prime}$ (same first coordinate)

$$
F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=F\left(x_{1}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right) \text { iff } \forall i \in I^{\prime} x_{i}=x_{i}^{\prime}
$$

In particular, \bar{F} is a well defined function modulo $I^{\prime} \cup\{1\}$. Next we determine if 1 is important. For every $\left\langle\alpha, \alpha^{\prime}\right\rangle \in A_{1}^{\prime} \times A_{1}^{\prime}$, define $t_{\left\langle\alpha, \alpha^{\prime}\right\rangle}: \prod_{i=2}^{n} A_{i}^{\prime} \backslash\left(\alpha^{\prime}+1\right) \rightarrow 2$

$$
t_{\left\langle\alpha, \alpha^{\prime}\right\rangle}\left(x_{2}, \ldots, x_{n}\right)=1 \Leftrightarrow F\left(\alpha, x_{2}, \ldots, x_{n}\right)=F\left(\alpha^{\prime}, x_{2}, \ldots, x_{n}\right)
$$

By lemma 2.3, for $i=2, \ldots, n$ there are $A_{i}^{\prime} \supseteq A_{i}\left(\alpha, \alpha^{\prime}\right) \in U_{i}$ such that $\prod_{i=2}^{n} A_{i}\left(\alpha, \alpha^{\prime}\right)$ is homogeneous for $t_{\left\langle\alpha, \alpha^{\prime}\right\rangle}$ with color $C\left(\alpha, \alpha^{\prime}\right)$. Taking the diagonal intersection over $A_{1}^{\prime} \times A_{1}^{\prime}$ of the sets $A_{i}\left(\alpha, \alpha^{\prime}\right)$ at each coordinate $i=2, \ldots, n$, we obtain $H_{i} \in U_{i}$ such that $\prod_{i=2}^{n} H_{i}$ is homogeneous for every $t_{\left\langle\alpha, \alpha^{\prime}\right\rangle}$. Finally, the function $C: A_{1}^{\prime} \times A_{1}^{\prime} \rightarrow 2$ yield a homogeneous $A_{1}^{\prime} \supseteq H_{1} \in U_{1}$ with color C^{\prime}.
case 1: $C^{\prime}=1$. Let us show that the important coordinates are I^{\prime}. If $\left\langle x_{1}, \ldots, x_{n}\right\rangle,\left\langle x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\rangle \in$ $\prod_{i=1}^{n} H_{i}$ then $F\left(x_{1}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)=F\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)$

$$
F\left(x_{1}, \ldots, x_{n}\right)=F\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \Leftrightarrow F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=F\left(x_{1}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right) \Leftrightarrow \forall i \in I^{\prime} x_{i}=x_{i}^{\prime}
$$

case 2: $C^{\prime}=0$. We then have a second property:
(2) For every $x_{1}, x_{1}^{\prime} \in H_{1}$ and $\left\langle x_{2}, \ldots, x_{n}\right\rangle \in \prod_{i=2}^{n} H_{i}$

$$
x_{1}=x_{1}^{\prime} \text { iff } F\left(x_{1}, x_{2} \ldots, x_{n}\right)=F\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)
$$

We would like to claim that in this case the important coordinates are $I=I^{\prime} \cup\{1\}$ but the H_{i} 's defined, may not be the sets we seek for, since there can still be an counter example for \bar{F} not being injective i.e.

$$
\left\langle x_{1}, \ldots, x_{n}\right\rangle \neq\left\langle x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\rangle \bmod -I \text { such that } F\left(x_{1}, \ldots, x_{n}\right)=F\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)
$$

Let us prove that if we eliminate all counter examples from H_{i} 's, we are left with a large set. Take Any counter example and set

$$
\left\{x_{1}, \ldots, x_{n}\right\} \cup\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\}=\left\{y_{1}, \ldots, y_{k}\right\} \text { (increasing enumeration) }
$$

To reconstruct $\left\{x_{1}, \ldots, x_{n}\right\},\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\}$ from $\left\{y_{1}, \ldots, y_{k}\right\}$ is suffices to know for example how $\left\{x_{1}, \ldots, x_{n}\right\}$ are arranged between $\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\}$. There are finitely many ways ${ }^{3}$ for Such an arrangement. Therefore, if we succeed with eliminating examples of a fixed arrangement, then by completeness of the measures we will be able to eliminate all counter example.
Fix such an arrangement, the increasing sequence $\left\langle y_{1}, \ldots, y_{k}\right\rangle$ is in the product of some k large sets $\prod_{i=1}^{k} H_{n_{i}}$. We have to be careful since the sequence of measurables induced by n_{1}, \ldots, n_{k} is not necessarily non descending. To fix this we can cut the sets H_{i} such that in the sequence $\left\langle\kappa_{i} \mid i=1, \ldots, n\right\rangle$, wherever $\kappa_{i}<\kappa_{i+1}$ then $\min \left(H_{i+1}\right)>\kappa_{i}=\sup \left(H_{i}\right)$. Therefore, assume that $\left\langle\kappa_{n_{i}} \mid i=1, \ldots, k\right\rangle$ is non descending. Define $G: \prod_{i=1}^{k} H_{n_{i}} \rightarrow 2$

$$
G\left(y_{1}, \ldots, y_{k}\right)=1 \Leftrightarrow F\left(x_{1}, \ldots, x_{n}\right)=F\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)
$$

By lemma 2.3 there must be $U_{i} \ni H_{i}^{\prime} \subseteq H_{i}$ homogeneous for G with value D. If $D=0$ we have eliminated from H_{i} 's all counter examples of that fixed ordering. Assume $D=1$, then every y_{1}, \ldots, y_{k} yield a counter example $\left\langle x_{1}, \ldots, x_{n}\right\rangle,\left\langle x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\rangle$ (different modulo I). $x_{1}=x_{1}^{\prime}$ is impossible by property (1). If $x_{1}<x_{1}^{\prime}$, Fix $x<w<y_{2}<\ldots<y_{n}$, where $x, w \in H_{1}^{\prime}$ and $y_{i} \in H_{n_{i}}^{\prime} i=2, \ldots, k$. Then $G\left(x, y_{2}, \ldots, y_{k}\right)=G\left(w, y_{2}, \ldots, y_{k}\right)=1$ and

$$
F\left(x, x_{2}, \ldots, x_{n}\right)=F\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)=F\left(w, x_{2}, \ldots, x_{n}\right)
$$

contradiction to (2). $x_{1}<x_{1}^{\prime}$ is symmetric.

[^2]
3 The main result up to κ

As stated in corollary 1.6, Magidor forcing adds a closed unbounded sequence of length $\omega^{o^{\vec{U}}(\kappa)}$ to κ. It is possible to obtain a family of forcings that adds a sequence of any limit length to some measurable cardinal, using a variation of Magidor forcing as we defined it ${ }^{4}$. Namely, let \vec{U} be a coherent sequence and $\lambda_{0}<\min \left(\nu \mid o^{\vec{U}}(\nu)>0\right)$ a limit ordinal

$$
\text { (not necessarily C.N.F) } \lambda_{0}=\omega^{\gamma_{1}}+\ldots+\omega^{\gamma_{n}} \quad, \gamma_{n}>0
$$

Let $\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle$ be an increasing sequence such that $o^{\vec{U}}\left(\kappa_{i}\right)=\gamma_{i}$. Define the forcing $\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]$ as follows:
The root condition will be

$$
0_{\left.\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle} \mid \vec{U}\right]}=\left\langle\left\langle\kappa_{1}, B_{1}\right\rangle, \ldots,\left\langle\kappa_{n}, B_{n}\right\rangle\right\rangle
$$

where B_{1}, \ldots, B_{n} are as in the discussion following definition 1.3. The conditions of this forcing are any finite sequence that extends $0_{\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]}$ in the sense of definition 1.3. Since each $\left\langle\kappa_{i}, B_{i}\right\rangle$ acts autonomously, this forcing is essentially the same as $\mathbb{M}[\vec{U}]$. In fact, $\mathbb{M}[\vec{U}]$ is just $\mathbb{M}_{\langle\kappa\rangle}[\vec{U}]$. The notation we used for $\mathbb{M}[\vec{U}]$ can be extended to $\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]$ since the conditions are also of the form $\left\langle t_{1}, \ldots, t_{r},\langle\kappa, B\rangle\right\rangle$. Let

$$
\left\langle\left\langle\nu_{1}, C_{1}\right\rangle, \ldots,\left\langle\nu_{m}, C_{m}\right\rangle\right\rangle \in \mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]
$$

then $\mathbb{M}_{\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle}[\vec{U}]$ is an open subset of $\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]$ (i.e. \leq-upwards closed). Moreover, if $G \subseteq \mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]$ is any generic set with $\left\langle\left\langle\nu_{1}, C_{1}\right\rangle, \ldots,\left\langle\nu_{m}, C_{m}\right\rangle\right\rangle \in G$ then

$$
(G)_{\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle}=G \cap \mathbb{M}_{\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle}[\vec{U}]=\left\{p \in G \mid p \geq\left\langle\left\langle\nu_{1}, C_{1}\right\rangle, \ldots,\left\langle\nu_{m}, C_{m}\right\rangle\right\rangle\right\}
$$

is generic for $\mathbb{M}_{\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle}[\vec{U}] .(G)_{\vec{\nu}}$ is essentially the same generic as G since it yield the same Magidor sequence, in particular $V\left[(G)_{\vec{\nu}}\right]=V[G]$.

From now on the set B in $\left\langle t_{1}, \ldots, t_{r},\langle\kappa, B\rangle\right\rangle$ will be suppressed and replaced by $t_{r+1}=\langle\kappa, B\rangle$ where $\kappa_{n}=\kappa$. An alternative way to describe $\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]$ is through the following product

$$
\begin{aligned}
& \mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}] \simeq \mathbb{M}[\vec{U}]_{\left\langle\kappa_{1}\right\rangle} \times\left(\mathbb{M}[\vec{U}]_{\left\langle\kappa_{2}\right\rangle}\right)_{>\kappa_{1}} \times \ldots \times\left(\mathbb{M}[\vec{U}]_{\left\langle\kappa_{n}\right\rangle}\right)_{>\kappa_{n-1}} \\
& \left(\mathbb{M}_{\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle}[\vec{U}]\right)_{>\alpha}=\left\{\left\langle t_{1}, \ldots, t_{r+1}\right\rangle \in \mathbb{M}_{\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle}[\vec{U}] \mid \kappa\left(t_{1}\right)>\alpha\right\}
\end{aligned}
$$

[^3]This isomorphism is induced by the embeddings

$$
\begin{gathered}
i_{r}:\left(\left(\mathbb{M}[\vec{U}]_{\left\langle\kappa_{r}\right\rangle}\right)_{>\kappa_{r-1}} \rightarrow \mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}] \quad, r=1, \ldots, n\right. \\
i_{r}\left(\left\langle s_{1}, \ldots, s_{k+1}\right\rangle\right)=\langle\left\langle\kappa_{1}, B_{1}\right\rangle, \ldots,\left\langle\kappa_{r-1}, B_{r-1}\right\rangle, s_{1}, \ldots, s_{k},\langle\underbrace{}_{s_{k+1}}, B\left(\kappa_{r}, B\left(s_{k+1}\right)\right\rangle, \ldots,\left\langle\kappa_{n}, B_{n}\right\rangle\rangle
\end{gathered}
$$

From this embeddings, it is clear that the generic sequence produced by $\left(\mathbb{M}[\vec{U}]_{\left\langle\kappa_{r}\right\rangle}\right)_{>_{\kappa_{r-1}}}$ is just $C_{G} \cap\left(\kappa_{r-1}, \kappa_{r}\right)$.

The formula to compute coordinates holds in this context:
Let $p=\left\langle t_{1}, \ldots, t_{m}, t_{m+1}\right\rangle \in \mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]$. For each $1 \leq i \leq m$, the coordinate of $\kappa\left(t_{i}\right)$ in any Magidor sequence extending p is $C_{G}(\gamma)=\kappa\left(t_{i}\right)$, where

$$
\gamma=\sum_{j \leq i} \omega^{o^{\vec{U}}\left(t_{j}\right)}=: \gamma\left(t_{i}, p\right)<\lambda_{0}
$$

Lemma 3.1 Let G be generic for $\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]$ and the sequence derived

$$
C_{G}=\bigcup\left\{\left\{\kappa\left(t_{1}\right), \ldots, \kappa\left(t_{l}\right)\right\} \mid\left\langle t_{1}, \ldots, t_{l}, t_{l+1}\right\rangle \in G\right\}
$$

1. $\operatorname{otp}\left(C_{G}\right)=\lambda_{0}$
2. If $\kappa_{i}<C_{G}(\gamma)<\kappa_{i+1}$ where γ is limit, then there exists $\vec{\nu}=\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle$ such that $(G)_{\vec{\nu} \backslash\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle}$ is generic for $\mathbb{M}_{\vec{\nu} \backslash\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle}[\vec{U}], C_{G}=C_{(G)_{\vec{\nu}} \backslash\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle}$ and the sequences obtained by the split

$$
\mathbb{M}_{\vec{\nu}}[\vec{U}] \times\left(\mathbb{M}_{\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle}[\vec{U}]\right)_{>\nu_{m}} \simeq \mathbb{M}_{\vec{\nu}-\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle}[\vec{U}]
$$

are $C_{G} \cap C_{G}(\gamma), C_{G} \backslash C_{G}(\gamma)$. More accurately, if

$$
\gamma=\underbrace{\omega^{\gamma_{1}}+\ldots+\omega^{\gamma_{i}}}_{\xi}+\omega^{\gamma_{i+1}^{\prime}}+\ldots+\omega^{\gamma_{m}^{\prime}} \quad \text { (C.N.F) }
$$

then

$$
\vec{\nu}=\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle=\left\langle\kappa_{1}, \ldots, \kappa_{i}, C_{G}\left(\xi+\omega^{\gamma_{i+1}^{\prime}}\right), \ldots, C_{G}(\gamma)\right\rangle
$$

Proof: For (1), the same reasoning as in lemmas 1.5-1.6 should work. For (2), notice that by proposition 1.4, $0_{\mathbb{M}_{\vec{\nu}} \prec\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle} \in G$. Thus $(G)_{\vec{\nu} \smile\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle}$ is generic for $\mathbb{M}_{\vec{\nu} \smile\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle}[\vec{U}]$. The embeddings

$$
\begin{gathered}
\left.i_{1}: \mathbb{M}_{\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle}[\vec{U}] \rightarrow \mathbb{M}_{\overrightarrow{\vec{~}} \times\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle} \mid \vec{U}\right] \\
i_{1}\left(\left\langle t_{1}, \ldots, t_{r+1}\right\rangle\right)=\left\langle t_{1}, \ldots, t_{r+1},\left\langle\kappa_{i+1}, B_{i+1}\right\rangle, \ldots,\left\langle\kappa_{n}, B_{n}\right\rangle\right\rangle
\end{gathered}
$$

and

$$
\begin{gathered}
\left.\left.i_{2}:\left(\mathbb{M}_{\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle}[\vec{U}]\right)_{>\nu_{m}} \rightarrow \mathbb{M}_{\vec{\rightharpoonup}-\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle}\right\rangle \vec{U}\right] \\
i_{2}\left(\left\langle s_{1}, \ldots, s_{k+1}\right\rangle\right)=\left\langle\left\langle\kappa_{1}, B_{1}\right\rangle, \ldots,\left\langle\kappa_{i}, B_{i}\right\rangle, s_{1}, \ldots, s_{k+1}\right\rangle
\end{gathered}
$$

induces the isomorphism of $\mathbb{M}_{\vec{\nu} \subset\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle}[\vec{U}]$ with the product. Therefore, $i_{1}^{-1}(G), i_{2}^{-1}(G)$ are generic for $\mathbb{M}_{\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle}[\vec{U}],\left(\mathbb{M}_{\left\langle\kappa_{i+1}, \ldots, \kappa_{n}\right\rangle}[\vec{U}]\right)_{>\nu_{m}}$ respectively. By the definition of i_{1}, i_{2} this generics obviously yield the sequences $C_{G} \cap C_{G}(\gamma)$ and $C_{G} \backslash C_{G}(\gamma)$.

In general we will identify G with $(G)_{\vec{\nu}}$ when using lemma 3.1.
Notice that, the information used in order to compute $\gamma\left(t_{i}, p\right)$ is just $o^{\vec{U}}\left(t_{i}\right)$. Let X be an extension type of p, then X provides this information, therefore, one can compute the coordinates of any extension $\vec{\alpha}$ of type X. In particular, for any $\alpha_{i . r}$ substituting $x_{i, r} \in X$ the coordinate of $\alpha_{i, r}$ is

$$
\gamma=\gamma\left(t_{i-1}, p\right)+\omega^{x_{i, 1}}+\ldots+\omega^{x_{i, r}}=: \gamma\left(x_{i, r}, p^{\frown} X\right)
$$

In this situation we say that X unveils the γ-th coordinate. If $x_{i, r}=x_{m c}$, we say that X unveils γ as maximal coordinate.

Proposition 3.2 Let $p=\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle \in \mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]$ and γ such that for some $0 \leq i \leq$ $n, \gamma\left(t_{i}, p\right)<\gamma<\gamma\left(t_{i+1}, p\right)$. Then there exists an extension-type X unveiling γ as maximal coordinate. Moreover, if

$$
\gamma\left(t_{i}, p\right)+\sum_{j \leq m} \omega^{\gamma_{j}}=\gamma(C . N . F)
$$

then the extension type is $X=\left\langle X_{i}\right\rangle$ where $X_{i}=\left\langle\gamma_{1}, \ldots, \gamma_{m}\right\rangle$.

Example: Assume $\lambda_{0}=\omega_{1}+\omega^{2} \cdot 2+\omega$, let $\kappa_{1}<\kappa_{2}<\kappa_{3}<\kappa_{4}=\kappa$ be such that $o^{\vec{U}}\left(\kappa_{1}\right)=\omega_{1}$, $o^{\vec{U}}\left(\kappa_{2}\right)=o^{\vec{U}}\left(\kappa_{3}\right)=2$ and $o^{\vec{U}}(\kappa)=1$. Let

$$
\begin{gathered}
p=\langle\underbrace{\left\langle\nu_{1}, B\left(\nu_{1}\right)\right\rangle}_{t_{1}}, \underbrace{\nu_{2}}_{t_{2}}, \underbrace{\left\langle\kappa_{1}, B\left(k_{1}\right)\right\rangle}_{t_{3}}, \underbrace{\left\langle\nu_{4}, B\left(\nu_{3}\right)\right\rangle}_{t_{4}}, \underbrace{\left\langle\kappa_{2}, B\left(\kappa_{2}\right)\right\rangle}_{t_{5}}, \underbrace{\left\langle\kappa_{3}, B\left(\kappa_{3}\right)\right\rangle}_{t_{6}}, \underbrace{\left\langle\kappa_{0}, B\right\rangle}_{t_{7}}\rangle \\
\left.o_{2}\right)=0, o^{\vec{U}}\left(t_{4}\right)=1
\end{gathered}
$$

Let G be any generic with $p \in G$. Calculating $\gamma\left(t_{i}, p\right)$ for $i=1, \ldots, 7$ we get

1. $\gamma\left(t_{1}, p\right)=\omega^{o^{\vec{U}}\left(t_{1}\right)}=\omega^{\omega} \Rightarrow C_{G}\left(\omega^{\omega}\right)=\nu_{1}$
2. $\gamma\left(t_{2}, p\right)=\omega^{\omega}+\omega^{o^{\vec{U}}\left(t_{2}\right)}=\omega^{\omega}+1 \Rightarrow C_{G}\left(\omega^{\omega}+1\right)=\nu_{2}$
3. $\gamma\left(t_{3}, p\right)=\omega^{\omega}+1+\omega^{\omega_{1}}=\omega^{\omega_{1}}=\omega_{1}$
4. $\gamma\left(t_{4}, p\right)=\omega_{1}+\omega \Rightarrow C_{G}\left(\omega_{1}+\omega\right)=\nu_{3}$
5. $\gamma\left(t_{5}, p\right)=\omega_{1}+\omega+\omega^{2}=\omega_{1}+\omega^{2}$

To demonstrate proposirion 3.2 let $\gamma=\omega^{\omega}+\omega^{5} \cdot 3+5$ therefore

$$
\begin{gathered}
\gamma\left(t_{2}, p\right)=\omega^{\omega}+1<\gamma<\omega_{1}=\gamma\left(t_{3}, p\right) \\
\left(\omega^{\omega}+1\right)+\omega^{5} \cdot 3+5=\gamma
\end{gathered}
$$

The extension-type unveiling γ as maximal coordinate is then

$$
X=\left\langle\langle \rangle,\langle \rangle, X_{3}\right\rangle X_{3}=\langle 5,5,5,0,0,0,0,0\rangle
$$

i.e. every extension $\vec{\alpha}=\left\langle\alpha_{3,1}, \ldots \alpha_{3,8}\right\rangle \in B(p, X)$ will satisfy that

$$
\gamma\left(\alpha_{m c}, p^{\frown} \vec{\alpha}\right)=\gamma\left(\alpha_{3,8}, p^{\frown} \alpha\right)=\gamma\left(x_{3,8}, p^{\complement} X\right)=\gamma
$$

This concludes the example. Let us state the main theorem of this paper.

Theorem 3.3 Let \vec{U} be a coherent sequence in $V,\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle$ be a sequence such that $o^{\vec{U}}\left(\kappa_{i}\right)<$ $\min \left(\nu \mid 0<o^{\vec{U}}(\nu)\right)=: \delta_{0}$, let G be $\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]$-generic and let $A \in V[G]$ be a set of ordinals. Then there exists $C^{\prime} \subseteq C_{G}$ such that $V[A]=V\left[C^{\prime}\right]$.

We will prove Theorem 3.3 by induction on $\operatorname{otp}\left(C_{G}\right)$. For otp $\left(C_{G}\right)=\omega$ it is just the Prikry forcing which is know by [?]. Let $\operatorname{otp}\left(C_{G}\right)=\lambda_{0}$ be a limit ordinal,

$$
\lambda_{0}=\omega^{\gamma_{n}}+\ldots+\omega^{\gamma_{1}} \quad \text { (C.N.F) }
$$

If $\sup (A)<\kappa$, then by lemma 5.3 in [?], $A \in V[C \cap \sup (A)]$. By lemma 3.1, $V[C \cap \sup (A)]$ is a generic extension of some $\mathbb{M}_{\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle}[\vec{U}]$ with order type smaller the λ_{0}, thus by induction we are done. In fact, if there exists $\alpha<\kappa$ such that $A \in V[C \cap \alpha]$ then the induction hypothesis works. Let us assume that $A \notin V[C \cap \alpha]$ whenever $\alpha<\kappa$, this kind of set will be called recent set. Since $\kappa_{1}, \ldots, \kappa_{n}$ will be fixed through the rest of this chapter we shall abuse notation and denote $\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]=\mathbb{M}[\vec{U}]$. First let us show that for A with small enough cardinality the theorem holds regardless of the induction.

Lemma 3.4 Let $\underset{\sim}{x}$ be $a \mathbb{M}[\vec{U}]$-name and $p \in \mathbb{M}[\vec{U}]$ such that $p \Vdash \underset{\sim}{x}$ is an ordinal. Then there exists $p \leq^{*} p^{*} \in \mathbb{M}[\vec{U}]$ and an extension-type $X \in T(p)$ such that

$$
\begin{equation*}
\forall p^{*} \frown\langle\vec{\alpha}\rangle \in p^{*} X \quad p^{* \frown}\langle\vec{\alpha}\rangle \| \underset{\sim}{x} \tag{*}
\end{equation*}
$$

Proof: Let $p=\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle \in \mathbb{M}[\vec{U}]$.
Claim: There exists $p \leq^{*} p^{\prime}$ such that for some extension type X

$$
\forall \vec{\alpha} \in B\left(p^{\prime}, X\right) \exists C\left(x_{i, j}\right) \text { s.t. } p^{\prime} \frown\left\langle\vec{\alpha},\left(C\left(x_{i, j}\right)\right)_{i, j}\right\rangle \| \underset{\sim}{x}
$$

Proof of Claim: Define sets $B_{X}\left(t_{i}, j\right)$, for any fixed $X \in T(p)$ as follows: Recall the notation $l_{X}, x_{m c}$ and let $\vec{\alpha} \in B\left(p, X \backslash\left\langle x_{m c}\right\rangle\right)$. Define

$$
B_{X}^{(0)}(\vec{\alpha})=\left\{\theta \in B\left(t_{l_{X}}, x_{m c}\right) \mid \exists\left(C\left(x_{i, j}\right)\right)_{i, j} p^{\curvearrowleft}\left\langle\vec{\alpha}, \theta,\left(C\left(x_{i, j}\right)\right)_{i, j}\right\rangle \| \underset{\sim}{x}\right\}
$$

and $B_{X}^{(1)}(\vec{\alpha})=B\left(t_{l_{X}}, x_{m c}\right) \backslash B_{X}^{(0)}(\vec{\alpha})$. One and only one of $B_{X}^{(0)}(\vec{\alpha}), B_{X}^{(1)}(\vec{\alpha})$ is in $U\left(\kappa\left(t_{l_{X}}\right), x_{m c}\right)$. Set $B_{X}(\vec{\alpha})$ and $F_{X}(\vec{\alpha}) \in\{0,1\}$:

$$
B_{X}(\vec{\alpha})=B_{X}^{\left(F_{X}(\vec{\alpha})\right)}(\vec{\alpha}) \in U\left(\kappa\left(t_{l_{X}}\right), x_{m c}\right)
$$

Define

$$
B_{X}^{\prime}\left(t_{l_{X}}, x_{m c}\right)=\underset{\vec{\alpha} \in B\left(p, X \backslash\left\langle x_{m c}\right\rangle\right)}{\Delta} B_{X}(\vec{\alpha})
$$

Consider the function $F: B\left(p, X \backslash\left\langle x_{m c}\right\rangle\right) \rightarrow\{0,1\}$. Applying lemma 2.3 to F, we get a homogeneous $\prod_{x_{i, j} \in X \backslash\left\langle x_{m c}\right\rangle} B_{X}^{\prime}\left(t_{i}, x_{i, j}\right)$ where

$$
B_{X}^{\prime}\left(t_{i}, x_{i j}\right) \subseteq B\left(t_{i}, x_{i j}\right), B_{X}^{\prime}\left(t_{i}, x_{i j}\right) \in U\left(t_{i}, x_{i, j}\right), x_{i j} \in X \backslash\left\langle x_{m c}\right\rangle
$$

For $\xi \notin X_{i}$, Set

$$
B_{X}^{\prime}\left(t_{i}, \xi\right)=B\left(t_{i}, \xi\right)
$$

Since $|T(p)|<\kappa\left(t_{1}\right)$, for each $1 \leq i \leq n+1$ and $\xi<o^{\vec{U}}\left(t_{i}\right)$

$$
B^{\prime}\left(t_{i}, \xi\right):=\bigcap_{X \in T(p)} B_{X}^{\prime}\left(t_{i}, \xi\right) \in U\left(\kappa\left(t_{i}\right), \xi\right)
$$

Finally, let $p^{\prime}=\left\langle t_{1}^{\prime}, \ldots, t_{n}^{\prime}, t_{n+1}^{\prime}\right\rangle$ where

$$
t_{i}^{\prime}=\left\{\begin{array}{cc}
t_{i} & o^{\vec{U}}\left(t_{i}\right)=0 \\
\left\langle\kappa\left(t_{i}\right), B^{\prime}\left(t_{i}\right)\right\rangle & \text { otherwise }
\end{array}\right.
$$

It follows that $p \leq^{*} p^{\prime} \in \mathbb{M}[\vec{U}]$.
Let H be $\mathbb{M}[\vec{U}]$-generic, $p^{\prime} \in H$. By the assumption on p, there exists $\delta<\kappa$ such that $V[H] \models(\underset{\sim}{x})_{H}=\delta$. Hence, there is $p^{\prime} \leq q \in M[\vec{U}]$ such that $q \Vdash \underset{\sim}{x}=\stackrel{\vee}{\delta}$. By proposition 2.2 there is a unique $p^{\prime \wedge}\langle\vec{\alpha}, \theta\rangle \in p^{\prime}-X$ for some extension type X , such that $p^{\prime}\left\langle\langle\vec{\alpha}, \theta\rangle \leq^{*} q\right.$. X, p^{\prime} are as wanted:
By the definition of p^{\prime} it follows that $\vec{\alpha} \in B\left(p^{\prime}, X \backslash\left\langle x_{m c}\right\rangle\right)$ and $\theta \in B_{X}(\vec{\alpha})$. Since $q \Vdash \underset{\sim}{x}=\stackrel{\vee}{\delta}$, we have that $F_{X}(\vec{\alpha})=0$. Fix $\left\langle\overrightarrow{\alpha^{\prime}}, \theta^{\prime}\right\rangle$ of type X. $\overrightarrow{\alpha^{\prime}}$ and $\vec{\alpha}$ belong to the same homogeneous set, thus $F\left(\overrightarrow{\alpha^{\prime}}\right)=F(\vec{\alpha})=0$ and

$$
\theta^{\prime} \in B_{X}^{(0)}\left(\overrightarrow{\alpha^{\prime}}\right) \Rightarrow \exists\left(C\left(x_{i, j}\right)\right)_{i, j} \text { s.t. } p^{\prime}\left\langle\overrightarrow{\alpha^{\prime}}, \theta^{\prime},\left(C\left(x_{i, j}\right)\right)_{i, j}\right\rangle \| \underset{\sim}{x}
$$

For every $\vec{\alpha} \in B\left(p^{\prime}, X\right)$, fix some $\left(C_{i, j}(\vec{\alpha})\right)_{\substack{i \leq n+1 \\ j \leq l_{i+1}}}$ such that

$$
p^{\prime}\left\langle\vec{\alpha},\left(C_{i, j}(\vec{\alpha})\right)_{\substack{i \leq n+1 \\ j \leq l_{i}+1}}\right\rangle \| \underset{\sim}{x}
$$

It suffices to show that we can find $p^{\prime} \leq^{*} p^{*}$ such that for every $\vec{\alpha} \in B\left(p^{*}, X\right)$

$$
B\left(t_{i}^{*}\right) \cap\left(\alpha_{s}, \alpha_{i, j}\right) \subseteq C_{i, j}(\vec{\alpha}), \quad 1 \leq i \leq n+1,1 \leq j \leq l_{i}+1
$$

Where α_{s} is the predecessor of $\alpha_{i, j}$ in $\vec{\alpha}$. In order to do that, define $p^{\prime} \leq^{*} p_{i, j} i \leq n+1, j \leq$ $l_{i}+1$ then $p^{*} \geq^{*} p_{i, j}$ will be as wanted. Define $p_{i, j}$ as follows:
Fix $\vec{\beta} \in B\left(p^{\prime},\left\langle x_{1,1}, \ldots, x_{i, j}\right\rangle\right)$, by lemma 2.3 , the function

$$
C_{i, j}(\vec{\beta}, *): B\left(p^{\prime}, X \backslash\left\langle x_{1,1}, \ldots, x_{i, j}\right\rangle\right) \rightarrow P\left(\beta_{i, j}\right)
$$

has homogeneous sets $B^{*}\left(\vec{\beta}, x_{r, s}\right) \subseteq B\left(p^{\prime}, x_{r, s}\right)$ for $x_{r, s} \in X \backslash\left\langle x_{1,1}, \ldots, x_{i, j}\right\rangle$. Denote the constant value by $C_{i, j}^{*}(\vec{\beta})$. Define

$$
B^{*}\left(t_{r}, x_{r, s}\right)=\underset{\vec{\beta} \in B\left(p^{\prime},\left\langle x_{1,1}, \ldots, x_{i, j}\right\rangle\right)}{\Delta} B^{*}\left(\vec{\beta}, x_{r, s}\right), \quad x_{r, s} \in X \backslash\left\langle x_{1,1}, \ldots, x_{i, j}\right\rangle
$$

Next, fix $\alpha \in B\left(t_{i}^{\prime}, x_{i, j}\right)$ and let

$$
C_{i, j}^{*}(\alpha)=\underset{\alpha^{\prime} \in B\left(p^{\prime},\left\langle x_{1,1}, \ldots, x_{i, j-1}\right\rangle\right)}{\Delta} C_{i, j}^{*}\left(\overrightarrow{\alpha^{\prime}}, \alpha\right)
$$

Thus $C_{i, j}^{*}(\alpha) \subseteq \alpha$. Moreover, $\kappa\left(t_{i}\right)$ is in particular an ineffable cardinal and therefore there are $B^{*}\left(t_{i}, x_{i, j}\right) \subseteq B\left(t_{i}^{\prime}, x_{i, j}\right)$ and $C_{i, j}^{*}$ such that

$$
\forall \alpha \in B^{*}\left(t_{i}, x_{i, j}\right) \quad C_{i, j}^{*} \cap \alpha=C_{i, j}^{*}(\alpha)
$$

By coherency, $C_{i, j}^{*} \in \bigcap U\left(t_{i}, \xi\right)$. Finally, define $p_{i, j}=\left\langle t_{1}^{(i, j)}, \ldots, t_{n}^{(i, j)}, t_{n+1}^{(i, j)}\right\rangle$

$$
B\left(t_{i}^{(i, j)}\right)=B^{*}\left(t_{i}\right) \cap\left(\bigcap_{j} C_{i, j}^{*}\right) \quad 1 \leq i \leq n+1
$$

To see that p^{*} is as wanted, let $\vec{\alpha} \in B\left(p^{*}, X\right)$ and fix any i, j. Then $\vec{\alpha} \in B\left(p_{i, j}, X\right)$ and $\alpha_{i, j} \in B^{*}\left(t_{i}, x_{i, j}\right)$. Thus

$$
B\left(t_{i}^{*}\right) \cap\left(\alpha_{s}, \alpha_{i, j}\right) \subseteq C_{i, j}^{*} \cap \alpha_{i, j} \backslash \alpha_{s}=C_{i, j}^{*}\left(\alpha_{i, j}\right) \backslash \alpha_{s} \subseteq C_{i, j}^{*}\left(\alpha_{1,1}, \ldots, \alpha_{i, j}\right)=C_{i, j}(\vec{\alpha})
$$

Lemma 3.5 Let G be $\mathbb{M}[\vec{U}]$-generic and $A \in V[G]$ be any set of ordinals, such that $|A|<\delta_{0}$. Then there is $C^{\prime} \subseteq C_{G}$ such that $V[A]=V\left[C^{\prime}\right]$.
proof: Let $A=\left\langle a_{\xi} \mid \xi<\delta\right\rangle \in V[G]$, where $\delta<\min \left(\nu \mid 0<o^{\vec{U}}(\nu)\right)$ and $\underset{\sim}{A}=\left\langle a_{\sim} \mid \xi<\delta\right\rangle$ be a name in G for $\left\langle a_{\xi} \mid \xi<\delta\right\rangle$. Let $q \in G$ such that $q \Vdash \underset{\sim}{A} \subseteq O r d$. We proceed by a density argument, fix $q \leq p \in \mathbb{M}[\vec{U}]$. By lemma 3.5, for each $\xi<\delta$ there exists $X(\xi)$ and $p \leq^{*} p_{\xi}^{*}$ satisfying $(*)$. By $\delta^{+}-_{\leq *}$ closure above p we have $p^{*} \in \mathbb{M}[\vec{U}]$ such that $\forall \xi<\delta p_{\xi}^{*} \leq p^{*}$. For each ξ, define $F_{\xi}: B\left(p^{*}, X(\xi)\right) \longrightarrow \kappa$

$$
F_{\xi}(\vec{\alpha})=\gamma \text { for the unique } \gamma \text { such that } p^{* \frown}\langle\vec{\alpha}\rangle \Vdash \underset{\sim}{a_{\xi}}=\stackrel{\vee}{\gamma} \text {. }
$$

Using lemma 2.4, we obtain for every $\xi<\delta$ a set of important coordinates

$$
I_{\xi} \subseteq\left\{\langle i, j\rangle \mid 1 \leq i \leq n+1,1 \leq j \leq l_{i}\right\}
$$

Example: Assume $o^{\vec{U}}(k)=3, C_{G}=\left\langle C_{G}(\alpha) \mid \alpha<\omega^{3}\right\rangle$.

$$
a_{0}=C_{G}(80), a_{1}=C_{G}(\omega+2)+C_{G}(3), a_{2}=C_{G}\left(\omega^{2} \cdot 2+\omega+1\right)
$$

and

$$
p=\langle\nu_{0},\left\langle\nu_{\omega}, B\left(\nu_{\omega}, 0\right)\right\rangle,\langle\kappa, \underbrace{B(\kappa, 0) \cup B(\kappa, 1) \cup B(\kappa, 2)}_{B(\kappa)}\rangle\rangle
$$

We use as index the coordinate in the final sequence to improve clarity. To determine a_{0}, unveil the first 80 elements of the Magidor sequence i.e. any element of the form

$$
p_{0}=\left\langle\nu_{0}, \nu_{1}, \ldots, \nu_{80},\left\langle\nu_{\omega}, B\left(\nu_{\omega}, 0\right) \backslash \nu_{80}+1\right\rangle,\langle\kappa, B(\kappa)\rangle\right\rangle
$$

will decide the value of a_{0}. Thus the extension type $\mathrm{X}(0)$ is

$$
X(0)=\langle\langle\underbrace{0, \ldots, 0}_{80 \text { times }}\rangle,\langle \rangle\rangle
$$

The important coordinates to decide the value of a_{0} is only the 80 th coordinate and it is easily seen to be one to one modulo the irrelevant coordinates. For a_{1} the form is

$$
p_{1}=\left\langle\nu_{0}, \nu_{1}, \nu_{2}, \nu_{3},\left\langle\nu_{\omega}, B\left(\nu_{\omega}, 0\right) \backslash \nu_{3}+1\right\rangle, \nu_{\omega+1}, \nu_{\omega+2},\left\langle\kappa, B(\kappa) \backslash\left(\nu_{\omega+2}+1\right)\right\rangle\right\rangle
$$

The extension type is

$$
X(1)=\langle\langle 0,0,0\rangle,\langle 0,0\rangle\rangle
$$

The important coordinates are the 3 rd and the 5 th. For a_{2} we have

$$
\begin{gathered}
p_{2}=\left\langle\nu_{0},\left\langle\nu_{\omega}, B\left(\nu_{\omega}, 0\right)\right\rangle,\left\langle\nu_{\omega^{2}}, B\left(\nu_{\omega^{2}}\right)\right\rangle,\left\langle\nu_{\omega^{2} \cdot 2}, B\left(\nu_{\omega^{2} \cdot 2}\right)\right\rangle,\left\langle\nu_{\omega^{2} \cdot 2+\omega}, B\left(\nu_{\omega^{2} \cdot 2+\omega}\right)\right\rangle,\left\langle\kappa, B(\kappa) \backslash \nu_{\omega^{2} \cdot 2+\omega}\right\rangle\right\rangle \\
X(2)=\langle\langle \rangle,\langle 2,2,1\rangle\rangle
\end{gathered}
$$

Back to the proof, since p was generic, there is $\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle=p^{\star} \in G$ with such functions. Find $D_{\xi} \subseteq C_{G}$ such that

$$
D_{\xi} \in B\left(p^{\star}, X_{\xi}\right)
$$

D_{ξ} exists by proposition 1.4 and $p^{\star} \in G$. Since $V[G] \models\left(a_{\mathcal{\sim}}\right)_{G}=a_{\xi}$ we have

$$
\left.p^{\star} \frown D_{\xi}\right\rangle \Vdash \underset{\sim}{a_{\xi}}=\stackrel{\vee}{a_{\xi}} \Rightarrow F_{\xi}\left(D_{\xi}\right)=a_{\xi}
$$

Set $C_{\xi}=D_{\xi} \upharpoonright I_{\xi}$ and $C^{\prime}=\bigcup_{\xi<\delta} C_{\xi}$. Let us show that $V\left[\left\langle a_{\xi} \mid \xi<\delta\right\rangle\right]=V\left[C^{\prime}\right]$:
In $V\left[C^{\prime}\right]$, fix some enumeration of C^{\prime}. The sequence $\left\langle C_{\xi} \mid \xi<\delta\right\rangle$ can be extracted from C^{\prime} using the sequence $\left\langle\operatorname{Index}\left(C_{\xi}, C^{\prime}\right) \mid \xi<\delta\right\rangle \in V\left(\operatorname{Index}\left(C_{\xi}, C^{\prime}\right) \subseteq \operatorname{otp}\left(C_{G}\right)\right)$. For every $\xi<\delta$ find

$$
D_{\xi}^{\prime} \in B\left(p^{\star}, X_{\xi}\right) \text { such that } D_{\xi}^{\prime} \upharpoonright I_{\xi}=C_{\xi}
$$

Such D_{ξ}^{\prime} exists as D_{ξ} witnesses (the sequence $\left\langle D_{\xi} \mid \xi<\delta\right\rangle$ may not be in $V\left[C^{\prime}\right]$). Since $D_{\xi}^{\prime} \sim_{I_{\xi}} D_{\xi}$ one sees that

$$
F_{\xi}\left(D_{\xi}^{\prime}\right)=F_{\xi}\left(D_{\xi}\right)=a_{\xi}
$$

hence $\left\langle a_{\xi} \mid \xi<\delta\right\rangle=\left\langle F_{\xi}\left(D_{\xi}^{\prime}\right) \mid \xi<\delta\right\rangle \in V\left[C^{\prime}\right]$.
In the other direction, Given $\left\langle a_{\xi} \mid \xi<\delta\right\rangle, \forall \xi<\delta$ pick $D_{\xi}^{\prime} \in F_{\xi}^{-1}\left(a_{\xi}\right)\left(F_{\xi}^{-1}\left(a_{\xi}\right) \neq \emptyset\right.$ follows from the fact that $D_{\xi} \in \operatorname{dom}\left(F_{\xi}\right)$ and $\left.F_{\xi}\left(D_{\xi}\right)=a_{\xi}\right)$. Since F_{ξ} is 1-1 modulo I_{ξ} and $F_{\xi}\left(D_{\xi}\right)=F_{\xi}\left(D_{\xi}^{\prime}\right)$ we have

$$
D_{\xi} \sim_{I_{\xi}} D_{\xi}^{\prime} \text { and } C_{\xi}=D_{\xi} \upharpoonright I_{\xi}=D_{\xi}^{\prime} \upharpoonright I_{\xi}
$$

Hence

$$
\left\langle C_{\xi} \mid \xi<\delta\right\rangle=\left\langle D_{\xi}^{\prime} \upharpoonright I_{\xi} \mid \xi<\delta\right\rangle \in V\left[\left\langle a_{\xi} \mid \xi<\delta\right\rangle\right] \text { and } C^{\prime} \in V\left[\left\langle a_{\xi} \mid \xi<\delta\right\rangle\right] .
$$

We shall proceed by induction on $\sup (A)$ for a recent set A. As we have seen in the discussion following Theorem 3.3, if $A \subseteq \kappa$ is recent then $\sup (A)=\kappa$. For such A, the next lemma gives a sufficient conditions.

Lemma 3.6 Let $A \in V[G], \sup (A)=\kappa$. Assume that $\exists C^{*} \subseteq C_{G}$ such that

1. $C^{*} \in V[A]$ and $\forall \alpha<\kappa A \cap \alpha \in V\left[C^{*}\right]$
2. $c f^{V[A]}(\kappa)<\delta_{0}$

Then $\exists C^{\prime} \subseteq C_{G}$ such that $V[A]=V\left[C^{\prime}\right]$.

Proof: Let $c f^{V[A]}(\kappa)=\eta$ and $\left\langle\gamma_{\xi} \mid \xi<\eta\right\rangle \in V[A]$ be a cofinal sequence in κ. Work in $V[A]$, pick an enumerations of $P\left(\gamma_{\xi}\right)=\left\langle X_{\xi, i} \mid i<2^{\gamma_{\xi}}\right\rangle \in V\left[C^{*}\right]$. Since $A \cap \gamma_{\xi} \in V\left[C^{*}\right]$, there exists $i_{\xi}<2^{\gamma_{\xi}}$ such that $A \cap \gamma_{\xi}=X_{\xi, i_{\xi}}$. The sequences

$$
C^{*},\left\langle i_{\xi} \mid \xi<\eta\right\rangle, \quad\left\langle\gamma_{\xi} \mid \xi<\eta\right\rangle
$$

can be coded in $V[A]$ to a sequence $\left\langle x_{\alpha} \mid \alpha<\eta\right\rangle$. By lemma 3.5, $\exists C^{\prime} \subseteq C_{G}$ such that $V\left[\left\langle x_{\alpha} \mid \alpha<\eta\right\rangle\right]=V\left[C^{\prime}\right]$. To see that $V[A]=V\left[\left\langle x_{\alpha} \mid \alpha<\delta\right\rangle\right]: V[A] \supseteq V\left[\left\langle x_{\alpha} \mid \alpha<\eta\right\rangle\right]$ is trivial and $A=\bigcup_{\xi<\eta} X_{\xi, i_{\xi}} \in V\left[\left\langle x_{\alpha} \mid \alpha<\eta\right\rangle\right]$.

We have two sorts of A :

1. $\exists \alpha^{*}<\kappa$ such that $\forall \beta<\kappa \quad A \cap \beta \in V\left[A \cap \alpha^{*}\right]$ and we say that $A \cap \alpha$ stabilizes. An example of such A can be found in Prikry forcing where A is simply the Prikry sequence ($\alpha^{*}=0$).
2. For all $\alpha<\kappa$ there exists $\beta<\kappa$ such that $V[A \cap \alpha] \subsetneq V[A \cap \beta]$ as example we can take Magidor forcing with $o^{\vec{U}}(\kappa)=2$ and A can be the Magidor sequence $A=\left\langle\kappa_{\alpha} \mid \alpha<\omega^{2}\right\rangle$.

We shall first deal with A 's such that $A \cap \alpha$ does not stabilize.

Lemma 3.7 Assume that $A \cap \alpha$ does not stabilize, then there exists $C^{\prime} \subseteq C_{G}$ such that $V[A]=V\left[C^{\prime}\right]$.

Proof: Work in $V[A]$, define the sequence $\left\langle\alpha_{\xi} \mid \xi<\theta\right\rangle$:

$$
\alpha_{0}=\min (\alpha \mid V[A \cap \alpha] \supsetneq V)
$$

Assume that $\left\langle\alpha_{\xi} \mid \xi<\lambda\right\rangle$ has been defined and for every $\xi, \alpha_{\xi}<\kappa$. If $\lambda=\xi+1$ then set

$$
\alpha_{\lambda}=\min \left(\alpha \mid V[A \cap \alpha] \supsetneq V\left[A \cap \alpha_{\xi}\right]\right)
$$

If the sequence $\alpha_{\lambda}=\kappa$, then α_{λ} satisfies that

$$
\forall \alpha<\kappa \quad A \cap \alpha \in V\left[A \cap \alpha_{\lambda^{*}}\right]
$$

Thus $A \cap \alpha$ stabilizes which by our assumption is a contradiction.
If λ is limit, define

$$
\alpha_{\lambda}=\sup \left(\alpha_{\xi} \mid \xi<\lambda\right)
$$

if $\alpha_{\lambda}=\kappa$ define $\theta=\lambda$ and stop. The sequence $\left\langle\alpha_{\xi} \mid \xi<\theta\right\rangle \in V[A]$ is a continues, increasing unbounded sequence in κ. Therefore, $c f^{V[A]}(\kappa)=c f(\theta)$. We shell first show that $\theta<\delta_{0}$. Work in $V[G]$, for every $\xi<\theta$ pick $C_{\xi} \subseteq C_{G}$ such that $V\left[A \cap \alpha_{\xi}\right]=V\left[C_{\xi}\right]$. This is a 1-1 function from θ to $P\left(C_{G}\right)$. The cardinal δ_{0} is still a strong limit cardinal (since there are no new bounded subsets below this cardinal and it is measurable in V). Moreover, $\lambda_{0}:=\operatorname{otp}\left(C_{G}\right)<\delta_{0}$, thus

$$
\theta \leq\left|P\left(C_{G}\right)\right|=\left|P\left(\lambda_{0}\right)\right|<\delta_{0}
$$

The only thing left to prove, is that we can find C^{*} as in Lemma 3.6. Work in $V[A]$, for every $\xi<\theta, C_{\xi} \in V[A]$ (The sequence $\left\langle C_{\xi} \mid \xi<\theta\right\rangle$ may not be in $V[A]$). C_{ξ} witnesses that

$$
\exists d_{\xi} \subseteq \kappa\left(\left|d_{\alpha}\right|<2^{\lambda_{0}} \text { and } V[A \cap \alpha]=V\left[d_{\alpha}\right]\right)
$$

So $d=\bigcup\left\{d_{\alpha_{\xi}} \mid \xi<\theta\right\} \in V[A]$ and $|d| \leq 2^{\lambda_{0}}$. Finally, by lemma 3.5, there exists $C^{*} \subseteq C_{G}$ such that $V\left[C^{*}\right]=V[d] \subseteq V[A]$ and for all $\alpha<\kappa A \cap \alpha \in V\left[C^{*}\right]$. By Lemma 3.6, the theorem holds.

For the rest of this chapter we can assume that the sequence $A \cap \alpha$ stabilizes on α^{*}. Let C^{*} be such that $V\left[A \cap \alpha^{*}\right]=V\left[C^{*}\right]$ and $\kappa^{*}=\sup \left(C^{*}\right)$ is limit in C_{G}. Notice that, $\kappa^{*}<\kappa$, this follows from the fact that $A \cap \alpha^{*} \in V\left[C_{G} \cap \alpha^{*}\right]$. Our final goal is to argue that if A is very new then κ changes cofinality in $V[A]$. To do this, consider the initial segment $C_{G} \cap \kappa^{*}$ and assume that $\kappa_{j-1} \leq \kappa^{*}<\kappa_{j}$. By lemma 3.1 we can split $\mathbb{M}[\vec{U}]$

$$
\begin{gathered}
\mathbb{M}_{\left\langle\nu_{1}, \ldots, \nu_{i}, k^{*}\right.}[\vec{U}] \times\left(\mathbb{M}_{\left\langle k_{j}, \ldots, \kappa_{2}\right\rangle}[\vec{U}]\right)_{>\kappa^{*}} \\
\left.\mathbb{M}_{\leq \kappa^{*}}=\mathbb{M}_{\left\langle\nu_{1}, \ldots, \nu_{i}, \kappa^{*}\right.}\right\rangle[\vec{U}], \mathbb{M}_{>\kappa^{*}}[\vec{U}]=\left(\mathbb{M}_{\left\langle\kappa_{j}, \ldots, \ldots\right\rangle} \mid[\vec{U}]\right)_{>\kappa^{*}}
\end{gathered}
$$

such that C_{G} is generic for $\mathbb{M}_{\leq \kappa^{*}}[\vec{U}] \times \mathbb{M}_{>\kappa^{*}}[\vec{U}]$ and $C_{G} \cap \kappa^{*}$ is generic for $\mathbb{M}_{\leq \kappa^{*}}[\vec{U}]$. As we will see in the next chapter, there is a natural projection of $\mathbb{M}_{\leq \kappa^{*}}[\vec{U}]$ onto some forcing \mathbb{P} such that $V\left[C^{*}\right]=V\left[G^{*}\right]$ for some generic G^{*} of \mathbb{P}. Recall that if $\pi: \mathbb{M}_{\leq \kappa^{*}}[\vec{U}] \rightarrow \mathbb{P}$ is the projection, then

$$
\mathbb{M}_{\leq \kappa^{*}}[\vec{U}] / G^{*}=\pi^{-1}\left(G^{*}\right)
$$

In $V\left[G^{*}\right]$ define $\mathbb{Q}=\mathbb{M}_{\leq \kappa^{*}}[\vec{U}] / C^{*} \subseteq \mathbb{M}_{\leq \kappa^{*}}[\vec{U}]$. It is well known that $C_{G} \cap \kappa^{*}$ is generic for \mathbb{Q} above $V\left[C^{*}\right]$ and obviously $V\left[C^{*}\right]\left[C_{G} \cap \kappa^{*}\right]=V\left[C_{G} \cap \kappa^{*}\right]$. The reader can refer to chapter 4 to see a formal development of \mathbb{Q}, though in this chapter we will only use the existence of such a forcing and the fact that the projection depends only on the part below κ^{*}, therefore \mathbb{Q} is of small cardinality. The forcing $\mathbb{M}_{>\kappa^{*}}[\vec{U}]$ has all good properties of $\mathbb{M}[\vec{U}]$ (and more) since in $V\left[C^{*}\right]$ all measurables in \vec{U} above κ^{*} are unaffected by the existence of C^{*}. In conclusion, we have managed to find a forcing $\mathbb{Q} \times \mathbb{M}_{>\kappa^{*}}[\vec{U}] \in V\left[C^{*}\right]$ such that $V[G]$ is one of it's generic extensions and $\forall \alpha<\kappa A \cap \alpha \in V\left[C^{*}\right]$.

Work in $V\left[C^{*}\right]$, let $\underset{\sim}{A}$ be a name for A in $\mathbb{Q} \times \mathbb{M}_{>\kappa^{*}}[\vec{U}] \in V\left[C^{*}\right]$. By our assumption on C^{*}, we can find $\langle q, p\rangle \in G$ such that $\langle q, p\rangle \Vdash \forall \alpha<\kappa \underset{\sim}{A} \cap \alpha$ is old (where old means in
$\left.V\left[C^{*}\right]\right)$. Formally, the next argument is a density argument above $\langle q, p\rangle$. Nevertheless, in order to simplify notation, assume that $\langle q, p\rangle=0_{Q \times \mathbb{M}[\vec{U}]_{>\kappa^{*}}}$. Lemmas 3.8-3.9 prove that a certain property holds densely often in $\mathbb{M}[\vec{U}]_{>\kappa^{*}}$. In order to Make these lemmas more clear, we will work with an ongoing parallel example.

$$
A=\left\{C_{G}(2 n) \mid n \leq \omega\right\} \cup\left\{C_{G}(\omega \cdot n)+C_{G}(n) \mid 0<n<\omega\right\}
$$

Therefore

$$
C^{*}=\left\{C_{G}(2 n) \mid n<\omega\right\}, \kappa^{*}=C_{G}(\omega)
$$

The forcing \mathbb{Q} can be thought of as adding the missing coordinates to $C_{G} \upharpoonright \omega$ i.e. the odd coordinates. Let

$$
p=\langle\underbrace{\left\langle\nu_{\omega \cdot 2}, B_{\omega \cdot 2}\right\rangle}_{t_{1}}, \underbrace{\nu_{\omega \cdot 2+1}}_{t_{2}}, \underbrace{\langle\kappa, B(\kappa)\rangle}_{t_{3}}\rangle \in \mathbb{M}[\vec{U}]_{>\kappa^{*}}
$$

Lemma 3.8 For every $p \in \mathbb{M}[\vec{U}]_{>\kappa^{*}}$ there exists $p \leq^{*} p^{*}$ such that for every extension X of p^{*} and $q \in \mathbb{Q}:\left(\right.$ Recall that $\left.\vec{\alpha}=\left\langle\alpha_{11}, \ldots, \alpha_{m c}\right\rangle\right)$

$$
\begin{equation*}
\left.\left(\forall p^{*} \subset \vec{\alpha} \in p^{*} \mathcal{} X\left\langle q, p^{*} \subset \vec{\alpha}\right\rangle \| \underset{\sim}{A} \cap \alpha_{m c}=: a(q, \vec{\alpha})\right) \text { (a propery of } q, X\right) \tag{*}
\end{equation*}
$$

Example: Let

$$
q=\left\langle\nu_{1}, \nu_{3},\left\langle\kappa^{*}, B\left(\kappa^{*}\right)\right\rangle\right\rangle, X=\langle\underbrace{\langle 0,0\rangle}_{X_{1}}, \underbrace{\langle \rangle}_{X_{2}}, \underbrace{\langle 1,0\rangle}_{X_{3}}\rangle \text {-extension of } p
$$

Let

$$
\vec{\alpha}=\left\langle\left\langle\alpha_{\omega+1}, \alpha_{\omega+2}\right\rangle,\langle \rangle,\left\langle\alpha_{\omega \cdot 3}, \alpha_{\omega \cdot 3+1}\right\rangle\right\rangle \in B(p, X)
$$

If H is any generic with $\left\langle q, p^{\complement}\langle\vec{\alpha}\rangle\right\rangle \in H$ then all the elements in q and $p^{\complement}\langle\vec{\alpha}\rangle$ have there coordinates in C_{H} as specified above, thus

$$
=\left\{C_{H}(2 n) \mid n \leq \omega\right\} \stackrel{(\underset{\sim}{\sim})_{H} \cap \alpha_{m c}=\left(\underset{\sim}{\sim}\{)_{H} \cap \alpha_{\omega \cdot 3+1}=\right.}{\left.(\omega \cdot n)+C_{H}(n) \mid 0<n<\omega\right\} \cap C_{H}(\omega \cdot 3+1)}
$$

If $\alpha_{\omega \cdot 3}+\nu_{3} \geq \alpha_{\omega \cdot 3+1}$ then

$$
a(q, \vec{\alpha})=(\underset{\sim}{A})_{H} \cap \alpha_{m c}=C_{H} \upharpoonright_{\text {even }} \cup\left\{C_{H}(\omega), C_{H}(\omega)+\nu_{1}, \nu_{\omega \cdot 2}+C_{H}(2)\right\}
$$

If $\alpha_{\omega \cdot 3}+\nu_{3}<\alpha_{\omega \cdot 3+1}$ then

$$
a(q, \vec{\alpha})=(\underset{\sim}{A})_{H} \cap \alpha_{m c}=C_{H} \upharpoonright_{\text {even }} \cup\left\{C_{H}(\omega), C_{H}(\omega)+\nu_{1}, \nu_{\omega \cdot 2}+C_{H}(2), \alpha_{\omega \cdot 3}+\nu_{3}\right\}
$$

Anyway, we have that $a(q, \vec{\alpha}) \in V\left[C^{*}\right]$ and therefore $\left\langle q, p^{\complement} \vec{\alpha}\right\rangle \| A \cap \alpha_{m c}$ for every extension $\vec{\alpha}$ of type X. Namely, q, X satisfy $\left({ }^{*}\right)$.

Proof of 3.8: Let $p=\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle$. For every

$$
X=\left\langle X_{1}, \ldots, X_{n+1}\right\rangle \text { - extension of } p \quad, q \in \mathbb{Q}, \vec{\alpha} \in B\left(p, X \backslash\left\langle x_{m c}\right\rangle\right)
$$

Recall that $l_{X}=\min \left(i \mid X_{i} \neq \emptyset\right)$ and define $B_{(0)}^{X}(q, \vec{\alpha})$ to be the set

$$
\left\{\theta \in B\left(t_{l_{X}}, x_{m c}\right) \mid \exists a \exists\left(C\left(x_{i, j}\right)\right)_{x_{i, j}}\left\langle q, p^{\complement}\left\langle\vec{\alpha}, \theta, C\left(x_{i, j}\right)\right\rangle \Vdash \underset{\sim}{A} \cap \theta=a\right\}\right.
$$

Also let $B_{(1)}^{X}(q, \vec{\alpha})=B\left(t_{l_{X}}, x_{m c}\right) \backslash B_{(0)}^{X}(q, \vec{\alpha})$. One and only one of $B_{(1)}^{X}(q, \vec{\alpha}), B_{(0)}^{X}(q, \vec{\alpha})$ is in $U\left(t_{l_{X}}, x_{m c}\right)$. Define $B^{X}(q, \vec{\alpha})$ and $F_{q}^{X}(\vec{\alpha}) \in\{0,1\}$ such that

$$
B^{X}(q, \vec{\alpha})=B_{\left(F_{q}^{X}(\vec{\alpha})\right)}^{X}(q, \vec{\alpha}) \in U\left(t_{l_{X}}, x_{m c}\right)
$$

Since $|\mathbb{Q}| \leq 2^{\kappa^{*}}<\kappa\left(t_{l_{X}}\right)$ we have $B^{X}(\vec{\alpha})=\bigcap_{q} B^{X}(q, \vec{\alpha}) \in U\left(t_{l_{X}}, x_{m c}\right)$. Define

$$
B^{X}\left(t_{l_{X}}, x_{m c}\right)=\Delta_{\vec{\alpha}} B^{X}(\vec{\alpha}) \in U\left(t_{l_{X}}, x_{m c}\right)
$$

Use lemma 2.3 to find $B^{X}\left(t_{i}, x_{i, j}\right) \subseteq B\left(t_{i}, x_{i, j}\right), B^{X}\left(t_{i}, x_{i, j}\right) \in U\left(t_{i}, x_{i, j}\right)$ homogeneous for every F_{q}^{X}. As before, if $\lambda \notin X_{i}$ set $B^{X}\left(t_{i}, \lambda\right)=B\left(t_{i}, \lambda\right)$. Let

$$
p^{*}=p^{\complement}\left\langle\left(B^{*}\left(t_{i}\right)\right)_{i=1}^{n+1}\right\rangle, B^{*}\left(t_{i}, \lambda\right)=\bigcap_{X} B^{X}\left(t_{i}, \lambda\right)
$$

So far what we have managed to do is the following: Assuming they exist, let $q, \vec{\alpha},\left(C\left(x_{i, j}\right)\right)_{i, j}, a$ be such that $\left\langle q, p^{* \frown}\left\langle\vec{\alpha},\left(C\left(x_{i, j}\right)\right)_{i, j}\right\rangle\right\rangle \Vdash \underset{\sim}{A} \cap \alpha_{m c}=a$. Since $\alpha_{m c} \in B^{X}\left(q, \vec{\alpha} \backslash\left\langle\alpha_{m c}\right\rangle\right)$ we most have that $F_{q}^{X}\left(\vec{\alpha} \backslash\left\langle\alpha_{m c}\right\rangle\right)=0$. Let $\vec{\alpha}^{\prime}$ be another extension of type X, then $\vec{\alpha}^{\prime} \backslash\left\langle\alpha_{m c}^{\prime}\right\rangle$ and $\vec{\alpha} \backslash\left\langle\alpha_{m c}\right\rangle$ belong to the same homogeneous set, thus

$$
F_{q}^{X}\left(\vec{\alpha}^{\prime} \backslash\left\langle\alpha_{m c}^{\prime}\right\rangle\right)=F_{q}^{X}\left(\vec{\alpha} \backslash\left\langle\alpha_{m c}\right\rangle\right)=0
$$

By the definition of $F_{q}^{X}\left(\vec{\alpha}^{\prime} \backslash\left\langle\alpha_{m c}^{\prime}\right\rangle\right)$ it follows that $\alpha_{m c}^{\prime} \in B_{(0)}^{X}\left(q, \vec{\alpha}^{\prime} \backslash\left\langle\alpha_{m c}^{\prime}\right\rangle\right)$ as wanted. For every $\vec{\alpha} \in B\left(p^{\prime}, X\right)$ and $q \in \mathbb{Q}$ fix some $\left(C_{i, j}(q, \vec{\alpha})\right)_{\substack{i \leq n+1 \\ j \leq l_{i}+1}}$ such that

$$
\left., p^{*}\left\langle\vec{\alpha},\left(C_{i, j}(q, \vec{\alpha})\right)_{\substack{i \leq n+1 \\ j \leq l_{i}+1}}\right\rangle\right\rangle \| \sim \alpha_{m c}
$$

Prove that we can extend p^{*} to $p^{* *}$ such that for all $1 \leq i \leq n+1,1 \leq j \leq l_{i}+1$ and $\vec{\alpha} \in B\left(p^{*}, X\right)$,

$$
B\left(t_{i}^{* *}\right) \cap\left(\alpha_{s}, \alpha_{i, j}\right) \subseteq C_{i, j}(\vec{\alpha})
$$

Where α_{s} is the predecessor of $\alpha_{i, j}$ in $\vec{\alpha}$. In order to do that, fix i, j and stabilize $C_{i, j}(\vec{\alpha})$ as follows:
Fix $\vec{\beta} \in B\left(p^{*},\left\langle x_{1,1}, \ldots, x_{i, j}\right\rangle\right)$ By lemma 2.3, the function

$$
C_{i, j}(q, \vec{\beta}, *): B\left(p^{*}, X \backslash\left\langle x_{1,1}, \ldots, x_{i, j}\right\rangle\right) \rightarrow P\left(\beta_{i, j}\right)
$$

has homogeneous sets $B^{\prime}\left(\vec{\beta}, x_{r, s}, q\right) \subseteq B\left(t_{r}^{*}, x_{r, s}\right)$ for $x_{r, s} \in X \backslash\left\langle x_{1,1}, \ldots, x_{i, j}\right\rangle$. Denote the constant value by $C_{i, j}^{*}(q, \vec{\beta})$. Define

$$
B^{\prime}\left(t_{r}^{*}, x_{r, s}\right)=\underset{\substack{\vec{\beta} \in B\left(p^{*},\left\langle x_{1,1,}, \ldots, x_{i, j}\right\rangle\right) \\ q \in \mathbb{Q}}}{\Delta} B^{\prime}\left(\vec{\beta}, x_{r, s}, q\right), \quad x_{r, s} \in X \backslash\left\langle x_{1,1}, \ldots, x_{i, j}\right\rangle
$$

Next, fix $\alpha \in B\left(t_{i}^{*}, x_{i, j}\right)$ and let

$$
C_{i, j}^{*}(\alpha)=\underset{\substack{\alpha^{\prime} \in B\left(p^{*},\left\langle x_{1,1}, \ldots, x_{i, j-1}\right\rangle\right) \\ q \in \mathbb{Q}}}{\Delta} C_{i, j}^{*}\left(q, \overrightarrow{\alpha^{\prime}}, \alpha\right)
$$

Thus $C_{i, j}^{*}(\alpha) \subseteq \alpha . \kappa\left(t_{i}\right)$ is ineffable thus, there is $B^{\prime}\left(t_{i}^{*}, x_{i, j}\right) \subseteq B\left(t_{i}^{*}, x_{i, j}\right)$ and $C_{i, j}^{*}$ such that for every $\alpha \in B^{\prime}\left(t_{i}^{*}, x_{i, j}\right), C_{i, j}^{*} \cap \alpha=C_{i, j}^{*}(\alpha)$. By coherency, $C_{i, j}^{*} \in \bigcap U\left(t_{i}, \xi\right)$. Finally, define $p^{* *}=\left\langle t_{1}^{* *}, \ldots, t_{n}^{* *}, t_{n+1}^{* *}\right\rangle$

$$
B\left(t_{i}^{* *}\right)=B^{\prime}\left(t_{i}^{*}\right) \cap\left(\bigcap_{j} C_{i, j}^{*}\right) \quad 1 \leq i \leq n+1
$$

To see that $p^{* *}$ is as wanted, let $\vec{\alpha} \in B\left(p^{* *}, X\right)$ and fix any i, j. Then $\vec{\alpha} \in B\left(p^{* *}, X\right)$ and $\alpha_{i, j} \in B\left(t_{i}^{* *}, x_{i, j}\right)$ thus for any $i . j$

$$
B\left(t_{i}^{* *}\right) \cap\left(\alpha_{s}, \alpha_{i, j}\right) \subseteq C_{i, j}^{*} \cap \alpha_{i, j} \backslash \alpha_{s}=C_{i, j}^{*}\left(\alpha_{i, j}\right) \backslash \alpha_{s} \subseteq C_{i, j}^{*}\left(\alpha_{1,1}, \ldots, \alpha_{i, j}\right)=C_{i, j}(\alpha)
$$

Lemma 3.9 Let p^{*} be as in lemma 3.8 There exist $p^{*} \leq p^{* *}$ such that for every extension X of $p^{* *}$ and $q \in \mathbb{Q}$ that satisfies $\left(^{*}\right)$ there exists sets $A(q, \vec{\alpha}) \subseteq \kappa \vec{\alpha} \in B\left(p^{* *}, X \backslash\left\langle x_{m c}\right\rangle\right)$ such that for all $\alpha \in B\left(p^{* *}, x_{m c}\right)$

$$
A(q, \vec{\alpha}) \cap \alpha=a(q, \vec{\alpha}, \alpha)
$$

Example: Recall that we have obtained the sets

$$
\begin{gathered}
a(q, \vec{\alpha})=C_{H} \Gamma_{\text {even }} \cup\left\{C_{H}(\omega), C_{H}(\omega)+\nu_{1}, \nu_{\omega \cdot 2}+C_{H}(2)\right\} \cup b(q, \vec{\alpha}) \\
b(q, \vec{\alpha})=\left\{\begin{array}{cl}
\emptyset & \alpha_{\omega \cdot 3}+\nu_{3} \geq \alpha_{m c} \\
\left\{\alpha_{\omega \cdot 3}+\nu_{3}\right\} & \alpha_{\omega \cdot 3}+\nu_{3}<\alpha_{m c}
\end{array}\right.
\end{gathered}
$$

The element $\alpha_{m c}$ is chosen from the set $B\left(t_{3}, x_{m c}\right)=B\left(t_{3}, 0\right)$, by shrinking this set, we can directly extend p to p^{*} such that for every $\vec{\alpha} \in B\left(p^{*}, X\right), \alpha_{\omega \cdot 3}+\nu_{3}<\alpha_{m c}$. Therefore,

$$
A(q, \vec{\alpha})=C_{H} \upharpoonright_{\text {even }} \cup\left\{C_{H}(\omega), C_{H}(\omega)+\nu_{1}, \nu_{\omega \cdot 2}+C_{H}(2), \alpha_{\omega \cdot 3}+\nu_{3}\right\}
$$

Proof of 3.9: Fix q, X satisfying $\left(^{*}\right)$ and $\vec{\alpha} \in B\left(p^{*}, X \backslash\left\langle x_{m c}\right\rangle\right)$, since $\kappa\left(t_{i}\right)$ is ineffable we can shrink the set $B\left(t_{l_{X}}^{*}, x_{m c}\right)$ to $B^{\prime}(q, \vec{\alpha})$ to find sets $A(q) \subseteq t_{i}$ such that

$$
\forall \alpha \in B^{\prime}(q, \vec{\alpha}) \quad A(q, \vec{\alpha}) \cap \alpha=a(q, \vec{\alpha}, \alpha)
$$

define $B_{q}\left(t_{i}^{*}, x_{m c}\right)=\underset{\vec{\alpha} \in B\left(p^{*}, X \backslash\left\langle x_{m c}\right\rangle\right)}{\Delta} B^{* *}(q, \vec{\alpha})$ intersect over all X, q and defines $p^{* *}$ as before.

Thus there exists $p_{*} \in G_{>\kappa^{*}}$ with the properties described in Lemma's 3.8-3.9. Next we would like to claim that for some sufficiently large family of $q \in \mathbb{Q}$ and extension-type X we have q, X satisfy (*).

Lemma 3.10 Let $p_{*} \in G_{>\kappa^{*}}$ be as above and let X be any extension-type of p_{*}. Then there exists a maximal antichain $Z_{X} \subseteq \mathbb{Q}$ and extension-types $X \preceq X_{q}$ for $q \in Z_{X}$, unveiling the same maximal coordinate as X such that for every $q \in Z_{X}, q, X_{q}$ satisfy (*).

Example: For our X, the correct anti chain Z_{X} is : For any possible ν_{1}, ν_{3} choose a condition $\left\langle\nu_{1}, \nu_{3},\left\langle\kappa^{*}, B^{*}\right\rangle\right\rangle \in \mathbb{Q}$. This set definitely form a maximal anti chain, and by the same method of the previous examples taking $X_{q}=X$ works. In general, if the maximal coordinate of X is some $\omega \cdot(2 n+1), Z_{X}$ will be the anti chain consisting of representative conditions for the $2 n+1$ first coordinates.

Proof: The existence of Z_{X} will follow from Zorn's Lemma and the method proving existence of X_{q} for some q. Fix any $\vec{\alpha} \in B\left(p_{*}, X\right)$, there exists a generic $H \subseteq \mathbb{Q} \times \mathbb{M}_{>\kappa^{*}}[\vec{U}]$ with $\left\langle 1_{\mathbb{Q}}, p_{*}^{\widetilde{ }} \vec{\alpha}\right\rangle \in H=H_{\leq \kappa^{*}} \times H_{>\kappa^{*}}$. Consider the decomposition of $\mathbb{M}[\vec{U}]_{>\kappa^{*}}$ above $p_{*}^{\subset} \vec{\alpha}$ induced by $\alpha_{m c}$ and let $p_{*}^{-} \vec{\alpha}=\left\langle p_{1}, p_{2}\right\rangle$, i.e. $\left\langle p_{1}, p_{2}\right\rangle \in\left(\mathbb{M}[\vec{U}]_{>\kappa^{*}}\right)_{\leq \alpha_{m c}} \times\left(\mathbb{M}[\vec{U}]_{>\kappa^{*}}\right)_{>\alpha_{m c}}$. H stays generic for the forcing $\mathbb{Q} \times\left(\mathbb{M}[\vec{U}]_{>\kappa^{*}}\right)_{\leq \alpha_{m c}} \times\left(\mathbb{M}[\vec{U}]_{>\kappa^{*}}\right)_{>\alpha_{m c}}$. Define $H_{1}=H_{\leq \kappa^{*}} \times\left(H_{>\kappa^{*}}\right)_{\leq \alpha_{m c}}$ and $H_{2}=H_{>\alpha_{m c}}$. Then $(\underset{\sim}{A})_{H_{1}} \in V\left[H_{1}\right]$ is a name of A in the forcing $\mathbb{M}[\vec{U}]_{>\alpha_{m c}}$. Above p_{2} we have sufficient closure to determine $(\underset{\sim}{A})_{H_{1}} \cap \alpha_{m c}$

$$
\exists p_{2}^{*} \geq^{*} p_{2} \text { s.t. } p_{2}^{*} \Vdash_{\mathbb{M}[\vec{U}]>\alpha_{m c}}(\underset{\sim}{A})_{H_{1}} \cap \alpha_{m c}=a
$$

for some $a \in V\left[C^{*}\right]$. Hence there exists $\left\langle 1_{\mathbb{Q}_{\leq \kappa^{*}}}, p_{1}\right\rangle \leq\left\langle q, p_{1}^{*}\right\rangle$ such that

$$
\left\langle q, p_{1}^{*}\right\rangle \Vdash_{\mathbb{Q} \times \mathbb{M}_{\leq \alpha_{m c}}[\vec{U}]} \stackrel{p}{2}_{p_{2}^{* *}}^{\Vdash_{\mathbb{M}[\vec{U}]>\alpha_{m c}} \underset{\sim}{A} \cap \alpha_{m c}=a}
$$

It is clear that $\left\langle q, p_{1}^{*}, p_{2}^{*}\right\rangle \|_{\mathbb{Q} \times \mathbb{M}_{>\kappa^{*}}[\vec{U}]} \underset{\sim}{A} \cap \alpha_{m c}$. Finally, X_{q} is simply the extension type of p_{1}^{*}. Since $p_{1}^{*} \in \mathbb{M}_{\leq \alpha_{m c}}[\vec{U}], X_{q}$ unveils the same maximal coordinate as X. By lemma 3.8, X_{q}, q satisfies ($*$).

Lemma 3.11κ changes cofinality in $V[A]$.

Proof: Let $p_{*}=\left\langle t_{1}^{*}, \ldots, t_{n}^{*}, t_{n+1}^{*}\right\rangle \in G_{>\kappa^{*}}$ be as before, $\lambda_{0}=\operatorname{otp}\left(C_{G}\right)$ and $\left\langle C_{G}(\xi) \mid \xi<\lambda_{0}\right\rangle$ be the Magidor sequence corresponding to G. Work in V[A], define a sequence $\left\langle\nu_{i}\right| \gamma\left(t_{n}^{*}, p_{*}\right) \leq$ $\left.i<\lambda_{0}\right\rangle \subset \kappa$:

$$
\nu_{\gamma\left(t_{n}^{*}, p_{*}\right)}=C_{G}\left(\gamma\left(t_{n}^{*}, p_{*}\right)\right)+1=\kappa\left(t_{n}^{*}\right)+1
$$

Assume that $\left\langle\nu_{\xi^{\prime}} \mid \xi^{\prime}<\xi<\lambda_{0}\right\rangle$ is defined such that it is increasing and $\nu_{\xi^{\prime}}<\kappa$. If ξ is limit define

$$
\nu_{\xi}=\sup \left(\nu_{\xi^{\prime}}\right)+1
$$

If $\sup \left(\nu_{\xi^{\prime}}\right)=\kappa$ we are done, since κ changes cofinality to $c f(\xi)<\lambda_{0}$ (which is actually a contradiction for regular λ_{0}). Therefore, $\nu_{\xi}<\kappa$. If $\xi=\xi^{\prime}+1$, by proposirion 3.2, there exist an extension type X_{ξ} of p_{*} unveiling ξ as maximal coordinate. By lemma 3.10 we can find Z_{ξ} and $X_{\xi} \preceq X_{q}$ unveiling ξ as maximal coordinate such that q, X_{q} satisfies $\left(^{*}\right)$. By lemma 3.9 there exists

$$
A(q, \vec{\alpha}) \text { 's for } q \in Z_{\xi} \quad \vec{\alpha} \in B\left(p^{*}, X_{q} \backslash\left\langle x_{m c}\right\rangle\right)
$$

Since $A \notin V\left[C^{*}\right], A \neq A(q, \vec{\alpha})$. Thus define $\eta(q, \vec{\alpha})=\min (A(q, \vec{\alpha}) \Delta A)+1$

$$
\beta_{\xi}=\sup \left(\eta(q, \vec{\alpha}) \mid \vec{\alpha} \in\left[\nu_{\xi^{\prime}}\right]^{<\omega} \cap B\left(p^{*}, X_{q} \backslash\left\langle x_{m c}\right\rangle\right), q \in Z_{\xi}\right)
$$

It follows that $\beta_{\xi} \leq \kappa$. Assume $\beta_{\xi}=\kappa$, then κ changes cofinality but it might be to some other cardinal larger than δ_{0}, this is not enough (actually, by Theorem 3.3 this can not happen). Continue toward a contradiction, fix an unbounded and increasing sequence $\left\langle\eta\left(q_{i}, \overrightarrow{\alpha_{i}}\right) \mid i<\theta<\kappa\right\rangle$. Notice that since $\eta\left(q_{i}, \overrightarrow{\alpha_{i}}\right)<\eta\left(q_{i+1}, \overrightarrow{\alpha_{i+1}}\right)$ it must be that $A\left(q_{i}, \overrightarrow{\alpha_{i}}\right) \neq$ $A\left(q_{i+1}, \overrightarrow{\alpha_{i+1}}\right)$ and

$$
A\left(q_{i}, \overrightarrow{\alpha_{i}}\right) \cap \eta\left(q_{i}, \overrightarrow{\alpha_{i}}\right)=A \cap \eta\left(q_{i}, \overrightarrow{\alpha_{i}}\right)=A\left(q_{i+1}, \overrightarrow{\alpha_{i+1}}\right) \cap \eta\left(q_{i}, \overrightarrow{\alpha_{i}}\right)
$$

Define $\eta_{i}=\min \left(A\left(q_{i}, \overrightarrow{\alpha_{i}}\right) \Delta A\left(q_{i+1}, \overrightarrow{\alpha_{i+1}}\right)\right) \geq \eta\left(q_{i}, \overrightarrow{\alpha_{i}}\right)$. It follows that $\left\langle\eta_{i} \mid i<\theta\right\rangle$ is a short cofinal sequence in κ. This definition is independent of A an only involve $\left\langle\left\langle q_{i}, \overrightarrow{\alpha_{i}}\right\rangle \mid i<\theta<\kappa\right\rangle$, which can be coded as a bounded sequence of κ. By the induction hypothesis there is $C^{\prime \prime} \subseteq C$, bounded in κ such that $V\left[C^{\prime \prime}\right]=V\left[\left\langle\left\langle q_{i}, \overrightarrow{\alpha_{i}}\right\rangle \mid i<\theta<\kappa\right\rangle\right]$. Define $C^{\prime}=C^{*} \cup C^{\prime \prime}$, the model $V\left[C^{\prime}\right]$ should keep κ measurable but also has the sequence $\left\langle\eta_{i} \mid i<\theta\right\rangle$, contradiction.
Therefore, $\beta_{\xi}<\kappa$, set $\nu_{\xi}=\beta_{\xi}+1$. This concludes the construction of the sequence ν_{ξ}. To see that it is indeed unbounded in κ, let us show that $C_{G}(\xi)<\nu_{\xi}$: We have $C_{G}\left(\gamma\left(t_{n}^{*}, p_{*}\right)\right)<$ $\nu_{\gamma\left(t_{n}^{*}, p_{*}\right)}$ Assume that $\left.C_{G}(i)<\nu_{i}, \gamma\left(t_{n}^{*}, p_{*}\right) \leq i<\xi\right)$. If ξ is limit then by closureness of the Magidor sequence

$$
C_{G}(\xi)=\sup \left(C_{G}(i) \mid i<\xi\right) \leq \sup \left(\nu_{i} \mid \gamma\left(t_{n}^{*}, p_{*}\right) \leq i<\xi\right)<\nu_{\xi}
$$

If $\xi=\xi^{\prime}+1$ is successor, let $\left\{q_{\xi}\right\}=Z_{\xi} \cap G_{\leq \kappa^{*}}$

$$
p_{\xi}=p_{*}^{\ulcorner }\left\langle C_{G}\left(i_{1}\right), \ldots, C_{G}\left(i_{n}\right), C_{G}(\xi)\right\rangle \in p_{*}^{\ulcorner } X_{\xi} \cap G_{>\kappa^{*}}
$$

By induction $C_{G}\left(i_{r}\right)<\nu_{\xi^{\prime}}$, therefore, $\eta\left(q_{\xi},\left\langle C_{G}\left(i_{1}\right), \ldots, C_{G}\left(i_{n}\right)\right\rangle\right)<\nu_{\xi}$. Finally, $\left\langle q_{\xi}, p_{\xi}\right\rangle \in G$, $\left\langle q_{\xi}, p_{\xi}\right\rangle \Vdash \underset{\sim}{A} \cap C_{G}(\xi)=A\left(q_{\xi},\left\langle C_{G}\left(i_{1}\right), \ldots, C_{G}\left(i_{n}\right)\right\rangle\right) \cap C_{G}(\xi)$, thus

$$
A \cap C_{G}(\xi)=A\left(q_{\xi},\left\langle C_{G}\left(i_{1}\right), \ldots, C_{G}\left(i_{n}\right)\right\rangle\right) \cap C_{G}(\xi) C_{G}(\xi) \leq \eta\left(q_{\xi},\left\langle C_{G}\left(i_{1}\right), \ldots, C_{G}\left(i_{n}\right)\right\rangle\right)<\nu_{\xi}
$$

4 The main result above κ

In order to push the induction to sets above κ we will need a projection of $\mathbb{M}[\vec{U}]$ onto some forcing that adds a subsequence of C_{G}. The majority of this chapter is the definition of this projection and some of it's properties. The induction argument will continue at lemma 4.13.

Let G be generic and C_{G} the corresponding Magidor sequence. Let $C^{*} \subseteq C_{G}$ be a subsequence and $I=\operatorname{Index}\left(C^{*}, C_{G}\right)$. Then I is a subset of λ_{0}, hence $I \in V$. Assume that $\kappa^{*}=\sup \left(C^{*}\right)$ is a limit point in C_{G} and that C^{*} is closed i.e. containing all of it's limit points below κ^{*}. As we will see in the next lemma, one can find a forcing $\mathbb{M}_{\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle}[\vec{U}]$ for which G is still generic and will be easier to project.

Proposition 4.1 Let G be $\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]$-generic and $C^{*} \subseteq C_{G}$ such that C^{*} is closed and $\kappa^{*}=\sup \left(C^{*}\right)$ is a limit point of C_{G}. Then there exists $\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle$ such that G is generic for $\mathbb{M}_{\left\langle\nu_{1}, \ldots, \nu_{m}\right\rangle}[\vec{U}]$ and for all $1 \leq i \leq m, C^{*} \cap\left(\nu_{i-1}, \nu_{i}\right)$ is either empty or a club in ν_{i}. (as usual we have the convention $\nu_{0}=0$)

Example: Assume that $\lambda_{0}=\omega_{1}+\omega^{2} \cdot 2+\omega, C^{*}$ is

$$
C_{G} \upharpoonright\left(\omega_{1}+1\right) \cup\left\{C_{G}\left(\omega_{1}+\omega+2\right), C_{G}\left(\omega_{1}+\omega+3\right)\right\} \cup\left\{C_{G}\left(\omega_{1}+\alpha\right) \mid \omega^{2} \cdot 2<\alpha<\lambda_{0}\right\}
$$

Let $\kappa_{1}<\kappa_{2}<\kappa_{3}<\kappa_{4}=\kappa$ be such that $o^{\vec{U}}\left(\kappa_{1}\right)=\omega_{1}, o^{\vec{U}}\left(\kappa_{2}\right)=o^{\vec{U}}\left(\kappa_{3}\right)=2$ and $o^{\vec{U}}(\kappa)=1$. We have

1. $\left(0, \kappa_{1}\right) \cap C^{*}=C_{G} \upharpoonright \omega_{1}$
2. $\left(\kappa_{1}, \kappa_{2}\right) \cap C^{*}=\left\{C_{G}\left(\omega_{1}+\omega+2\right), C_{G}\left(\omega_{1}+\omega+3\right)\right\}$
3. $\left(\kappa_{2}, \kappa_{3}\right) \cap C^{*}=\emptyset$
4. $\left(\kappa_{3}, \kappa_{4}\right) \cap C^{*}=\left\{C_{G}\left(\omega_{1}+\alpha\right) \mid \omega^{2} \cdot 2<\alpha<\lambda_{0}\right\}$

Then (1),(3),(4) are either empty or a club but (2) isn't. To fix this we shall simply add $\left\{C_{G}\left(\omega_{1}+\omega+2\right), C_{G}\left(\omega_{1}+\omega+3\right)\right\}$ to $\kappa_{1}<\kappa_{2}<\kappa_{3}<\kappa_{4}$.

Proof of 4.1: By induction on m, we shall define a sequence

$$
\overrightarrow{\nu_{m}}=\left\langle\nu_{1, m}, \ldots, \nu_{n_{m}, m}\right\rangle
$$

such that for every m, G is generic for $\mathbb{M}_{\overrightarrow{\nu_{m}}}[\vec{U}]$. Define $\overrightarrow{\nu_{0}}=\left\langle\kappa_{1}, \ldots, \kappa_{n}\right\rangle$. Assume that $\overrightarrow{\nu_{m}}$ is defined with G generic, if for every $1 \leq i \leq n_{m}+1$ we have $C^{*} \cap\left(\nu_{i-1, m}, \nu_{i, m}\right)$ is either empty or unbounded (and therefore a club), stabilize the sequence at m. Otherwise, let i be maximal such that $C^{*} \cap\left(\nu_{i-1, m}, \nu_{i, m}\right)$ is nonempty and bounded. Thus,

$$
\nu_{i-1, m}<\sup \left(C^{*} \cap\left(\nu_{i-1, m}, \nu_{i, m}\right)\right)<\nu_{i, m}
$$

Since C^{*} is closed, $C_{G}(\gamma)=\sup \left(C^{*} \cap\left(\nu_{i-1, m}, \nu_{i, m}\right)\right) \in C^{*}$ for some γ. As in lemma 3.1 we can find

$$
\nu_{m+1}^{\vec{m}}=\left\langle\nu_{1, m}, \ldots, \nu_{i, m}, \xi_{1}, \ldots, \xi_{k}, \nu_{i+1, m}, \ldots, \nu_{n_{m}, m}\right\rangle \subseteq C_{G}
$$

such that $C_{G}(\gamma)=\xi_{k}$ is unveiled and the forcing $\mathbb{M}_{\nu_{m^{\prime}+1}}[\vec{U}] \subseteq \mathbb{M}_{\nu_{\vec{m}}}[\vec{U}]$ is a subforcing of $\mathbb{M}_{\overrightarrow{\nu_{m}}}[\vec{U}]$ with G one of it's generic sets. It is important that the maximal ordinal in the sequence $\nu_{m+1}^{\vec{~}}$ such that $C^{*} \cap\left(\nu_{j-1, m+1}, \nu_{j, m+1}\right)$ is nonempty and bounded is strictly less than $\nu_{i, m}$. Therefore this iteration stabilizes at some $N<\omega$. Consider the forcing $\mathbb{M}_{\vec{\nu}_{N}}[\vec{U}]$, by the construction of the $\vec{\nu}_{r}$'s, we necessarily have that for every $1 \leq i \leq n_{N}+1 C^{*} \cap\left(\nu_{i-1, N}, \nu_{i, N}\right)$ is either empty or unbounded (Since $\vec{\nu}_{N+1}=\vec{\nu}_{N}$).

By this proposition, we can assume that $\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]$ and C^{*} satisfy the property of 4.1. If one wishes to define a projection of $\mathbb{M}[\vec{U}]$ onto some forcing $\prod_{i=1}^{n} \mathbb{P}_{i}$, the decomposition

$$
\mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]=\prod_{i=1}^{n}\left(\mathbb{M}_{\kappa_{i}}\right)_{>\kappa_{i-1}}
$$

permits us to derive a projection $\pi: \mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}] \rightarrow \prod_{i=1}^{n} \mathbb{P}_{i}$ through projections

$$
\pi_{i}:\left(\mathbb{M}_{\kappa_{i}}\right)_{>\kappa_{i-1}} \rightarrow \mathbb{P}_{i} \quad(1 \leq i \leq n)
$$

First, if $C^{*} \cap\left(\kappa_{i-1}, \kappa_{i}\right)$ is empty, the projection is going to be to the trivial forcing. Otherwise, $C^{*} \cap\left(\kappa_{i-1}, \kappa_{i}\right)$ is a club. In order to simplify notation, we will assume that $\left(\mathbb{M}_{\kappa_{i}}\right)_{>\kappa_{i-1}}=$ $\mathbb{M}[\vec{U}]_{\langle\kappa\rangle}=\mathbb{M}[\vec{U}]$ and $C^{*}=C^{*} \cap\left(\kappa_{i-1}, \kappa_{i}\right)$ is a club in κ. It seems natural that the projection will keep only the coordinates in I i.e. let $p=\left\langle t_{1}, \ldots, t_{n+1}\right\rangle$ then $\pi_{I}(p)=\left\langle t_{i}^{\prime}\right| \gamma\left(t_{i}, p\right) \in$ $I\rangle \smile\left\langle t_{n+1}\right\rangle$ where

$$
t_{i}^{\prime}=\left\{\begin{array}{cl}
\kappa\left(t_{i}\right) & \gamma\left(t_{i}, p\right) \in \operatorname{Succ}(I) \\
t_{i} & \gamma\left(t_{i}, p\right) \in \operatorname{Lim}(I)
\end{array}\right.
$$

Let us define a forcing notion $\mathbb{P}_{i}=\mathbb{M}_{I}[\vec{U}]$ (the range of the projection π_{I}) that will add the subsequence C^{*}, such that the forcing $\mathbb{M}[\vec{U}]$ (more precisely, a dense subset of $\mathbb{M}[\vec{U}]$) projects onto $\mathbb{M}_{I}[\vec{U}]$ via the projection π_{I} as we have just defined.
$\underline{\mathbb{M}_{I}[\vec{U}]}$
Thinking of C^{*} as a function with domain I, we would like to have a function similar to $\gamma\left(t_{i}, p\right)$ that tells us which coordinate are we unveiling. Given $p=\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle$, define recursively $I\left(t_{0}, p\right)=0$ and

$$
I\left(t_{i}, p\right)=\min \left(i \in I \backslash I\left(t_{i-1}, p\right)+1 \mid o(i)=o^{\vec{U}}\left(t_{i}\right)\right)
$$

It is tacitly assumed that $\left\{i \in I \backslash I\left(t_{i-1}, p\right)+1 \mid o(i)=o^{\vec{U}}\left(t_{i}\right)\right\} \neq \emptyset$.
Example: Work with Magidor forcing adding a sequence of length ω^{2} i.e. $C_{G}=\left\{C_{G}(\alpha) \mid\right.$ $\left.\alpha<\omega^{2}\right\}$. Assume $C^{*}=\left\{C_{G}(0)\right\} \cup\left\{C_{G}(\alpha) \mid \omega \leq \alpha<\omega^{2}\right\}$. Thus $I=\{0\} \cup\left(\omega^{2} \backslash \omega\right)$, the ω-th element of C_{G} is no longer limit in C^{*}. Let

$$
p=\langle\underbrace{\left\langle\kappa\left(t_{1}\right), B\left(t_{1}\right)\right\rangle}_{t_{1}}, \underbrace{\left\langle\kappa, B\left(t_{2}\right)\right\rangle}_{t_{2}}\rangle
$$

Where $o^{\vec{U}}\left(t_{1}\right)=1$. Computing $I\left(t_{1}, p\right)$ we have:

$$
I\left(t_{1}, p\right)=\omega=\gamma\left(t_{1}, p\right)
$$

Therefore $\pi_{I}(p)=\left\langle\kappa\left(t_{1}\right), t_{2}\right\rangle$.

Definition 4.2 The conditions of $\mathbb{M}_{I}[\vec{U}]$ are of the form $p=\left\langle t_{1}, \ldots, t_{n+1}\right\rangle$ such that:

1. $\kappa\left(t_{1}\right)<\ldots<\kappa\left(t_{n}\right)<\kappa\left(t_{n+1}\right)=\kappa$
2. For $i=1, \ldots, n+1$
(a) $I\left(t_{i}, p\right) \in \operatorname{Succ}(I)$
i. $t_{i}=\kappa\left(t_{i}\right)$
ii. $I\left(t_{i-1}, p\right)$ is the predecessor of $I\left(t_{i}, p\right)$ in I
iii. $I\left(t_{i-1}, p\right)+\sum_{i=1}^{m} \omega^{\gamma_{i}}=I\left(t_{i}, p\right)(C . N . F)$, then
$Y\left(\gamma_{1}\right) \times \ldots \times Y\left(\gamma_{m-1}\right) \bigcap\left[\left(\kappa\left(t_{i-1}\right), \kappa\left(t_{i}\right)\right)\right]^{<\omega} \neq \emptyset$
(Reminder: $Y(\gamma)=\left\{\alpha<\kappa \mid o^{\vec{U}}(\alpha)=\gamma\right\}$)
(b) $I\left(t_{i}, p\right) \in \operatorname{Lim}(I)$
i. $t_{i}=\left\langle\kappa\left(t_{i}\right), B\left(t_{i}\right)\right\rangle, B\left(t_{i}\right) \in \bigcap_{\xi<o^{\vec{U}}\left(t_{i}\right)} U\left(t_{i}, \xi\right)$
ii. $I\left(t_{i-1}, p\right)+\omega^{o^{\vec{U}}\left(t_{i}\right)}=I\left(t_{i}, p\right)$
iii. $\min \left(B\left(t_{i}\right)\right)>\kappa\left(t_{i-1}\right)$

Definition 4.3 Let $p=\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle, q=\left\langle s_{1}, \ldots, s_{m}, s_{m+1}\right\rangle \in \mathbb{M}_{I}[\vec{U}]$. Define
$\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle \leq_{I}\left\langle s_{1}, \ldots, s_{m}, s_{m+1}\right\rangle$ iff $\exists 1 \leq i_{1}<\ldots<i_{n} \leq m<i_{n+1}=m+1$ such that $I\left(s_{j}, q\right) \in \operatorname{Lim}(I)$ then $B\left(s_{j}\right) \subseteq B\left(t_{k+1}\right) \cap \kappa\left(s_{j}\right)$

1. $\kappa\left(t_{r}\right)=\kappa\left(s_{i_{r}}\right)$ and $B\left(s_{i_{r}}\right) \subseteq B\left(t_{r}\right)$

If $i_{k}<j<i_{k+1}$

1. $\kappa\left(s_{j}\right) \in B\left(t_{k+1}\right)$
2. $I\left(s_{j}, q\right) \in \operatorname{Succ}(I)$ then

$$
\left[\left(\kappa\left(s_{j-1}\right), \kappa\left(s_{j}\right)\right)\right]^{<\omega} \cap B\left(t_{k+1}, \gamma_{1}\right) \times \ldots \times B\left(t_{k+1}, \gamma_{k-1}\right) \neq \emptyset
$$

where $I\left(s_{i-1}, q\right)+\sum_{i=1}^{k} \omega^{\gamma_{i}}=I\left(s_{i}, q\right)(C . N . F)$
3. $I\left(s_{j}, q\right) \in \operatorname{Lim}(I)$ then $B\left(s_{j}\right) \subseteq B\left(t_{k+1}\right) \cap \kappa\left(s_{j}\right)$

Definition 4.4 Let $p=\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle, q=\left\langle s_{1}, \ldots, s_{m}, s_{m+1}\right\rangle \in \mathbb{M}_{I}[\vec{U}], q$ is a direct extension of p, denoted $p \leq_{I}^{*} q$ iff

1. $p \leq_{I} q$
2. $n=m$

Remarks:

1. In definition 4.2 (b.i), although it seems superfluous to take all the measures corresponding to t_{i} as well as those which do not take an active part in the development of C^{*}, the necessity is apparent when examining definition 4.3 (2.b)- the γ_{i} 's may not be the measures taking active part in C^{*}. In lemma 4.8 this condition will be crucial when completing C^{*} to C_{G}.
2. As we have seen in earlier chapters, the function $\gamma\left(t_{i}, p\right)$ returns the same value when extending $p . I\left(t_{i}, p\right)$ have the same property, let $p=\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle, q=$ $\left\langle s_{1}, \ldots, s_{m}, s_{m+1}\right\rangle \in \mathbb{M}_{I}[\vec{U}], p \leq_{I} q$, use 4.2 (2.b.ii) to see that $I\left(t_{r}, p\right)=I\left(s_{i_{r}}, q\right)$.
3. In definition 4.4, since $n=m$ we only have to check (1) of definition 4.3.
4. Let $p=\left\langle t_{1}, \ldots, t_{n+1}\right\rangle \in \mathbb{M}_{I}[\vec{U}]$ be any condition. Assume we would like to unveil a new index $j \in I$ between $I\left(t_{i}, p\right)$ and $I\left(t_{i+1}, p\right)$. It is possible if for example j is the successor of $I\left(t_{i}, p\right)$ in I :
Assume $I\left(t_{i}, p\right)+\sum_{l=1}^{m} \omega^{\gamma_{l}}=j$ (C.N.F), then $\gamma_{l}<o^{\vec{U}}\left(t_{i+1}\right)$. Extend p by choosing $\alpha \in B\left(t_{i+1}, \gamma_{m}\right)$ above some sequence

$$
\begin{gathered}
\left\langle\overrightarrow{\beta_{1}}, \ldots, \overrightarrow{\beta_{k}}\right\rangle \in B\left(t_{i+1}, \gamma_{1}\right) \times \ldots \times B\left(t_{i+1}, \gamma_{m-1}\right) \\
I\left(\alpha, p^{\complement}\langle\alpha\rangle\right)=\min \left(r \in I \backslash I\left(t_{i}, p\right) \mid o(r)=o(j)\right)=j
\end{gathered}
$$

Another possible index is any $j \in \operatorname{Lim}(I)$ such that $I\left(t_{i}, p\right)+\omega^{o(j)}=j$. For such j, extend p by picking $\alpha \in B\left(t_{i+1}, o(j)\right)$ above some sequence $\left\langle\overrightarrow{\beta_{1}}, \ldots, \overrightarrow{\beta_{k}}\right\rangle$, to obtain

$$
p \leq_{I}\left\langle t_{1}, \ldots, t_{i},\left\langle\alpha, \bigcap_{\xi<o(j)} B\left(t_{i+1}, \xi\right) \cap \alpha\right\rangle,\left\langle\kappa\left(t_{i+1}\right), B\left(t_{i+1}\right) \backslash(\alpha+1)\right\rangle, \ldots, t_{n+1}\right\rangle
$$

Checking definition 4.2 we see that in both cases the extension of p is in $\mathbb{M}_{I}[\vec{U}]$.

The forcing $\mathbb{M}_{I}[\vec{U}]$ has lots of the properties of $\mathbb{M}[\vec{U}]$, however, they are irrelevant for the proof. Therefore, we will state only few of them.

Lemma $4.5 \mathbb{M}_{I}[\vec{U}]$ satisfy $\kappa^{+}-c . c$

Proof: Let $\left\{\left\langle t_{\alpha, 1}, \ldots, t_{\alpha, n_{\alpha}}\right\rangle=p_{\alpha} \mid \alpha<\kappa^{+}\right\} \subseteq \mathbb{M}_{I}[\vec{U}]$. Find $n<\omega$ and $E \subseteq \kappa^{+},|E|=\kappa^{+}$ and $\left\langle\kappa_{1}, \ldots, \kappa_{n}\right\rangle$ such that $\forall \alpha \in E$,

$$
n_{\alpha}=n \text { and }\left\langle\kappa\left(t_{\alpha, 1}\right), \ldots, \kappa\left(t_{\alpha, n_{\alpha}}\right)\right\rangle=\left\langle\kappa_{1}, \ldots, \kappa_{n}\right\rangle
$$

Fix any $\alpha, \beta \in E$. Define $p^{*}=\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle$ where

$$
\begin{gathered}
B^{*}\left(t_{i}\right)=B\left(t_{i, \alpha}\right) \cap B\left(t_{i, \beta}\right) \in \bigcap_{\xi<o^{\vec{U}}\left(\kappa_{i}\right)} U\left(\kappa_{i}, \xi\right) \\
t_{i}=\left\{\begin{array}{cc}
\left\langle\kappa_{i}, B^{*}\left(t_{i}\right)\right\rangle & I\left(t_{i}, p\right) \in \operatorname{Lim}(I) \\
\kappa_{i} & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Since $p_{\alpha}, p_{\beta} \in \mathbb{M}_{I}[\vec{U}]$, it is clear that $p^{*} \in \mathbb{M}_{I}[\vec{U}]$ and also $p_{\alpha}, p_{\beta} \leq_{I}^{*} p^{*}$.

Lemma 4.6 Let $G_{I} \subseteq \mathbb{M}_{I}[\vec{U}]$ be generic, define

$$
C_{I}=\bigcup\left\{\left\{\kappa\left(t_{i}\right) \mid i=1, \ldots, n\right\} \mid\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle \in G_{I}\right\}
$$

Then

1. $\operatorname{otp}\left(C_{I}\right)=\operatorname{otp}(I)$ (thus we may also think of C_{I} as a function with domain I).
2. G_{I} consist of all conditions $p=\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle \in \mathbb{M}_{I}[\vec{U}]$ such that
(a) $C_{I}\left(I\left(t_{i}, p\right)\right)=\kappa\left(t_{i}\right)$
(b) $C_{I} \cap\left(\kappa\left(t_{i-1}\right), \kappa\left(t_{i}\right)\right) \subseteq B\left(t_{i}\right) \quad 1 \leq i \leq n+1$
(c) $\forall i \in \operatorname{Succ}(I) \cap\left(I\left(t_{r}, p\right), I\left(t_{r+1}, p\right)\right)$ with predecessor $j \in I$ such that $j+\sum_{l=1}^{k} \omega^{\gamma_{l}}=i$ (C.N.F) we have

$$
\left[\left(C_{I}(j), C_{I}(i)\right)\right]^{<\omega} \cap B\left(t_{r+1}, \gamma_{1}\right) \times \ldots \times B\left(t_{r+1}, \gamma_{k-1}\right) \neq \emptyset
$$

Proof: For (1), let us consider the system of ordered sets of ordinals $\left(\kappa(p), i_{p, q}\right)_{p, q}$ where

$$
\kappa(p)=\left\{\kappa\left(t_{1}\right), \ldots, \kappa\left(t_{n}\right)\right\} \text { for } p=\left\langle t_{1}, \ldots, t_{n+1}\right\rangle \in G_{I}
$$

$i_{p, q}: \kappa(p) \rightarrow \kappa(q)$ are defined for $p=\left\langle t_{1}, \ldots, t_{n+1}\right\rangle \leq_{I}\left\langle s_{1}, \ldots, s_{m+1}\right\rangle=q$ as the inclusion:

$$
i_{p, q}\left(\kappa\left(t_{r}\right)\right)=\kappa\left(t_{r}\right)=\kappa\left(s_{i_{r}}\right)\left(i_{r} \text { are as in the definition of } \leq_{I}\right)
$$

Since G_{I} is a filter, $\left(\kappa(p), i_{p, q}\right)_{p, q}$ form a directed system with a direct ordered limit $\underset{\longrightarrow}{\operatorname{Lim}} \kappa(p)=$ $\bigcup_{p \in G_{I}} \kappa(p)=C_{I}$ and inclusions $i_{p}: \kappa(p) \rightarrow C_{I}$.
We already defined for $p \leq_{I} q, p, q \in G_{I}$

$$
I(*, p): \kappa(p) \rightarrow I, I(*, p)=I(*, q) \circ i_{p, q}
$$

Thus $(I(*, p))_{p \in G}$ form a compatible system of functions and by the universal propery of directed limits, we obtain

$$
I(*): C_{I} \rightarrow I, I(*) \circ i_{p}=I(*, p)
$$

Let us show that I is an isomorphism of ordered set: Since $I(*, p)$ are injective $I(*)$ is also injective. Assume $\kappa_{1}<\kappa_{2} \in C_{I}$, find $p \in G_{I}$ such that $\kappa_{1}, \kappa_{2} \in \kappa(p)$. Therefore, $I\left(\kappa_{i}, p\right)=I\left(\kappa_{i}\right)$ preserve the order of κ_{1}, κ_{2}. Fix $i \in I$, it suffices to show that there exists some condition $p \in G_{I}$ such that $i \in \operatorname{Im}(I(*, p))$. To do this, let us show that the set of all conditions $p \in \mathbb{M}_{I}[\vec{U}]$ with $i \in \operatorname{Im}(I(*, p))$ is a dense subset of $\mathbb{M}_{I}[\vec{U}]$. Let $p=\left\langle t_{1}, \ldots, t_{n+1}\right\rangle \in \mathbb{M}_{I}[\vec{U}]$ be any condition, if $i \in \operatorname{Im}(I(*, p))$ then we are done. Otherwise, there exists $0 \leq k \leq n$ such that

$$
I\left(t_{k}, p\right)<i<I\left(t_{k+1}, p\right)
$$

therefore $I\left(t_{k+1}, p\right) \in \operatorname{Lim}(I)$. By induction on i, we shall prove that it is possible to extend p to a condition p^{\prime}, such that $i \in \operatorname{Im}\left(I\left(*, p^{\prime}\right)\right)$. If

$$
\sum_{l=1}^{k} \omega^{\gamma_{l}}=i=\min (I) \text { (C.N.F) }
$$

then it must be that $i<I\left(t_{1}, p\right)$. By definition 4.2 (2.b.ii) $I\left(t_{1}, p\right)=\omega^{o^{\vec{U}}\left(t_{1}\right)}$. To extend p just pick any α above some sequence

$$
\left\langle\overrightarrow{\beta_{1}}, \ldots, \overrightarrow{\beta_{k}}\right\rangle \in B\left(t_{1}, \gamma_{1}\right) \times \ldots \times B\left(t_{1}, \gamma_{k-1}\right)
$$

and

$$
p \leq_{I}\left\langle\alpha,\left\langle\kappa\left(t_{1}\right), B\left(t_{1}\right) \backslash(\alpha+1)\right\rangle, t_{2}, \ldots, t_{n+1}\right\rangle \in \mathbb{M}_{I}[\vec{U}]
$$

If $i \in \operatorname{Succ}(I)$ with predecessor $j \in I$. By the induction hypothesis, we can assume that for some $k, j=I\left(t_{k}, p\right) \in \operatorname{Im}(I(*, p))$. Thus by the remark following definition 4.4 we can extend p by some α such that $i \in \operatorname{Im}(I(*, p))$. Finally if $i \in \operatorname{Lim}(I)$, then

$$
i=\underbrace{\sum_{i=1}^{m} \omega^{\gamma_{i}}}_{\alpha}+\omega^{o(i)} \text { (C.N.F) }
$$

Therefore $\forall \beta \in(\alpha, i), \beta+\omega^{o(i)}=i$. Take any $i^{\prime} \in I \cap(\alpha, i)$. Just as before, it can be assumed that $i^{\prime}=I\left(t_{k}, p\right)$, thus $I\left(t_{k}, p\right)+\omega^{o(i)}=i$. By the same remark, we can extend p to some $p^{\prime} \in \mathbb{M}_{I}[\vec{U}]$ with $j \in \operatorname{Im}\left(I\left(*, p^{\prime}\right)\right)$.

For (2), let $p=\left\langle t_{1}, \ldots, t_{n+1}\right\rangle \in G_{I}$. (a) is satisfied by the argument in (1). Fix $\alpha \in$ $C_{I} \cap\left(\kappa\left(t_{i}\right), \kappa\left(t_{i+1}\right)\right)$, there exists $p \leq_{I} p^{\prime}=\left\langle s_{1}, \ldots, s_{m}\right\rangle \in G_{I}$ such that $\alpha \in \kappa\left(p^{\prime}\right)$ thus $\alpha \in B\left(t_{i+1}\right)$ by definition. Moreover, if $I\left(\alpha, p^{\prime}\right) \in \operatorname{Succ}(I)$ with predecessor $j \in I$, then by definition 4.2 (2.a.ii), there is s_{k} such that $j=I\left(s_{k}, p^{\prime}\right)$ and by definition 4.3 (2.b)

$$
\left[\left(\kappa\left(s_{k-1}\right), \kappa\left(s_{k}\right)\right)\right]^{<\omega} \cap B\left(t_{i+1}, \gamma_{1}\right) \times \ldots \times B\left(t_{i+1}, \gamma_{k-1}\right) \neq \emptyset
$$

From (a),

$$
\kappa\left(s_{k}\right)=C_{I}(j) \text { and } \kappa\left(s_{k+1}\right)=C_{I}(i)
$$

In the other direction, if $p=\left\langle t_{1}, \ldots, t_{n+1}\right\rangle \in \mathbb{M}_{I}[\vec{U}]$ satisfies (a)-(c). By (a), there exists some $p^{\prime \prime} \in G_{I}$ with $\kappa(p) \subseteq \kappa\left(p^{\prime \prime}\right)$. Set E to be

$$
\left\{\left\langle w_{1}, \ldots, w_{l+1}\right\rangle \in\left(\mathbb{M}_{I}[\vec{U}]\right)_{\geq_{I} p^{\prime \prime}} \mid \kappa\left(w_{j}\right) \in B\left(t_{i}\right) \cup\left\{\kappa\left(t_{i}\right)\right\} \rightarrow B\left(w_{j}\right) \subseteq B\left(t_{i}\right)\right\}
$$

E is dense in $\mathbb{M}_{I}[\vec{U}]$ above $p^{\prime \prime}$. Find $p^{\prime \prime} \leq_{I} p^{\prime}=\left\langle s_{1}, \ldots, s_{m+1}\right\rangle \in G_{I} \cap D$. Checking definition 4.3, Let us show that $p \leq_{I} p^{\prime}$: For (1), since $\kappa(p) \subseteq \kappa\left(p^{\prime}\right)$ there is a natural injection $1 \leq i_{1}<\ldots<i_{n} \leq m$ which satisfy $\kappa\left(t_{r}\right)=\kappa\left(s_{i_{r}}\right)$. Since $p^{\prime} \in E, B\left(s_{i_{r}}\right) \subseteq B\left(t_{r}\right)$. (2a), follows from condition (b), (2b) follows from condition (c). Since $p^{\prime} \in E$, if $i_{r}<j<i_{r+1}$ then $\kappa\left(s_{j}\right) \in B\left(t_{r+1}\right)$, thus, (2c) holds.

So given a generic set G_{I} for $\mathbb{M}_{I}[\vec{U}]$, we have $V\left[C_{I}\right]=V\left[G_{I}\right]$. Once we will show that π_{I} is a projection, then for every $G \subseteq \mathbb{M}[\vec{U}]$ generic,

$$
\pi_{I}(G)=\left\{p \in \mathbb{M}_{I}[\vec{U}] \mid \exists q \in \pi_{I}^{\prime \prime} G, p \leq_{I} q\right\}
$$

will be generic for $\mathbb{M}_{I}[\vec{U}]$ and by the definition of π_{I} on page 45 we have that the corresponding sequence to $\pi_{I}(G)$ is C^{*}, as wanted. Let us concentrate on showing π_{I} is a projection. Let D be the set of all

$$
p=\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle \in \mathbb{M}[\vec{U}], \pi_{I}(p)=\left\langle t_{i_{1}}^{\prime}, \ldots, t_{i_{m}}^{\prime}, t_{n+1}\right\rangle
$$

such that:

1. $\gamma\left(t_{i_{j}}, p\right) \in \operatorname{Lim}(I) \rightarrow \gamma\left(t_{i_{j-1}}, p\right)=\gamma\left(t_{i_{j}-1}, p\right)$
2. $\gamma\left(t_{i_{j}}, p\right) \in \operatorname{Succ}(I) \rightarrow \gamma\left(t_{i_{j}-1}, p\right)$ is the predecessor of $\gamma\left(t_{i_{j}}, p\right)$ in I.

Condition (1) is to be compared with definition 4.2 (2.b.ii) and condition (2) with (2.a.ii). The following example justifies the necessity of D.

Example: Assume that

$$
\lambda_{0}=\omega^{2} \text { and } I=\{2 n \mid n \leq \omega\} \cup\{\omega+2, \omega+3\} \cup\{\omega \cdot n \mid n<\omega\}
$$

let p be the condition

$$
\begin{aligned}
& \langle\underbrace{\left\langle\nu_{\omega}, B_{\omega}\right\rangle}_{t_{1}}, \underbrace{\nu_{\omega+1}}_{t_{2}}, \underbrace{\left\langle\nu_{\omega \cdot 2}, B_{\omega \cdot 2}\right\rangle}_{t_{3}}, \underbrace{\langle\kappa, B\rangle}_{t_{4}}\rangle \\
& \pi_{I}(p)=\langle\underbrace{\left\langle\nu_{\omega}, B_{\omega}\right\rangle}_{t_{1} \mapsto t_{i_{1}}^{\prime}}, \underbrace{\nu_{\omega \cdot 2}}_{t_{3} \mapsto t_{i_{2}}^{\prime}}, \underbrace{\langle\kappa, B\rangle\rangle}_{t_{4}}
\end{aligned}
$$

The $\omega+2, \omega+3$-th coordinates cannot be added. On one hand, they should be chosen below $\nu_{\omega \cdot 2}$, on the other hand, there is no large set we can choose them from. The difficulty occurs due to:

$$
\omega \cdot 2 \in \operatorname{Succ}(I) \text { but } \omega+3 \in I \text { is the predecessor and } \gamma\left(t_{\left.i_{2}\right)=\omega}\right.
$$

Pointing out condition (2). Notice that we can extend p to

$$
\left\langle\left\langle\nu_{\omega}, B_{\omega}\right\rangle, \nu_{\omega+1}, \nu_{\omega+2}, \nu_{\omega+3},\left\langle\nu_{\omega \cdot 2}, B_{\omega \cdot 2}\right\rangle,\langle\kappa, B\rangle\right\rangle
$$

to avoid this problem.
Next consider

$$
I=\{2 n \mid n \leq \omega\} \cup\{\omega+2, \omega+3\} \cup\{\omega \cdot n \mid n<\omega, n \neq 2\}
$$

and let p be the condition

$$
\begin{aligned}
& \langle\underbrace{\left\langle\left\langle\nu_{\omega}, B_{\omega}\right\rangle\right.}_{t_{1}}, \underbrace{\left\langle\nu_{\omega \cdot 2}, B_{\omega \cdot 2}\right\rangle}_{t_{2}}, \underbrace{\left\langle\nu_{\omega \cdot 3}, B_{\omega \cdot 3}\right\rangle}_{t_{3}}, \underbrace{\langle\kappa, B\rangle}_{t_{4}}\rangle \\
& \pi_{I}(p)=\langle\underbrace{\left\langle\nu_{\omega}, B_{\omega}\right\rangle,}_{t_{1} \mapsto t_{i_{1}}^{\prime}} \underbrace{\left\langle\nu_{\omega \cdot 3}, B_{\omega \cdot 3}\right\rangle}_{t_{3} \mapsto t_{i_{2}}^{\prime}}, \underbrace{\langle\kappa, B\rangle\rangle}_{t_{4}}
\end{aligned}
$$

Once again the coordinates $\omega+2, \omega+3$ cannot be added since $\min \left(B_{\omega \cdot 3}\right)>\nu_{\omega \cdot 2}$. This corresponds to condition (1)

$$
\gamma\left(t_{i_{1}}, p\right)=\omega<\omega \cdot 2=\gamma\left(t_{i_{2}-1}, p\right)
$$

As before, we can extend p to avoid this problem.
Proposition 4.7 D is dense in $\mathbb{M}[\vec{U}]$

Proof: Fix $p=\left\langle t_{1}, \ldots, t_{n+1}\right\rangle \in \mathbb{M}[\vec{U}]$, define $\left\langle p_{k} \mid k<\omega\right\rangle$ as follows:
$p_{0}=p$. Assume that $p_{k}=\left\langle t_{1}^{(k)}, \ldots, t_{n_{k}}^{(k)}, t_{n_{k}+1}^{(k)}\right\rangle$ is defined. If $p_{k} \in D$, define $p_{k+1}=p_{k}$. Otherwise, there exists a maximal $1 \leq i_{j}=i_{j}(k) \leq n^{\prime}+1$ such that $\gamma\left(t_{i_{j}}^{(k)}, p_{k}\right) \in I$ which doesn't satisfy $(1) \vee(2)$ of the definition of D.
$\neg(1): \quad \gamma\left(t_{i_{j}}^{(k)}, p_{k}\right) \in \operatorname{Lim}(I)$ and $\gamma\left(t_{i_{j-1}}^{(k)}, p_{k}\right)<\gamma\left(t_{i_{j}-1}^{(k)}, p_{k}\right)$
Since $\gamma\left(t_{i_{j}}^{(k)}, p_{k}\right) \in \operatorname{Lim}(I)$ there exists $\gamma \in I \cap\left(\gamma\left(t_{i_{j}-1}^{(k)}, p_{k}\right), \gamma\left(t_{i_{j}}^{(k)}, p_{k}\right)\right)$. Use proposirion 3.2 to find $p_{k+1} \geq p_{k}$ with γ added and the only other coordinates added are below γ, thus if $t_{i_{j}}^{(k)}=t_{r}^{(k+1)}$ then $\gamma=\gamma\left(t_{r-1}^{(k+1)}, p_{k+1}\right)$. Thus, every $l \geq r$ satisfies $(1) \vee(2)$. If $p_{k+1} \notin D$ then the problem must accrue below $\gamma\left(t_{i_{j}}^{(k)}, p_{k}\right)$.
$\xrightarrow{\neg(2):} \quad \gamma\left(t_{i_{j}}^{(k)}, p\right) \in \operatorname{Succ}(I)$ and $\gamma\left(t_{i_{j}-1}^{(k)}, p\right)$ is not the predecessor of $\left.\gamma\left(t_{i_{j}}^{(k)}, p\right)\right)$
Let γ be the predecessor in I of $\gamma\left(t_{i_{j}}^{(k)}, p\right)$. By proposirion 3.2, there exist $p_{k+1} \geq p_{k}$ with γ added and the only other coordinates added are below γ. As before, if $t_{i_{j}}^{(k)}=t_{r}^{(k+1)}$ then $\gamma=\gamma\left(t_{r-1}^{(k+1)}, p_{k+1}\right)$ and for every $l \geq r \gamma\left(t_{l}^{(k+1)}, p_{k+1}\right)$ satisfies (1) $\vee(2)$.

The sequence $\left\langle p_{k} \mid k<\omega\right\rangle$ is defined. It necessarily stabilizes, otherwise then the sequence $\gamma\left(t_{i_{j}(k)}^{(k)}, p_{k}\right)$ form a strictly decreasing infinite sequence of ordinals. Let $p_{n^{*}}$ be the stabilized condition, it is an extension of p in D.

Lemma $4.8 \pi_{I} \upharpoonright D: D \rightarrow \mathbb{M}_{I}[\vec{U}]$ is a projection, i.e:

1. π_{I} is onto.
2. $p_{1} \leq p_{2} \Rightarrow \pi_{I}\left(p_{1}\right) \leq_{I} \pi_{I}\left(p_{2}\right)$ (also \leq^{*} is preserved)
3. $\forall p \in \mathbb{M}[\vec{U}] \forall q \in \mathbb{M}_{I}[\vec{U}]\left(\pi_{I}(p) \leq_{I} q \rightarrow \exists p^{\prime} \geq p \quad\left(q=\pi_{I}\left(p^{\prime}\right)\right)\right.$

Proof: Let $p \in D$, such that $\pi_{I}(p)=\left\langle t_{i_{1}}^{\prime}, \ldots, t_{i_{n^{\prime}}}^{\prime}, t_{n+1}\right\rangle$
Claim: $\pi_{I}(p)$ computes I correctly i.e. for every $0 \leq j \leq n^{\prime}$, we have the equality $\gamma\left(t_{i_{j}}, p\right)=$ $I\left(t_{i, j}^{\prime}, \pi_{I}(p)\right)$.

Proof of claim: By induction on j, for $j=0, \gamma(0, p)=0=I\left(0, \pi_{I}(p)\right)$. For $j>0$, assume $\gamma\left(t_{i_{j-1}}, p\right)=I\left(t_{i_{j-1}}^{\prime}, \pi_{I}(p)\right)$ and $\gamma\left(t_{i_{j}}, p\right) \in \operatorname{Succ}(I)$. Since $p \in D, \gamma\left(t_{i_{j-1}}, p\right)$ is the predecessor of $\gamma\left(t_{i_{j}}, p\right)$ in I. Use the induction hypothesis to see that

$$
I\left(t_{i_{j}}^{\prime}, \pi_{I}(p)\right)=\min \left(\beta \in I \backslash \gamma\left(t_{i_{j-1}}, p\right)+1 \mid o(\beta)=o^{\vec{U}}\left(t_{i_{j}}\right)\right)=\gamma\left(t_{i_{j}}, p\right)
$$

For $\gamma\left(t_{i_{j}}, p\right) \in \operatorname{Lim}(I)$, use condition (1) of the definition of D to see that $\gamma\left(t_{i_{j-1}}, p\right)+\omega^{\sigma^{0}\left(t_{i_{j}}\right)}=$ $\gamma\left(t_{i_{j}}, p\right)$. Thus

$$
\forall r \in I \cap\left(\gamma\left(t_{i_{j-1}}, p\right), \gamma\left(t_{i_{j}}, p\right)\right)\left(o(r)<o^{\vec{U}}\left(t_{i_{j}}\right)\right)
$$

In Particular,

$$
I\left(t_{i_{j}}^{\prime}, \pi_{I}(p)\right)=\min \left(\beta \in I \backslash \gamma\left(t_{i_{j-1}}, p\right)+1 \mid o(\beta)=o^{\vec{U}}\left(t_{i_{j}}\right)\right)=\gamma\left(t_{i_{j}}, p\right)
$$

-of claim

Checking definition 4.2, show that $\pi_{I}(p) \in \mathbb{M}_{I}[\vec{U}]:(1)$, (2.a.i), (2.b.i), (2.b.iii) are immediate from the definition of π_{I}. Use the claim to verify that (2.a.ii), (2.b.ii) follows from (1), (2) in D respectively. For (2.a.iii), let $1 \leq j \leq n^{\prime}$, write

$$
\gamma\left(t_{i_{j-1}}, p\right)+\sum_{i_{j-1}<l \leq i_{j}} \omega^{o^{\vec{U}}\left(t_{l}\right)}=\gamma\left(t_{i_{j}}, p\right)
$$

This equation induces a C.N.F equation

$$
\mathrm{I}\left(\mathrm{t}_{i_{j-1}}, \pi_{I}(p)\right)+\sum_{k=1}^{n_{0}} \omega^{o^{\vec{U}}\left(t_{l_{k}}\right)}=I\left(t_{i_{j}}, \pi_{I}(p)\right) \quad \text { (C.N.F) }
$$

Thus

$$
\left\langle\kappa\left(t_{l_{1}}\right), \ldots, \kappa\left(t_{l_{n_{0}-1}}\right)\right\rangle \in Y\left(o^{\vec{U}}\left(t_{l_{1}}\right)\right) \times \ldots \times Y\left(o^{\vec{U}}\left(t_{l_{n_{0}-1}}\right)\right) \bigcap\left[\left(\kappa\left(t_{i_{j-1}}\right), \kappa\left(t_{i_{j}}\right)\right)\right]^{<\omega}
$$

(1)- Let $q=\left\langle t_{1}^{\prime}, \ldots, t_{n+1}^{\prime}\right\rangle \in \mathbb{M}_{I}[\vec{U}]$. For every t_{j}^{\prime} such that $I\left(t_{j}^{\prime}, q\right) \in \operatorname{Succ}(I)$, use definition 4.2 (2.a.iii) to find $\overrightarrow{s_{j}}=\left\langle s_{j, 1}, \ldots, s_{j, m_{j}}\right\rangle$ such that

$$
\left\langle\kappa\left(s_{j, 1}\right), \ldots, \kappa\left(s_{j} r, m_{j}\right)\right\rangle \in Y\left(\gamma_{1}\right) \times \ldots \times Y\left(\gamma_{m-1}\right) \bigcap\left[\left(\kappa\left(t_{i_{r}-1}^{\prime}\right), \kappa\left(t_{i_{r}}^{\prime}\right)\right)\right]^{<\omega}
$$

where $I\left(t_{i_{r}-1}^{\prime}, q\right)+\sum_{i=1}^{m} \omega^{\gamma_{i}}=I\left(t_{i_{r}}^{\prime}, q\right)$ (C.N.F).
For each $i=1, \ldots, n$ such that $o^{\vec{U}}\left(t_{i}^{\prime}\right)>0$ and $\kappa\left(t_{i}^{\prime}\right) \in \operatorname{Succ}(I)$ pick some $B\left(t_{i}^{\prime}\right) \in \bigcap_{\xi<o^{\vec{U}\left(t_{i}^{\prime}\right)}} U\left(t_{i}, \xi\right)$.
Define $p=\left\langle t_{1}, \ldots, t_{n+1}\right\rangle \prec\left\langle\overrightarrow{s_{r}} \mid I\left(t_{r}, q\right) \in \operatorname{Succ}(I)\right\rangle$

$$
t_{i}=\left\{\begin{array}{cl}
\left\langle\kappa\left(t_{i}^{\prime}\right), B\left(t_{i}^{\prime}\right) \backslash \kappa\left(s_{i, m_{i}}\right)+1\right\rangle & o^{\vec{U}}\left(t_{i}^{\prime}\right)>0 \\
\kappa\left(t_{i}^{\prime}\right) & \text { otherwise }
\end{array}\right.
$$

Once we prove that $\gamma\left(s_{r, j}, p\right) \notin I$ and that p computes I correctly i.e. $\gamma\left(t_{i}, p\right)=I\left(t_{i}^{\prime}, q\right)$, it will follow that $\pi_{I}(p)=\left\langle t_{i}^{\prime} \mid \gamma\left(t_{i}, p\right) \in I\right\rangle=q$. By induction on i, for $i=0$ it is trivial. Let $0<i$ and assume the statement holds for i. If $I\left(t_{i+1}^{\prime}, q\right) \in \operatorname{Lim}(I)$, then by 4.2 (b.ii)

$$
I\left(t_{i+1}^{\prime}, q\right)=I\left(t_{i}^{\prime}, q\right)+\omega^{o^{\vec{U}}\left(t_{i+1}^{\prime}\right)}=\gamma\left(t_{i}, p\right)+\omega^{o^{\vec{U}}\left(t_{i+1}\right)}=\gamma\left(t_{i+1}, p\right)
$$

If $I\left(t_{i+1}^{\prime}, q\right) \in \operatorname{Succ}(I)$, then from 4.2 (a.ii) it follows that $I\left(t_{i}^{\prime}, q\right)$ is the predecessor of $I\left(t_{i+1}^{\prime}, q\right)$. By the choice of $\overrightarrow{s_{i+1}}$,

$$
\begin{aligned}
& \gamma\left(t_{i+1}, p\right)=\gamma\left(t_{i}, p\right)+\sum_{i=1}^{m-1} \omega^{\gamma_{1}} n_{i}+\omega^{\gamma_{m}}\left(n_{m}-1\right)+\omega^{\overrightarrow{0}\left(t_{i+1}\right)}= \\
& =I\left(t_{i}^{\prime}, q\right)+\sum_{i=1}^{m-1} \omega^{\gamma_{1}} n_{i}+\omega^{m_{1}}\left(n_{m_{1}}-1\right)+\omega^{\vec{U}\left(t_{i+1}^{\prime}\right)}=I\left(t_{i+1}^{\prime}, q\right)
\end{aligned}
$$

Also, for all $1 \leq r \leq m_{i+1}, \gamma\left(s_{i+1, r}, p\right)$ is between two successor ordinals in I, hence $\gamma\left(s_{i+1, r}, p\right) \notin I$. Finally, $p \in D$ follows from 4.3 (a.ii) and condition (1) and if $\gamma\left(t_{i}, p\right) \in$ $\operatorname{Lim}(I)$ we did not add $\overrightarrow{s_{i}}$. Thus $i_{j-1}=i_{j}-1$.
(2)- Assume that $p, q \in D, p \leq q$. Using the claim, the verification of definition 4.3 it similar to (1).
(3)- We shall proof something weaker to ease notation. Nevertheless, the general statement if very similar. Let $p=\left\langle t_{1}, \ldots, t_{n+1}\right\rangle \in \mathbb{M}[\vec{U}]$. Assume that

$$
\pi_{I}(p)=\left\langle t_{i_{1}}^{\prime}, \ldots, t_{i_{n^{\prime}}}^{\prime}\right\rangle \leq_{I}\left\langle t_{i_{1}}^{\prime}, \ldots, t_{i_{j-1}}^{\prime}, s_{1}, . ., s_{m}, t_{i_{j}}^{\prime}, \ldots, t_{i_{n}}^{\prime}\right\rangle=q^{\prime} \in \mathbb{M}_{I}[\vec{U}]
$$

For every $l=1, \ldots, m$ such that $I\left(s_{l}, \pi_{I}(p)\right) \in \operatorname{Succ}(I)$ use definition $4.3(2 \mathrm{~b})$ to find $\overrightarrow{s_{l}}=$ $\left\langle s_{l, 1}, \ldots, s_{l, m_{l}}\right\rangle$ such that

$$
\left\langle\kappa\left(s_{l, 1}\right), \ldots, \kappa\left(s_{l, m_{l}}\right)\right\rangle \in B\left(t_{i_{j}}, \gamma_{1}\right) \times \ldots \times B\left(t_{i_{j}}, \gamma_{m-1}\right) \bigcap\left[\left(\kappa\left(s_{l-1}\right), \kappa\left(s_{l}\right)\right)\right]^{<\omega}
$$

where $I\left(s_{l-1}, \pi_{I}(p)\right)+\sum_{i=1}^{m} \omega^{\gamma_{i}}=I\left(s_{l}, \pi_{I}(p)\right)$ (C.N.F). Define $p \leq p^{\prime}$ to be the extension $p^{\prime}=$ $p^{\curvearrowleft}\left\langle s_{1}^{\prime}, . .,, s_{m}^{\prime}\right\rangle \smile\left\langle\vec{s}_{l} \mid I\left(s_{l}, \pi_{I}(p)\right) \in \operatorname{Succ}(I)\right\rangle$ where

$$
s_{i}^{\prime}=\left\{\begin{array}{cl}
\left\langle\kappa\left(s_{i}\right), B_{i} \backslash \kappa\left(s_{i, m_{i}}\right)+1\right\rangle & o^{\vec{U}}\left(s_{i}\right)>0 \\
s_{i} & \text { otherwise }
\end{array}\right.
$$

As in (1), $\pi_{I}\left(p^{\prime}\right)=\left\langle t_{i_{1}}^{\prime}, \ldots, t_{i_{j-1}}^{\prime},\left(s_{1}^{\prime}\right)^{\prime}, \ldots,\left(s_{m}^{\prime}\right)^{\prime}, \ldots t_{i_{n^{\prime}}}\right\rangle$. Notice that since we only change s_{l} such that $I\left(s_{l}, \pi_{I}(p)\right) \in \operatorname{Succ}(I),\left(s_{l}^{\prime}\right)^{\prime}=s_{l}$. Thus $\pi_{I}\left(p^{\prime}\right)=q$ and $p^{\prime} \in D$ follows.

Definition 4.9 Let G_{I} be $\mathbb{M}_{I}[\vec{U}]$ generic, the quotient forcing is

$$
\mathbb{M}[\vec{U}] / G_{I}=\pi_{I}^{-1 \prime \prime} G_{I}=\left\{p \in \mathbb{M}[\vec{U}] \mid \pi_{I}(p) \in G_{I}\right\}
$$

The forcing $\mathbb{M}[\vec{U}] / G_{I}$ completes $V\left[G_{I}\right]$ to $V[G]$ in the sense that if $G \subseteq \mathbb{M}[\vec{U}]$ is generic such that $\pi_{I}^{*}(G)=G_{I}$ then G is also $\mathbb{M}[\vec{U}] / G_{I^{-}}$generic.

Proposition 4.10 Let $x, p \in \mathbb{M}[\vec{U}]$ and $q \in \mathbb{M}_{I}[\vec{U}]$, then

1. $\pi_{I}(p) \leq_{I} q \Rightarrow q \Vdash_{\mathbb{M}_{I}[\vec{U}]} \stackrel{\vee}{p} \in \mathbb{M}[\vec{U}] /{\underset{\sim}{G}}_{I}$
2. $q \Vdash_{\mathbb{M}_{I}[\vec{U}]} \stackrel{\vee}{p} \in \mathbb{M}[\vec{U}] / \underset{\sim}{G_{I}} \Rightarrow \pi_{I}(p), q$ are compatible
3. $x \Vdash^{\mathbb{M}[\vec{U}]} \stackrel{\stackrel{\vee}{p}}{ } \in \mathbb{M}[\vec{U}] / \underset{\sim}{G_{I}} \Rightarrow \pi_{I}(p), \pi_{I}(x)$ are compatible

Lemma 4.11 Let G_{I} be $\mathbb{M}_{I}[\vec{U}]$-generic. Then the forcing $\mathbb{M}[\vec{U}] / G_{I}$ satisfies $\kappa^{+}-$c.c. in $V\left[G_{I}\right]$.

Proof: Fix $\left\{p_{\alpha} \mid \alpha<\kappa^{+}\right\} \subseteq \mathbb{M}[\vec{U}] / G_{I}$ and let

$$
r \in G_{I}, r \Vdash_{\mathbb{M}_{I}[\vec{U}]} \forall \alpha<\kappa^{+} p_{\sim} \in \mathbb{M}[\vec{U}] /{\underset{\sim}{c}}_{I}
$$

Next we shall show that

$$
E=\left\{q \in \mathbb{M}_{I}[\vec{U}] \mid(q \perp r) \bigvee\left(q \Vdash_{\mathbb{M}_{I}[\vec{U}]} \exists \alpha, \beta<\kappa^{+}\left(p_{\sim}, p_{\sim}^{p_{\beta}} \text { are compatible }\right)\right\}\right.
$$

is a dense subset of $\mathbb{M}_{I}[\vec{U}]$. Assume $r \leq_{I} r^{\prime}$, for every $\alpha<\kappa^{+}$pick some $r^{\prime} \leq_{I} q_{\alpha}^{*} \in$ $\mathbb{M}_{I}[\vec{U}], p_{\alpha}^{*} \in \mathbb{M}[\vec{U}]$ such that

- $\pi_{I}\left(p_{\alpha}^{*}\right)=q_{\alpha}^{*}$
- $q_{\alpha}^{*} \Vdash{\underset{\sim}{\sim}}^{p_{\alpha}} \leq \stackrel{p_{\alpha}^{*}}{\vee} \in \mathbb{M}[\vec{U}] / \underset{\sim}{G_{I}}$

There exists such $q_{\alpha}^{*}, p_{\alpha}^{*}$: Find $r^{\prime} \leq{ }_{I} q_{\alpha}^{\prime}$ and p_{α}^{\prime} such that $q_{\alpha}^{\prime} \Vdash{ }_{p}^{\vee}=p_{\alpha}$ then by the proposition $4.10(2)$, there is $q_{\alpha}^{*} \geq_{I} \pi_{I}\left(p_{\alpha}^{\prime}\right), q_{\alpha}^{\prime}$. By lemma 4.8 (3) there is $p_{\alpha}^{*} \geq p_{\alpha}^{\prime}$ such that $q_{\alpha}^{*}:=\pi_{I}\left(p_{\alpha}^{*}\right)$. It follows from proposition 4.10 (1) that

$$
q_{\alpha}^{*} \Vdash p_{\sim} \leq \stackrel{\vee}{p_{\alpha}^{*}} \in \mathbb{M}[\vec{U}] /{\underset{\sim}{G}}_{I}
$$

Denote $p_{\alpha}^{*}=\left\langle t_{1, \alpha}, \ldots, t_{n_{\alpha}, \alpha}, t_{n_{\alpha}+1, \alpha}\right\rangle, q_{\alpha}^{*}=\left\langle t_{i_{1}, \alpha}, \ldots, t_{i_{m_{\alpha}}, \alpha}, t_{n_{\alpha}+1, \alpha}\right\rangle$. Find $S \subseteq \kappa^{+}, n<\omega$ and $\left\langle\kappa_{1}, \ldots, \kappa_{n}\right\rangle$ such that $|S|=\kappa^{+}$and for any $\alpha \in S, n_{\alpha}=n$ and

$$
\left\langle\kappa\left(t_{1, \alpha}\right), \ldots, \kappa\left(t_{n_{\alpha}, \alpha}\right)\right\rangle=\left\langle\kappa_{1}, \ldots, \kappa_{n}\right\rangle .
$$

Since $\pi_{I}\left(p_{\alpha}^{*}\right)=q_{\alpha}^{*}$ it follows that

$$
\left\langle\kappa\left(t_{i_{1}, \alpha}\right), \ldots, \kappa\left(t_{i_{m_{\alpha}}, \alpha}\right)\right\rangle=\left\langle\kappa_{i_{1}}, \ldots, \kappa_{i_{m}}\right\rangle
$$

for some $m<\omega$ and $1 \leq i_{1}<\ldots<i_{m} \leq n$.
Fix any $\alpha, \beta \in S$ and let $p^{*}=\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle$ where

$$
t_{i}=\left\{\begin{array}{cc}
\left\langle\kappa_{i}, B\left(t_{i, \alpha}\right) \cap B\left(t_{i, \beta}\right)\right\rangle & o^{\vec{U}}\left(t_{i, \alpha}\right)>0 \\
\kappa_{i} & \text { otherwise }
\end{array}\right.
$$

Inspired by the boolean algebras we shell denote $p_{\alpha}^{*} \cap p_{\beta}^{*}=p^{*}$. Set

$$
q^{*}=\pi_{I}\left(p^{*}\right)=\left\langle t_{i_{1}}^{\prime}, \ldots, t_{i_{m}}^{\prime}\right\rangle
$$

Then $r^{\prime} \leq_{I} q_{\alpha}^{*} \cap q_{\beta}^{*}=\pi_{I}\left(p_{\alpha}^{*}\right) \cap \pi_{I}\left(p_{\beta}^{*}\right)=\pi_{I}\left(p_{\alpha}^{*} \cap p_{\beta}^{*}\right)=\pi_{I}\left(p^{*}\right)=q^{*}$. It follows that $q^{*} \in E$ since by proposition $4.10(1) q^{*} \Vdash_{\mathbb{M}_{I}[\vec{U}]} \stackrel{p^{*}}{\vee} \in \mathbb{M}[\vec{U}] /{\underset{\sim}{G}}_{G_{I}}$ and

$$
q^{*} \vdash_{\mathbb{M}_{I}[\vec{U}]} p_{\sim} \leq \stackrel{\vee}{p_{\alpha}^{*}} \leq^{*} \stackrel{p}{p}^{*} \wedge \underset{\sim}{p_{\beta}} \leq \stackrel{p_{\beta}^{*}}{\vee} \leq^{*} \stackrel{\vee}{p^{*}}
$$

The rest is routine.

Lemma 4.12 Let G be $\mathbb{M}[\vec{U}]$-generic. Then the forcing $\mathbb{M}[\vec{U}] / G_{I}$ satisfies $\kappa^{+}-$c.c. in $V[G]$.

Proof: Fix $\left\{p_{\alpha} \mid \alpha<\kappa^{+}\right\} \subseteq \mathbb{M}[\vec{U}] / G_{I}$ in $V[G]$ and let

$$
r \in G, r \vdash_{\mathbb{M}[\vec{U}]} \forall \alpha<\kappa^{+} p_{\sim} \in \mathbb{M}[\vec{U}] /{\underset{\sim}{G}}_{I}
$$

Similar to lemma 4.11 we shall show that

$$
E=\left\{x \in \mathbb{M}[\vec{U}] \mid(q \perp r) \bigvee\left(q \Vdash_{\mathbb{M}[\vec{U}]} \exists \alpha, \beta<\kappa^{+}\left(p_{\sim},{\underset{\sim}{x}}^{p_{\beta}}\right) \text { are compatible }\right)\right\}
$$

is a dense subset of $\mathbb{M}[\vec{U}]$. Assume $r \leq r^{\prime}$, for every $\alpha<\kappa^{+}$pick some $r^{\prime} \leq x_{\alpha}^{\prime} \in \mathbb{M}[\vec{U}], p_{\alpha}^{\prime} \in$ $\mathbb{M}[\vec{U}]$ such that $x_{\alpha}^{\prime} \Vdash_{\mathbb{M}[\vec{U}]} p_{\sim}=\stackrel{p_{\alpha}^{\prime}}{ }$. By proposition 4.10 (3), we can find $\pi_{I}\left(x_{\alpha}^{\prime}\right), \pi_{I}\left(p_{\alpha}^{\prime}\right) \leq_{I} y_{\alpha}$. By lemma 4.8 (3), There is $x_{\alpha}^{\prime} \leq x_{\alpha}^{*}, p_{\alpha}^{\prime} \leq p_{\alpha}^{*}$ such that

$$
\pi_{I}\left(x_{\alpha}^{\prime}\right), \pi_{I}\left(p_{\alpha}^{\prime \prime}\right) \leq_{I} y_{\alpha}=\pi_{I}\left(p_{\alpha}^{*}\right)=\pi_{I}\left(x_{\alpha}^{*}\right)
$$

Denote

$$
\begin{gathered}
x_{\alpha}^{*}=\left\langle s_{1_{\alpha}}, \ldots, s_{k_{\alpha}, \alpha}, s_{k_{\alpha}+1, \alpha}\right\rangle, p_{\alpha}^{*}=\left\langle t_{1, \alpha}, \ldots, t_{n_{\alpha}, \alpha}, t_{n_{\alpha}+1, \alpha}\right\rangle \\
\pi_{I}\left(x_{\alpha}^{*}\right) \stackrel{=}{=}\left\langle t_{i_{1}, \alpha}^{\prime}, \ldots, t_{i_{k_{\alpha}^{\prime}}^{\prime}, \alpha}^{\prime} t_{k_{\alpha}+1}^{\prime}\right\rangle=\pi_{I}\left(p_{\alpha}\right)
\end{gathered}
$$

Find $S \subseteq \kappa^{+}|S|=\kappa^{+}$and $\left\langle\kappa_{1}, \ldots, \kappa_{n}\right\rangle,\left\langle\nu_{1}, \ldots, \nu_{k}\right\rangle$ such that for any $\alpha \in S$

$$
\left\langle\kappa\left(t_{1, \alpha}\right), \ldots, \kappa\left(t_{n_{\alpha}, \alpha}\right)\right\rangle=\left\langle\kappa_{1}, \ldots, \kappa_{n}\right\rangle,\left\langle\kappa\left(s_{1, \alpha}\right), \ldots, \kappa\left(s_{k, \alpha}\right)\right\rangle=\left\langle\nu_{1}, \ldots, \nu_{k}\right\rangle
$$

Fix any $\alpha, \beta \in S$ and let $p^{*}=p_{\alpha}^{*} \cap p_{\beta}^{*}, x^{*}=x_{\alpha}^{*} \cap x_{\beta}^{*}$. Then $p_{\alpha}^{\prime}, p_{\beta}^{\prime} \leq^{*} p^{*}$ and $x_{\alpha}, x_{\beta} \leq_{I}^{*} x^{*}$. Finally claim that $x^{*} \in E$:

$$
\pi_{I}\left(p^{*}\right)=\pi_{I}\left(p_{\alpha}^{*}\right) \cap \pi_{I}\left(p_{\beta}^{*}\right)=\pi_{I}\left(x_{\alpha}^{*}\right) \cap \pi_{I}\left(x_{\beta}^{*}\right)=\pi_{I}\left(x^{*}\right)
$$

thus $x^{*} \Vdash_{\Vdash_{\mathbb{M}[\vec{U}]}} \stackrel{\vee}{ } p^{*} \in \mathbb{M}[\vec{U}] / G_{I}$. Moreover, $x_{\alpha} \leq^{*} x^{*}$ which implies that $x^{*} \Vdash_{\mathbb{M}[\vec{U}]} p^{*} \geq p_{\sim}, p_{\sim}$.

Lemma 4.13 If $A \in V[G], A \subseteq \kappa^{+}$then there exists $C^{*} \subseteq C_{G}$ such that $V[A]=V\left[C^{*}\right]$.

Proof: Work in $V[G]$, for every $\alpha<\kappa^{+}$find subsequences $C_{\alpha} \subseteq C_{G}$ such that $V\left[C_{\alpha}\right]=$ $V[A \cap \alpha]$ using the induction hypothesis. The function $\alpha \mapsto C_{\alpha}$ has range $P\left(C_{G}\right)$ and domain κ^{+}which is regular in $V[G]$. Therefore there exist $E \subseteq \kappa^{+}$unbounded in κ^{+}and $\alpha^{*}<\kappa^{+}$such that for every $\alpha \in E, C_{\alpha}=C_{\alpha^{*}}$. Set $C^{*}=C_{\alpha^{*}}$, then

1. $C^{*} \subseteq C_{G}$
2. $C^{*} \in V\left[A \cap \alpha^{*}\right] \subseteq V[A]$
3. $\forall \alpha<\kappa^{+} A \cap \alpha \in V\left[C^{*}\right]$

Since C_{G} is a club, it can be assumed that C^{*} is a club by adding the limit points of C^{*} to C^{*}, clearly it will still satisfy (1)-(3). Unlike A 's that were subsets of κ, for which we added another piece of C_{G} to C^{*} to obtain C^{\prime} such that $V[A]=V\left[C^{\prime}\right]$, here we claim that $V[A]=V\left[C^{*}\right]:$
By (2), $C^{*} \in V[A]$. For the other direction, denote by I the indexes of C^{*} in C and consider the forcings $\mathbb{M}_{I}[\vec{U}], \mathbb{M}[\vec{U}] / G_{I}$. Assume that $A \notin V\left[C^{*}\right]$, we shall reach a contradiction: Let $\underset{\sim}{A}$ be a name for A in $\mathbb{M}[\vec{U}] / G_{I}$ where $\pi_{I}^{\prime \prime} G=G_{I}$. Work in $V\left[G_{I}\right]$, by lemma 4.6 (2), $V\left[G_{I}\right]=V\left[C^{*}\right]$. For every $\alpha<\kappa^{+}$define

$$
X_{\alpha}=\{B \subseteq \alpha \mid\|\underset{\sim}{A} \cap \alpha=B\| \neq 0\}
$$

where the truth value is taken in $R O\left(\mathbb{M}[\vec{U}] / G_{I}\right)$ - the complete boolean algebra of regular open sets for $\mathbb{M}[\vec{U}] / G_{I}$. By lemma 4.11

$$
\forall \alpha<\kappa^{+}\left|X_{\alpha}\right| \leq \kappa
$$

For every $B \in X_{\alpha}$ define $b(B)=\|A \cap \alpha\|$. Assume that $B^{\prime} \in X_{\beta}$ and $\alpha \leq \beta$ then $B=B^{\prime} \cap \alpha \in$ X_{α}. Switching to boolean algebra notation ($p \leq_{B} q$ means p extends q) $b\left(B^{\prime}\right) \leq_{B} b(B)$. Note that for such B, B^{\prime} if $b\left(B^{\prime}\right)<_{B} b(B)$, then there is

$$
0<p \leq_{B}\left(b(B) \backslash b\left(B^{\prime}\right)\right) \leq_{B} b(B)
$$

Therefore

$$
p \cap b\left(B^{\prime}\right) \leq_{B}\left(b(B) \backslash b\left(B^{\prime}\right)\right) \cap b\left(B^{\prime}\right)=0
$$

Hence $p \perp b\left(B^{\prime}\right)$. Work in $\mathrm{V}[\mathrm{G}]$, denote $A_{\alpha}=A \cap \alpha$. Recall that

$$
\forall \alpha<\kappa^{+} A_{\alpha} \in V\left[C^{*}\right]
$$

thus $A_{\alpha} \in X_{\alpha}$. Consider the $\leq_{B^{-}}$-non-increasing sequence $\left\langle b\left(A_{\alpha}\right) \mid \alpha<\kappa^{+}\right\rangle$. If there exists some $\gamma^{*}<\kappa^{+}$on which the sequence stabilizes, define

$$
A^{\prime}=\bigcup\left\{B \subseteq \kappa^{+} \mid \exists \alpha b\left(A_{\gamma^{*}}\right) \Vdash \underset{\sim}{A \cap} \cap \alpha=B\right\} \in V\left[C^{*}\right]
$$

To see that $A^{\prime}=A$, notice that if $B, B^{\prime}, \alpha, \alpha^{\prime}$ are such that

$$
b\left(A_{\gamma^{*}}\right) \Vdash \underset{\sim}{A} \cap \alpha=B, b\left(A_{\gamma^{*}}\right) \Vdash \underset{\sim}{A} \cap \alpha^{\prime}=B^{\prime}
$$

if $\alpha \leq \alpha^{\prime}$ then we must have $B^{\prime} \cap \alpha=B$ otherwise, the non zero condition $b\left(A_{\gamma^{*}}\right)$ would force contradictory information. Consequently, for every $\xi<\kappa^{+}$there exists $\xi<\gamma<\kappa^{+}$such that $b\left(A_{\gamma^{*}}\right) \Vdash \underset{\sim}{A} \cap \gamma=A \cap \gamma$, hence $A^{\prime} \cap \gamma=A \cap \gamma$. This is a contradiction to $A \notin V\left[C^{*}\right]$. Therefore, the sequence $\left\langle b\left(A_{\alpha}\right) \mid \alpha<\kappa^{+}\right\rangle$does not stabilize. By regularity of κ^{+}, there exists a subsequence $\left\langle b\left(A_{i_{\alpha}}\right) \mid \alpha<\kappa^{+}\right\rangle$which is strictly decreasing. Use the observation we made to find $p_{\alpha} \leq{ }_{B} b\left(A_{i_{\alpha}}\right)$ such that $p_{\alpha} \perp b\left(A_{i_{\alpha+1}}\right)$. Since $b\left(A_{i_{\alpha}}\right)$ are decreasing, for any $\beta>\alpha$ $p_{\alpha} \perp b\left(A_{i_{\beta}}\right)$ thus $p_{\alpha} \perp p_{\beta}$. This shows that $\left\langle p_{\alpha} \mid \alpha<\kappa^{+}\right\rangle \in V[G]$ is an antichain of size κ^{+} which contradicts Lemma 4.12. Thus $V[A]=V\left[C^{*}\right]$.

End of the proof of Theorem 3.3: By induction on $\sup (A)=\lambda>\kappa^{+}$. It suffices to assume that λ is a cardinal.
case1: $\left(c f^{V[G]}(\lambda)>\kappa\right)$ the arguments of lemma 4.13 works.
$\underline{\text { case2: }}\left(c f^{V[G]}(\lambda) \leq \kappa\right)$ Since $\mathbb{M}[\vec{U}]$ satisfies $\kappa^{+}-c . c$. we must have that $\nu:=c f^{V}(\lambda) \leq \kappa$. Fix $\left\langle\gamma_{i} \mid i<\nu\right\rangle \in V$ cofinal in λ. Work in $V[A]$, for every $i<\nu$ find $d_{i} \subseteq \kappa$ such that $V\left[d_{i}\right]=V\left[A \cap \gamma_{i}\right]$. By induction, there exists $C^{*} \subseteq C_{G}$ such that $V\left[\left\langle d_{i} \mid i<\nu\right\rangle\right]=V\left[C^{*}\right]$, therefore

1. $\forall i<\nu A \cap \gamma_{i} \in V\left[C^{*}\right]$
2. $C^{*} \in V[A]$

Work in $V\left[C^{*}\right]$, for $i<\nu$ define $X_{i}=\left\{B \subseteq \alpha \mid \quad\left\|A \cap \gamma_{i}=B\right\| \neq 0\right\}$. By lemma 4.11, $\left|X_{i}\right| \leq \kappa$. For every $i<\nu$ fix an enumeration

$$
X_{i}=\langle X(i, \xi) \mid \xi<\kappa\rangle \in V\left[C^{*}\right]
$$

There exists $\xi_{i}<\kappa$ such that $A \cap \gamma_{i}=X\left(i, \xi_{i}\right)$. Moreover, since $\nu \leq \kappa$ the sequence $\left\langle A \cap \gamma_{i} \mid i<\nu\right\rangle=\left\langle X\left(i, \xi_{i}\right) \mid i<\nu\right\rangle$ can be coded in $V\left[C^{*}\right]$ as a sequence of ordinals below κ . By induction there exists $C^{\prime \prime} \subseteq C_{G}$ such that $V\left[C^{\prime \prime}\right]=V\left[\left\langle\xi_{i} \mid i<\nu\right\rangle\right]$. It follows

$$
V\left[C^{\prime \prime}, C^{*}\right]=\left(V\left[C^{*}\right]\right)\left[\left\langle\xi_{i} \mid i<\nu\right\rangle\right]=V[A]
$$

Finally, we can take for example, $C^{\prime}=C^{\prime \prime} \cup C^{*} \subseteq C_{G}$ to obtain $V[A]=V\left[C^{\prime}\right]$

5 Classification of subforcing of Magidor

Definition 5.1 Let \vec{U} be a coherent sequence and κ a measurable cardinal with $0<o^{\vec{U}}(\kappa)<$ $\min \left(\nu \mid o^{\vec{U}}(\nu)>0\right)$. Let $I \subseteq \omega^{o^{\vec{U}}(\kappa)}$ be a closed subset. Define:

1. $0_{\mathbb{M}_{I}[\vec{U}]}=\left\langle\langle \rangle,\left\langle\kappa, B^{*}\right\rangle\right\rangle$ where B^{*} has the following properties

- $B^{*} \in \bigcap_{\xi<o^{\vec{U}}(\kappa)} U(\kappa, \xi)$
- For every $\beta \in B^{*} o^{\vec{U}}(\beta)<o^{\vec{U}}(\kappa)$
- For every $\beta \in B^{*} B \cap \beta \in \bigcap_{\xi<o^{\vec{U}}(\beta)} U(\beta, \xi)$

2. For every $p=\left\langle t_{1}, \ldots, t_{n},\left\langle\kappa, B^{\prime}\right\rangle\right\rangle$ such that each t_{r} is an ordinal or a pair, define $\gamma_{I}\left(t_{0}, p\right)=0$ and

$$
\gamma_{I}\left(t_{r}, p\right)=\min \left(i \in I \backslash \gamma_{I}\left(t_{r-1}, p\right)+1 \mid o(i)=o^{\vec{U}}\left(t_{r}\right)\right)
$$

If for some $1 \leq r \leq n,\left\{i \in I \backslash \gamma_{I}\left(t_{r-1}, p\right)+1 \mid o(i)=o^{\vec{U}}\left(t_{r}\right)\right\}=\emptyset$ then for every $1 \leq j \leq n$ let $\gamma_{I}\left(t_{j}, p\right)=N / A$.
3. The elements of $\mathbb{M}_{I}[\vec{U}]$ are of the form $p=\left\langle t_{1}, \ldots, t_{n},\langle\kappa, B\rangle\right\rangle$ such that each t_{r} is an ordinal or a pair and $\gamma_{I}\left(t_{r 1}, p\right) \neq N / A$ for every $1 \leq r \leq n$, such that:
(a) $\kappa\left(t_{1}\right)<\ldots<\kappa\left(t_{n}\right)<\kappa$
(b) $B \subseteq B^{*}, B \in \bigcap_{\xi<o^{\vec{U}}(\kappa)} U(\kappa, \xi)$
(c) For every $1 \leq r \leq n$
i. If $\gamma_{I}\left(t_{r}, p\right) \in \operatorname{Succ}(I)$ then
A. $t_{r}=\kappa\left(t_{r}\right) \in B^{*}$
B. $\gamma_{I}\left(t_{r-1}, p\right)$ is the predecessor in I of $\gamma_{I}\left(t_{r}, p\right)$
ii. If $\gamma_{I}\left(t_{r}, p\right) \in \operatorname{Lim}(I)$
A. $t_{r}=\left\langle\kappa\left(t_{r}\right), B\left(t_{r}\right)\right\rangle \in B^{*} \times P\left(B^{*}\right), B\left(t_{i}\right) \in \bigcap_{\xi<o^{\vec{U}}\left(t_{r}\right)} U\left(t_{r}, \xi\right)$
B. $\gamma_{I}\left(t_{r-1}, p\right)+\omega^{\omega^{\vec{U}}\left(t_{r}\right)}=\gamma_{I}\left(t_{r}, p\right)$
C. $\min \left(B\left(t_{r}\right)\right)>\kappa\left(t_{r-1}\right)$, where $\kappa\left(t_{0}\right)=0$
4. Let $p=\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle, q=\left\langle s_{1}, \ldots, s_{m}, s_{m+1}\right\rangle \in \mathbb{M}_{I}[\vec{U}]$. Define $\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle \leq_{I}\left\langle s_{1}, \ldots, s_{m}, s_{m+1}\right\rangle$ iff $\exists 1 \leq i_{1}<\ldots<i_{n} \leq m<i_{n+1}=m+1$ such that
(a) $\kappa\left(t_{r}\right)=\kappa\left(s_{i_{r}}\right)$ and $B\left(s_{i_{r}}\right) \subseteq B\left(t_{r}\right)$
(b) If $i_{k}<j<i_{k+1}$
i. $\kappa\left(s_{j}\right) \in B\left(t_{k+1}\right)$
ii. $I\left(s_{j}, q\right) \in \operatorname{Lim}(I) \rightarrow B\left(s_{j}\right) \subseteq B\left(t_{k+1}\right) \cap \kappa\left(s_{j}\right)$

Definition 5.2 The forcings $\left\{\mathbb{M}_{I}[\vec{U}] \mid I \in P\left(\omega^{o^{\vec{U}}(\kappa)}\right)\right\}$ is the family of Magidor-type forcing with the coherent sequence \vec{U}.

In practice, Magidor-type forcings are just Magidor forcing with a subsequence of \vec{U}; If I is any closed subset of indexes, we can read the measures of \vec{U} from which the elements of the final sequence are chosen using the map $I \mapsto\langle o(i) \mid i \in I\rangle$ (recall that $o(i)=\gamma_{n}$ where $i=\omega^{\gamma_{1}}+\ldots+\omega^{\gamma_{n}}$ C.N.F).

Example: Assume that $o^{\vec{U}}(\kappa)=2$ and let a

$$
I=\{1, \omega, \omega+1\} \cup(\omega \cdot 3 \backslash \omega \cdot 2) \cup\{\omega \cdot 3, \omega \cdot 4, \ldots\} \in P\left(\omega^{2}\right)
$$

Then $\langle o(i) \mid i \in I\rangle=\langle 0,1, \underbrace{0,0,0 \ldots}_{\omega}, \underbrace{1,1,1 \ldots}_{\omega}\rangle$. Therefore $\mathbb{M}_{I}[\vec{U}]$ is just Prikry foricing with $U\left(\kappa_{1}, 0\right)$ for some measurable $\kappa_{1}<\kappa$ followed by Prikry forcing with $U(\kappa, 1)$.
Although in this example the noise at the beginning is neglectable, there are I 's for which we do not get "pure" Magidor forcing which uses one measure at a time and combine several measure. The next theorem is a Mathias characterization for Magidor-type forcing and is proven in [?].

Theorem 5.3 Let $\mathbb{M}_{I}[\vec{U}]$ be a Magidor-type forcing, $C=\langle C(i) \mid i \in I\rangle$ be any increasing continues sequence. Then

$$
G_{C}=\left\{p \in \mathbb{M}_{I}[\vec{U}] \mid \kappa(p) \subseteq C, C \backslash \kappa(p) \subseteq B(p)\right\}
$$

is a generic for $\mathbb{M}_{I}[\vec{U}]$ iff:

1. For every $i \in I o^{\vec{U}}(C(i))=o(i)$
2. For every $\left\langle c_{1}, \ldots, c_{n}\right\rangle \in[\operatorname{Lim}(C)]^{<\omega}$ and every $A_{r} \in \bigcap_{j<0 \vec{U}\left(c_{r}\right)} U\left(c_{r}, j\right)$ for $1 \leq r \leq n$, there exists $\alpha_{1}<c_{1} \leq \alpha_{2}<c_{2} \leq \ldots \leq \alpha_{n}<c_{n}$ such that $C \cap\left(\alpha_{r}, c_{r}\right) \subseteq A_{r}$

We restate Theorem 3.3 in terms of complete subforcing [?].

Theorem 5.4 Let $\mathbb{P} \subseteq \mathbb{M}[\vec{U}]$ be a complete subforcing of $\mathbb{M}[\vec{U}]$ then there exists a maximal antichain $Z \subseteq \mathbb{P}$ and $I_{p}, p \in Z$ such that $\mathbb{P}_{\geq p}$ (the forcing \mathbb{P} above p) is equivalent to the Magidor-type forcing $\mathbb{M}_{I_{p}}[\vec{U}]_{\geq q_{p}}$.

Proof: Let $H \subseteq \mathbb{P}$ be generic, then there exists $G \subseteq \mathbb{M}[\vec{U}]$ generic such that $H=G \cap \mathbb{P}$, in particular $V \subseteq V[H] \subseteq V[G]$. By Theorem 3.3, there is a closed $C^{\prime} \subseteq C_{G}$ such that $V\left[C^{\prime}\right]=V[H]$. Let C_{\sim}^{\prime} be a \mathbb{P}-name of C^{\prime} and I it's set of indexes in C_{G}. The assumption $o^{\vec{U}}(\kappa)$ is crucial to claim that $I \in V$. By the Mathias characterization (see theorem 5.4), C^{\prime} is generic for $\mathbb{M}_{I}[\vec{U}]$. Let $p \in \mathbb{P}$ such that

$$
p \Vdash{\underset{\sim}{C}}^{\prime} \text { is generic for } I=I_{p} \text { and } V[\underset{\sim}{H}]=V\left[\underset{\sim}{C^{\prime}}\right]
$$

This is indeed a formula in the forcing language since for any set $A, V[A]=\bigcup_{z \subseteq o r d, z \in V} L[z, A]$ where $L[z, A]$ is the class of all constructable sets relative to z, A. Redefine $\underset{\sim}{C}, \underset{\sim}{r} \underset{\sim}{H}$ to be $\mathbb{M}_{I_{p}}[\vec{U}]$-names for C^{\prime}, H and let $q_{p} \in R O\left(\mathbb{M}_{I_{p}}[\vec{U}]\right)$ be

$$
q_{p}=\| \underset{\sim}{H} \text { is generic for } \mathbb{P}, p \in \underset{\sim}{H} \text { and } V[\underset{\sim}{H}]=V\left[\underset{\sim}{C^{\prime}}\right] \|
$$

Clearly $\mathbb{M}_{I_{p}}[\vec{U}]_{\geq q_{p}}$ and $\mathbb{P}_{\geq p}$ have the same generic extensions

6 Prikry forcings with non-normal ultrafilters.

Let κ be a measurable cardinal and let $\mathbb{U}=\left\langle U_{a} \mid a \in[\kappa]^{<\omega}\right\rangle$ be a tree consisting of κ-complete non-trivial ultrafilter over κ.

Recall the definition due to Prikry of the tree Prikry forcing with \mathbb{U}.
Definition 6.1 $P(\mathbb{U})$ is the set of all pairs $\langle p, T\rangle$ such that

1. p is a finite sequence of ordinals below κ,
2. $T \subseteq[\kappa]^{<\omega}$ is a tree with trunk p such that
for every $q \in T$ with $q \geq_{T} p$, the set of the immediate successors of q in T, i.e. $\operatorname{Suc}_{T}(q)$ is in U_{q}.

The orders $\leq, \leq *$ are defined in the usual fashion.

For every $a \in[\kappa]^{<\omega}$, let π_{a} be a projection of U_{a} to a normal ultrafilter. Namely, let $\pi_{a}: \kappa \rightarrow \kappa$ be a function which represents κ in the ultrapower by U_{a}, i.e. $[\pi]_{U_{a}}=\kappa$. Once U_{a} is a normal ultrafilter, then let π_{a} be the identity.

By passing to a dense subset of $P(\mathbb{U})$, we can assume that for each $\langle p, T\rangle \in P(\mathbb{U})$, for every $\left\langle\nu_{1}, \ldots, \nu_{n}\right\rangle \in T$ we have

$$
\nu_{1}<\pi_{\left\langle\nu_{1}\right\rangle}\left(\nu_{2}\right) \leq \nu_{2}<\ldots \leq \nu_{n-1}<\pi_{\left\langle\nu_{1}, \ldots, \nu_{n-1}\right\rangle}\left(\nu_{n}\right)
$$

and for every $\nu \in \operatorname{Suc}_{T}\left(\left\langle\nu_{1}, \ldots, \nu_{n}\right\rangle\right), \pi_{\left\langle\nu_{1}, \ldots, \nu_{n}\right\rangle}(\nu)>\nu_{n}$.
Note that once the measures over a certain level (or certain levels) are the same - say for some $n<\omega$ and U, for every $a \in[k]^{n}, U_{a}=U$, then a modified diagonal intersection

$$
\Delta_{\alpha<\kappa}^{*} A_{\alpha}:=\left\{\nu<\kappa \mid \forall \alpha<\pi_{k}(\nu)\left(\nu \in A_{\alpha}\right)\right\} \in U,
$$

once $\left\{A_{\alpha} \mid \alpha<\kappa\right\} \subseteq U$, can be used to avoid or to simplify the tree structure.
For example, if $\left\langle\mathcal{V}_{n} \mid n<\omega\right\rangle$ is a sequence of κ-complete ultrafilters over κ, then the Prikry forcing with it $P\left(\left\langle\mathcal{V}_{n} \mid n<\omega\right\rangle\right)$ is defined as follows:

Definition 6.2 $P\left(\left\langle\mathcal{V}_{n} \mid n<\omega\right\rangle\right)$ is the set of all pairs $\left.\left\langle p,\left\langle A_{n}\right|\right| p|<n<\omega\rangle\right\rangle$ such that

1. $p=\left\langle\nu_{1}, \ldots, \nu_{k}\right\rangle$ is a finite sequence of ordinals below κ, such that $\nu_{j}<\pi_{i}\left(\nu_{i}\right)$, whenever $1 \leq j<i \leq k$,
2. $A_{n} \in \mathcal{V}_{n}$, for every $n,|p|<n<\omega$, and
3. $\pi_{k+1}\left(\min \left(A_{k+1}\right)\right)>\max (p)$, where $\pi_{n}: \kappa \rightarrow \kappa$ is a projection of \mathcal{V}_{n} to a normal ultrafilter, i.e. π_{n} is a function which represents κ in the ultrapower by $\mathcal{V}_{n},[\pi]_{\mathcal{V}_{n}}=\kappa$.

A simpler case is once all \mathcal{V}_{n} are the same, say all of them are U. Then we will have the Prikry forcing with U :

Definition 6.3 $P(U)$ is the set of all pairs $\langle p, A\rangle$ such that

1. $p=\left\langle\nu_{1}, \ldots, \nu_{k}\right\rangle$ is a finite sequence of ordinals below κ, such that $\nu_{j}<\pi\left(\nu_{i}\right)$, whenever $1 \leq j<i \leq k$,
2. $A \in U$, and
3. $\pi(\min (A))>\max (p)$, where π is a projection of U to a normal ultrafilter.

Let G be a generic for $\langle P(\mathbb{U}), \leq\rangle$. Set

$$
C=\bigcup\{p \mid \exists T \quad\langle p, T\rangle \in G\}
$$

It is called a Prikry sequence for \mathbb{U}.
For every natural $n \geq 1$ we would like to define a κ-complete ultrafilter U_{n} over $[\kappa]^{n}$ which correspond to the first n-levels of trees in $P(\mathbb{U})$.
If $n=1$, set $U_{1}=U_{\langle \rangle}$.
Deal with the next step $n=2$. Here for each $\nu<\kappa$ we have U_{ν}.
Consider the ultrapower by $U_{\langle \rangle}$:

$$
i_{\langle \rangle}: V \rightarrow M_{\langle \rangle}
$$

Then the sequence $i_{\langle \rangle}\left(\left\langle U_{\langle\nu\rangle} \mid \nu<\kappa\right\rangle\right)$ will have the length $i_{\langle \rangle}(\kappa)$.
Let $U_{\left\langle[i d]_{U_{(\rangle}}\right\rangle}$be its $[i d]_{U_{\langle \rangle}}$ultrafilter in $M_{\langle \rangle}$over $i_{\langle \rangle}(\kappa)$. Consider its ultrapower

$$
\left.i_{U_{\left\langle[i d]_{\left.U_{\ell}\right\rangle}\right.}}: M_{\langle \rangle} \rightarrow M_{\left\langle[i d]_{U_{\ell\rangle}}\right\rangle}\right\rangle
$$

Set

$$
i_{2}=i_{U_{\left\langle[i d]_{U}\right\rangle}} \circ i_{\langle \rangle} .
$$

Then

$$
\left.i_{2}: V \rightarrow M_{\left\langle[i d]_{U_{(\lambda}}\right.}\right\rangle
$$

Note that if all of $U_{\langle\nu\rangle}$'s are the same or just for a set of ν 's in $U_{\langle \rangle}$they are the same, then this is just an ultrapower by the product of $U_{\langle \rangle}$with this ultrafilter. In general it is an ultrapower by

$$
U_{\langle \rangle}-\operatorname{Lim}\left\langle U_{\langle\nu\rangle} \mid \nu<\kappa\right\rangle,
$$

where

$$
X \in U_{\langle \rangle}-\operatorname{Lim}\left\langle U_{\langle\nu\rangle} \mid \nu<\kappa\right\rangle \operatorname{iff}[i d]_{U_{\left\langle[i d]_{U\rangle}\right\rangle}} \in i_{2}(X)
$$

Note that once most of $U_{\langle\nu\rangle}$'s are normal, then $\left.U_{\left\langle[i d]_{\left.U_{\ell}\right\rangle}\right.}\right\rangle$ is normal as well, and so, $[i d]_{U_{\left\langle[i d]_{\left.U_{(\rangle}\right\rangle}\right\rangle}}=$ $i_{\langle \rangle}(\kappa)$.

Define an ultrafilter U_{2} on $[\kappa]^{2}$ as follows:

$$
X \in U_{2} \text { iff }\left\langle[i d]_{U_{\langle \rangle}},[i d]_{\left.U_{\left\langle[i d]_{U}\right\rangle}\right\rangle}\right\rangle \in i_{2}(X) .
$$

Define also for $k=1,2$, ultrafilters U_{2}^{k} over κ as follows:

$$
\begin{gathered}
X \in U_{2}^{1} \text { iff }[i d]_{U_{\langle \rangle}} \in i_{2}(X), \\
X \in U_{2}^{1} \text { iff }[i d]_{U_{\left\langle[i d] U_{\langle \rangle}\right\rangle}} \in i_{2}(X) .
\end{gathered}
$$

Clearly, then $U_{2}^{1}=U_{1}$ and $U_{2}^{2}=U_{\langle \rangle}-\operatorname{Lim}\left\langle U_{\langle\nu\rangle} \mid \nu<\kappa\right\rangle$. Also U_{2}^{1} is the projection of U^{2} to the first coordinate and U_{2}^{2} to the second.

Let $\left\langle\rangle, T\rangle \in P(\mathbb{U})\right.$. It is not hard to see that $T \upharpoonright 2 \in U_{2}$.
Continue and define in the similar fashion the ultrafilter U_{n} over $[\kappa]^{n}$ and its projections to the coordinates U_{n}^{k} for every $n>2,1 \leq k \leq n$. We will have that for any $\langle\rangle, T\rangle \in P(\mathbb{U})$, $T \upharpoonright n \in U_{n}$. Also, if $1 \leq n \leq m<\omega$, then the natural projection of U_{m} to $[\kappa]^{n}$ will be U_{n}.

It is easy to see that C is a Prikry sequence for $\left\langle U_{n}^{n} \mid 1 \leq n<\omega\right\rangle$, in a sense that for every sequence $\left\langle A_{n} \mid n<\omega\right\rangle \in V$, with $A_{n} \in U_{n}^{n}$, there is $n_{0}<\omega$ such that for every $n>n_{0}$, $C(n) \in U_{n}^{n}$.
However, it does not mean that C is generic for the forcing $P\left(\left\langle U_{n}^{n} \mid 1 \leq n<\omega\right\rangle\right)$ defined above (Definition ??). The problem is with projection to normal. All U_{n}^{n} 's have the same normal U_{1}.

Suppose now that we have an ultrafilter W over $[\kappa]^{\ell}$ which is Rudin-Keisler below some \mathfrak{V} over $[k]^{k}\left(W \leq_{R K} \mathfrak{V}\right)$, for some $k, \ell, 1 \leq \ell, k<\omega$. This means that there is a function $F:[\kappa]^{k} \rightarrow[\kappa]^{\ell}$ such that

$$
X \in W \text { iff } F^{-1 \prime \prime} X \in \mathfrak{V}
$$

So F projects \mathfrak{V} to W. Let us denote this by $W=F_{*} \mathfrak{V}$.
The next statement characterizes ω-sequences in $V[C]$.
Theorem 6.4 Let $\left\langle\alpha_{k} \mid k<\omega\right\rangle \in V[C]$ be an increasing cofinal in κ sequence. Then $\left\langle\alpha_{k} \mid k<\omega\right\rangle$ is a Prikry sequence for a sequence in V of κ-complete ultrafilters which are Rudin-Keisler below $\left\langle U_{n} \mid n<\omega\right\rangle .{ }^{5}$
Moreover, there exist a non-decreasing sequence of natural numbers $\left\langle n_{k} \mid k<\omega\right\rangle$ and a sequence of functions $\left\langle F_{k} \mid k<\omega\right\rangle$ in $V, F_{k}:[\kappa]^{n_{k}} \rightarrow \kappa$, $(k<\omega)$, such that

1. $\alpha_{k}=F_{k}\left(C \upharpoonright n_{k}\right)$, for every $k<\omega$.
2. Let $\left\langle n_{k_{i}} \mid i<\omega\right\rangle$ be the increasing subsequence of $\left\langle n_{k} \mid k<\omega\right\rangle$ such that
(a) $\left\{n_{k_{i}} \mid i<\omega\right\}=\left\{n_{k} \mid k<\omega\right\}$, and
(b) $k_{i}=\min \left\{k \mid n_{k}=n_{k_{i}}\right\}$.

Set $\ell_{i}=\left|\left\{k \mid n_{k}=n_{k_{i}}\right\}\right|$. Then $\left\langle F_{k}\left(C \upharpoonright n_{k_{i}}\right) \mid i<\omega, n_{k}=n_{k_{i}}\right\rangle$ will be a Prikry sequence for $\left\langle W_{i} \mid i<\omega\right\rangle$, i.e. for every sequence $\left\langle A_{i} \mid i<\omega\right\rangle \in V$, with $A_{i} \in W_{i}$, there is $i_{0}<\omega$ such that for every $i>i_{0},\left\langle F_{k}\left(C \upharpoonright n_{k_{i}}\right) \mid i<\omega, n_{k}=n_{k_{i}}\right\rangle \in A_{i}$, where each W_{i} is an ultrafilter over $[\kappa]^{\ell_{i}}$ which is the projection of $U_{n_{k_{i}}}$ by $\left\langle F_{k_{i}}, \ldots, F_{k_{i}+\ell_{i}-1}\right\rangle$.

Proof. Work in V. Given a condition $\langle q, S\rangle$, we will construct by induction, using the Prikry property of the forcing $P(\mathbb{U}$, a stronger condition $\langle p, T\rangle$ which decides $\underset{\sim}{\alpha} k$ once going up to a certain level n_{k} of T. Let us assume for simplicity that q is the empty sequence.

[^4]Build by induction $\left\langle\rangle, T\rangle \geq^{*}\langle\langle \rangle, S\rangle\right.$ and a non-decreasing sequence of natural numbers $\left\langle n_{k} \mid k<\omega\right\rangle$ such that for every $k<\omega$

1. for every $\left\langle\eta_{1}, \ldots, \eta_{n_{k}}\right\rangle \in T$ there is $\rho_{\left\langle\eta_{1}, \ldots, \eta_{n_{k}}\right\rangle}<\kappa$ such that
(a) the condition $\left\langle\left\langle\eta_{1}, \ldots, \eta_{n_{k}}\right\rangle, T_{\left\langle\eta_{1}, \ldots, \eta_{n_{k}}\right\rangle} \text { forces " }{\underset{\sim}{\alpha}}_{k}=\rho_{\left\langle\eta_{1}, \ldots, \eta_{n_{k}}\right.}\right\rangle^{\text {" }}$,
(b) $\rho_{\left\langle\eta_{1}, \ldots, \eta_{n_{k}}\right\rangle} \geq \pi_{\left\langle\eta_{1}, \ldots, \eta_{n_{k-1}}\right\rangle}\left(\eta_{n_{k}}\right)$,
2. there is no $n, n_{k} \leq n<n_{k+1}$ such that for some $\left\langle\eta_{1}, \ldots, \eta_{n}\right\rangle \in T$ and E the condition $\left\langle\left\langle\eta_{1}, \ldots, \eta_{n}\right\rangle, E\right\rangle$ decides the value of $\underset{\sim}{\alpha}{ }_{k+1}$,

Now, using the density argument and making finitely many changes, if necessary, we can assume that such $\langle\rangle, T\rangle$ in the generic set.

For every $k<\omega$, define a function $F_{k}: \operatorname{Lev}_{n_{k}}(T) \rightarrow \kappa$ by setting

$$
F_{k}\left(\eta_{1}, \ldots, \eta_{n_{k}}\right)=\nu \text { if }\left\langle\left\langle\eta_{1}, \ldots, \eta_{n_{k}}\right\rangle, T_{\left\langle\eta_{1}, \ldots, \eta_{n_{k}}\right\rangle}\right\rangle \Vdash \underset{\sim}{\alpha}{ }_{k}=\nu .
$$

We restrict now our attention to ultrafilters U which are P-points. This will allow us to deal with arbitrary sets of ordinals in $V[C]$. Recall the definition.

Definition 6.5 U is called a P-point iff every non-constant (mod U) function $f: \kappa \rightarrow \kappa$ is almost one to one $(\bmod U)$, i.e. there is $A \in U$ such that for every $\delta<\kappa$,

$$
|\{\nu \in A \mid f(\nu)=\delta\}|<\kappa .
$$

Note that, in particular, the projection to the normal ultrafilter π is almost one to one. Namely,

$$
|\{\nu<\kappa \mid \pi(\nu)=\alpha\}|<\kappa,
$$

for any $\alpha<\kappa$.
Denote by $U^{n o r}$ the projection of U to the normal ultrafilter.
Lemma 6.6 Assume that $\mathbb{U}=\left\langle U_{a}\right| 1 \leq a \in[\kappa]^{<\omega\rangle}$ consists of P-point ultrafilters. Suppose that $A \in V[C] \backslash V$ is an unbounded subset of κ. Then κ has cofinality ω in $V[A]$.

Proof. Work in V. Let $\underset{\sim}{A}$ be a name of A and $\langle s, S\rangle \in P(\mathbb{U})$. Suppose for simplicity that s is the empty sequence. Define by induction a subtree T of S. For each $\nu \in \operatorname{Lev}_{1}(S)$ pick some subtree S_{ν}^{\prime} of $S_{\langle\nu\rangle}$ and $a_{\nu} \subseteq \pi_{\langle \rangle}(\nu)$ such that

$$
\left\langle\langle\nu\rangle, S_{\nu}^{\prime}\right\rangle \| \underset{\sim}{A} \cap \pi_{\langle \rangle}(\nu)=a_{\nu} .
$$

Let $S(0)^{\prime}$ be a subtree of S obtained be replacing $S_{\langle\nu\rangle}$ by S_{ν}^{\prime}, for every $\nu \in \operatorname{Lev}_{1}(S)$.
Consider the function $\nu \rightarrow a_{\nu},\left(\nu \in \operatorname{Lev}_{1}(S)\right)$. By normality of $\pi_{\langle \rangle *} U_{\langle \rangle}$it is easy to find $A(0) \subseteq \kappa$ and $T(0) \subseteq \operatorname{Lev}_{1}\left(S(0)^{\prime}\right), T(0) \in U_{\langle \rangle}$such that $A(0) \cap \pi_{\langle \rangle}(\nu)=a_{\nu}$, for every $\nu \in T(0)$. Set the first level of T to be $T(0)$. Set $S(0)$ to be a subtree of $S(0)^{\prime}$ obtained by shrinking the first level to $T(0)$.
Let now $\left\langle\nu_{1}, \nu_{2}\right\rangle \in \operatorname{Lev}_{2}(S(0))$. So, $\pi_{\left\langle\nu_{1}\right\rangle}\left(\nu_{2}\right)>\nu_{1}$. Find a subtree $S_{\nu_{1}, \nu_{2}}^{\prime}$ of $\left(S(1)_{\left\langle\nu_{1}, \nu_{2}\right\rangle}\right)$, and $a_{\nu_{0}, \nu_{1}} \subseteq \pi_{\left\langle\nu_{1}\right\rangle}\left(\nu_{2}\right)$ such that

$$
\left\langle\left\langle\nu_{1}, \nu_{2}\right\rangle, \vec{S}_{\nu_{0}, \nu_{1}}^{\prime}\right\rangle \| \underset{\sim}{A} \cap \pi_{\left\langle\nu_{1}\right\rangle}\left(\nu_{2}\right)=a_{\nu_{1}, \nu_{2}} .
$$

Let $S(1)^{\prime}$ be a subtree of $S(0)$ obtained be replacing $S_{\left\langle\nu_{1}, \nu_{2}\right\rangle}$ by $S_{\nu_{1}, \nu_{2}}^{\prime}$, for every $\left\langle\nu_{1}, \nu_{2}\right\rangle \in$ $\operatorname{Lev}_{2}(S(0))$.
Again, we consider the function $\nu \rightarrow a_{\nu},\left(\nu \in S(1)_{\nu_{1}}^{\prime}\right)$. By normality of $\pi_{\left\langle\nu_{1}\right\rangle *} U_{\left\langle\nu_{1}\right\rangle}$ it is easy to find $A\left(\nu_{1}\right) \subseteq \kappa$ and $T\left(\nu_{1}\right) \subseteq\left(S(1)_{\left\langle\nu_{1}\right\rangle}^{\prime}\right), T\left(\nu_{1}\right) \in U_{\left\langle\nu_{1}\right\rangle}$ such that $A\left(\nu_{1}\right) \cap \pi_{\left\langle\nu_{1}\right\rangle}(\nu)=a_{\nu_{1}, \nu}$, for every $\nu \in T\left(\nu_{1}\right)$.
Define the set of the immediate successors of ν_{1} to be $T\left(\nu_{1}\right)$, i.e. $S u c_{T}\left(\nu_{1}\right)=T\left(\nu_{1}\right)$. Let $S(1)$ be a subtree of $S(1)^{\prime}$ obtained this way.
This defines the second level of T. Continue similar to define further levels of T.
We will have the following property:
(*) for every $\left\langle\eta_{1}, \ldots, \eta_{n}\right\rangle \in T$,

$$
\left\langle\left\langle\eta_{1}, \ldots, \eta_{n}\right\rangle, T_{\left\langle\eta_{1}, \ldots, \eta_{n}\right\rangle}\right\rangle \mid \underset{\sim}{A} \cap \pi_{\left\langle\eta_{1}, \ldots, \eta_{n-1}\right\rangle}\left(\eta_{n}\right)=A\left(\eta_{1}, \ldots, \eta_{n-1}\right) \cap \pi_{\left\langle\eta_{1}, \ldots, \eta_{n-1}\right\rangle}\left(\eta_{n}\right) .
$$

A simple density argument implies that there is a condition which satisfies $\left({ }^{*}\right)$ in the generic set. Assume for simplicity that already $\left\langle\rangle, T\rangle\right.$ is such a condition. Then, $C \subseteq T^{*}$. Let $\left\langle\kappa_{n} \mid n<\omega\right\rangle=C$. So, for every $n<\omega$,

$$
A \cap \pi_{\left\langle\kappa_{0}, \ldots, \kappa_{n-1}\right\rangle}\left(\kappa_{n}\right)=A\left(\kappa_{0}, \ldots, \kappa_{n-1}\right) \cap \pi_{\left\langle\kappa_{0}, \ldots, \kappa_{n-1}\right\rangle}\left(\kappa_{n}\right)
$$

Let us work now in $V[A]$ and define by induction a sequence $\left\langle\eta_{n} \mid n<\omega\right\rangle$ as follows. Consider $A(0)$. It is a set in V, hence $A(0) \neq A$. So there is η such that for every $\nu \in \operatorname{Lev}_{1}(T)$ with $\pi_{\langle \rangle}(\nu) \geq \eta$ we have $A \cap \pi_{\langle \rangle}(\nu) \neq A(0) \cap \pi_{\langle \rangle}(\nu)$. Set η_{0} to be the least such η.
Turn to η_{1}. Let $\xi \in \operatorname{Lev}_{1}(T)$ be such that $\pi_{\langle \rangle}(\xi)<\eta_{0}$. Consider $A(\xi)$. It is a set in V, hence $A(\xi) \neq A$. So there is η such that for every $\nu \in \operatorname{Lev}_{2}\left(T_{\langle\xi\rangle}\right)$ with $\pi_{\langle\xi\rangle}(\nu) \geq \eta$ we have $A \cap \pi_{\langle\xi\rangle}(\nu) \neq A(\xi) \cap \pi_{\langle\xi\rangle}(\nu)$. Set $\eta(\xi)$ to be the least such η. Now define η_{1} to be $\sup \left(\left\{\eta(\xi) \mid \pi_{1}(\xi)<\eta_{0}\right\}\right)$. The crucial point now is that the number of ξ 's with $\pi_{\langle \rangle}(\xi)<\eta_{0}$ is less than κ, since $U_{\langle \rangle}$is a P-point.

If $\eta_{1}=\kappa$, then the cofinality of κ (in $\left.V[A]\right)$ is at most η_{0}. So it must be ω since the Prikry forcing used does not add new bounded subsets to κ, and we are done.
Let us argue however that this cannot happen and always $\eta_{1}<\kappa$.
Claim $1 \eta_{1}<\kappa$.

Proof. Suppose otherwise. Then

$$
\sup \left(\left\{\eta(\xi) \mid \pi_{\langle \rangle}(\xi)<\eta_{0}\right\}\right)=\kappa .
$$

Hence for every $\alpha<\kappa$ there will be ξ with $\pi_{\langle \rangle}(\xi)<\eta_{0}$ such that

$$
A \cap \alpha=A(\xi) \cap \alpha
$$

Then, for every $\alpha<\kappa$ there will be ξ, ξ^{\prime} with $\pi_{\langle \rangle}(\xi), \pi_{\langle \rangle}\left(\xi^{\prime}\right)<\eta_{0}$ such that

$$
A(\xi) \cap \alpha=A\left(\xi^{\prime}\right) \cap \alpha
$$

Now, in V, set $\rho_{\xi, \xi^{\prime}}$ to be the least $\rho<\kappa$ such that

$$
A(\xi) \cap \rho \neq A\left(\xi^{\prime}\right) \cap \rho,
$$

if it exists and 0 otherwise, i.e. if $A(\xi)=A\left(\xi^{\prime}\right)$. Let

$$
Z=\left\{\rho_{\xi, \xi^{\prime}} \mid \pi_{\langle \rangle}(\xi), \pi_{\langle \rangle}\left(\xi^{\prime}\right)<\eta_{0}\right\} .
$$

Then $|Z|^{V}<\kappa$, since the number of possible ξ, ξ^{\prime} is less than κ. But Z should be unbounded in κ due to the fact that for every $\alpha<\kappa$ there will be ξ with $\pi_{\langle \rangle}(\xi)<\eta_{0}$ such that $A \cap \alpha=A(\xi) \cap \alpha$ and $A \neq A(\xi)$. Contradiction.

Suppose that $\eta_{0}, \ldots, \eta_{n}<\kappa$ are defined. Define η_{n+1}. Let $\left\langle\xi_{0}, \ldots, \xi_{n}\right\rangle$ be in T. Consider $A\left(\xi_{0}, \ldots, \xi_{n}\right)$. It is a set in V, hence $A\left(\xi_{0}, \ldots, \xi_{n}\right) \neq A$. So there is η such that for every $\nu \in$ $\operatorname{Lev}_{n+2}\left(T_{\left\langle\xi_{0}, \ldots, \xi_{n}\right\rangle}\right)$ with $\pi_{\left\langle\xi_{0}, \ldots, \xi_{n}\right\rangle}(\nu) \geq \eta$ we have $A \cap \pi_{\left\langle\xi_{0}, \ldots, \xi_{n}\right\rangle}(\nu) \neq A\left(\xi_{0}, \ldots \xi_{n}\right) \cap \pi_{\left\langle\xi_{0}, \ldots, \xi_{n}\right\rangle}(\nu)$. Set $\eta\left(\xi_{0}, \ldots \xi_{n}\right)$ to be the least such η. Now define η_{n+1} to be $\sup \left(\left\{\eta\left(\xi_{0}, \ldots \xi_{n}\right) \mid \pi_{\langle \rangle}\left(\xi_{0}\right)<\right.\right.$ $\left.\left.\eta_{0}, \ldots, \pi_{\left\langle\xi_{0}, \ldots, \xi_{n-1}\right\rangle}\left(\xi_{n}\right)<\eta_{n}\right\}\right)$.
Each relevant ultrafilter is a P-point, and so, the number of relevant $\xi_{0}, \ldots \xi_{n}$ is bounded in κ. So, $\eta_{n+1}<\kappa$, as in the claim above.

This completes the definition of the sequence $\left\langle\eta_{n} \mid n<\omega\right\rangle$.
Let us argue that it is cofinal in κ.
Suppose otherwise.
Note that the sequence $\left\langle\pi_{\left\langle\kappa_{0}, \ldots, \kappa_{n-1}\right\rangle}\left(\kappa_{n}\right) \mid n<\omega\right\rangle$ is unbounded in κ.
Let k be the least such that $\pi_{\left\langle\kappa_{0}, \ldots, \kappa_{k-1}\right\rangle}\left(\kappa_{k}\right)>\sup \left(\left\{\eta_{n} \mid n<\omega\right\}\right)$. Then

$$
A \cap \pi_{\left\langle\kappa_{0}, \ldots, \kappa_{k-1}\right\rangle}\left(\kappa_{k}\right)=A\left(\kappa_{0}, \ldots, \kappa_{k-1}\right) \cap \pi_{\left\langle\kappa_{0}, \ldots, \kappa_{k-1}\right\rangle}\left(\kappa_{k}\right) .
$$

This is impossible, since $\eta_{k}<\pi_{\left\langle\kappa_{0}, \ldots, \kappa_{k-1}\right\rangle}\left(\kappa_{k}\right)$.

Theorem 6.7 Let $\mathbb{U}=\left\langle U_{a} \mid a \in[\kappa]^{<\omega}\right\rangle$ consists of P-point ultrafilters over κ. Then for every new set of ordinals A in $V^{P(\mathbb{U})}$, κ has cofinality ω in $V[A]$.

Proof. Let A be a new set of ordinals in $V[G]$, where $G \subseteq P(\mathbb{U})$ is generic. By Lemma ??, it is enough to find a new subset of A of size κ.
Suppose that every subset of A of size κ is in V. Let us argue that then A is in V as well. Let $\lambda=\sup (A)$.
The argument is similar to [?](Lemma 0.7).
Note that $\left(\mathcal{P}_{\kappa^{+}}(\lambda)\right)^{V}$ remains stationary in $V[G]$, since $P(\mathbb{U})$ satisfies κ^{+}-c.c. For each $x \in\left(\mathcal{P}_{\kappa^{+}}(\lambda)\right)^{V}$ pick $\left\langle s_{x}, S_{x}\right\rangle \in G$ such that

$$
\left\langle s_{x}, S_{x}\right\rangle \| \underset{\sim}{A} \cap x=A \cap x .
$$

There are a stationary $E \subseteq\left(\mathcal{P}_{\kappa^{+}}(\lambda)\right)^{V}$ and $s \in[\kappa]^{<\omega}$ such that for each $x \in E$ we have $s=s_{x}$. Now, in V, we consider

$$
H=\left\{\langle s, T\rangle \in P(U) \mid \exists x \in \mathcal{P}_{\kappa^{+}}(\lambda) \exists a \subseteq x \quad\langle s, T\rangle \| \underset{\sim}{A} \cap x=a\right\} .
$$

Note that if $\langle s, T\rangle,\left\langle s, T^{\prime}\right\rangle \in P(U)$ and for some $x \subseteq y$ in $\mathcal{P}_{\kappa^{+}}(\lambda), a \subseteq x, b \subseteq y$ we have

$$
\langle s, T\rangle \|-\underset{\sim}{A} \cap x=a \text { and }\left\langle s, T^{\prime}\right\rangle \| \underset{\sim}{A} \cap y=b,
$$

then $b \cap x=a$. Just conditions of this form are compatible, and so they cannot force contradictory information.
Apply this observation to H. Let

$$
X=\left\{a \subseteq \lambda \mid \exists\langle s, S\rangle \in H \quad \exists x \in \mathcal{P}_{\kappa^{+}}(\lambda)\langle s, T\rangle \| \underset{\sim}{A} \cap x=a\right\} .
$$

Then necessarily, $\bigcup X=A$.

We do not know wether $V[A]$ for $A \in V[C] \backslash V$ is equivalent to a single ω-sequence even for $A \subseteq \kappa^{+}$. The problematic case is once U_{n} 's have κ^{+}-many different ultrafilters below in the Rudin-Keisler order.

Theorem 6.8 Assume that there is no inner model with $o(\alpha)=\alpha^{++}$. Let U be κ-complete ultrafilter over κ and $V=L[\vec{E}]$, for a coherent sequence of measures \vec{E}. Force with the Prikry forcing with U. Suppose that A is a new set of ordinals in a generic extension. Then the cofinality of κ is ω in $V[A]$.

Proof. Consider

$$
i_{U}: V \rightarrow M \simeq V^{\kappa} / U
$$

By Mitchell [?], i_{U} is an iterated ultrapower using measures from \vec{E} and images of \vec{E}. In addition we have that ${ }^{\kappa} M \subseteq M$. Hence it should be a finite iteration using.
κ is the critical point, hence no measures below κ are involved and the first one applied is a measure on κ in \vec{E}. Denote it by E_{0} and let

$$
i_{0}: V \rightarrow M_{1}
$$

be the corresponding embedding. Let $\kappa_{1}=i_{0}(\kappa)$. Rearranging, if necessary, we can assume that the next step was to use a measure E_{1} over κ_{1} from $i_{0}(\vec{E})$. So, it is either the image of one of the measures of \vec{E} or $E_{0}-\operatorname{Lim}\left\langle E^{\xi} \mid \xi<\kappa\right\rangle$, where $\left\langle E^{\xi} \mid \xi<\kappa\right\rangle$ is a sequence of measures over κ from \vec{E} which represents in M_{1} the measure used over κ_{1}.
Let

$$
i_{1}: M_{1} \rightarrow M_{2}
$$

be the corresponding embedding and $\kappa_{2}=i_{1}\left(\kappa_{1}\right)$.
κ_{2} can be moved further in our iteration, but only finitely many times. Suppose for simplicity that it does not move.
If nothing else is moved then U is equivalent to $E_{0}-\operatorname{Lim}\left\langle E^{\xi} \mid \xi<\kappa\right\rangle$ and ?? easily provides the desired conclusion.
Suppose $i_{1} \circ i_{0}$ is not i_{U}. Then some measures from $i_{1} \circ i_{0}(\vec{E})$ with critical points in the intervals $\left(\kappa, \kappa_{1}\right),\left(\kappa_{1}, \kappa_{2}\right)$ are applied. Again, only finitely many can be used.
Thus suppose for simplicity that only one is used in each interval. The treatment of a general case is more complicated only due to notation.
So suppose that a measure E_{2} with a critical point $\delta \in\left(\kappa, \kappa_{1}\right)$ is used on the third step of the iteration.
Let

$$
i_{2}: M_{2} \rightarrow M_{3}
$$

be the corresponding embedding. Note that the ultrafilter \mathcal{V} defined by

$$
X \in \mathcal{V} \text { iff } i_{2}(\delta) \in i_{2} \circ i_{1} \circ i_{0}(X)
$$

is P-point. Thus, a function $f: \kappa \rightarrow \kappa$ which represents δ in M_{1}, i.e. $\delta=i_{0}(f)(\kappa)$, will witness this.
Similar an ultrafilter used in the interval $\left(\kappa_{1}, \kappa_{2}\right)$ will be P-point in M_{1}, and so, in V, it will be equivalent to a limit of P-points.
So such situation is covered by ??.

$7 \quad$ Prikry forcing may add a Cohen subset.

Our aim here will be to show the following:
Theorem 7.1 Suppose that V satisfies $G C H$ and κ is a measurable cardinal. Then in a generic cofinality preserving extension there is a κ-complete ultrafilter U over κ such that the Prikry forcing with U adds a Cohen subset to κ over V. In particular, this forcing has a non-trivial subforcing which preserves regularity of κ.

By [?] such F cannot by normal and by $6.6 F$ cannot be a P-point ultrafilter, since in any Cohen extension, κ stays regular.

Note that the above situation is impossible in $L[\mu]$. Just every κ-complete ultrafilter over the measurable κ is Rudin-Kiesler equivalent to μ^{n}, for some $n, 1 \leq n<\omega$, by [?]. But the Prikry forcing with μ^{n} is the same as the Prikry forcing with μ which is a normal measure.

We start with a GCH model with a measurable. Let κ be a measurable and U a normal measure on κ.
Denote by $j_{U}: V \rightarrow N \simeq U l t(V, U)$ the corresponding elementary embedding.
Define an iteration $\left\langle P_{\alpha}, Q_{\beta} \mid \alpha \leq \kappa, \beta<\kappa\right\rangle$ with Easton support as follows. Set $P_{0}=0$. Assume that P_{α} is defined. Set $\underset{\sim}{\alpha}$ to be the trivial forcing unless α is an inaccessible cardinal.
If α is an inaccessible cardinal, then let $Q_{\alpha}=Q_{\alpha 0} * Q_{\alpha 1}$, where $Q_{\alpha 0}$ is an atomic forcing consisting of three elements $0_{Q_{\alpha 0}}, x_{\alpha}, y_{\alpha}$, such that $\tilde{x_{\alpha}}, y_{\alpha}$ are two incompatible elements which are stronger than $0_{Q_{\alpha 0}}$.
Let ${\underset{\sim}{\alpha}}^{Q 1}$ be trivial once y_{α} is picked and let it be the Cohen forcing at α, i.e.

$$
\text { Cohen }(\alpha, 2)=\{f: \alpha \rightarrow 2| | f \mid<\alpha\}
$$

once x_{α} was chosen.
Let $G_{\kappa} \subseteq P_{\kappa}$ be a generic. We extend now the embedding

$$
j_{U}: V \rightarrow N
$$

in $V\left[G_{\kappa}\right]$, to

$$
j_{U}^{*}: V\left[G_{\kappa}\right] \rightarrow N\left[G_{\kappa} * G_{\left[\kappa, j_{U}(\kappa)\right)}\right],
$$

for some $G_{\left[\kappa, j_{U}(\kappa)\right)} \subseteq P_{\left[\kappa, j_{U}(\kappa)\right)}$ which is $N\left[G_{\kappa}\right]$ - generic for $P_{j_{U}(\kappa)} / G_{\kappa}$. This can be done easily, once over κ itself in $Q_{\kappa 0}$, we pick y_{κ}, which makes the forcing Q_{κ} a trivial one.
This shows, in particular, that κ is still a measurable in $V\left[G_{\kappa}\right]$, as witnessed by an extension of U.

Consider now the second ultrapower $N_{2} \simeq \operatorname{Ult}\left(N, j_{U}(U)\right)$.
Denote j_{U} by j_{1}, N by N_{1}. Let

$$
j_{12}: N_{1} \rightarrow N_{2}
$$

denotes the ultrapower embedding of N_{1} by $j_{1}(U)$. Let $j_{2}=j_{12} \circ j_{1}$. Then

$$
j_{2}: V \rightarrow N_{2} .
$$

Let us extend, in $V\left[G_{\kappa}\right]$, the embedding

$$
j_{12}: N_{1} \rightarrow N_{2}
$$

to

$$
j_{12}^{*}: N_{1}\left[G_{\kappa} * G_{\left[\kappa, j_{1}(\kappa)\right)}\right] \rightarrow N_{2}\left[G_{\kappa} * G_{\left[\kappa, j_{1}(\kappa)\right)} * G_{\left[j_{1}(\kappa), j_{2}(\kappa)\right)}\right]
$$

in a standard fashion, only this time we pick $x_{j_{1}(\kappa)}$ at stage $j_{1}(\kappa)$ of the iteration. Then a Cohen function should be constructed over $j_{1}(\kappa)$, which is not at all problematic to find in $V\left[G_{\kappa}\right]$.

Now we will have

$$
j_{2} \subseteq j_{2}^{*}: V\left[G_{\kappa}\right] \rightarrow N_{2}\left[G_{\kappa} * G_{\left[\kappa, j_{1}(\kappa)\right)} * G_{\left[j_{1}(\kappa), j_{2}(\kappa)\right)}\right]
$$

which is the composition of j_{1}^{*} with j_{12}^{*}.
Define a κ-complete ultrafilter W over κ as follows:

$$
X \in W \text { iff } X \subseteq \kappa \text { and } j_{1}(\kappa) \in j_{2}^{*}(X)
$$

Proposition 7.1 W has the following basic properties:

1. $W \cap V=U$,
2. $\left\{\alpha<\kappa \mid x_{\alpha}\right.$ was picked at the stage α of the iteration $\} \in W$,
3. if $C \subseteq \kappa$ is a club, then $C \in W$. Moreover

$$
\{\nu \in C \mid \nu \text { is an inaccessible }\} \in W
$$

Proof:
(1) and (2) are standard. Let us show only (3). Let $C \subseteq \kappa$ be a club. Then, in $N_{2}, j_{2}(C)$ is a club at $j_{2}(\kappa)$. In addition, $j_{2}(C) \cap \kappa_{1}=j_{1}(C)$. Now, $j_{1}(C)$ is a club in $j_{1}(\kappa)$. It follows that $j_{1}(\kappa) \in j_{2}(C)$.
In order to show that

$$
\{\nu \in C \mid \nu \text { is an inaccessible }\} \in W
$$

just note that $j_{1}(\kappa)$ is an inaccessible in N_{2}, and so W concentrates on inaccessibles.

Force with $\operatorname{Prikry}(W)$ over $V\left[G_{\kappa}\right]$.
Let

$$
C=\left\langle\eta_{n} \mid n<\omega\right\rangle
$$

be a generic Prikry sequence.
By (2) in the previous proposition, there is $n^{*}<\omega$ such that for every $m \geq n^{*}$, at the stage
η_{m} of the forcing $P_{\kappa}, x_{\eta_{m}}$ was picked, and, hence, a Cohen function $f_{\eta_{m}}: \eta_{m} \rightarrow 2$ was added.
Define now $H: \kappa \rightarrow 2$ in $V\left[G_{\kappa}, C\right]$ as follows:

$$
H=f_{\eta_{n^{*}}} \cup \bigcup_{n^{*} \leq m<\omega} f_{\eta_{m+1}} \upharpoonright\left[\eta_{m}, \eta_{m+1}\right)
$$

Proposition 7.2 H is a Cohen generic function for κ over $V\left[G_{\kappa}\right]$.

Proof Work in $V\left[G_{\kappa}\right]$. Let $D \in V\left[G_{\kappa}\right]$ be a dense open subset of $\operatorname{Cohen}(\kappa)$. Consider a set $C=\left\{\alpha<\kappa \mid\right.$ if α is an inaccessible, then $D \cap V_{\alpha}\left[G_{\alpha}\right]$ is a dense open subset of Cohen (α) in $\left.V\left[G_{\alpha}\right]\right\}$.

Claim $1 C$ is a club.

Proof. Suppose otherwise. Then $S=\kappa \backslash C$ is stationary. It consists of inaccessible cardinals by the definition of C.
Pick a cardinal χ large enough and consider an elementary submodel X of $\left\langle H_{\chi}, \in\right\rangle$ such that

1. $X \cap\left(V_{\kappa}\right)^{V\left[G_{\kappa}\right]}=\left(V_{\delta}\right)^{V\left[G_{\kappa}\right]}$, for some $\delta \in S$,
2. $\kappa, P_{\kappa}, D \in X$

Note that it is possible to find such X due to stationarity of S. Note also that $\left(V_{\kappa}\right)^{V\left[G_{\kappa}\right]}=$ $V_{\kappa}\left[G_{\kappa}\right]$ and $\left(V_{\delta}\right)^{V\left[G_{\kappa}\right]}=V_{\delta}\left[G_{\delta}\right]$, since the iteration P_{κ} splits nicely at inaccessibles.

Let us argue that $D \cap V_{\delta}\left[G_{\delta}\right]$ is a dense open subset of Cohen (δ) in $V\left[G_{\delta}\right]$. Just note that

$$
D \cap X=D \cap X \cap\left(V_{\kappa}\right)^{V\left[G_{\kappa}\right]}=D \cap\left(V_{\delta}\right)^{V\left[G_{\kappa}\right]}=D \cap V_{\delta}\left[G_{\delta}\right] .
$$

So let $q \in(\operatorname{Cohen}(\delta))^{V_{\delta}\left[G_{\delta}\right]}$. Then $q \in X$. Remember $X \preceq H_{\chi}$. So,

$$
X \models D \text { is dense open }
$$

hence there is $p \geq q, p \in D \cap X$. But then, $p \in D \cap V_{\delta}\left[G_{\delta}\right]$, and we are done. Contradiction.
$\boldsymbol{\square}_{\text {of claim }}$

It follows now that $C \in W$. Hence there is $n^{* *} \geq n^{*}$ such that for every $m, n^{* *} \leq m<\omega$,

$$
\eta_{m} \in C
$$

So, for every $m, n^{* *} \leq m<\omega$,

$$
f_{\eta_{m}} \in D
$$

since D is open.
It is almost what we need, however $H \upharpoonright \eta_{m}$ need not be $f_{\eta_{m}}$, since an initial segment may was changed.
In order to overcome this, let us note the following basic property of the Cohen forcing:
Claim 2 Let E be a dense open subset of $\operatorname{Cohen}(\kappa, 2)$, then there is a dense subset E^{*} of E such that for every $p \in E^{*}$ and every inaccessible cardinal $\tau \in \operatorname{dom}(p)$ for every q : $\delta \rightarrow 2, p \upharpoonright[\delta, \kappa) \cup q \in E^{*}$.

The proof is an easy use of κ-completeness of the forcing.
Now we can finish just replacing D by its dense subset which satisfies the conclusion of the claim. Then, $H \upharpoonright \eta_{m}$ will belong to it as a bounded change of $f_{\eta_{m}}$. So we are done.

References

[1] J.Cummings, Iterated Forcing and Elementary Embeddings, Chapter in Handbook of set theory, Springer, vol.1, pp. 776-847 (2009)
[2] G.Fuchs, On sequences generic in the sense of Magidor, Journal of Symbolic Logic (2014)
[3] M.Gitik, Prikry Type Forcings, Chapter in Handbook of set theory, Springer, vol.2, pp. 1351-1448 (2010)
[4] M.Gitik, V.Kanovei, P.Koepke, Intermediate Models of Prikry Generic Extensions, A Remark on Subforcing of the Prikry Forcing, http://www.math.tau.ac.il/~gitik/spr-kn.pdf, http://www.math.tau.ac.il/~gitik/spr.pdf (2010)
[5] M.Magidor, Changing the Cofinality of Cardinals, Fundamenta Mathematicae 99:61-71 (1978)
[6] K.Prikry, Changing Measurable into Accessible Cardinals, Dissertationes Mathematicae 68 (1970)
[7] S.Shelah, Proper and Improper Forcing, Second edition, Springer (1998)

[^0]: *The work of the second author was partially supported by ISF grant No.58/14.

[^1]: ${ }^{1} \mathbb{M}_{\left\langle\kappa_{1}, \ldots \kappa_{n}\right\rangle}[\vec{U}]$ is Magidor forcing with the coherent sequence \vec{U} above a condition which has $\left\langle\kappa_{1}, \ldots, \kappa_{n}\right\rangle$ as it's ordinal sequence
 ${ }^{2} P(\mathbb{U})$ is the Prikry tree forcing, a detailed definition can be found in chapter 6

[^2]: ${ }^{3}$ In general, the number of possibilities to arrange two counter examples into one increasing sequence depends on I. Nevertheless, there is an upper bound: Think of x_{i} 's as balls we would like to divide into $n+1$ cells. The cells are represented by the intervals $\left(x_{i-1}^{\prime}, x_{i}^{\prime}\right]$ plus the cell for elements above x_{n}^{\prime}. There are $\binom{2 n}{n}$ such divisions. For any such division, we decide either the cell is $\left(x_{i-1}^{\prime}, x_{i}^{\prime}\right]$ or $\left(x_{i-1}^{\prime}, x_{i}^{\prime}\right)$. Hence, there are at most $\binom{2 n}{n} \cdot 2^{n}$ such arrangements.

[^3]: ${ }^{4}$ Magidor's original formulation of $\mathbb{M}[\vec{U}]$ in [?] gives such a family

[^4]: ${ }^{5}$ Let $\left\langle\mathcal{V}_{k} \mid k<\omega\right\rangle$ be such sequence of ultrafilters over κ. We do not claim that $\left\langle\alpha_{k} \mid k<\omega\right\rangle$ is Prikry generic for the forcing $P\left(\left\langle\mathcal{V}_{k} \mid k<\omega\right\rangle\right)$, but rather that for every sequence $\left\langle A_{k} \mid k<\omega\right\rangle \in V$, with $A_{k} \in \mathcal{V}_{k}$, there is $k_{0}<\omega$ such that for every $k>k_{0}, \alpha_{k} \in \mathcal{V}_{k}$.

