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Abstract

We generalize the result of Gitik-Kanovei-Koepke [?] from Prikry forcing over κ
to Magidor forcing and characterize all intermediate extensions of Magidor generic
extensions. We also investigate how the cofinality of κ is effected when adding a set
from a Prikry or Magidor extension.

Introduction

Menachem Magidor introduced ”Magidor forcing” in his paper Changing the cofinality of
cardinals [?]. This forcing was designated to change the cofinality of a measurable cardinal
to a regular cardinal larger than ω. Formerly, the main method to change cofinality of mea-
surables was using Prikry forcing, which injects an ω-sequence to that measurable [?].
The process of determining a generic set in both forcings, describes a formation of a co-
final sequence in a target measurable. Partial information about the final sequence yields
intermediate extensions. Naturally, the question which arises:

Are these all possible intermediate extensions?

It is well known that if P is a forcing notion and G is P-generic, then any intermediate ZFC
model V ⊆ N ⊆ V [G] is of the form N = V [X] where X ∈ V [G] is a generic set for some
forcing in V . Therefore, the question can be reduced to

Is there C ′ ⊆ CG such that V [X] = V [C ′]?

∗The work of the second author was partially supported by ISF grant No.58/14.
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Where CG is a Magidor sequence corresponding to the generic set G. As proved in 2010
by Gitik-Kanovei-Koepke [?], if the forcing subjected is Prikry forcing the answer to this
question is positive. In some sense, Magidor forcing is a generalization of Prikry forcing, one
may conjecture that it is possible to generalize the theorem. Asserting the conjecture is the
main result of this paper.

Theorem 3.3 Let ~U be a coherent sequence in V , 〈κ1, ...κn〉 be a sequence such that o
~U(κi) <

min(ν | 0 < o
~U(ν)), let G be M〈κ1,...κn〉[~U ]-generic1 and let A ∈ V [G] be a set of ordinals.

Then there exists C ′ ⊆ CG such that V [A] = V [C ′].

One of the main methods used in the proof was the construction of a forcing MI [~U ] ∈ V ,

which is a projection of Magidor forcing M[~U ]. This forcing is a Magidor type forcing which

uses only measures from ~U with index i ∈ I. Moreovere, MI [~U ] adds a prescribed subse-
quence CI := (CG) � I as a generic object, where I ⊆ λ0 is a set of indexes in λ0 = otp(CG).
Hence, we may examine the intermediate extensions V ⊆ V [CI ] ⊆ V [CG] as an iteration of

two forcing, which resemble M[~U ] and behave well.

An important consequence of this theorem is the classification of all complete subforcings of
M[~U ], this will be discussed in chapter 5.

By Theorem 3.3, if A ∈ V [G] \ V then V [A] |= κ is singular. When we don’t assume
that the measures involved are normal, the situation is more complex, chapter 6 is devoted
for this investigation. The main theorem of this chapter is

Theorem 6.7 Let U = 〈Ua | a ∈ [κ]<ω〉 consists of P-point ultrafilters over κ. Then
for every new set of ordinals A in V P (U), κ has cofinality ω in V [A]2.

In chapter 7 we give an example for a set A such that κ stays regular in V [A] (even measur-
able).

1M〈κ1,...κn〉[
~U ] is Magidor forcing with the coherent sequence ~U above a condition which has 〈κ1, ..., κn〉

as it’s ordinal sequence
2P (U) is the Prikry tree forcing, a detailed definition can be found in chapter 6
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Notations

• V denotes the ground model.

• For any set A, V [A] denote the minimal model of ZFC containing V and {A}

•
∏n

j=1Aj increasing sequences 〈a1, ..., an〉 where ai ∈ Ai

•
m∏
i=1

n∏
j=1

Ai,j left-lexicographically increasing sequences (which is denoted by ≤LEX )

• [κ]α increasing sequences of length α

• [κ]<ω =
⋃
n<ω

[κ]n

• α[κ] not necessarily increasing sequences, i.e functions with domain α and range κ

• ω>[κ] =
⋃
n<ω

n[κ]

• 〈α, β〉 an ordered pair of ordinals. (α, β) the interval between α and β.

• ~α = 〈α1, ..., αn〉 , |~α| = n , ~α \ 〈αi〉 = 〈α1, ..., αi−1, αi+1, ..., αn〉

• For every α < β, The Cantor normal form (abbreviated C.N.F) equation is α + ων1 +
...+ωνm = β, ν1 ≥ ... ≥ νm are unique. If α = 0 this is the C.N.F of β, otherwise, this
is the C.N.F difference of α, β.

• o(α) = γ where α = ωγ1 + ...+ ωγn + ωγ (C.N.F).

• Lim(A) = {α ∈ A | sup(A ∩ α) = α}

• Succ(A) = {α ∈ A | sup(A ∩ α) < α}

•
⊎
i∈I
Ai is the union of {Ai | i ∈ I} with the requirement that Ai’s are pairwise disjoint.

• If f : A→ B is a function then for every A′ ⊆ A, B′ ⊆ B

f ′′A′ = {f(x) | x ∈ A′} , f−1′′B′ = {x ∈ A | f(x) ∈ B′}

• Let B ⊆ 〈αξ | ξ < δ〉 = A be sequences of ordinals,

Index(B,A) = {ξ < δ | ∃b ∈ B αξ = b}

• Let P be a forcing notion, σ a formula in the forcing language and p ∈ P. If ∼A is a
P-name, then
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p || ∼A means ”there is a ∈ V such that p 
∨
a = ∼A”

• Let p, q ∈ P then ”p, q are compatible in P” if there exists r ∈ P such that p, q ≤P r.
Otherwise, if they are incompatible denote it by p⊥q.

• In any forcing notion, p ≤ q means ”q extends p”.

• The notion of complete subforcing, complete embedding and projection is used as
defined in [?]
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1 Magidor forcing

Definition 1.1 A coherent sequence is a sequence
~U = 〈U(α, β) | β < o

~U(α) , α ≤ κ〉 such that:

1. U(α, β) is a normal ultrafilter over α.

2. Let j : V → Ult(U(α, β), V ) be the corresponding elementary embedding , then j(~U) �
α = ~U � 〈α, β〉.

Where

~U � α = 〈U(γ, δ) | δ < o
~U(γ) , γ ≤ α〉

~U � 〈α, β〉 = 〈U(γ, δ) | (δ < o
~U(γ), γ < α) ∨ (δ < β, γ = α)〉

�

Fix ~U , a coherent sequence of ultrafilters with maximal element κ. We shall assume that
o
~U(κ) < min(ν | o~U(ν) > 0) := δ0. Let α ≤ κ with o

~U(α) > 0, define

⋂
U(α, i) =

⋂
i<o~U (α)

U(α, i)

We will follow the description of Magidor forcing as presented in [?].

Definition 1.2 M[~U ] consist of elements p of the form p = 〈t1, ..., tn, 〈κ,B〉〉. For every

1 ≤ i ≤ n, ti is either an ordinal κi if o
~U(κi) = 0 or a pair 〈κi, Bi〉 if o

~U(κi) > 0.

1. B ∈
⋂

ξ<o~U (κ)

U(κ, ξ), min(B) > κn

2. for every 1 ≤ i ≤ n

(a) 〈κ1, ..., κn〉 ∈ [κ]<ω

(b) Bi ∈
⋂

ξ<o~U (κi)

U(κi, ξ)

(c) min(Bi) > κi−1 (i > 1)
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We shall adopt the following notations:

• t0 = 0, tn+1 = 〈κ,B〉

• o~U(ti) = o
~U(κ(ti))

• o~U(ti) > 0 then ti = 〈κi, Bi〉 = 〈κ(ti), B(ti)〉

• o~U(ti) = 0 then ti = κi = κ(ti)

• κ(p) = {κ(t1), ..., κ(tn)}

• B(p) =
n+1⊎
i=1

B(ti)

The ordinals κi are designated to form the eventual Magidor sequence and candidates for
the sequence’s missing elements in the interval (κ(ti−1), κ(ti)) (where t0 = 0, κ(tn+1) = κ)
are provided by the sets B(ti).

Definition 1.3 For p = 〈t1, t2, ..., tn, 〈κ,B〉〉, q = 〈s1, ..., sm, 〈κ,C〉〉 ∈ M[~U ] , define p ≤ q
(q extends p ) iff:

1. n ≤ m

2. B ⊇ C

3. ∃1 ≤ i1 < ... < in ≤ m such that for every 1 ≤ j ≤ m:

(a) If ∃1 ≤ r ≤ n such that ir = j then κ(tr) = κ(sir) and C(sir) ⊆ B(tr)

(b) Otherwise ∃ 1 ≤ r ≤ n+ 1 such that ir−1 < j < ir then

i. κ(sj) ∈ B(tr)

ii. o
~U(sj) < o

~U(tr)

iii. B(sj) ⊆ B(tr) ∩ κ(sj)

We also use p directly extends q, p ≤∗ q if:

1. p ≤ q
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2. n = m

�

Remarks:

1. Let p = 〈t1, ..., tn, 〈κ,B〉〉. Assume we would like to add an element sj to p between

tr−1 and tr. It is possible only if o
~U(tr) > 0. Moreover, let ξ = o

~U(sj), then

sj ∈ {α ∈ B(tr) | o~U(α) = ξ}

If sj = κ(sj) (i.e. ξ = 0), then any sj satisfying this requirement can be added. If
sj = 〈κ(sj), B(sj)〉 (i.e. ξ > 0), Then according to definition 1.3 (3.b.iii) sj can be
added iff

B(tr) ∩ κ(sj) ∈
⋂
ξ′<ξ

U(κ(sj), ξ
′)

2. If p = 〈t1, ..., tn, 〈κ,B〉〉 ∈ M[~U ]. Fix some 1 ≤ j ≤ n with o
~U(tj) > 0. Then tj yields

a Magidor forcing in the interval (κ(tj−1), κ(tj)) with the coherent sequence ~U � κ(tj).
tj acts autonomously in the sense that the sequence produced by it is independent
of how the sequence develops in other parts. This observation becomes handy when
manipulating p, since we can make local changes at tj with no impact on the ti’s.

Let Y = {α ≤ κ | o~U(α) < δ0}. From Coherency of ~U it follows that Y ∈
⋂
U(κ, i). For

every β ∈ Y with o
~U(β) > 0 and i < δ0 define

Y (i) = {α < κ | o~U(α) = i} and Y [β] =
⊎

i<o~U (β)

Y (i)

It follows that for every β ∈ Y and i < o
~U(β), Y (i) ∩ β ∈ U(β, i). To see this take β ≤ κ in

Y and jβi : V → Ult(U(β, i), V ) .

Y (i) ∩ β ∈ U(β, i) ⇔ β ∈ jβi(Y (i) ∩ β)

By coherency, ojβi(
~U)(β) = i and therefore

β ∈ jβi(Y (i) ∩ β) = {α < jβi(β) | oji(~U)(α) = jβi(i) = i}.
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Consequently, Y [β] ∩ β ∈
⋂

i<o~U (β)

U(β, i).

For B ∈
⋂

i<o~U (β)

U(β, i) define recursively, B(0) = B

B(n+1) = {α ∈ B(n) | (o~U(α) = 0) ∨ (B(n) ∩ α ∈ ∩U(α, i))}

Let B? =
⋂
n<ω

B(n) it follows by induction that for all n < ω

B(n) ∈
⋂

i<o~U (β)

U(β, i)

By β-completeness B? ∈
⋂

i<o~U (β)

U(β, i). B? has the feature that

∀α ∈ B? α ∩B? ∈
⋂

i<o~U (α)

U(α, i)

The previous paragraph indicates that by restricting to a dense subset of M[~U ] we can

assume that given p = 〈t1, t2, ..., tn, 〈κ,B〉〉 ∈ M[~U ], every choice of ordinal in B(tr) auto-
matically satisfies the requirement that we discussed in remark (2). Formally, we work above
〈〈〉, 〈κ, Y 〉〉 and we directly-extend any p = 〈t1, t2, ..., tn, 〈κ,B〉〉 as follows:

For every 1 ≤ r ≤ n+ 1 and i < o
~U(tr) define

B(tr, i) := Y (i) ∩B(tr)
? ∈ U(κ(tr), i)

It follows that

B?(tr) :=
⊎

i<o~U (tr)

B(tr, i) ∈
⋂

i<o~U (tr)

U(κ(tr), i).

Shrink B(tr) to B?(tr) to obtain

p ≤∗ p∗ = 〈t′1, ..., t′n, 〈κ,B?〉〉

t′r =

{
tr o

~U(tr) = 0
〈κ(tr), B

?(tr)〉 otherwise
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This dense subset also simplifies ≤ to

p ≤ q iff κ(p) ⊆ κ(q) , B(p) ⊆ B(q)

When applying the revised approach regarding the large sets, it is apparent that B(tr, i)
provide candidates, precisely, for the i-limit indexes in the final sequence CG (defined in
p.10) i.e. of indexes γ such that o(γ) = i (for the definition of o(γ) see Notations). This is
stated formally in proposition 1.5.
Recall that:

• M[~U ] satisfies κ+ − c.c.

• Let p = 〈t1, ..., tn, 〈κ,B〉〉 ∈ M[~U ] and denote ν = κ(tj) where j is the minimal such

that o
~U(tj) > 0. Then above p there is ν−≤∗closure.

• M[~U ] satisfies the Prikry condition.

Let G ⊆M[~U ] be generic, define

CG =
⋃
{κ(p) | p ∈ G}

We will abuse notation by considering CG as a the canonical enumeration of the set CG.
CG is closed and unbounded in κ. Therefore, The order type of CG determines the cofinality
of κ in V [G]. The next propositions can be found in [?].

Proposition 1.4 Let G ⊆ M[~U ] be generic. Then G can be reconstructed from CG as
follows

G = {p ∈M[~U ] | (κ(p) ⊆ CG) ∧ (CG \ κ(p) ⊆ B(p))}

Therefore V [G] = V [CG].

�

Proposition 1.5 Let G be M[~U ]-generic and CG the corresponding Magidor sequence. Let
〈t1, ..., tn, 〈κ,B〉〉 ∈ G, then
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otp((κ(ti), κ(ti+1)) ∩ CG) = ωo
~U (κ(ti+1))

Thus if κ(ti+1) = CG(γ) then o(γ) = o
~U(ti+1).

�

Corollary 1.6 cfV [G](κ) = cf(o
~U(κ))

�

Let p = 〈t1, ..., tn, 〈κ,B〉〉 ∈ G. By proposition 1.5 , for each i ≤ n one can determine the
position of κ(ti) in CG. Namely, CG(γ) = κ(ti) where

γ =
∑
j≤i
ωo

~U (tj) =: γ(ti, p) ∈ ωo
~U (κ) (*)

Addition and power are of ordinals. The equetion (*) induces a C.N.F equation

γ =
∑m

r=1 ω
o
~U (tjr ) (C.N.F)

This indicates the close connection between Cantor normal form of the index γ in otp(CG)
and the important elements tj1 , ..., tjm to determine that γ(ti, p) = γ. Now let q = 〈s1, ..., sm, 〈κ,B′〉〉
be another condition, by definition 1.3 (3.b.ii), if sj is an element of q which was added to p

in the interval (κ(tr), κ(tr+1)) then o
~U(sj) < o

~U(tr+1). Consequently

p ≤ q ⇒ γ(tr, p) = γ(sir , q)
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2 Combinatorial properties

The combinatorial nature of M[~U ] is most clearly depicted through the language of step-
extensions as presented below.
To perform a one step extension of p = 〈t1, t2, ..., tn, 〈κ,B〉〉

1. choose 1 ≤ r ≤ n+ 1 with 0 < o
~U(tr)

2. choose i < o
~U(tr)

3. choose an ordinal α ∈ B(tr, i)

4. shrink the B(ts, j)’s to C(ts, j) ∈ U(ts, j) for every 1 ≤ s ≤ n + 1 and C(ts) =⊎
j<o~U (ti)

Cs(j)

5. For j < o
~U(α) pick C(α, j) ∈ U(α, j), C(α, j) ⊆ B(tr, j) ∩ α to obtain

C(α) =
⊎

j<o~U (α)

C(α, j)

6. cut C(tr) above α

Extend p to

p_〈α, (C(ts))
n+1
s=1 , C(α)〉 = 〈t′1, ..., t′i−1, 〈α,C(α)〉, t′i, ..., t′n, 〈κ,C(tn+1)〉〉

t′r =

{
tr o

~U(tr) = 0
〈κ(tr), C(tr)〉 o.w.

It is clear that every extension of p with only one ordinal added is a one step extension.
Next we introduce some notations which will describe a general step extension. The idea is
simply to classify extensions according to the order of the measures the new elements of the
sequence are chosen from.

Definition 2.1 Let p = 〈t1, t2, ..., tn, 〈κ,B〉︸ ︷︷ ︸
tn+1

〉 ∈M[~U ]

1. For 1 ≤ i ≤ n + 1 define the tree Ti(p) = ω>[O
~U(ti)], with the ordering 〈x1, ..., xm〉 �

〈x′1, ..., x′m′〉 iff ∃1 ≤ i1 < ... < im ≤ m′ such that for every 1 ≤ j ≤ m′:
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(a) if ∃1 ≤ r ≤ m such that ir = j then xr = x′j

(b) otherwise ∃ 1 ≤ r ≤ n+ 1 such that if ir−1 < j < ir then x′j < xr

We think of xr’s as placeholders of ordinals from B(ti, xr). With this in mind, the
ordering is induced by definition 1.3 (3).

2. T (p) =
∏n+1

i=1 Ti(p) with � as the product order.

3. Let Xi ∈ Ti(p) 1 ≤ i ≤ n+ 1 , |Xi| = li, X = 〈X1, ..., Xn+1〉 ∈ T (p).

4. Let

~αi = 〈α1, ..., αli〉 ∈
∏li

j=1B(ti, Xi(j)) =: B(p,Xi)

Xi is called an extension-type below ti and 〈α1, ..., αli〉 is of type Xi.

5. Let

~α = 〈 ~α1, ..., ~αn+1〉 ∈
n+1∏
i=1

li∏
j=1

B(ti, Xi(j)) =: B(p,X)

X is called an extension-type of p and ~α is of type X.

�

Notice that by our assumption |T (p)| < min(ν|0 < o
~U(ν)) = δ0. We also use:

• |Xi| = li

• lx = max(i | Xi 6= ∅)

• xi,j = Xi(j) αi,j = ~αi(j)

• xi,li+1 = o
~U(ti) and αi,n+1 = κ(ti)

• xmc = xlX ,llX (i.e. the last element of X)

• o~U(~α) = 〈o~U(αi,j) | xi,j ∈ X〉 is the type of ~α.

A general extension of p of type X would be of the form:

p_〈~α, (C(xi,j))xi,j∈X , (C(tr))
n+1
r=1 〉 = p_〈~α, (C(xi,j))i≤n+1

j≤li+1
〉
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where

p_〈~α, (C(xi,j))i≤n+1
j≤li+1

〉 = 〈~s1, t′1, ..., ~sn, t′n, ~sn+1, 〈κ,C〉〉

1. ~α ∈ B(p,X) (X is uniquely determined by ~α).

2. t′s =

{
ts o

~U(ts) = 0
〈κ(ts), C(ts)〉 o.w.

For some pre-chosen sets C(ts) ∈
⋂

ξ<o~U (ts)

U(κ(ts), ξ) , C(ts) ⊆ B(ts).

3. ~si(j) =

{
αi,j xi,j = 0

〈αi,j, C(xi,j)〉 o.w.
For some pre-chosen sets C(xi,j) ∈

⋂
ξ<xi,j

U(αi,j, ξ) , C(xi,j) ⊆ B(ti) ∩ αi,j.

4. C ∈
⋂

ξ<o~U (κ)

U(κ, ξ) and min(C) > max(~sn+1)

Keeping in mind the development succeeding definition 1.3,

p_〈~α, (C(xi,j))i≤n+1
j≤li+1

〉 ∈M[~U ]

holds due to the α’s being meticulously handpicked. We will more frequently use p_〈~α〉 with
the same definition as above except we do not shrink any sets and simply take αi,j ∩B(ti) =
C(xi,j). Define

p_X = {p_〈~α〉 | ~α ∈ B(p,X)}

The p_X’s induces a partition of M[~U ] above p as stated in the next proposition which is
well known and follows directly from definition 1.3.

Proposition 2.2 Let p ∈ M[~U ] be any condition and p ≤ q ∈ M[~U ]. Then there exists a
unique ~α ∈ B(p,X) such that p_〈~α〉 ≤∗ q.

�
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Example:

Let

p = 〈〈κ(t1), B(t1)〉︸ ︷︷ ︸
t1

, κ(t2)︸ ︷︷ ︸
t2

, 〈κ(t3), B(t3)〉︸ ︷︷ ︸
t3

, 〈κ(t4), B(t4)〉︸ ︷︷ ︸
t4

, 〈κ,B〉︸ ︷︷ ︸
t5

〉

o
~U(t1) = 1, o

~U(t2) = 0, o
~U(t3) = 2, o

~U(t4) = 1, o
~U(κ) = 3

Let

q = p_〈〈α1,1, α1,2︸ ︷︷ ︸〉
~α1

, 〈〉︸︷︷︸
~α2

, 〈α3,1, α3,2, α3,3〉︸ ︷︷ ︸
~α3

, 〈α4,1〉︸ ︷︷ ︸
~α4

, 〈α5,1, α5,2, α5,3〉︸ ︷︷ ︸
~α5

〉

o
~U(αi,j) =



0 〈i, j〉 = 〈1, 1〉, 〈1, 2〉,
〈3, 2〉, 〈4, 1〉, 〈5, 1〉

1 〈i, j〉 = 〈3, 1〉, 〈3, 3〉,
〈5, 2〉

2 〈i, j〉 = 〈5, 3〉

Then the extention-type of q is

X = 〈〈0, 0〉︸ ︷︷ ︸
X1

, 〈〉︸︷︷︸
X2

, 〈1, 0, 1〉︸ ︷︷ ︸
X3

, 〈0〉︸︷︷︸
X4

, 〈0, 1, 2〉︸ ︷︷ ︸
X5

〉

This can be illustrated as following:
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α1,1 x1,1
α1,2 x1,2

α3,1 x3,1

α3,2 x3,2

α3,3 x3,3

α4,1 x4,1

α5,1 x5,1
α5,2 x5,2

α5,3 x5,3

}
B(t1) = B(t1, 0)

α1,1,α2,2

κ(t1)

κ(t2)

}
B(t3) = B(t3, 0)

α3,2

∪B(t3, 1)
α3,1,α3,3

κ(t3)

}
B(t4) = B(t4, 0)

α4,1

κ(t4)

}
B(κ) = B(κ, 0)

α5,1

∪B(κ, 1)
α5,2

∪B(κ, 2)
α5,3

κ

~α X p

As presented in proposition 2.2, a choice from the set p_X is essentially a choice from

some
n∏
i=1

Ai , Ai ∈ Ui and κ1 ≤ κ2 ≤ ... ≤ κn are measurable cardinals with normal measures

U1, ..., Un, Namely,
n∏
i=1

Ai = B(p,X). We will need some properties of those sets.

Lemma 2.3 Let κ1 ≤ κ2 ≤ ... ≤ κn be any collection of measurable cardinals with normal

measures U1, ..., Un respectively. Assume F :
n∏
i=1

Ai −→ ν where ν < κ1 and Ai ∈ Ui. Then

there exists Hi ⊆ Ai Hi ∈ Ui such that
n∏
i=1

Hi is homogeneous for F .

Proof: By induction on n, the case n = 1 is known. Assume that the lemma holds for n− 1

, and fix ~η = 〈η1, ..., ηn−1〉 ∈
n−1∏
i=1

Ai. Define

F~η : An \ (ηn−1 + 1) −→ ν
F~η(ξ) = F (η1, ..., ηn−1, ξ)
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By the case n=1 there exists a homogeneous An ⊇ H(~η) ∈ Un with color C(~η) < ν. Define

∆
~η∈

∏n−1
i=1 Ai

H(~η) =: Hn

By the induction hypotheses, C :
n−1∏
i=1

Ai → ν has a homogeneous set of the form
n−1∏
i=1

Hi where

Ai ⊇ Hi ∈ Ui. To see that
n∏
i=1

Hi is homogeneous for F ,

let ~η′ = 〈η′1, ..., η′n〉, ~η = 〈η1, ..., ηn〉 ∈
n∏
i=1

Hi. We have

F (~η) = F~η\〈ηn〉(ηn) =
↑

ηn∈H(~η\〈ηn〉)

F ′(~η \ 〈ηn〉) =
↑

~η\〈ηn〉,~η′\〈η′n〉∈
n−1∏
i=1

Hi

= F ′(~η′ \ 〈η′n〉) = ... = F (~η′).

�

Lemma 2.4 Let κ1 ≤ κ2 ≤ ... ≤ κn be a non descending finite sequence of measurable

cardinals with normal measures U1, ..., Un respectively. Assume F :
n∏
i=1

Ai −→ B where B is

any set, and Ai ∈ Ui. Then there exists Hi ⊆ Ai Hi ∈ Ui and set of important coordinates

I ⊆ {1, ..., n} such that F �
n∏
i=1

Hi is well defined modulo the equivalence relation:

〈α1, ..., αn〉 ∼ 〈α′1, ..., α′n〉 iff ∀i ∈ I αi = α′i

and the induced function, F̄ , is injective.

Proof: By induction on n, if n = 1 then it is immediate since for any f : A→ B such that
A ∈ U where U is a normal measure on a measurable cardinal κ, B is any set, then there
exists A ⊇ A′ ∈ U for which F � A′ is either constant or injective. Assume that the lemma

holds for n− 1 , n > 1 and let F :
n∏
i=1

Ai −→ B be a function satisfying the conditions of the

lemma. Define for every x1 ∈ A1, Fx1 :
n∏
i=2

Ai \ (x1 + 1) −→ B

Fx1(x2, ..., xn) = F (x1, x2, ..., xn)
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By the induction hypothesis , for every x1 ∈ A1 there are Ai ⊇ Ai(x1) ∈ Ui and set of
important coordinates I(x1) ⊆ {2, ..., n}. The function
I : A1 → P ({2, ..., n}) is constant on A′1 ∈ U1 with value I ′. For every i = 2, ..., n define

A′i = ∆
x1∈A1

Ai(x1). So far,
n∏
i=1

A′i has the property:

(1) for any 〈x1, x2, ..., xn〉, 〈x1, x′2, ..., x′n〉 ∈
n∏
i=1

A′i (same first coordinate)

F (x1, x2, ..., xn) = F (x1, x
′
2, ..., x

′
n) iff ∀i ∈ I ′ xi = x′i

In particular, F̄ is a well defined function modulo I ′ ∪ {1}. Next we determine if 1 is

important. For every 〈α, α′〉 ∈ A′1 × A′1, define t〈α,α′〉 :
n∏
i=2

A′i \ (α′ + 1)→ 2

t〈α,α′〉(x2, ..., xn) = 1⇔ F (α, x2, ..., xn) = F (α′, x2, ..., xn)

By lemma 2.3, for i = 2, ..., n there are A′i ⊇ Ai(α, α
′) ∈ Ui such that

n∏
i=2

Ai(α, α
′) is

homogeneous for t〈α,α′〉 with color C(α, α′). Taking the diagonal intersection over A′1 × A′1
of the sets Ai(α, α

′) at each coordinate i = 2, ..., n, we obtain Hi ∈ Ui such that
n∏
i=2

Hi is

homogeneous for every t〈α,α′〉. Finally, the function C : A′1 × A′1 → 2 yield a homogeneous
A′1 ⊇ H1 ∈ U1 with color C ′.
case 1: C ′ = 1. Let us show that the important coordinates are I ′. If 〈x1, ..., xn〉, 〈x′1, ..., x′n〉 ∈∏n

i=1Hi then F (x1, x
′
2, ..., x

′
n) = F (x′1, x

′
2, ..., x

′
n)

F (x1,...,xn) = F (x′1,...,x′n)⇔ F (x1,x2,...,xn) = F (x1,x′2,...,x′n)⇔ ∀i ∈ I ′ xi = x′i

case 2: C ′ = 0. We then have a second property:
(2) For every x1, x

′
1 ∈ H1 and 〈x2, ..., xn〉 ∈

∏n
i=2Hi

x1 = x′1 iff F (x1, x2..., xn) = F (x′1, x2, ..., xn)

We would like to claim that in this case the important coordinates are I = I ′ ∪ {1} but the
Hi’s defined, may not be the sets we seek for, since there can still be an counter example for
F̄ not being injective i.e.

〈x1, ..., xn〉 6= 〈x′1, ..., x′n〉 mod-I such that F (x1, ..., xn) = F (x′1, ..., x
′
n)
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Let us prove that if we eliminate all counter examples from Hi’s , we are left with a large
set. Take Any counter example and set

{x1, ..., xn} ∪ {x′1, ..., x′n} = {y1, ..., yk} (increasing enumeration)

To reconstruct {x1, ..., xn}, {x′1, ..., x′n} from {y1, ..., yk} is suffices to know for example how
{x1, ..., xn} are arranged between {x′1, ..., x′n}. There are finitely many ways 3 for Such an
arrangement. Therefore, if we succeed with eliminating examples of a fixed arrangement,
then by completeness of the measures we will be able to eliminate all counter example.
Fix such an arrangement, the increasing sequence 〈y1, ..., yk〉 is in the product of some k large

sets
k∏
i=1

Hni . We have to be careful since the sequence of measurables induced by n1, ..., nk is

not necessarily non descending. To fix this we can cut the sets Hi such that in the sequence
〈κi | i = 1, ..., n〉, wherever κi < κi+1 then min(Hi+1) > κi = sup(Hi). Therefore, assume

that 〈κni | i = 1, ..., k〉 is non descending. Define G :
k∏
i=1

Hni → 2

G(y1, ..., yk) = 1⇔ F (x1, ..., xn) = F (x′1, ..., x
′
n)

By lemma 2.3 there must be Ui 3 H ′i ⊆ Hi homogeneous for G with value D. If D = 0 we
have eliminated from Hi’s all counter examples of that fixed ordering. Assume D = 1, then
every y1, ..., yk yield a counter example 〈x1, ..., xn〉, 〈x′1, ..., x′n〉 (different modulo I). x1 = x′1
is impossible by property (1). If x1 < x′1, Fix x < w < y2 < ... < yn, where x,w ∈ H ′1 and
yi ∈ H ′ni i = 2, ..., k. Then G(x, y2, ..., yk) = G(w, y2, ..., yk) = 1 and

F (x, x2, ..., xn) = F (x′1, x
′
2, ..., x

′
n) = F (w, x2, ..., xn)

contradiction to (2). x1 < x′1 is symmetric.

�

3In general, the number of possibilities to arrange two counter examples into one increasing sequence
depends on I. Nevertheless, there is an upper bound: Think of xi’s as balls we would like to divide into
n + 1 cells. The cells are represented by the intervals (x′i−1, x

′
i] plus the cell for elements above x′n. There

are
(
2n
n

)
such divisions. For any such division, we decide either the cell is (x′i−1, x

′
i] or (x′i−1, x

′
i). Hence,

there are at most
(
2n
n

)
· 2n such arrangements.

18



3 The main result up to κ

As stated in corollary 1.6, Magidor forcing adds a closed unbounded sequence of length ωo
~U (κ)

to κ. It is possible to obtain a family of forcings that adds a sequence of any limit length to
some measurable cardinal, using a variation of Magidor forcing as we defined it4. Namely,
let ~U be a coherent sequence and λ0 < min(ν | o~U(ν) > 0) a limit ordinal

(not necessarily C.N.F) λ0 = ωγ1 + ...+ ωγn ,γn > 0

Let 〈κ1, ...κn〉 be an increasing sequence such that o
~U(κi) = γi. Define the forcing M〈κ1,...κn〉[~U ]

as follows:
The root condition will be

0M〈κ1,...κn〉[
~U ] = 〈〈κ1, B1〉, ..., 〈κn, Bn〉〉

where B1, ..., Bn are as in the discussion following definition 1.3. The conditions of this
forcing are any finite sequence that extends 0M〈κ1,...κn〉[

~U ] in the sense of definition 1.3. Since

each 〈κi, Bi〉 acts autonomously, this forcing is essentially the same as M[~U ]. In fact, M[~U ]

is just M〈κ〉[~U ]. The notation we used for M[~U ] can be extended to M〈κ1,...κn〉[~U ] since the
conditions are also of the form 〈t1, ..., tr, 〈κ,B〉〉. Let

〈〈ν1, C1〉, ..., 〈νm, Cm〉〉 ∈M〈κ1,...κn〉[~U ]

then M〈ν1,...,νm〉[~U ] is an open subset of M〈κ1,...κn〉[~U ] (i.e. ≤-upwards closed). Moreover, if

G ⊆M〈κ1,...κn〉[~U ] is any generic set with 〈〈ν1, C1〉, ..., 〈νm, Cm〉〉 ∈ G then

(G)〈ν1,...,νm〉 = G ∩M〈ν1,...,νm〉[~U ] = {p ∈ G | p ≥ 〈〈ν1, C1〉, ..., 〈νm, Cm〉〉}

is generic for M〈ν1,...,νm〉[~U ]. (G)~ν is essentially the same generic as G since it yield the same
Magidor sequence, in particular V [(G)~ν ] = V [G].

From now on the set B in 〈t1, ..., tr, 〈κ,B〉〉 will be suppressed and replaced by tr+1 = 〈κ,B〉
where κn = κ. An alternative way to describe M〈κ1,...κn〉[~U ] is through the following product

M〈κ1,...κn〉[~U ] 'M[~U ]〈κ1〉 × (M[~U ]〈κ2〉)>κ1 × ...× (M[~U ]〈κn〉)>κn−1

(M〈ν1,...,νm〉[~U ])>α = {〈t1, ..., tr+1〉 ∈M〈ν1,...,νm〉[~U ] | κ(t1) > α}
4Magidor’s original formulation of M[~U ] in [?] gives such a family
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This isomorphism is induced by the embeddings

ir : ((M[~U ]〈κr〉)>κr−1 →M〈κ1,...κn〉[~U ] , r = 1, ..., n
ir(〈s1, ..., sk+1〉) = 〈〈κ1,B1〉,...,〈κr−1,Br−1〉,s1,...,sk,〈κr,B(sk+1)〉︸ ︷︷ ︸

sk+1

,...,〈κn,Bn〉〉

From this embeddings, it is clear that the generic sequence produced by (M[~U ]〈κr〉)>κr−1 is
just CG ∩ (κr−1, κr).

The formula to compute coordinates holds in this context:
Let p = 〈t1, ..., tm, tm+1〉 ∈ M〈κ1,...κn〉[~U ]. For each 1 ≤ i ≤ m, the coordinate of κ(ti) in any
Magidor sequence extending p is CG(γ) = κ(ti), where

γ =
∑
j≤i
ωo

~U (tj) =: γ(ti, p) < λ0

Lemma 3.1 Let G be generic for M〈κ1,...κn〉[~U ] and the sequence derived

CG =
⋃
{{κ(t1), ..., κ(tl)} | 〈t1, ..., tl, tl+1〉 ∈ G}

1. otp(CG) = λ0

2. If κi < CG(γ) < κi+1 where γ is limit, then there exists ~ν = 〈ν1, ..., νm〉 such that

(G)~ν_〈κi+1,...,κn〉 is generic for M~ν_〈κi+1,...,κn〉[
~U ], CG = C(G)~ν_〈κi+1,...,κn〉

and the se-

quences obtained by the split

M~ν [~U ]× (M〈κi+1,...,κn〉[
~U ])>νm 'M~ν_〈κi+1,...,κn〉[

~U ]

are CG ∩ CG(γ), CG \ CG(γ). More accurately, if

γ = ωγ1 + ...+ ωγi︸ ︷︷ ︸
ξ

+ ωγ
′
i+1 + ...+ ωγ

′
m (C.N.F)

then

~ν = 〈ν1, ..., νm〉 = 〈κ1, ..., κi, CG(ξ + ωγ
′
i+1), ..., CG(γ)〉

Proof : For (1), the same reasoning as in lemmas 1.5-1.6 should work. For (2), notice that

by proposition 1.4, 0M~ν_〈κi+1,...,κn〉
∈ G. Thus (G)~ν_〈κi+1,...,κn〉 is generic for M~ν_〈κi+1,...,κn〉[

~U ].

The embeddings
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i1 : M〈ν1,...,νm〉[~U ]→M~ν_〈κi+1,...,κn〉[
~U ]

i1(〈t1, ..., tr+1〉) = 〈t1, ..., tr+1, 〈κi+1, Bi+1〉, ..., 〈κn, Bn〉〉

and

i2 : (M〈κi+1,...,κn〉[
~U ])>νm →M~ν_〈κi+1,...,κn〉[

~U ]
i2(〈s1, ..., sk+1〉) = 〈〈κ1, B1〉, ..., 〈κi, Bi〉, s1, ..., sk+1〉

induces the isomorphism of M~ν_〈κi+1,...,κn〉[
~U ] with the product. Therefore, i−11 (G), i−12 (G)

are generic for M〈ν1,...,νm〉[~U ], (M〈κi+1,...,κn〉[
~U ])>νm respectively. By the definition of i1, i2 this

generics obviously yield the sequences CG ∩ CG(γ) and CG \ CG(γ).

�

In general we will identify G with (G)~ν when using lemma 3.1.

Notice that, the information used in order to compute γ(ti, p) is just o
~U(ti). Let X be

an extension type of p, then X provides this information, therefore, one can compute the
coordinates of any extension ~α of type X. In particular, for any αi.r substituting xi,r ∈ X
the coordinate of αi,r is

γ = γ(ti−1, p) + ωxi,1 + ...+ ωxi,r =: γ(xi,r, p
_X)

In this situation we say that X unveils the γ-th coordinate. If xi,r = xmc, we say that X
unveils γ as maximal coordinate.

Proposition 3.2 Let p = 〈t1, ..., tn, tn+1〉 ∈ M〈κ1,...κn〉[~U ] and γ such that for some 0 ≤ i ≤
n, γ(ti, p) < γ < γ(ti+1, p). Then there exists an extension-type X unveiling γ as maximal
coordinate. Moreover, if

γ(ti, p) +
∑
j≤m

ωγj = γ (C.N.F)

then the extension type is X = 〈Xi〉 where Xi = 〈γ1, ..., γm〉.

�
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Example: Assume λ0 = ω1 +ω2 ·2+ω, let κ1 < κ2 < κ3 < κ4 = κ be such that o
~U(κ1) = ω1

, o
~U(κ2) = o

~U(κ3) = 2 and o
~U(κ) = 1. Let

p = 〈〈ν1,B(ν1)〉︸ ︷︷ ︸
t1

, ν2︸︷︷︸
t2

, 〈κ1,B(k1)〉︸ ︷︷ ︸
t3

, 〈ν4,B(ν3)〉︸ ︷︷ ︸
t4

, 〈κ2,B(κ2)〉︸ ︷︷ ︸
t5

, 〈κ3,B(κ3)〉︸ ︷︷ ︸
t6

, 〈κ,B〉︸︷︷︸
t7

〉

o
~U(t1) = ω, o

~U(t2) = 0, o
~U(t4) = 1

Let G be any generic with p ∈ G. Calculating γ(ti, p) for i = 1, ..., 7 we get

1. γ(t1, p) = ωo
~U (t1) = ωω ⇒ CG(ωω) = ν1

2. γ(t2, p) = ωω + ωo
~U (t2) = ωω + 1 ⇒ CG(ωω + 1) = ν2

3. γ(t3, p) = ωω + 1 + ωω1 = ωω1 = ω1

4. γ(t4, p) = ω1 + ω ⇒ CG(ω1 + ω) = ν3

5. γ(t5, p) = ω1 + ω + ω2 = ω1 + ω2

To demonstrate proposirion 3.2 let γ = ωω + ω5 · 3 + 5 therefore

γ(t2, p) = ωω + 1 < γ < ω1 = γ(t3, p)
(ωω + 1) + ω5 · 3 + 5 = γ

The extension-type unveiling γ as maximal coordinate is then

X = 〈〈〉, 〈〉, X3〉 X3 = 〈5, 5, 5, 0, 0, 0, 0, 0〉

i.e. every extension ~α = 〈α3,1, ...α3,8〉 ∈ B(p,X) will satisfy that

γ(αmc, p
_~α) = γ(α3,8, p

_α) = γ(x3,8, p
_X) = γ

This concludes the example. Let us state the main theorem of this paper.

Theorem 3.3 Let ~U be a coherent sequence in V , 〈κ1, ...κn〉 be a sequence such that o
~U(κi) <

min(ν | 0 < o
~U(ν)) =: δ0, let G be M〈κ1,...κn〉[~U ]-generic and let A ∈ V [G] be a set of ordinals.

Then there exists C ′ ⊆ CG such that V [A] = V [C ′].
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We will prove Theorem 3.3 by induction on otp(CG). For otp(CG) = ω it is just the Prikry
forcing which is know by [?]. Let otp(CG) = λ0 be a limit ordinal,

λ0 = ωγn + ...+ ωγ1 (C.N.F)

If sup(A) < κ, then by lemma 5.3 in [?], A ∈ V [C∩ sup(A)]. By lemma 3.1, V [C∩ sup(A)] is

a generic extension of some M〈ν1,...,νm〉[~U ] with order type smaller the λ0, thus by induction
we are done. In fact, if there exists α < κ such that A ∈ V [C ∩ α] then the induction
hypothesis works. Let us assume that A /∈ V [C ∩α] whenever α < κ , this kind of set will be
called recent set. Since κ1, ..., κn will be fixed through the rest of this chapter we shall abuse
notation and denote M〈κ1,...κn〉[~U ] = M[~U ]. First let us show that for A with small enough
cardinality the theorem holds regardless of the induction.

Lemma 3.4 Let ∼x be a M[~U ]-name and p ∈ M[~U ] such that p  ∼x is an ordinal. Then

there exists p ≤∗ p∗ ∈M[~U ] and an extension-type X ∈ T (p) such that

(∗) ∀p∗_〈~α〉 ∈ p∗_X p∗_〈~α〉|| ∼x

Proof: Let p = 〈t1, ..., tn, tn+1〉 ∈M[~U ].

Claim: There exists p ≤∗ p′ such that for some extension type X

∀~α ∈ B(p′, X) ∃C(xi,j) s.t. p′_〈~α, (C(xi,j))i,j〉 || ∼x

Proof of Claim: Define sets BX(ti, j) , for any fixed X ∈ T (p) as follows: Recall the notation
lX , xmc and let ~α ∈ B(p,X \ 〈xmc〉). Define

B
(0)
X (~α) = {θ ∈ B(tlX , xmc) | ∃(C(xi,j))i,j p_〈~α, θ, (C(xi,j))i,j〉|| ∼x}

andB
(1)
X (~α) = B(tlX , xmc)\B

(0)
X (~α). One and only one ofB

(0)
X (~α) , B

(1)
X (~α) is in U(κ(tlX ), xmc).

Set BX(~α) and FX(~α) ∈ {0, 1}:

BX(~α) = B
(FX(~α))
X (~α) ∈ U(κ(tlX ), xmc)

Define
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B′X(tlX , xmc) = ∆
~α∈B(p,X\〈xmc〉)

BX(~α)

Consider the function F : B(p,X \ 〈xmc〉) → {0, 1}. Applying lemma 2.3 to F , we get a
homogeneous

∏
xi,j∈X\〈xmc〉

B′X(ti, xi,j) where

B′X(ti, xij) ⊆ B(ti, xij), B
′
X(ti, xij) ∈ U(ti, xi,j), xij ∈ X \ 〈xmc〉

For ξ /∈ Xi, Set

B′X(ti, ξ) = B(ti, ξ)

Since |T (p)| < κ(t1), for each 1 ≤ i ≤ n+ 1 and ξ < o
~U(ti)

B′(ti, ξ) :=
⋂

X∈T (p)
B′X(ti, ξ) ∈ U(κ(ti), ξ)

Finally, let p′ = 〈t′1, ..., t′n, t′n+1〉 where

t′i =

{
ti o

~U(ti) = 0
〈κ(ti), B

′(ti)〉 otherwise

It follows that p ≤∗ p′ ∈M[~U ].

Let H be M[~U ]-generic, p′ ∈ H. By the assumption on p, there exists δ < κ such that

V [H] |= (∼x)H = δ . Hence , there is p′ ≤ q ∈ M [~U ] such that q  ∼x =
∨
δ. By proposition

2.2 there is a unique p′_〈~α, θ〉 ∈ p′_X for some extension type X, such that p′_〈~α, θ〉 ≤∗ q.
X, p′ are as wanted:

By the definition of p′ it follows that ~α ∈ B(p′, X \ 〈xmc〉) and θ ∈ BX(~α). Since q  ∼x =
∨
δ,

we have that FX(~α) = 0. Fix 〈~α′, θ′〉 of type X. ~α′ and ~α belong to the same homogeneous

set, thus F (~α′) = F (~α) = 0 and

θ′ ∈ B(0)
X (~α′)⇒ ∃(C(xi,j))i,j s.t. p

′_〈~α′, θ′, (C(xi,j))i,j〉|| ∼x

�of claim

For every ~α ∈ B(p′, X), fix some (Ci,j(~α))i≤n+1
j≤li+1

such that
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p′_〈~α, (Ci,j(~α))i≤n+1
j≤li+1

〉|| x
∼

It suffices to show that we can find p′ ≤∗ p∗ such that for every ~α ∈ B(p∗, X)

B(t∗i ) ∩ (αs, αi,j) ⊆ Ci,j(~α) , 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ li + 1

Where αs is the predecessor of αi,j in ~α . In order to do that, define p′ ≤∗ pi,j i ≤ n+ 1, j ≤
li + 1 then p∗ ≥∗ pi,j will be as wanted. Define pi,j as follows:

Fix ~β ∈ B(p′, 〈x1,1, ..., xi,j〉), by lemma 2.3, the function

Ci,j(~β, ∗) : B(p′, X \ 〈x1,1, ..., xi,j〉)→ P (βi,j)

has homogeneous sets B∗(~β, xr,s) ⊆ B(p′, xr,s) for xr,s ∈ X \ 〈x1,1, ..., xi,j〉. Denote the

constant value by C∗i,j(
~β). Define

B∗(tr, xr,s) = ∆
~β∈B(p′,〈x1,1,...,xi,j〉)

B∗(~β, xr,s), xr,s ∈ X \ 〈x1,1, ..., xi,j〉

Next, fix α ∈ B(t′i, xi,j) and let

C∗i,j(α) = ∆
~α′∈B(p′,〈x1,1,...,xi,j−1〉)

C∗i,j(
~α′, α)

Thus C∗i,j(α) ⊆ α. Moreover, κ(ti) is in particular an ineffable cardinal and therefore there
are B∗(ti, xi,j) ⊆ B(t′i, xi,j) and C∗i,j such that

∀α ∈ B∗(ti, xi,j) C∗i,j ∩ α = C∗i,j(α)

By coherency, C∗i,j ∈
⋂
U(ti, ξ). Finally, define pi,j = 〈t(i,j)1 , ..., t

(i,j)
n , t

(i,j)
n+1〉

B(t
(i,j)
i ) = B∗(ti) ∩ (

⋂
j

C∗i,j) 1 ≤ i ≤ n+ 1

To see that p∗ is as wanted, let ~α ∈ B(p∗, X) and fix any i, j. Then ~α ∈ B(pi,j, X) and
αi,j ∈ B∗(ti, xi,j). Thus

B(t∗i ) ∩ (αs, αi,j) ⊆ C∗i,j ∩ αi,j \ αs = C∗i,j(αi,j) \ αs ⊆ C∗i,j(α1,1, ..., αi,j) = Ci,j(~α)
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Lemma 3.5 Let G be M[~U ]-generic and A ∈ V [G] be any set of ordinals, such that |A| < δ0.
Then there is C ′ ⊆ CG such that V [A] = V [C ′].

proof: Let A = 〈aξ | ξ < δ〉 ∈ V [G] , where δ < min(ν | 0 < o
~U(ν)) and ∼A = 〈

∼
aξ | ξ < δ〉 be

a name in G for 〈aξ | ξ < δ〉. Let q ∈ G such that q  ∼A ⊆ Ord. We proceed by a density

argument, fix q ≤ p ∈ M[~U ]. By lemma 3.5 , for each ξ < δ there exists X(ξ) and p ≤∗ p∗ξ
satisfying (∗). By δ+−≤∗closure above p we have p∗ ∈ M[~U ] such that ∀ξ < δ p∗ξ ≤ p∗. For
each ξ, define Fξ : B(p∗, X(ξ)) −→ κ

Fξ(~α) = γ for the unique γ such that p∗_〈~α〉 
∼
aξ =

∨
γ.

Using lemma 2.4, we obtain for every ξ < δ a set of important coordinates

Iξ ⊆ {〈i, j〉 | 1 ≤ i ≤ n+ 1 , 1 ≤ j ≤ li}

Example: Assume o
~U(k) = 3 ,CG = 〈CG(α) | α < ω3〉.

a0 = CG(80), a1 = CG(ω + 2) + CG(3), a2 = CG(ω2 · 2 + ω + 1)

and

p = 〈ν0, 〈νω, B(νω, 0)〉, 〈κ,B(κ, 0) ∪B(κ, 1) ∪B(κ, 2)︸ ︷︷ ︸
B(κ)

〉〉

We use as index the coordinate in the final sequence to improve clarity. To determine a0,
unveil the first 80 elements of the Magidor sequence i.e. any element of the form

p0 = 〈ν0, ν1, ..., ν80, 〈νω, B(νω, 0) \ ν80 + 1〉, 〈κ,B(κ)〉〉

will decide the value of a0. Thus the extension type X(0) is

X(0) = 〈〈0, ..., 0︸ ︷︷ ︸
80 times

〉, 〈〉〉
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The important coordinates to decide the value of a0 is only the 80th coordinate and it is
easily seen to be one to one modulo the irrelevant coordinates. For a1 the form is

p1 = 〈ν0, ν1, ν2, ν3, 〈νω, B(νω, 0) \ ν3 + 1〉, νω+1, νω+2, 〈κ,B(κ) \ (νω+2 + 1)〉〉

The extension type is

X(1) = 〈〈0, 0, 0〉, 〈0, 0〉〉

The important coordinates are the 3rd and the 5th. For a2 we have

p2=〈ν0,〈νω ,B(νω ,0)〉,〈νω2 ,B(νω2 )〉,〈νω2·2,B(νω2·2)〉,〈νω2·2+ω ,B(νω2·2+ω)〉,〈κ,B(κ)\νω2·2+ω〉〉

X(2) = 〈〈〉, 〈2, 2, 1〉〉

Back to the proof, since p was generic, there is 〈t1, ..., tn, tn+1〉 = p? ∈ G with such functions.
Find Dξ ⊆ CG such that

Dξ ∈ B(p?, Xξ)

Dξ exists by proposition 1.4 and p? ∈ G. Since V [G] |= (
∼
aξ)G = aξ we have

p?_〈Dξ〉 
∼
aξ =

∨
aξ ⇒ Fξ(Dξ) = aξ

Set Cξ = Dξ � Iξ and C ′ =
⋃
ξ<δ

Cξ. Let us show that V [〈aξ|ξ < δ〉] = V [C ′]:

In V [C ′], fix some enumeration of C ′. The sequence 〈Cξ | ξ < δ〉 can be extracted from
C ′ using the sequence 〈Index(Cξ, C

′) | ξ < δ〉 ∈ V (Index(Cξ, C
′) ⊆ otp(CG)). For every

ξ < δ find

D′ξ ∈ B(p?, Xξ) such that D′ξ � Iξ = Cξ

Such D′ξ exists as Dξ witnesses (the sequence 〈Dξ | ξ < δ〉 may not be in V [C ′]). Since
D′ξ ∼Iξ Dξ one sees that

Fξ(D
′
ξ) = Fξ(Dξ) = aξ
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hence 〈aξ | ξ < δ〉 = 〈Fξ(D′ξ) | ξ < δ〉 ∈ V [C ′].

In the other direction, Given 〈aξ | ξ < δ〉, ∀ξ < δ pick D′ξ ∈ F−1ξ (aξ) (F−1ξ (aξ) 6= ∅
follows from the fact that Dξ ∈ dom(Fξ) and Fξ(Dξ) = aξ). Since Fξ is 1-1 modulo Iξ and
Fξ(Dξ) = Fξ(D

′
ξ) we have

Dξ ∼Iξ D′ξ and Cξ = Dξ � Iξ = D′ξ � Iξ

Hence

〈Cξ | ξ < δ〉 = 〈D′ξ � Iξ | ξ < δ〉 ∈ V [〈aξ | ξ < δ〉] and C ′ ∈ V [〈aξ | ξ < δ〉].

�

We shall proceed by induction on sup(A) for a recent set A. As we have seen in the discussion
following Theorem 3.3, if A ⊆ κ is recent then sup(A) = κ. For such A, the next lemma
gives a sufficient conditions.

Lemma 3.6 Let A ∈ V [G], sup(A) = κ. Assume that ∃C∗ ⊆ CG such that

1. C∗ ∈ V [A] and ∀α < κ A ∩ α ∈ V [C∗]

2. cfV [A](κ) < δ0

Then ∃C ′ ⊆ CG such that V [A] = V [C ′].

Proof: Let cfV [A](κ) = η and 〈γξ | ξ < η〉 ∈ V [A] be a cofinal sequence in κ. Work in V [A] ,
pick an enumerations of P (γξ) = 〈Xξ,i | i < 2γξ〉 ∈ V [C∗]. Since A∩ γξ ∈ V [C∗], there exists
iξ < 2γξ such that A ∩ γξ = Xξ,iξ . The sequences

C∗, 〈iξ | ξ < η〉, 〈γξ | ξ < η〉

can be coded in V [A] to a sequence 〈xα | α < η〉. By lemma 3.5, ∃C ′ ⊆ CG such that
V [〈xα | α < η〉] = V [C ′]. To see that V [A] = V [〈xα | α < δ〉]: V [A] ⊇ V [〈xα | α < η〉] is
trivial and A =

⋃
ξ<η

Xξ,iξ ∈ V [〈xα | α < η〉].

�

We have two sorts of A:
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1. ∃α∗ < κ such that ∀β < κ A ∩ β ∈ V [A ∩ α∗] and we say that A ∩ α stabilizes.
An example of such A can be found in Prikry forcing where A is simply the Prikry
sequence (α∗ = 0).

2. For all α < κ there exists β < κ such that V [A∩α] ( V [A∩β] as example we can take

Magidor forcing with o
~U(κ) = 2 and A can be the Magidor sequence A = 〈κα | α < ω2〉.

We shall first deal with A’s such that A ∩ α does not stabilize.

Lemma 3.7 Assume that A ∩ α does not stabilize, then there exists C ′ ⊆ CG such that
V [A] = V [C ′].

Proof: Work in V [A], define the sequence 〈αξ | ξ < θ〉:

α0 = min(α | V [A ∩ α] ) V )

Assume that 〈αξ | ξ < λ〉 has been defined and for every ξ, αξ < κ. If λ = ξ + 1 then set

αλ = min(α | V [A ∩ α] ) V [A ∩ αξ])

If the sequence αλ = κ , then αλ satisfies that

∀α < κ A ∩ α ∈ V [A ∩ αλ∗ ]

Thus A ∩ α stabilizes which by our assumption is a contradiction.
If λ is limit, define

αλ = sup(αξ | ξ < λ)

if αλ = κ define θ = λ and stop. The sequence 〈αξ | ξ < θ〉 ∈ V [A] is a continues, increasing
unbounded sequence in κ. Therefore, cfV [A](κ) = cf(θ). We shell first show that θ < δ0.
Work in V [G], for every ξ < θ pick Cξ ⊆ CG such that V [A ∩ αξ] = V [Cξ]. This is a
1-1 function from θ to P (CG). The cardinal δ0 is still a strong limit cardinal (since there
are no new bounded subsets below this cardinal and it is measurable in V ). Moreover,
λ0 := otp(CG) < δ0, thus

θ ≤ |P (CG)| = |P (λ0)| < δ0
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The only thing left to prove, is that we can find C∗ as in Lemma 3.6. Work in V [A], for
every ξ < θ, Cξ ∈ V [A] (The sequence 〈Cξ | ξ < θ〉 may not be in V [A]). Cξ witnesses that

∃dξ ⊆ κ (|dα| < 2λ0 and V [A ∩ α] = V [dα])

So d =
⋃
{dαξ |ξ < θ} ∈ V [A] and |d| ≤ 2λ0 . Finally, by lemma 3.5, there exists C∗ ⊆ CG

such that V [C∗] = V [d] ⊆ V [A] and for all α < κ A ∩ α ∈ V [C∗]. By Lemma 3.6, the
theorem holds.

�

For the rest of this chapter we can assume that the sequence A∩ α stabilizes on α∗. Let C∗

be such that V [A ∩ α∗] = V [C∗] and κ∗ = sup(C∗) is limit in CG. Notice that, κ∗ < κ, this
follows from the fact that A ∩ α∗ ∈ V [CG ∩ α∗]. Our final goal is to argue that if A is very
new then κ changes cofinality in V [A]. To do this, consider the initial segment CG ∩ κ∗ and

assume that κj−1 ≤ κ∗ < κj. By lemma 3.1 we can split M[~U ]

M〈ν1,...,νi,κ∗〉[~U ]× (M〈κj ,...,κ〉[~U ])>κ∗

M≤κ∗ = M〈ν1,...,νi,κ∗〉[~U ] , M>κ∗ [~U ] = (M〈κj ,...,κ〉[~U ])>κ∗

such that CG is generic for M≤κ∗ [~U ] ×M>κ∗ [~U ] and CG ∩ κ∗ is generic for M≤κ∗ [~U ]. As we

will see in the next chapter, there is a natural projection of M≤κ∗ [~U ] onto some forcing P
such that V [C∗] = V [G∗] for some generic G∗ of P. Recall that if π : M≤κ∗ [~U ] → P is the
projection, then

M≤κ∗ [~U ]/G∗ = π−1(G∗)

In V [G∗] define Q = M≤κ∗ [~U ]/C∗ ⊆M≤κ∗ [~U ]. It is well known that CG ∩ κ∗ is generic for Q
above V [C∗] and obviously V [C∗][CG∩κ∗] = V [CG∩κ∗]. The reader can refer to chapter 4 to
see a formal development of Q, though in this chapter we will only use the existence of such
a forcing and the fact that the projection depends only on the part below κ∗, therefore Q is
of small cardinality. The forcing M>κ∗ [~U ] has all good properties of M[~U ] (and more) since

in V [C∗] all measurables in ~U above κ∗ are unaffected by the existence of C∗. In conclusion,

we have managed to find a forcing Q×M>κ∗ [~U ] ∈ V [C∗] such that V [G] is one of it’s generic
extensions and ∀α < κ A ∩ α ∈ V [C∗].

Work in V [C∗], let ∼A be a name for A in Q × M>κ∗ [~U ] ∈ V [C∗]. By our assumption
on C∗, we can find 〈q, p〉 ∈ G such that 〈q, p〉  ∀α < κ ∼A ∩ α is old (where old means in
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V [C∗]). Formally, the next argument is a density argument above 〈q, p〉. Nevertheless, in
order to simplify notation, assume that 〈q, p〉 = 0Q×M[~U ]>κ∗

. Lemmas 3.8-3.9 prove that a

certain property holds densely often in M[~U ]>κ∗ . In order to Make these lemmas more clear,
we will work with an ongoing parallel example.
Example: Let λ0 = otp(CG) = ω2,

A = {CG(2n) | n ≤ ω} ∪ {CG(ω · n) + CG(n) | 0 < n < ω}

Therefore

C∗ = {CG(2n) | n < ω}, κ∗ = CG(ω)

The forcing Q can be thought of as adding the missing coordinates to CG � ω i.e. the odd
coordinates. Let

p = 〈〈νω·2, Bω·2〉︸ ︷︷ ︸
t1

, νω·2+1︸ ︷︷ ︸
t2

, 〈κ,B(κ)〉︸ ︷︷ ︸
t3

〉 ∈M[~U ]>κ∗

Lemma 3.8 For every p ∈M[~U ]>κ∗ there exists p ≤∗ p∗ such that for every extension X of
p∗ and q ∈ Q: (Recall that ~α = 〈α11, ..., αmc〉)

(∃p∗_~α ∈ p∗_X ∃p∗∗ ≥∗ p∗_~α s.t.〈q, p∗∗〉||∼A ∩ αmc)⇒

(∗) (∀p∗_~α ∈ p∗_X 〈q, p∗_~α〉||∼A ∩ αmc =: a(q, ~α)) (a propery of q,X)

Example: Let

q = 〈ν1, ν3, 〈κ∗, B(κ∗)〉〉 , X = 〈〈0, 0〉︸ ︷︷ ︸
X1

, 〈 〉︸︷︷︸
X2

, 〈1, 0〉︸ ︷︷ ︸
X3

〉-extension of p

Let

~α = 〈〈αω+1, αω+2〉, 〈 〉, 〈αω·3, αω·3+1〉〉 ∈ B(p,X)

If H is any generic with 〈q, p_〈~α〉〉 ∈ H then all the elements in q and p_〈~α〉 have there
coordinates in CH as specified above, thus
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(∼A)H ∩ αmc = (∼A)H ∩ αω·3+1 =
= {CH(2n) | n ≤ ω} ∪ {CH(ω · n) + CH(n) | 0 < n < ω} ∩ CH(ω · 3 + 1)

If αω·3 + ν3 ≥ αω·3+1 then

a(q, ~α) = (∼A)H ∩ αmc = CH �even ∪{CH(ω), CH(ω) + ν1, νω·2 + CH(2)}

If αω·3 + ν3 < αω·3+1 then

a(q, ~α) = (∼A)H ∩ αmc = CH �even ∪{CH(ω), CH(ω) + ν1, νω·2 + CH(2), αω·3 + ν3}

Anyway, we have that a(q, ~α) ∈ V [C∗] and therefore 〈q, p_~α〉||∼A ∩ αmc for every extension
~α of type X. Namely, q,X satisfy (*).

Proof of 3.8 : Let p = 〈t1, ..., tn, tn+1〉. For every

X = 〈X1, ..., Xn+1〉- extension of p , q ∈ Q , ~α ∈ B(p,X \ 〈xmc〉)

Recall that lX = min(i | Xi 6= ∅) and define BX
(0)(q, ~α) to be the set

{θ ∈ B(tlX , xmc) | ∃a∃(C(xi,j))xi,j 〈q, p_〈~α, θ, C(xi,j)〉  ∼A ∩ θ = a}

Also let BX
(1)(q, ~α) = B(tlX , xmc) \ BX

(0)(q, ~α). One and only one of BX
(1)(q, ~α), BX

(0)(q, ~α) is in

U(tlX , xmc). Define BX(q, ~α) and FX
q (~α) ∈ {0, 1} such that

BX(q, ~α) = BX
(FXq (~α))(q, ~α) ∈ U(tlX , xmc)

Since |Q| ≤ 2κ
∗
< κ(tlX ) we have BX(~α) =

⋂
q

BX(q, ~α) ∈ U(tlX , xmc). Define

BX(tlX , xmc) = ∆
~α
BX(~α) ∈ U(tlX , xmc)

Use lemma 2.3 to find BX(ti, xi,j) ⊆ B(ti, xi,j), B
X(ti, xi,j) ∈ U(ti, xi,j) homogeneous for

every FX
q . As before, if λ /∈ Xi set BX(ti, λ) = B(ti, λ). Let

p∗ = p_〈(B∗(ti))n+1
i=1 〉, B∗(ti, λ) =

⋂
X

BX(ti, λ)
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So far what we have managed to do is the following: Assuming they exist, let q, ~α, (C(xi,j))i,j, a
be such that 〈q, p∗_〈~α, (C(xi,j))i,j〉〉  ∼A ∩ αmc = a. Since αmc ∈ BX(q, ~α \ 〈αmc〉) we most
have that FX

q (~α \ 〈αmc〉) = 0. Let ~α′ be another extension of type X, then ~α′ \ 〈α′mc〉 and
~α \ 〈αmc〉 belong to the same homogeneous set, thus

FX
q (~α′ \ 〈α′mc〉) = FX

q (~α \ 〈αmc〉) = 0

By the definition of FX
q (~α′ \ 〈α′mc〉) it follows that α′mc ∈ BX

(0)(q, ~α
′ \ 〈α′mc〉) as wanted. For

every ~α ∈ B(p′, X) and q ∈ Q fix some (Ci,j(q, ~α))i≤n+1
j≤li+1

such that

, p∗_〈~α, (Ci,j(q, ~α))i≤n+1
j≤li+1

〉〉||∼A ∩ αmc

Prove that we can extend p∗ to p∗∗ such that for all 1 ≤ i ≤ n + 1 , 1 ≤ j ≤ li + 1 and
~α ∈ B(p∗, X),

B(t∗∗i ) ∩ (αs, αi,j) ⊆ Ci,j(~α)

Where αs is the predecessor of αi,j in ~α . In order to do that, fix i, j and stabilize Ci,j(~α)
as follows:
Fix ~β ∈ B(p∗, 〈x1,1, ..., xi,j〉) By lemma 2.3 , the function

Ci,j(q, ~β, ∗) : B(p∗, X \ 〈x1,1, ..., xi,j〉)→ P (βi,j)

has homogeneous sets B′(~β, xr,s, q) ⊆ B(t∗r, xr,s) for xr,s ∈ X \ 〈x1,1, ..., xi,j〉. Denote the

constant value by C∗i,j(q,
~β). Define

B′(t∗r, xr,s) = ∆
~β∈B(p∗,〈x1,1,...,xi,j〉)

q∈Q

B′(~β, xr,s, q), xr,s ∈ X \ 〈x1,1, ..., xi,j〉

Next, fix α ∈ B(t∗i , xi,j) and let

C∗i,j(α) = ∆
~α′∈B(p∗,〈x1,1,...,xi,j−1〉)

q∈Q

C∗i,j(q,
~α′, α)

Thus C∗i,j(α) ⊆ α. κ(ti) is ineffable thus, there is B′(t∗i , xi,j) ⊆ B(t∗i , xi,j) and C∗i,j such that
for every α ∈ B′(t∗i , xi,j), C∗i,j ∩ α = C∗i,j(α). By coherency, C∗i,j ∈

⋂
U(ti, ξ). Finally, define

p∗∗ = 〈t∗∗1 , ..., t∗∗n , t∗∗n+1〉
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B(t∗∗i ) = B′(t∗i ) ∩ (
⋂
j

C∗i,j) 1 ≤ i ≤ n+ 1

To see that p∗∗ is as wanted, let ~α ∈ B(p∗∗, X) and fix any i, j. Then ~α ∈ B(p∗∗, X) and
αi,j ∈ B(t∗∗i , xi,j) thus for any i.j

B(t∗∗i ) ∩ (αs, αi,j) ⊆ C∗i,j ∩ αi,j \ αs = C∗i,j(αi,j) \ αs ⊆ C∗i,j(α1,1, ..., αi,j) = Ci,j(α)

�

Lemma 3.9 Let p∗ be as in lemma 3.8 There exist p∗ ≤ p∗∗ such that for every extension
X of p∗∗ and q ∈ Q that satisfies (*) there exists sets A(q, ~α) ⊆ κ ~α ∈ B(p∗∗, X \ 〈xmc〉) such
that for all α ∈ B(p∗∗, xmc)

A(q, ~α) ∩ α = a(q, ~α, α)

Example: Recall that we have obtained the sets

a(q, ~α) = CH �even ∪{CH(ω), CH(ω) + ν1, νω·2 + CH(2)} ∪ b(q, ~α)

b(q, ~α) =

{
∅ αω·3 + ν3 ≥ αmc

{αω·3 + ν3} αω·3 + ν3 < αmc

The element αmc is chosen from the set B(t3, xmc) = B(t3, 0), by shrinking this set, we can
directly extend p to p∗ such that for every ~α ∈ B(p∗, X) , αω·3 + ν3 < αmc. Therefore,

A(q, ~α) = CH �even ∪{CH(ω), CH(ω) + ν1, νω·2 + CH(2), αω·3 + ν3}

Proof of 3.9 : Fix q,X satisfying (*) and ~α ∈ B(p∗, X \ 〈xmc〉), since κ(ti) is ineffable we can
shrink the set B(t∗lX , xmc) to B′(q, ~α) to find sets A(q) ⊆ ti such that

∀α ∈ B′(q, ~α) A(q, ~α) ∩ α = a(q, ~α, α)

define Bq(t
∗
i , xmc) = ∆

~α∈B(p∗,X\〈xmc〉)
B∗∗(q, ~α) intersect over all X, q and defines p∗∗ as before.

�
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Thus there exists p∗ ∈ G>κ∗ with the properties described in Lemma’s 3.8-3.9. Next we
would like to claim that for some sufficiently large family of q ∈ Q and extension-type X we
have q,X satisfy (*).

Lemma 3.10 Let p∗ ∈ G>κ∗ be as above and let X be any extension-type of p∗. Then there
exists a maximal antichain ZX ⊆ Q and extension-types X � Xq for q ∈ ZX , unveiling the
same maximal coordinate as X such that for every q ∈ ZX , q,Xq satisfy (*).

Example: For our X, the correct anti chain ZX is : For any possible ν1, ν3 choose a condition
〈ν1, ν3, 〈κ∗, B∗〉〉 ∈ Q. This set definitely form a maximal anti chain, and by the same method
of the previous examples taking Xq = X works. In general, if the maximal coordinate of X
is some ω · (2n+ 1), ZX will be the anti chain consisting of representative conditions for the
2n+ 1 first coordinates.

Proof : The existence of ZX will follow from Zorn’s Lemma and the method proving ex-
istence of Xq for some q. Fix any ~α ∈ B(p∗, X), there exists a generic H ⊆ Q ×M>κ∗ [~U ]

with 〈1Q, p
_
∗ ~α〉 ∈ H = H≤κ∗ ×H>κ∗ . Consider the decomposition of M[~U ]>κ∗ above p_∗ ~α in-

duced by αmc and let p_∗ ~α = 〈p1, p2〉, i.e. 〈p1, p2〉 ∈ (M[~U ]>κ∗)≤αmc×(M[~U ]>κ∗)>αmc . H stays

generic for the forcing Q× (M[~U ]>κ∗)≤αmc× (M[~U ]>κ∗)>αmc . Define H1 = H≤κ∗× (H>κ∗)≤αmc
and H2 = H>αmc . Then (∼A)H1 ∈ V [H1] is a name of A in the forcing M[~U ]>αmc . Above p2
we have sufficient closure to determine (∼A)H1 ∩ αmc

∃p∗2 ≥∗ p2 s.t. p∗2 M[~U ]>αmc
(∼A)H1 ∩ αmc = a

for some a ∈ V [C∗]. Hence there exists 〈1Q≤κ∗ , p1〉 ≤ 〈q, p∗1〉 such that

〈q, p∗1〉 Q×M≤αmc [~U ]

∨
p∗∗2 M[~U ]>αmc ∼

A ∩ αmc = a

It is clear that 〈q, p∗1, p∗2〉||Q×M>κ∗ [~U ] ∼A ∩ αmc. Finally, Xq is simply the extension type of p∗1.

Since p∗1 ∈ M≤αmc [~U ], Xq unveils the same maximal coordinate as X. By lemma 3.8, Xq, q
satisfies (∗).

�

Lemma 3.11 κ changes cofinality in V [A].

Proof : Let p∗ = 〈t∗1, ..., t∗n, t∗n+1〉 ∈ G>κ∗ be as before, λ0 = otp(CG) and 〈CG(ξ) | ξ < λ0〉 be
the Magidor sequence corresponding to G. Work in V[A], define a sequence 〈νi | γ(t∗n, p∗) ≤
i < λ0〉 ⊂ κ:
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νγ(t∗n,p∗) = CG(γ(t∗n, p∗)) + 1 = κ(t∗n) + 1

Assume that 〈νξ′ | ξ′ < ξ < λ0〉 is defined such that it is increasing and νξ′ < κ. If ξ is limit
define

νξ = sup(νξ′) + 1.

If sup(νξ′) = κ we are done, since κ changes cofinality to cf(ξ) < λ0 (which is actually a
contradiction for regular λ0). Therefore, νξ < κ. If ξ = ξ′+ 1, by proposirion 3.2, there exist
an extension type Xξ of p∗ unveiling ξ as maximal coordinate. By lemma 3.10 we can find
Zξ and Xξ � Xq unveiling ξ as maximal coordinate such that q,Xq satisfies (*). By lemma
3.9 there exists

A(q, ~α)’s for q ∈ Zξ ~α ∈ B(p∗, Xq \ 〈xmc〉).

Since A /∈ V [C∗], A 6= A(q, ~α). Thus define η(q, ~α) = min(A(q, ~α)∆A) + 1

βξ = sup(η(q, ~α) | ~α ∈ [νξ′ ]
<ω ∩B(p∗, Xq \ 〈xmc〉), q ∈ Zξ)

It follows that βξ ≤ κ. Assume βξ = κ, then κ changes cofinality but it might be to
some other cardinal larger than δ0, this is not enough (actually, by Theorem 3.3 this can
not happen). Continue toward a contradiction, fix an unbounded and increasing sequence
〈η(qi, ~αi) | i < θ < κ〉. Notice that since η(qi, ~αi) < η(qi+1, ~αi+1) it must be that A(qi, ~αi) 6=
A(qi+1, ~αi+1) and

A(qi, ~αi) ∩ η(qi, ~αi) = A ∩ η(qi, ~αi) = A(qi+1, ~αi+1) ∩ η(qi, ~αi)

Define ηi = min(A(qi, ~αi)∆A(qi+1, ~αi+1)) ≥ η(qi, ~αi). It follows that 〈ηi | i < θ〉 is a short
cofinal sequence in κ. This definition is independent of A an only involve 〈〈qi, ~αi〉 | i < θ < κ〉,
which can be coded as a bounded sequence of κ. By the induction hypothesis there is C ′′ ⊆ C,
bounded in κ such that V [C ′′] = V [〈〈qi, ~αi〉 | i < θ < κ〉]. Define C ′ = C∗ ∪ C ′′, the model
V [C ′] should keep κ measurable but also has the sequence 〈ηi | i < θ〉, contradiction.
Therefore, βξ < κ, set νξ = βξ + 1. This concludes the construction of the sequence νξ . To
see that it is indeed unbounded in κ, let us show that CG(ξ) < νξ: We have CG(γ(t∗n, p∗)) <
νγ(t∗n,p∗) Assume that CG(i) < νi, γ(t∗n, p∗) ≤ i < ξ). If ξ is limit then by closureness of the
Magidor sequence

CG(ξ) = sup(CG(i) | i < ξ) ≤ sup(νi | γ(t∗n, p∗) ≤ i < ξ) < νξ

36



If ξ = ξ′ + 1 is successor, let {qξ} = Zξ ∩G≤κ∗

pξ = p_∗ 〈CG(i1), ..., CG(in), CG(ξ)〉 ∈ p_∗ Xξ ∩G>κ∗

By induction CG(ir) < νξ′ , therefore, η(qξ, 〈CG(i1), ..., CG(in)〉) < νξ . Finally, 〈qξ, pξ〉 ∈ G,
〈qξ, pξ〉  ∼A ∩ CG(ξ) = A(qξ, 〈CG(i1), ..., CG(in)〉) ∩ CG(ξ), thus

A ∩ CG(ξ) = A(qξ, 〈CG(i1), ..., CG(in)〉) ∩ CG(ξ) CG(ξ) ≤ η(qξ, 〈CG(i1), ..., CG(in)〉) < νξ.

�
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4 The main result above κ

In order to push the induction to sets above κ we will need a projection of M[~U ] onto some
forcing that adds a subsequence of CG. The majority of this chapter is the definition of this
projection and some of it’s properties. The induction argument will continue at lemma 4.13.

Let G be generic and CG the corresponding Magidor sequence. Let C∗ ⊆ CG be a sub-
sequence and I = Index(C∗, CG). Then I is a subset of λ0, hence I ∈ V . Assume that
κ∗ = sup(C∗) is a limit point in CG and that C∗ is closed i.e. containing all of it’s limit

points below κ∗. As we will see in the next lemma, one can find a forcing M〈ν1,...,νm〉[~U ] for
which G is still generic and will be easier to project.

Proposition 4.1 Let G be M〈κ1,...κn〉[~U ]-generic and C∗ ⊆ CG such that C∗ is closed and
κ∗ = sup(C∗) is a limit point of CG. Then there exists 〈ν1, ..., νm〉 such that G is generic for

M〈ν1,...,νm〉[~U ] and for all 1 ≤ i ≤ m, C∗ ∩ (νi−1, νi) is either empty or a club in νi. (as usual
we have the convention ν0 = 0)

Example: Assume that λ0 = ω1 + ω2 · 2 + ω, C∗ is

CG � (ω1 + 1) ∪ {CG(ω1 + ω + 2), CG(ω1 + ω + 3)} ∪ {CG(ω1 + α) | ω2 · 2 < α < λ0}

Let κ1 < κ2 < κ3 < κ4 = κ be such that o
~U(κ1) = ω1 , o

~U(κ2) = o
~U(κ3) = 2 and o

~U(κ) = 1.
We have

1. (0, κ1) ∩ C∗ = CG � ω1

2. (κ1, κ2) ∩ C∗ = {CG(ω1 + ω + 2), CG(ω1 + ω + 3)}

3. (κ2, κ3) ∩ C∗ = ∅

4. (κ3, κ4) ∩ C∗ = {CG(ω1 + α) | ω2 · 2 < α < λ0}

Then (1),(3),(4) are either empty or a club but (2) isn’t. To fix this we shall simply add
{CG(ω1 + ω + 2), CG(ω1 + ω + 3)} to κ1 < κ2 < κ3 < κ4.

Proof of 4.1 : By induction on m, we shall define a sequence

~νm = 〈ν1,m, ..., νnm,m〉
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such that for every m, G is generic for M~νm [~U ]. Define ~ν0 = 〈κ1, ..., κn〉. Assume that ~νm
is defined with G generic, if for every 1 ≤ i ≤ nm + 1 we have C∗ ∩ (νi−1,m, νi,m) is either
empty or unbounded (and therefore a club), stabilize the sequence at m. Otherwise, let i be
maximal such that C∗ ∩ (νi−1,m, νi,m) is nonempty and bounded. Thus,

νi−1,m < sup(C∗ ∩ (νi−1,m, νi,m)) < νi,m

Since C∗ is closed, CG(γ) = sup(C∗ ∩ (νi−1,m, νi,m)) ∈ C∗ for some γ. As in lemma 3.1 we
can find

~νm+1 = 〈ν1,m, ..., νi,m, ξ1, ..., ξk, νi+1,m, ..., νnm,m〉 ⊆ CG

such that CG(γ) = ξk is unveiled and the forcing M ~νm+1 [~U ] ⊆ M ~νm [~U ] is a subforcing of

M ~νm [~U ] with G one of it’s generic sets. It is important that the maximal ordinal in the
sequence ~νm+1 such that C∗∩(νj−1,m+1, νj,m+1) is nonempty and bounded is strictly less than

νi,m. Therefore this iteration stabilizes at some N < ω. Consider the forcing M~νN [~U ], by the
construction of the ~νr’s, we necessarily have that for every 1 ≤ i ≤ nN + 1 C∗ ∩ (νi−1,N , νi,N)
is either empty or unbounded (Since ~νN+1 = ~νN).

�

By this proposition, we can assume that M〈κ1,...κn〉[~U ] and C∗ satisfy the property of 4.1. If

one wishes to define a projection of M[~U ] onto some forcing
∏n

i=1 Pi, the decomposition

M〈κ1,...κn〉[~U ] =
∏n

i=1(Mκi)>κi−1

permits us to derive a projection π : M〈κ1,...κn〉[~U ]→
∏n

i=1 Pi through projections

πi : (Mκi)>κi−1
→ Pi (1 ≤ i ≤ n)

First, if C∗∩(κi−1, κi) is empty, the projection is going to be to the trivial forcing. Otherwise,
C∗ ∩ (κi−1, κi) is a club. In order to simplify notation, we will assume that (Mκi)>κi−1

=

M[~U ]〈κ〉 = M[~U ] and C∗ = C∗∩ (κi−1, κi) is a club in κ. It seems natural that the projection
will keep only the coordinates in I i.e. let p = 〈t1, ..., tn+1〉 then πI(p) = 〈t′i | γ(ti, p) ∈
I〉_〈tn+1〉 where

t′i =

{
κ(ti) γ(ti, p) ∈ Succ(I)
ti γ(ti, p) ∈ Lim(I)

39



Let us define a forcing notion Pi = MI [~U ] (the range of the projection πI) that will add

the subsequence C∗, such that the forcing M[~U ] (more precisely, a dense subset of M[~U ])

projects onto MI [~U ] via the projection πI as we have just defined.

MI [~U ]

Thinking of C∗ as a function with domain I, we would like to have a function similar
to γ(ti, p) that tells us which coordinate are we unveiling. Given p = 〈t1, ..., tn, tn+1〉, define
recursively I(t0, p) = 0 and

I(ti, p) = min(i ∈ I \ I(ti−1, p) + 1 | o(i) = o
~U(ti))

It is tacitly assumed that {i ∈ I \ I(ti−1, p) + 1 | o(i) = o
~U(ti)} 6= ∅.

Example: Work with Magidor forcing adding a sequence of length ω2 i.e. CG = {CG(α) |
α < ω2}. Assume C∗ = {CG(0)}∪{CG(α) | ω ≤ α < ω2}. Thus I = {0}∪ (ω2 \ω), the ω-th
element of CG is no longer limit in C∗. Let

p = 〈〈κ(t1), B(t1)〉︸ ︷︷ ︸
t1

, 〈κ,B(t2)〉︸ ︷︷ ︸
t2

〉

Where o
~U(t1) = 1. Computing I(t1, p) we have:

I(t1, p) = ω = γ(t1, p)

Therefore πI(p) = 〈κ(t1), t2〉.

Definition 4.2 The conditions of MI [~U ] are of the form p = 〈t1, ..., tn+1〉 such that:

1. κ(t1) < ... < κ(tn) < κ(tn+1) = κ

2. For i = 1, ..., n+ 1

(a) I(ti, p) ∈ Succ(I)

i. ti = κ(ti)

ii. I(ti−1, p) is the predecessor of I(ti, p) in I
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iii. I(ti−1, p) +
m∑
i=1

ωγi = I(ti, p) (C.N.F) , then

Y (γ1)× ...× Y (γm−1)
⋂

[(κ(ti−1), κ(ti))]
<ω 6= ∅

(Reminder: Y (γ) = {α < κ | o~U(α) = γ})
(b) I(ti, p) ∈ Lim(I)

i. ti = 〈κ(ti), B(ti)〉 , B(ti) ∈
⋂

ξ<o~U (ti)

U(ti, ξ)

ii. I(ti−1, p) + ωo
~U (ti) = I(ti, p)

iii. min(B(ti)) > κ(ti−1)

�

Definition 4.3 Let p = 〈t1, ..., tn, tn+1〉, q = 〈s1, ..., sm, sm+1〉 ∈MI [~U ]. Define
〈t1, ..., tn, tn+1〉 ≤I 〈s1, ..., sm, sm+1〉 iff ∃1 ≤ i1 < ... < in ≤ m < in+1 = m+ 1 such that

I(sj, q) ∈ Lim(I) then B(sj) ⊆ B(tk+1) ∩ κ(sj)

1. κ(tr) = κ(sir) and B(sir) ⊆ B(tr)

If ik < j < ik+1

1. κ(sj) ∈ B(tk+1)

2. I(sj, q) ∈ Succ(I) then

[(κ(sj−1), κ(sj))]
<ω ∩B(tk+1, γ1)× ...×B(tk+1, γk−1) 6= ∅

where I(si−1, q) +
k∑
i=1

ωγi = I(si, q) (C.N.F)

3. I(sj, q) ∈ Lim(I) then B(sj) ⊆ B(tk+1) ∩ κ(sj)

�

Definition 4.4 Let p = 〈t1, ..., tn, tn+1〉, q = 〈s1, ..., sm, sm+1〉 ∈ MI [~U ], q is a direct exten-
sion of p, denoted p ≤∗I q iff

1. p ≤I q

2. n = m
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Remarks:

1. In definition 4.2 (b.i), although it seems superfluous to take all the measures corre-
sponding to ti as well as those which do not take an active part in the development
of C∗, the necessity is apparent when examining definition 4.3 (2.b)- the γi’s may not
be the measures taking active part in C∗. In lemma 4.8 this condition will be crucial
when completing C∗ to CG.

2. As we have seen in earlier chapters, the function γ(ti, p) returns the same value
when extending p. I(ti, p) have the same property, let p = 〈t1, ..., tn, tn+1〉, q =

〈s1, ..., sm, sm+1〉 ∈MI [~U ], p ≤I q, use 4.2 (2.b.ii) to see that I(tr, p) = I(sir , q).

3. In definition 4.4, since n = m we only have to check (1) of definition 4.3.

4. Let p = 〈t1, ..., tn+1〉 ∈ MI [~U ] be any condition. Assume we would like to unveil a
new index j ∈ I between I(ti, p) and I(ti+1, p). It is possible if for example j is the
successor of I(ti, p) in I:

Assume I(ti, p) +
m∑
l=1

ωγl = j (C.N.F), then γl < o
~U(ti+1). Extend p by choosing

α ∈ B(ti+1, γm) above some sequence

〈 ~β1, ..., ~βk〉 ∈ B(ti+1, γ1)× ...×B(ti+1, γm−1)
I(α, p_〈α〉) = min(r ∈ I \ I(ti, p) | o(r) = o(j)) = j

Another possible index is any j ∈ Lim(I) such that I(ti, p) + ωo(j) = j. For such j,

extend p by picking α ∈ B(ti+1, o(j)) above some sequence 〈 ~β1, ..., ~βk〉, to obtain

p ≤I 〈t1, ..., ti, 〈α,
⋂

ξ<o(j)

B(ti+1, ξ) ∩ α〉, 〈κ(ti+1), B(ti+1) \ (α + 1)〉, ..., tn+1〉

Checking definition 4.2 we see that in both cases the extension of p is in MI [~U ].

The forcing MI [~U ] has lots of the properties of M[~U ], however, they are irrelevant for the
proof. Therefore, we will state only few of them.

Lemma 4.5 MI [~U ] satisfy κ+ − c.c

Proof : Let {〈tα,1, ..., tα,nα〉 = pα | α < κ+} ⊆ MI [~U ]. Find n < ω and E ⊆ κ+, |E| = κ+

and 〈κ1, ..., κn〉 such that ∀α ∈ E,
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nα = n and 〈κ(tα,1), ..., κ(tα,nα)〉 = 〈κ1, ..., κn〉

Fix any α, β ∈ E. Define p∗ = 〈t1, ..., tn, tn+1〉 where

B∗(ti) = B(ti,α) ∩B(ti,β) ∈
⋂

ξ<o~U (κi)

U(κi, ξ)

ti =

{
〈κi, B∗(ti)〉 I(ti, p) ∈ Lim(I)

κi otherwise

Since pα, pβ ∈MI [~U ], it is clear that p∗ ∈MI [~U ] and also pα, pβ ≤∗I p∗.

�

Lemma 4.6 Let GI ⊆MI [~U ] be generic , define

CI =
⋃
{{κ(ti)|i = 1, ..., n} | 〈t1, ..., tn, tn+1〉 ∈ GI}

Then

1. otp(CI) = otp(I) (thus we may also think of CI as a function with domain I).

2. GI consist of all conditions p = 〈t1, ..., tn, tn+1〉 ∈MI [~U ] such that

(a) CI(I(ti, p)) = κ(ti)

(b) CI ∩ (κ(ti−1), κ(ti)) ⊆ B(ti) 1 ≤ i ≤ n+ 1

(c) ∀i ∈ Succ(I) ∩ (I(tr, p), I(tr+1, p)) with predecessor j ∈ I such that j +
k∑
l=1

ωγl = i

(C.N.F) we have

[(CI(j), CI(i))]
<ω ∩B(tr+1, γ1)× ...×B(tr+1, γk−1) 6= ∅

Proof: For (1) , let us consider the system of ordered sets of ordinals (κ(p), ip,q)p,q where

κ(p) = {κ(t1), ..., κ(tn)} for p = 〈t1, ..., tn+1〉 ∈ GI
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ip,q : κ(p)→ κ(q) are defined for p = 〈t1, ..., tn+1〉 ≤I 〈s1, ..., sm+1〉 = q as the inclusion:

ip,q(κ(tr)) = κ(tr) = κ(sir) (ir are as in the definition of ≤I )

SinceGI is a filter, (κ(p), ip,q)p,q form a directed system with a direct ordered limit Lim−−→ κ(p) =⋃
p∈GI

κ(p) = CI and inclusions ip : κ(p)→ CI .

We already defined for p ≤I q , p, q ∈ GI

I(∗, p) : κ(p)→ I, I(∗, p) = I(∗, q) ◦ ip,q

Thus (I(∗, p))p∈G form a compatible system of functions and by the universal propery of
directed limits, we obtain

I(∗) : CI → I, I(∗) ◦ ip = I(∗, p)

Let us show that I is an isomorphism of ordered set: Since I(∗, p) are injective I(∗) is
also injective. Assume κ1 < κ2 ∈ CI , find p ∈ GI such that κ1, κ2 ∈ κ(p). Therefore,
I(κi, p) = I(κi) preserve the order of κ1, κ2. Fix i ∈ I, it suffices to show that there
exists some condition p ∈ GI such that i ∈ Im(I(∗, p)). To do this, let us show that

the set of all conditions p ∈ MI [~U ] with i ∈ Im(I(∗, p)) is a dense subset of MI [~U ]. Let

p = 〈t1, ..., tn+1〉 ∈MI [~U ] be any condition , if i ∈ Im(I(∗, p)) then we are done. Otherwise,
there exists 0 ≤ k ≤ n such that

I(tk, p) < i < I(tk+1, p)

therefore I(tk+1, p) ∈ Lim(I). By induction on i, we shall prove that it is possible to extend
p to a condition p′, such that i ∈ Im(I(∗, p′)). If

k∑
l=1

ωγl = i = min(I) (C.N.F)

then it must be that i < I(t1, p). By definition 4.2 (2.b.ii) I(t1, p) = ωo
~U (t1). To extend p

just pick any α above some sequence

〈 ~β1, ..., ~βk〉 ∈ B(t1, γ1)× ...×B(t1, γk−1)

and
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p ≤I 〈α, 〈κ(t1), B(t1) \ (α + 1)〉, t2, ..., tn+1〉 ∈MI [~U ]

If i ∈ Succ(I) with predecessor j ∈ I. By the induction hypothesis, we can assume that
for some k, j = I(tk, p) ∈ Im(I(∗, p)). Thus by the remark following definition 4.4 we can
extend p by some α such that i ∈ Im(I(∗, p)). Finally if i ∈ Lim(I), then

i =
m∑
i=1

ωγi︸ ︷︷ ︸
α

+ ωo(i) (C.N.F)

Therefore ∀β ∈ (α, i), β + ωo(i) = i. Take any i′ ∈ I ∩ (α, i). Just as before, it can be
assumed that i′ = I(tk, p), thus I(tk, p) + ωo(i) = i. By the same remark, we can extend p to

some p′ ∈MI [~U ] with j ∈ Im(I(∗, p′)).

For (2), let p = 〈t1, ..., tn+1〉 ∈ GI . (a) is satisfied by the argument in (1). Fix α ∈
CI ∩ (κ(ti), κ(ti+1)), there exists p ≤I p′ = 〈s1, ..., sm〉 ∈ GI such that α ∈ κ(p′) thus
α ∈ B(ti+1) by definition. Moreover, if I(α, p′) ∈ Succ(I) with predecessor j ∈ I , then by
definition 4.2 (2.a.ii), there is sk such that j = I(sk, p

′) and by definition 4.3 (2.b)

[(κ(sk−1), κ(sk))]
<ω ∩B(ti+1, γ1)× ...×B(ti+1, γk−1) 6= ∅

From (a),

κ(sk) = CI(j) and κ(sk+1) = CI(i)

In the other direction, if p = 〈t1, ..., tn+1〉 ∈MI [~U ] satisfies (a)-(c). By (a), there exists some
p′′ ∈ GI with κ(p) ⊆ κ(p′′). Set E to be

{〈w1, ..., wl+1〉 ∈ (MI [~U ])≥Ip′′ | κ(wj) ∈ B(ti) ∪ {κ(ti)} → B(wj) ⊆ B(ti)}

E is dense in MI [~U ] above p′′. Find p′′ ≤I p′ = 〈s1, ..., sm+1〉 ∈ GI ∩D. Checking definition
4.3, Let us show that p ≤I p′: For (1), since κ(p) ⊆ κ(p′) there is a natural injection
1 ≤ i1 < ... < in ≤ m which satisfy κ(tr) = κ(sir). Since p′ ∈ E, B(sir) ⊆ B(tr). (2a),
follows from condition (b), (2b) follows from condition (c). Since p′ ∈ E, if ir < j < ir+1

then κ(sj) ∈ B(tr+1), thus, (2c) holds.

�
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So given a generic set GI for MI [~U ] , we have V [CI ] = V [GI ]. Once we will show that

πI is a projection, then for every G ⊆M[~U ] generic,

πI(G) = {p ∈MI [~U ] | ∃q ∈ π′′IG, p ≤I q}

will be generic for MI [~U ] and by the definition of πI on page 45 we have that the corresponding
sequence to πI(G) is C∗, as wanted. Let us concentrate on showing πI is a projection. Let
D be the set of all

p = 〈t1, ..., tn, tn+1〉 ∈M[~U ] , πI(p) = 〈t′i1 , ..., t
′
im , tn+1〉

such that:

1. γ(tij , p) ∈ Lim(I)→ γ(tij−1
, p) = γ(tij−1, p)

2. γ(tij , p) ∈ Succ(I)→ γ(tij−1, p) is the predecessor of γ(tij , p) in I.

Condition (1) is to be compared with definition 4.2 (2.b.ii) and condition (2) with (2.a.ii).
The following example justifies the necessity of D.

Example: Assume that

λ0 = ω2 and I = {2n | n ≤ ω} ∪ {ω + 2, ω + 3} ∪ {ω · n | n < ω}

let p be the condition

〈〈νω, Bω〉︸ ︷︷ ︸
t1

, νω+1︸︷︷︸
t2

, 〈νω·2, Bω·2〉︸ ︷︷ ︸
t3

, 〈κ,B〉︸ ︷︷ ︸
t4

〉

πI(p) = 〈〈νω, Bω〉︸ ︷︷ ︸
t1 7→t′i1

, νω·2︸︷︷︸
t3 7→t′i2

, 〈κ,B〉〉︸ ︷︷ ︸
t4

The ω+2, ω+3-th coordinates cannot be added. On one hand, they should be chosen below
νω·2, on the other hand, there is no large set we can choose them from. The difficulty occurs
due to:

ω · 2 ∈ Succ(I) but ω + 3 ∈ I is the predecessor and γ(ti2)=ω
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Pointing out condition (2). Notice that we can extend p to

〈〈νω, Bω〉, νω+1, νω+2, νω+3, 〈νω·2, Bω·2〉, 〈κ,B〉〉

to avoid this problem.
Next consider

I = {2n | n ≤ ω} ∪ {ω + 2, ω + 3} ∪ {ω · n | n < ω, n 6= 2}

and let p be the condition

〈〈νω, Bω〉︸ ︷︷ ︸
t1

, 〈νω·2, Bω·2〉︸ ︷︷ ︸
t2

, 〈νω·3, Bω·3〉︸ ︷︷ ︸
t3

, 〈κ,B〉︸ ︷︷ ︸
t4

〉

πI(p) = 〈〈νω, Bω〉︸ ︷︷ ︸
t1 7→t′i1

, 〈νω·3, Bω·3〉︸ ︷︷ ︸
t3 7→t′i2

, 〈κ,B〉〉︸ ︷︷ ︸
t4

Once again the coordinates ω + 2, ω + 3 cannot be added since
min(Bω·3) > νω·2. This corresponds to condition (1)

γ(ti1 , p) = ω < ω · 2 = γ(ti2−1, p)

As before, we can extend p to avoid this problem.

Proposition 4.7 D is dense in M[~U ]

Proof : Fix p = 〈t1, ..., tn+1〉∈M[~U ], define 〈pk | k < ω〉 as follows:

p0 = p. Assume that pk = 〈t(k)1 , ..., t
(k)
nk , t

(k)
nk+1〉 is defined. If pk ∈ D, define pk+1 = pk. Other-

wise, there exists a maximal 1 ≤ ij = ij(k) ≤ n′ + 1 such that γ(t
(k)
ij
, pk) ∈ I which doesn’t

satisfy (1) ∨ (2) of the definition of D.

¬(1): γ(t
(k)
ij
, pk) ∈ Lim(I) and γ(t

(k)
ij−1

, pk) < γ(t
(k)
ij−1, pk)

Since γ(t
(k)
ij
, pk) ∈ Lim(I) there exists γ ∈ I ∩ (γ(t

(k)
ij−1, pk), γ(t

(k)
ij
, pk)). Use proposirion

3.2 to find pk+1 ≥ pk with γ added and the only other coordinates added are below γ, thus

if t
(k)
ij

= t
(k+1)
r then γ = γ(t

(k+1)
r−1 , pk+1). Thus, every l ≥ r satisfies (1)∨ (2). If pk+1 /∈ D then

the problem must accrue below γ(t
(k)
ij
, pk).
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¬(2): γ(t
(k)
ij
, p) ∈ Succ(I) and γ(t

(k)
ij−1, p) is not the predecessor of γ(t

(k)
ij
, p))

Let γ be the predecessor in I of γ(t
(k)
ij
, p). By proposirion 3.2, there exist pk+1 ≥ pk with

γ added and the only other coordinates added are below γ. As before, if t
(k)
ij

= t
(k+1)
r then

γ = γ(t
(k+1)
r−1 , pk+1) and for every l ≥ r γ(t

(k+1)
l , pk+1) satisfies (1) ∨ (2).

The sequence 〈pk | k < ω〉 is defined. It necessarily stabilizes, otherwise then the sequence

γ(t
(k)
ij(k)

, pk) form a strictly decreasing infinite sequence of ordinals. Let pn∗ be the stabilized

condition, it is an extension of p in D.

�

Lemma 4.8 πI � D : D →MI [~U ] is a projection, i.e:

1. πI is onto.

2. p1 ≤ p2 ⇒ πI(p1) ≤I πI(p2) (also ≤∗ is preserved)

3. ∀p ∈M[~U ] ∀q ∈MI [~U ] (πI(p) ≤I q → ∃p′ ≥ p (q = πI(p
′))

Proof : Let p ∈ D, such that πI(p) = 〈t′i1 , ..., t
′
in′
, tn+1〉

Claim: πI(p) computes I correctly i.e. for every 0 ≤ j ≤ n′, we have the equality γ(tij , p) =
I(t′i,j, πI(p)).

Proof of claim: By induction on j, for j = 0, γ(0, p) = 0 = I(0, πI(p)) . For j > 0,
assume γ(tij−1

, p) = I(t′ij−1
, πI(p)) and γ(tij , p) ∈ Succ(I). Since p ∈ D, γ(tij−1

, p) is the
predecessor of γ(tij , p) in I. Use the induction hypothesis to see that

I(t′ij , πI(p)) = min(β ∈ I \ γ(tij−1
, p) + 1 | o(β) = o

~U(tij)) = γ(tij , p)

For γ(tij , p) ∈ Lim(I), use condition (1) of the definition ofD to see that γ(tij−1
, p)+ωo

~U (tij ) =
γ(tij , p). Thus

∀r ∈ I ∩ (γ(tij−1
, p), γ(tij , p)) (o(r) < o

~U(tij))

In Particular,
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I(t′ij , πI(p)) = min(β ∈ I \ γ(tij−1
, p) + 1 | o(β) = o

~U(tij)) = γ(tij , p)

�of claim

Checking definition 4.2, show that πI(p) ∈MI [~U ]: (1), (2.a.i), (2.b.i), (2.b.iii) are immediate
from the definition of πI . Use the claim to verify that (2.a.ii), (2.b.ii) follows from (1),(2) in
D respectively. For (2.a.iii), let 1 ≤ j ≤ n′, write

γ(tij−1
, p) +

∑
ij−1<l≤ij

ωo
~U (tl) = γ(tij , p)

This equation induces a C.N.F equation

I(tij−1
, πI(p)) +

∑n0

k=1 ω
o
~U (tlk ) = I(tij , πI(p)) (C.N.F)

Thus

〈κ(tl1), ..., κ(tln0−1)〉 ∈ Y (o
~U(tl1))× ...× Y (o

~U(tln0−1))
⋂

[(κ(tij−1
), κ(tij))]

<ω

(1)- Let q = 〈t′1, ..., t′n+1〉 ∈ MI [~U ]. For every t′j such that I(t′j, q) ∈ Succ(I), use definition
4.2 (2.a.iii) to find ~sj = 〈sj,1, ..., sj,mj〉 such that

〈κ(sj,1), ..., κ(sjr,mj)〉 ∈ Y (γ1)× ...× Y (γm−1)
⋂

[(κ(t′ir−1), κ(t′ir))]
<ω

where I(t′ir−1, q) +
m∑
i=1

ωγi = I(t′ir , q) (C.N.F).

For each i = 1, ..., n such that o
~U(t′i) > 0 and κ(t′i) ∈ Succ(I) pick someB(t′i) ∈

⋂
ξ<o

~U(t′
i
)

U(ti, ξ).

Define p = 〈t1, ..., tn+1〉_〈~sr | I(tr, q) ∈ Succ(I)〉

ti =

{
〈κ(t′i), B(t′i) \ κ(si,mi) + 1〉 o

~U(t′i) > 0
κ(t′i) otherwise

Once we prove that γ(sr,j, p) /∈ I and that p computes I correctly i.e. γ(ti, p) = I(t′i, q), it
will follow that πI(p) = 〈t′i | γ(ti, p) ∈ I〉 = q. By induction on i, for i = 0 it is trivial. Let
0 < i and assume the statement holds for i. If I(t′i+1, q) ∈ Lim(I), then by 4.2 (b.ii)
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I(t′i+1, q) = I(t′i, q) + ωo
~U (t′i+1) = γ(ti, p) + ωo

~U (ti+1) = γ(ti+1, p)

If I(t′i+1, q) ∈ Succ(I), then from 4.2 (a.ii) it follows that I(t′i, q) is the predecessor of
I(t′i+1, q). By the choice of ~si+1,

γ(ti+1, p) = γ(ti, p) +
m−1∑
i=1

ωγ1ni + ωγm(nm − 1) + ωo
~U(ti+1)

=

= I(t′i, q) +
m−1∑
i=1

ωγ1ni + ωm1(nm1 − 1) + ωo
~U(t′i+1)

= I(t′i+1, q)

Also, for all 1 ≤ r ≤ mi+1, γ(si+1,r, p) is between two successor ordinals in I, hence
γ(si+1,r, p) /∈ I. Finally, p ∈ D follows from 4.3 (a.ii) and condition (1) and if γ(ti, p) ∈
Lim(I) we did not add ~si. Thus ij−1 = ij − 1.

(2)- Assume that p, q ∈ D, p ≤ q. Using the claim, the verification of definition 4.3 it
similar to (1).

(3)- We shall proof something weaker to ease notation. Nevertheless, the general statement

if very similar. Let p = 〈t1, ..., tn+1〉 ∈M[~U ]. Assume that

πI(p) = 〈t′i1 , ..., t
′
in′
〉 ≤I 〈t′i1 , ..., t

′
ij−1

, s1, .., sm, t
′
ij
, ..., t′in〉 = q′ ∈MI [~U ]

For every l = 1, ...,m such that I(sl, πI(p)) ∈ Succ(I) use definition 4.3 (2b) to find ~sl =
〈sl,1, ..., sl,ml〉 such that

〈κ(sl,1), ..., κ(sl,ml)〉 ∈ B(tij , γ1)× ...×B(tij , γm−1)
⋂

[(κ(sl−1), κ(sl))]
<ω

where I(sl−1, πI(p)) +
m∑
i=1

ωγi = I(sl, πI(p)) (C.N.F). Define p ≤ p′ to be the extension p′ =

p_〈s′1, .., , s′m〉_〈~sl | I(sl, πI(p)) ∈ Succ(I)〉 where

s′i =

{
〈κ(si), Bi \ κ(si,mi) + 1〉 o

~U(si) > 0
si otherwise

As in (1), πI(p
′) = 〈t′i1 , ..., t

′
ij−1

, (s′1)
′, ..., (s′m)′, ...tin′ 〉. Notice that since we only change sl

such that I(sl, πI(p)) ∈ Succ(I), (s′l)
′ = sl. Thus πI(p

′) = q and p′ ∈ D follows.

�
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Definition 4.9 Let GI be MI [~U ] generic, the quotient forcing is

M[~U ]/GI = π−1′′IGI = {p ∈M[~U ] | πI(p) ∈ GI}

�

The forcing M[~U ]/GI completes V [GI ] to V [G] in the sense that if G ⊆M[~U ] is generic such

that π∗I (G) = GI then G is also M[~U ]/GI-generic.

Proposition 4.10 Let x, p ∈M[~U ] and q ∈MI [~U ], then

1. πI(p) ≤I q ⇒ q MI [~U ]

∨
p ∈M[~U ]/

∼
GI

2. q MI [~U ]

∨
p ∈M[~U ]/

∼
GI ⇒ πI(p), q are compatible

3. x M[~U ]

∨
p ∈M[~U ]/

∼
GI ⇒ πI(p), πI(x) are compatible

�

Lemma 4.11 Let GI be MI [~U ]-generic. Then the forcing M[~U ]/GI satisfies κ+ − c.c. in
V [GI ].

Proof : Fix {pα | α < κ+} ⊆M[~U ]/GI and let

r ∈ GI , r MI [~U ] ∀α < κ+
∼
pα ∈M[~U ]/

∼
GI

Next we shall show that

E = {q ∈MI [~U ] | (q⊥r)
∨

(q MI [~U ] ∃α, β < κ+ (
∼
pα,

∼
pβ are compatible)}

is a dense subset of MI [~U ]. Assume r ≤I r′, for every α < κ+ pick some r′ ≤I q∗α ∈
MI [~U ], p∗α ∈M[~U ] such that

• πI(p∗α) = q∗α
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• q∗α 
∼
pα ≤

∨
p∗α ∈M[~U ]/

∼
GI

There exists such q∗α , p∗α: Find r′ ≤I q′α and p′α such that q′α 
∨
p′α =

∼
pα then by the

proposition 4.10 (2), there is q∗α ≥I πI(p′α), q′α. By lemma 4.8 (3) there is p∗α ≥ p′α such that
q∗α := πI(p

∗
α). It follows from proposition 4.10 (1) that

q∗α 
∼
pα ≤

∨
p∗α ∈M[~U ]/

∼
GI

Denote p∗α = 〈t1,α, ..., tnα,α, tnα+1,α〉, q∗α = 〈ti1,α, ..., timα ,α, tnα+1,α〉. Find S ⊆ κ+, n < ω and
〈κ1, ..., κn〉 such that |S| = κ+ and for any α ∈ S, nα = n and

〈κ(t1,α), ..., κ(tnα,α)〉 = 〈κ1, ..., κn〉.

Since πI(p
∗
α) = q∗α it follows that

〈κ(ti1,α), ..., κ(timα ,α)〉 = 〈κi1 , ..., κim〉

for some m < ω and 1 ≤ i1 < ... < im ≤ n.
Fix any α, β ∈ S and let p∗ = 〈t1, ...., tn, tn+1〉 where

ti =

{
〈κi, B(ti,α) ∩B(ti,β)〉 o

~U(ti,α) > 0
κi otherwise

Inspired by the boolean algebras we shell denote p∗α ∩ p∗β = p∗. Set

q∗ = πI(p
∗) = 〈t′i1 , ..., t

′
im〉

Then r′ ≤I q∗α ∩ q∗β = πI(p
∗
α) ∩ πI(p∗β) = πI(p

∗
α ∩ p∗β) = πI(p

∗) = q∗. It follows that q∗ ∈ E

since by proposition 4.10 (1) q∗ MI [~U ]

∨
p∗ ∈M[~U ]/

∼
GI and

q∗ MI [~U ] ∼
pα ≤

∨
p∗α ≤∗

∨
p∗ ∧

∼
pβ ≤

∨
p∗β ≤∗

∨
p∗

The rest is routine.
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�

Lemma 4.12 Let G be M[~U ]-generic. Then the forcing M[~U ]/GI satisfies κ+ − c.c. in
V [G].

Proof : Fix {pα | α < κ+} ⊆M[~U ]/GI in V [G] and let

r ∈ G, r M[~U ] ∀α < κ+
∼
pα ∈M[~U ]/

∼
GI

Similar to lemma 4.11 we shall show that

E = {x ∈M[~U ] | (q⊥r)
∨

(q M[~U ] ∃α, β < κ+(
∼
pα,

∼
pβ) are compatible)}

is a dense subset of M[~U ]. Assume r ≤ r′ , for every α < κ+ pick some r′ ≤ x′α ∈M[~U ] , p′α ∈

M[~U ] such that x′α M[~U ] ∼
pα =

∨
p′α. By proposition 4.10 (3), we can find πI(x

′
α), πI(p

′
α) ≤I yα.

By lemma 4.8 (3), There is x′α ≤ x∗α ,p′α ≤ p∗α such that

πI(x
′
α), πI(p

′′
α) ≤I yα = πI(p

∗
α) = πI(x

∗
α)

Denote

x∗α = 〈s1α , ..., skα,α, skα+1,α〉 , p∗α = 〈t1,α, ..., tnα,α, tnα+1,α〉
πI(x

∗
α) = 〈t′i1,α, ..., t

′
ik′α

,αt
′
kα+1〉 = πI(pα)

Find S ⊆ κ+ |S| = κ+ and 〈κ1, ..., κn〉, 〈ν1, ..., νk〉 such that for any α ∈ S

〈κ(t1,α), ..., κ(tnα,α)〉 = 〈κ1, ..., κn〉, 〈κ(s1,α), ..., κ(sk,α)〉 = 〈ν1, ..., νk〉

Fix any α, β ∈ S and let p∗ = p∗α ∩ p∗β, x∗ = x∗α ∩ x∗β. Then p′α, p
′
β ≤∗ p∗ and xα, xβ ≤∗I x∗ .

Finally claim that x∗ ∈ E:

πI(p
∗) = πI(p

∗
α) ∩ πI(p∗β) = πI(x

∗
α) ∩ πI(x∗β) = πI(x

∗)

thus x∗ M[~U ]

∨
p∗ ∈M[~U ]/∼GI . Moreover, xα ≤∗ x∗ which implies that

x∗ M[~U ]

∨
p∗ ≥

∼
pα,

∼
pβ.
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�

Lemma 4.13 If A ∈ V [G] , A ⊆ κ+ then there exists C∗ ⊆ CG such that V [A] = V [C∗].

Proof : Work in V [G], for every α < κ+ find subsequences Cα ⊆ CG such that V [Cα] =
V [A ∩ α] using the induction hypothesis. The function α 7→ Cα has range P (CG) and
domain κ+ which is regular in V [G]. Therefore there exist E ⊆ κ+ unbounded in κ+ and
α∗ < κ+ such that for every α ∈ E, Cα = Cα∗ . Set C∗ = Cα∗ , then

1. C∗ ⊆ CG

2. C∗ ∈ V [A ∩ α∗] ⊆ V [A]

3. ∀α < κ+ A ∩ α ∈ V [C∗]

Since CG is a club, it can be assumed that C∗ is a club by adding the limit points of C∗

to C∗, clearly it will still satisfy (1)-(3). Unlike A’s that were subsets of κ, for which we
added another piece of CG to C∗ to obtain C ′ such that V [A] = V [C ′], here we claim that
V [A] = V [C∗]:
By (2), C∗ ∈ V [A]. For the other direction, denote by I the indexes of C∗ in C and consider

the forcings MI [~U ],M[~U ]/GI . Assume that A /∈ V [C∗], we shall reach a contradiction: Let

∼A be a name for A in M[~U ]/GI where π′′IG = GI . Work in V [GI ], by lemma 4.6 (2),
V [GI ] = V [C∗]. For every α < κ+ define

Xα = {B ⊆ α | ||∼A ∩ α = B|| 6= 0}

where the truth value is taken in RO(M[~U ]/GI)- the complete boolean algebra of regular

open sets for M[~U ]/GI . By lemma 4.11

∀α < κ+ |Xα| ≤ κ.

For every B ∈ Xα define b(B) = ||∼A∩α||. Assume that B′ ∈ Xβ and α ≤ β then B = B′∩α ∈
Xα. Switching to boolean algebra notation (p ≤B q means p extends q) b(B′) ≤B b(B). Note
that for such B,B′ if b(B′) <B b(B), then there is

0 < p ≤B (b(B) \ b(B′)) ≤B b(B)

Therefore
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p ∩ b(B′) ≤B (b(B) \ b(B′)) ∩ b(B′) = 0

Hence p⊥b(B′). Work in V[G], denote Aα = A ∩ α. Recall that

∀α < κ+ Aα ∈ V [C∗]

thus Aα ∈ Xα. Consider the ≤B-non-increasing sequence 〈b(Aα) | α < κ+〉. If there exists
some γ∗ < κ+ on which the sequence stabilizes, define

A′ =
⋃
{B ⊆ κ+ | ∃α b(Aγ∗)  ∼A ∩ α = B} ∈ V [C∗]

To see that A′ = A , notice that if B,B′, α, α′ are such that

b(Aγ∗)  ∼A ∩ α = B, b(Aγ∗)  ∼A ∩ α′ = B′

if α ≤ α′ then we must have B′∩α = B otherwise, the non zero condition b(Aγ∗) would force
contradictory information. Consequently, for every ξ < κ+ there exists ξ < γ < κ+ such
that b(Aγ∗)  ∼A ∩ γ = A ∩ γ, hence A′ ∩ γ = A ∩ γ. This is a contradiction to A /∈ V [C∗].
Therefore, the sequence 〈b(Aα) | α < κ+〉 does not stabilize. By regularity of κ+, there exists
a subsequence 〈b(Aiα) | α < κ+〉 which is strictly decreasing. Use the observation we made
to find pα ≤B b(Aiα) such that pα⊥b(Aiα+1). Since b(Aiα) are decreasing, for any β > α
pα⊥b(Aiβ) thus pα⊥pβ. This shows that 〈pα | α < κ+〉 ∈ V [G] is an antichain of size κ+

which contradicts Lemma 4.12. Thus V [A] = V [C∗].

�

End of the proof of Theorem 3.3: By induction on sup(A) = λ > κ+. It suffices to
assume that λ is a cardinal.

case1: (cfV [G](λ) > κ) the arguments of lemma 4.13 works.

case2: (cfV [G](λ) ≤ κ ) Since M[~U ] satisfies κ+ − c.c. we must have that ν := cfV (λ) ≤ κ.
Fix 〈γi| i < ν〉 ∈ V cofinal in λ. Work in V [A], for every i < ν find di ⊆ κ such that
V [di] = V [A ∩ γi]. By induction, there exists C∗ ⊆ CG such that V [〈di | i < ν〉] = V [C∗],
therefore

1. ∀i < ν A ∩ γi ∈ V [C∗]

2. C∗ ∈ V [A]
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Work in V [C∗], for i < ν define Xi = {B ⊆ α | ||∼A ∩ γi = B|| 6= 0}. By lemma 4.11,
|Xi| ≤ κ. For every i < ν fix an enumeration

Xi = 〈X(i, ξ) | ξ < κ〉 ∈ V [C∗]

There exists ξi < κ such that A ∩ γi = X(i, ξi). Moreover, since ν ≤ κ the sequence
〈A ∩ γi | i < ν〉 = 〈X(i, ξi) | i < ν〉 can be coded in V [C∗] as a sequence of ordinals below κ
. By induction there exists C ′′ ⊆ CG such that V [C ′′] = V [〈ξi | i < ν〉]. It follows

V [C ′′, C∗] = (V [C∗])[〈ξi | i < ν〉] = V [A]

Finally, we can take for example, C ′ = C ′′ ∪ C∗ ⊆ CG to obtain V [A] = V [C ′]

�theorem 3.3
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5 Classification of subforcing of Magidor

Definition 5.1 Let ~U be a coherent sequence and κ a measurable cardinal with 0 < o
~U(κ) <

min(ν | o~U(ν) > 0). Let I ⊆ ωo
~U (κ) be a closed subset. Define:

1. 0MI [~U ] =
〈
〈〉, 〈κ,B∗〉

〉
where B∗ has the following properties

• B∗ ∈
⋂

ξ<o~U (κ)

U(κ, ξ)

• For every β ∈ B∗ o~U(β) < o
~U(κ)

• For every β ∈ B∗ B ∩ β ∈
⋂

ξ<o~U (β)

U(β, ξ)

2. For every p =
〈
t1, ..., tn, 〈κ,B′〉

〉
such that each tr is an ordinal or a pair, define γI(t0, p) = 0

and

γI(tr, p) = min(i ∈ I \ γI(tr−1, p) + 1 | o(i) = o
~U(tr))

If for some 1 ≤ r ≤ n, {i ∈ I \ γI(tr−1, p) + 1 | o(i) = o
~U(tr)} = ∅ then for every 1 ≤ j ≤ n

let γI(tj, p) = N/A.

3. The elements of MI [~U ] are of the form p =
〈
t1, ..., tn, 〈κ,B〉

〉
such that each tr is an ordinal

or a pair and γI(tr1, p) 6= N/A for every 1 ≤ r ≤ n, such that:

(a) κ(t1) < ... < κ(tn) < κ

(b) B ⊆ B∗, B ∈
⋂

ξ<o~U (κ)

U(κ, ξ)

(c) For every 1 ≤ r ≤ n

i. If γI(tr, p) ∈ Succ(I) then

A. tr = κ(tr) ∈ B∗

B. γI(tr−1, p) is the predecessor in I of γI(tr, p)

ii. If γI(tr, p) ∈ Lim(I)

A. tr = 〈κ(tr), B(tr)〉 ∈ B∗ × P (B∗), B(ti) ∈
⋂

ξ<o~U (tr)

U(tr, ξ)
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B. γI(tr−1, p) + ωo
~U (tr) = γI(tr, p)

C. min(B(tr)) > κ(tr−1), where κ(t0) = 0

4. Let p = 〈t1, ..., tn, tn+1〉, q = 〈s1, ..., sm, sm+1〉 ∈MI [~U ]. Define
〈t1, ..., tn, tn+1〉 ≤I 〈s1, ..., sm, sm+1〉 iff ∃1 ≤ i1 < ... < in ≤ m < in+1 = m+ 1 such that

(a) κ(tr) = κ(sir) and B(sir) ⊆ B(tr)

(b) If ik < j < ik+1

i. κ(sj) ∈ B(tk+1)

ii. I(sj, q) ∈ Lim(I)→ B(sj) ⊆ B(tk+1) ∩ κ(sj)

�

Definition 5.2 The forcings {MI [~U ] | I ∈ P (ωo
~U (κ))} is the family of Magidor-type forcing

with the coherent sequence ~U .

In practice, Magidor-type forcings are just Magidor forcing with a subsequence of ~U ; If I
is any closed subset of indexes, we can read the measures of ~U from which the elements of
the final sequence are chosen using the map I 7→ 〈o(i) | i ∈ I〉 (recall that o(i) = γn where
i = ωγ1 + ...+ ωγn C.N.F ).

Example: Assume that o
~U(κ) = 2 and let a

I = {1, ω, ω + 1} ∪ (ω · 3 \ ω · 2) ∪ {ω · 3, ω · 4, ...} ∈ P (ω2)

Then 〈o(i) | i ∈ I〉 = 〈0, 1, 0, 0, 0...︸ ︷︷ ︸
ω

, 1, 1, 1...︸ ︷︷ ︸
ω

〉. Therefore MI [~U ] is just Prikry foricing with

U(κ1, 0) for some measurable κ1 < κ followed by Prikry forcing with U(κ, 1).
Although in this example the noise at the beginning is neglectable, there are I’s for which
we do not get ”pure” Magidor forcing which uses one measure at a time and combine several
measure. The next theorem is a Mathias characterization for Magidor-type forcing and is
proven in [?].

Theorem 5.3 Let MI [~U ] be a Magidor-type forcing, C = 〈C(i) | i ∈ I〉 be any increasing
continues sequence. Then

GC = {p ∈MI [~U ] | κ(p) ⊆ C, C \ κ(p) ⊆ B(p)}
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is a generic for MI [~U ] iff:

1. For every i ∈ I o~U(C(i)) = o(i)

2. For every 〈c1, ..., cn〉 ∈ [Lim(C)]<ω and every Ar ∈
⋂

j<o~U (cr)

U(cr, j) for 1 ≤ r ≤ n, there exists

α1 < c1 ≤ α2 < c2 ≤ ... ≤ αn < cn such that C ∩ (αr, cr) ⊆ Ar

We restate Theorem 3.3 in terms of complete subforcing [?].

Theorem 5.4 Let P ⊆M[~U ] be a complete subforcing of M[~U ] then there exists a maximal
antichain Z ⊆ P and Ip, p ∈ Z such that P≥p (the forcing P above p) is equivalent to the

Magidor-type forcing MIp [~U ]≥qp.

Proof: Let H ⊆ P be generic, then there exists G ⊆ M[~U ] generic such that H = G ∩ P,
in particular V ⊆ V [H] ⊆ V [G]. By Theorem 3.3, there is a closed C ′ ⊆ CG such that
V [C ′] = V [H]. Let ∼C

′ be a P-name of C ′ and I it’s set of indexes in CG. The assumption

o
~U(κ) is crucial to claim that I ∈ V . By the Mathias characterization (see theorem 5.4), C ′

is generic for MI [~U ]. Let p ∈ P such that

p  ∼C
′ is generic for I = Ip and V [∼H] = V [ ∼C

′]

This is indeed a formula in the forcing language since for any set A, V [A] =
⋃

z⊆ord,z∈V
L[z, A]

where L[z, A] is the class of all constructable sets relative to z, A. Redefine ∼C
′, ∼H to be

MIp [~U ]-names for C ′, H and let qp ∈ RO(MIp [~U ]) be

qp = ||∼H is generic for P, p ∈ ∼H and V [∼H] = V [ ∼C
′]||

Clearly MIp [~U ]≥qp and P≥p have the same generic extensions

�
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6 Prikry forcings with non-normal ultrafilters.

Let κ be a measurable cardinal and let U = 〈Ua | a ∈ [κ]<ω〉 be a tree consisting of
κ−complete non-trivial ultrafilter over κ.

Recall the definition due to Prikry of the tree Prikry forcing with U.

Definition 6.1 P (U) is the set of all pairs 〈p, T 〉 such that

1. p is a finite sequence of ordinals below κ,

2. T ⊆ [κ]<ω is a tree with trunk p such that
for every q ∈ T with q ≥T p, the set of the immediate successors of q in T , i.e. SucT (q) is
in Uq.

The orders ≤,≤∗ are defined in the usual fashion.

�

For every a ∈ [κ]<ω, let πa be a projection of Ua to a normal ultrafilter. Namely, let
πa : κ → κ be a function which represents κ in the ultrapower by Ua, i.e. [π]Ua = κ. Once
Ua is a normal ultrafilter, then let πa be the identity.

By passing to a dense subset of P (U), we can assume that for each 〈p, T 〉 ∈ P (U), for
every 〈ν1, ..., νn〉 ∈ T we have

ν1 < π〈ν1〉(ν2) ≤ ν2 < ... ≤ νn−1 < π〈ν1,...,νn−1〉(νn)

and for every ν ∈ SucT (〈ν1, ..., νn〉), π〈ν1,...,νn〉(ν) > νn.

Note that once the measures over a certain level (or certain levels) are the same - say for
some n < ω and U , for every a ∈ [κ]n, Ua = U , then a modified diagonal intersection

∆∗α<κAα := {ν < κ | ∀α < πk(ν)(ν ∈ Aα)} ∈ U,

once {Aα | α < κ} ⊆ U , can be used to avoid or to simplify the tree structure.

For example, if 〈Vn | n < ω〉 is a sequence of κ−complete ultrafilters over κ, then the
Prikry forcing with it P (〈Vn | n < ω〉) is defined as follows:

Definition 6.2 P (〈Vn | n < ω〉) is the set of all pairs 〈p, 〈An | |p| < n < ω〉〉 such that
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1. p = 〈ν1, ..., νk〉 is a finite sequence of ordinals below κ, such that
νj < πi(νi), whenever 1 ≤ j < i ≤ k,

2. An ∈ Vn, for every n, |p| < n < ω, and

3. πk+1(min(Ak+1)) > max(p), where πn : κ → κ is a projection of Vn to a normal ultrafilter,
i.e. πn is a function which represents κ in the ultrapower by Vn, [π]Vn = κ.

�

A simpler case is once all Vn are the same, say all of them are U . Then we will have the
Prikry forcing with U :

Definition 6.3 P (U) is the set of all pairs 〈p,A〉 such that

1. p = 〈ν1, ..., νk〉 is a finite sequence of ordinals below κ, such that
νj < π(νi), whenever 1 ≤ j < i ≤ k,

2. A ∈ U , and

3. π(min(A)) > max(p), where π is a projection of U to a normal ultrafilter.

�

Let G be a generic for 〈P (U),≤ 〉. Set

C =
⋃
{p | ∃T 〈p, T 〉 ∈ G}.

It is called a Prikry sequence for U.

For every natural n ≥ 1 we would like to define a κ−complete ultrafilter Un over [κ]n

which correspond to the first n−levels of trees in P (U).
If n = 1, set U1 = U〈〉.
Deal with the next step n = 2. Here for each ν < κ we have Uν .
Consider the ultrapower by U〈〉:

i〈〉 : V →M〈〉.
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Then the sequence i〈〉(〈U〈ν〉 | ν < κ〉) will have the length i〈〉(κ).
Let U〈[id]U〈〉 〉 be its [id]U〈〉 ultrafilter in M〈〉 over i〈〉(κ). Consider its ultrapower

iU〈[id]U〈〉 〉
: M〈〉 →M〈[id]U〈〉 〉

Set
i2 = iU〈[id]U〈〉 〉

◦ i〈〉.

Then
i2 : V →M〈[id]U〈〉 〉.

Note that if all of U〈ν〉’s are the same or just for a set of ν’s in U〈〉 they are the same, then this
is just an ultrapower by the product of U〈〉 with this ultrafilter. In general it is an ultrapower
by

U〈〉 − Lim〈U〈ν〉 | ν < κ〉,

where
X ∈ U〈〉 − Lim〈U〈ν〉 | ν < κ〉 iff [id]U〈[id]U〈〉 〉

∈ i2(X).

Note that once most of U〈ν〉’s are normal, then U〈[id]U〈〉 〉 is normal as well, and so, [id]U〈[id]U〈〉 〉
=

i〈〉(κ).

Define an ultrafilter U2 on [κ]2 as follows:

X ∈ U2 iff 〈[id]U〈〉 , [id]U〈[id]U〈〉 〉
〉 ∈ i2(X).

Define also for k = 1, 2, ultrafilters Uk
2 over κ as follows:

X ∈ U1
2 iff [id]U〈〉 ∈ i2(X),

X ∈ U1
2 iff [id]U〈[id]U〈〉 〉

∈ i2(X).

Clearly, then U1
2 = U1 and U2

2 = U〈〉 − Lim〈U〈ν〉 | ν < κ〉. Also U1
2 is the projection of

U2 to the first coordinate and U2
2 to the second.

Let 〈〈〉, T 〉 ∈ P (U). It is not hard to see that T � 2 ∈ U2.

Continue and define in the similar fashion the ultrafilter Un over [κ]n and its projections
to the coordinates Uk

n for every n > 2, 1 ≤ k ≤ n. We will have that for any 〈〈〉, T 〉 ∈ P (U),
T � n ∈ Un. Also, if 1 ≤ n ≤ m < ω, then the natural projection of Um to [κ]n will be Un.
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It is easy to see that C is a Prikry sequence for 〈Un
n | 1 ≤ n < ω〉, in a sense that for

every sequence 〈An | n < ω〉 ∈ V , with An ∈ Un
n , there is n0 < ω such that for every n > n0,

C(n) ∈ Un
n .

However, it does not mean that C is generic for the forcing P (〈Un
n | 1 ≤ n < ω〉) defined

above (Definition ??). The problem is with projection to normal. All Un
n ’s have the same

normal U1.

Suppose now that we have an ultrafilter W over [κ]` which is Rudin-Keisler below some
V over [κ]k (W ≤RK V), for some k, `, 1 ≤ `, k < ω. This means that there is a function
F : [κ]k → [κ]` such that

X ∈ W iff F−1′′X ∈ V.

So F projects V to W . Let us denote this by W = F∗V.

The next statement characterizes ω−sequences in V [C].

Theorem 6.4 Let 〈αk | k < ω〉 ∈ V [C] be an increasing cofinal in κ sequence. Then
〈αk | k < ω〉 is a Prikry sequence for a sequence in V of κ−complete ultrafilters which are
Rudin -Keisler below 〈Un | n < ω〉.5
Moreover, there exist a non-decreasing sequence of natural numbers 〈nk | k < ω〉 and a
sequence of functions 〈Fk | k < ω〉 in V , Fk : [κ]nk → κ, (k < ω), such that

1. αk = Fk(C � nk), for every k < ω.

2. Let 〈nki | i < ω〉 be the increasing subsequence of 〈nk | k < ω〉 such that

(a) {nki | i < ω} = {nk | k < ω}, and

(b) ki = min{k | nk = nki}.

Set `i = |{k | nk = nki}|. Then 〈Fk(C � nki) | i < ω, nk = nki〉 will be a Prikry sequence for
〈Wi | i < ω〉, i.e. for every sequence 〈Ai | i < ω〉 ∈ V , with Ai ∈ Wi, there is i0 < ω such
that for every i > i0, 〈Fk(C � nki) | i < ω, nk = nki〉 ∈ Ai, where each Wi is an ultrafilter
over [κ]`i which is the projection of Unki by 〈Fki , ..., Fki+`i−1〉.

Proof. Work in V . Given a condition 〈q, S〉, we will construct by induction, using the Prikry
property of the forcing P (U, a stronger condition 〈p, T 〉 which decides α∼k once going up to
a certain level nk of T . Let us assume for simplicity that q is the empty sequence.

5Let 〈Vk | k < ω〉 be such sequence of ultrafilters over κ. We do not claim that 〈αk | k < ω〉 is Prikry
generic for the forcing P (〈Vk | k < ω〉), but rather that for every sequence 〈Ak | k < ω〉 ∈ V , with Ak ∈ Vk,
there is k0 < ω such that for every k > k0, αk ∈ Vk.
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Build by induction 〈〈〉, T 〉 ≥∗ 〈〈〉, S〉 and a non-decreasing sequence of natural numbers
〈nk | k < ω〉 such that for every k < ω

1. for every 〈η1, ..., ηnk〉 ∈ T there is ρ〈η1,...,ηnk 〉 < κ such that

(a) the condition 〈〈η1, ..., ηnk〉, T〈η1,...,ηnk 〉 forces ”α∼k = ρ〈η1,...,ηnk 〉“,

(b) ρ〈η1,...,ηnk 〉 ≥ π〈η1,...,ηnk−1
〉(ηnk),

2. there is no n, nk ≤ n < nk+1 such that for some 〈η1, ..., ηn〉 ∈ T and E the condition
〈〈η1, ..., ηn〉, E〉 decides the value of α∼k+1,

Now, using the density argument and making finitely many changes, if necessary, we can
assume that such 〈〈〉, T 〉 in the generic set.

For every k < ω, define a function Fk : Levnk(T )→ κ by setting

Fk(η1, ..., ηnk) = ν if 〈〈η1, ..., ηnk〉, T〈η1,...,ηnk 〉〉  α∼k = ν.

�

We restrict now our attention to ultrafilters U which are P-points. This will allow us to
deal with arbitrary sets of ordinals in V [C].
Recall the definition.

Definition 6.5 U is called a P-point iff every non-constant (mod U) function f : κ→ κ is
almost one to one (mod U), i.e. there is A ∈ U such that for every δ < κ,

|{ν ∈ A | f(ν) = δ}| < κ.

�

Note that, in particular, the projection to the normal ultrafilter π is almost one to one.
Namely,

|{ν < κ | π(ν) = α}| < κ,

for any α < κ.
Denote by Unor the projection of U to the normal ultrafilter.

Lemma 6.6 Assume that U = 〈Ua | 1 ≤ a ∈ [κ]<ω〉 consists of P-point ultrafilters. Suppose
that A ∈ V [C] \ V is an unbounded subset of κ. Then κ has cofinality ω in V [A].

64



Proof. Work in V . Let A∼ be a name of A and 〈s, S〉 ∈ P (U). Suppose for simplicity that
s is the empty sequence. Define by induction a subtree T of S. For each ν ∈ Lev1(S) pick
some subtree S ′ν of S〈ν〉 and aν ⊆ π〈〉(ν) such that

〈〈ν〉, S ′ν〉‖A∼ ∩ π〈〉(ν) = aν .

Let S(0)′ be a subtree of S obtained be replacing S〈ν〉 by S ′ν , for every ν ∈ Lev1(S).
Consider the function ν → aν , (ν ∈ Lev1(S)). By normality of π〈〉∗U〈〉 it is easy to find
A(0) ⊆ κ and T (0) ⊆ Lev1(S(0)′), T (0) ∈ U〈〉 such that A(0) ∩ π〈〉(ν) = aν , for every
ν ∈ T (0). Set the first level of T to be T (0). Set S(0) to be a subtree of S(0)′ obtained by
shrinking the first level to T (0).
Let now 〈ν1, ν2〉 ∈ Lev2(S(0)). So, π〈ν1〉(ν2) > ν1. Find a subtree S ′ν1,ν2 of (S(1)〈ν1,ν2〉), and
aν0,ν1 ⊆ π〈ν1〉(ν2) such that

〈〈ν1, ν2〉, ~S ′ν0,ν1〉‖A∼ ∩ π〈ν1〉(ν2) = aν1,ν2 .

Let S(1)′ be a subtree of S(0) obtained be replacing S〈ν1,ν2〉 by S ′ν1,ν2 , for every 〈ν1, ν2〉 ∈
Lev2(S(0)).
Again, we consider the function ν → aν , (ν ∈ S(1)′ν1). By normality of π〈ν1〉∗U〈ν1〉 it is easy
to find A(ν1) ⊆ κ and T (ν1) ⊆ (S(1)′〈ν1〉), T (ν1) ∈ U〈ν1〉 such that A(ν1)∩π〈ν1〉(ν) = aν1,ν , for

every ν ∈ T (ν1).
Define the set of the immediate successors of ν1 to be T (ν1), i.e. SucT (ν1) = T (ν1). Let S(1)
be a subtree of S(1)′ obtained this way.
This defines the second level of T . Continue similar to define further levels of T .
We will have the following property:

(*) for every 〈η1, ..., ηn〉 ∈ T,

〈〈η1, ..., ηn〉, T〈η1,...,ηn〉〉‖A∼ ∩ π〈η1,...,ηn−1〉(ηn) = A(η1, ..., ηn−1) ∩ π〈η1,...,ηn−1〉(ηn).

A simple density argument implies that there is a condition which satisfies (*) in the
generic set. Assume for simplicity that already 〈〈〉, T 〉 is such a condition. Then, C ⊆ T ∗.
Let 〈κn | n < ω〉 = C. So, for every n < ω,

A ∩ π〈κ0,...,κn−1〉(κn) = A(κ0, ..., κn−1) ∩ π〈κ0,...,κn−1〉(κn).

Let us work now in V [A] and define by induction a sequence 〈ηn | n < ω〉 as follows. Consider
A(0). It is a set in V , hence A(0) 6= A. So there is η such that for every ν ∈ Lev1(T ) with
π〈〉(ν) ≥ η we have A ∩ π〈〉(ν) 6= A(0) ∩ π〈〉(ν). Set η0 to be the least such η.
Turn to η1. Let ξ ∈ Lev1(T ) be such that π〈〉(ξ) < η0. Consider A(ξ). It is a set in V ,
hence A(ξ) 6= A. So there is η such that for every ν ∈ Lev2(T〈ξ〉) with π〈ξ〉(ν) ≥ η we
have A ∩ π〈ξ〉(ν) 6= A(ξ) ∩ π〈ξ〉(ν). Set η(ξ) to be the least such η. Now define η1 to be
sup({η(ξ) | π1(ξ) < η0}). The crucial point now is that the number of ξ’s with π〈〉(ξ) < η0 is
less than κ, since U〈〉 is a P-point.
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If η1 = κ, then the cofinality of κ (in V [A]) is at most η0. So it must be ω since the Prikry
forcing used does not add new bounded subsets to κ, and we are done.
Let us argue however that this cannot happen and always η1 < κ.

Claim 1 η1 < κ.

Proof. Suppose otherwise. Then

sup({η(ξ) | π〈〉(ξ) < η0}) = κ.

Hence for every α < κ there will be ξ with π〈〉(ξ) < η0 such that

A ∩ α = A(ξ) ∩ α.

Then, for every α < κ there will be ξ, ξ′ with π〈〉(ξ), π〈〉(ξ
′) < η0 such that

A(ξ) ∩ α = A(ξ′) ∩ α.

Now, in V , set ρξ,ξ′ to be the least ρ < κ such that

A(ξ) ∩ ρ 6= A(ξ′) ∩ ρ,

if it exists and 0 otherwise, i.e. if A(ξ) = A(ξ′). Let

Z = {ρξ,ξ′ | π〈〉(ξ), π〈〉(ξ′) < η0}.

Then |Z|V < κ, since the number of possible ξ, ξ′ is less than κ. But Z should be unbounded
in κ due to the fact that for every α < κ there will be ξ with π〈〉(ξ) < η0 such that
A ∩ α = A(ξ) ∩ α and A 6= A(ξ). Contradiction.

�of the claim

Suppose that η0, ..., ηn < κ are defined. Define ηn+1. Let 〈ξ0, ..., ξn〉 be in T . Consider
A(ξ0, ..., ξn). It is a set in V , hence A(ξ0, ..., ξn) 6= A. So there is η such that for every ν ∈
Levn+2(T〈ξ0,...,ξn〉) with π〈ξ0,...,ξn〉(ν) ≥ η we have A ∩ π〈ξ0,...,ξn〉(ν) 6= A(ξ0, ...ξn) ∩ π〈ξ0,...,ξn〉(ν).
Set η(ξ0, ...ξn) to be the least such η. Now define ηn+1 to be sup({η(ξ0, ...ξn) | π〈〉(ξ0) <
η0, ..., π〈ξ0,...,ξn−1〉(ξn) < ηn}).
Each relevant ultrafilter is a P-point, and so, the number of relevant ξ0, ...ξn is bounded in
κ. So, ηn+1 < κ, as in the claim above.

This completes the definition of the sequence 〈ηn | n < ω〉.
Let us argue that it is cofinal in κ.
Suppose otherwise.
Note that the sequence 〈π〈κ0,...,κn−1〉(κn) | n < ω〉 is unbounded in κ.
Let k be the least such that π〈κ0,...,κk−1〉(κk) > sup({ηn | n < ω}). Then

A ∩ π〈κ0,...,κk−1〉(κk) = A(κ0, ..., κk−1) ∩ π〈κ0,...,κk−1〉(κk).

This is impossible, since ηk < π〈κ0,...,κk−1〉(κk).
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Theorem 6.7 Let U = 〈Ua | a ∈ [κ]<ω〉 consists of P-point ultrafilters over κ. Then for
every new set of ordinals A in V P (U), κ has cofinality ω in V [A].

Proof. Let A be a new set of ordinals in V [G], where G ⊆ P (U) is generic. By Lemma ??,
it is enough to find a new subset of A of size κ.
Suppose that every subset of A of size κ is in V . Let us argue that then A is in V as well.
Let λ = sup(A).
The argument is similar to [?](Lemma 0.7).
Note that (Pκ+(λ))V remains stationary in V [G], since P (U) satisfies κ+−c.c. For each
x ∈ (Pκ+(λ))V pick 〈sx, Sx〉 ∈ G such that

〈sx, Sx〉‖A∼ ∩ x = A ∩ x.

There are a stationary E ⊆ (Pκ+(λ))V and s ∈ [κ]<ω such that for each x ∈ E we have
s = sx. Now, in V , we consider

H = {〈s, T 〉 ∈ P (U) | ∃x ∈ Pκ+(λ)∃a ⊆ x 〈s, T 〉‖A∼ ∩ x = a}.

Note that if 〈s, T 〉, 〈s, T ′〉 ∈ P (U) and for some x ⊆ y in Pκ+(λ), a ⊆ x, b ⊆ y we have

〈s, T 〉‖A∼ ∩ x = a and 〈s, T ′〉‖A∼ ∩ y = b,

then b ∩ x = a. Just conditions of this form are compatible, and so they cannot force
contradictory information.
Apply this observation to H. Let

X = {a ⊆ λ | ∃〈s, S〉 ∈ H ∃x ∈ Pκ+(λ)〈s, T 〉‖A∼ ∩ x = a}.

Then necessarily,
⋃
X = A.

�of the claim

We do not know wether V [A] for A ∈ V [C] \V is equivalent to a single ω−sequence even
for A ⊆ κ+. The problematic case is once Un’s have κ+−many different ultrafilters below in
the Rudin-Keisler order.

Theorem 6.8 Assume that there is no inner model with o(α) = α++. Let U be κ−complete

ultrafilter over κ and V = L[ ~E], for a coherent sequence of measures ~E. Force with the
Prikry forcing with U . Suppose that A is a new set of ordinals in a generic extension. Then
the cofinality of κ is ω in V [A].
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Proof. Consider
iU : V →M ' V κ/U.

By Mitchell [?], iU is an iterated ultrapower using measures from ~E and images of ~E. In
addition we have that κM ⊆M . Hence it should be a finite iteration using.
κ is the critical point, hence no measures below κ are involved and the first one applied is a
measure on κ in ~E. Denote it by E0 and let

i0 : V →M1

be the corresponding embedding. Let κ1 = i0(κ). Rearranging, if necessary, we can assume

that the next step was to use a measure E1 over κ1 from i0( ~E). So, it is either the image

of one of the measures of ~E or E0 − Lim〈Eξ | ξ < κ〉, where 〈Eξ | ξ < κ〉 is a sequence of

measures over κ from ~E which represents in M1 the measure used over κ1.
Let

i1 : M1 →M2

be the corresponding embedding and κ2 = i1(κ1).
κ2 can be moved further in our iteration, but only finitely many times. Suppose for simplicity
that it does not move.
If nothing else is moved then U is equivalent to E0−Lim〈Eξ | ξ < κ〉 and ?? easily provides
the desired conclusion.
Suppose i1 ◦ i0 is not iU . Then some measures from i1 ◦ i0( ~E) with critical points in the
intervals (κ, κ1), (κ1, κ2) are applied. Again, only finitely many can be used.
Thus suppose for simplicity that only one is used in each interval. The treatment of a general
case is more complicated only due to notation.
So suppose that a measure E2 with a critical point δ ∈ (κ, κ1) is used on the third step of
the iteration.
Let

i2 : M2 →M3

be the corresponding embedding. Note that the ultrafilter V defined by

X ∈ V iff i2(δ) ∈ i2 ◦ i1 ◦ i0(X)

is P−point. Thus, a function f : κ → κ which represents δ in M1, i.e. δ = i0(f)(κ), will
witness this.
Similar an ultrafilter used in the interval (κ1, κ2) will be P−point in M1, and so, in V , it
will be equivalent to a limit of P−points.
So such situation is covered by ??.

�of the claim
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7 Prikry forcing may add a Cohen subset.

Our aim here will be to show the following:

Theorem 7.1 Suppose that V satisfies GCH and κ is a measurable cardinal. Then in a
generic cofinality preserving extension there is a κ−complete ultrafilter U over κ such that
the Prikry forcing with U adds a Cohen subset to κ over V . In particular, this forcing has a
non-trivial subforcing which preserves regularity of κ.

By [?] such F cannot by normal and by 6.6 F cannot be a P-point ultrafilter, since in
any Cohen extension, κ stays regular.

Note that the above situation is impossible in L[µ]. Just every κ−complete ultrafilter
over the measurable κ is Rudin-Kiesler equivalent to µn, for some n, 1 ≤ n < ω, by [?].
But the Prikry forcing with µn is the same as the Prikry forcing with µ which is a normal
measure.

We start with a GCH model with a measurable. Let κ be a measurable and U a normal
measure on κ.
Denote by jU : V → N ' Ult(V, U) the corresponding elementary embedding.

Define an iteration
〈
Pα, Qβ | α ≤ κ, β < κ

〉
with Easton support as follows. Set P0 = 0.

Assume that Pα is defined. Set Q
∼α

to be the trivial forcing unless α is an inaccessible
cardinal.
If α is an inaccessible cardinal, then let Qα = Qα0 ∗ Q∼α1

, where Qα0 is an atomic forcing
consisting of three elements 0Qα0 , xα, yα, such that xα, yα are two incompatible elements
which are stronger than 0Qα0 .
Let Q
∼α1

be trivial once yα is picked and let it be the Cohen forcing at α, i.e.

Cohen(α, 2) = {f : α→ 2 | |f | < α}

once xα was chosen.

Let Gκ ⊆ Pκ be a generic. We extend now the embedding

jU : V → N,

in V [Gκ], to
j∗U : V [Gκ]→ N [Gκ ∗G[κ,jU (κ))],

for some G[κ,jU (κ)) ⊆ P[κ,jU (κ)) which is N [Gκ]−generic for PjU (κ)/Gκ. This can be done easily,
once over κ itself in Qκ0, we pick yκ, which makes the forcing Qκ a trivial one.
This shows, in particular, that κ is still a measurable in V [Gκ], as witnessed by an extension
of U .
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Consider now the second ultrapower N2 ' Ult(N, jU(U)).
Denote jU by j1, N by N1. Let

j12 : N1 → N2

denotes the ultrapower embedding of N1 by j1(U). Let j2 = j12 ◦ j1. Then

j2 : V → N2.

Let us extend, in V [Gκ], the embedding

j12 : N1 → N2

to
j∗12 : N1[Gκ ∗G[κ,j1(κ))]→ N2[Gκ ∗G[κ,j1(κ)) ∗G[j1(κ),j2(κ))]

in a standard fashion, only this time we pick xj1(κ) at stage j1(κ) of the iteration. Then a
Cohen function should be constructed over j1(κ), which is not at all problematic to find in
V [Gκ].

Now we will have

j2 ⊆ j∗2 : V [Gκ]→ N2[Gκ ∗G[κ,j1(κ)) ∗G[j1(κ),j2(κ))]

which is the composition of j∗1 with j∗12.

Define a κ−complete ultrafilter W over κ as follows:

X ∈ W iff X ⊆ κ and j1(κ) ∈ j∗2(X).

Proposition 7.1 W has the following basic properties:

1. W ∩ V = U ,

2. {α < κ | xα was picked at the stage α of the iteration } ∈ W ,

3. if C ⊆ κ is a club, then C ∈ W . Moreover

{ν ∈ C | ν is an inaccessible} ∈ W.

Proof :
(1) and (2) are standard. Let us show only (3). Let C ⊆ κ be a club. Then, in N2, j2(C) is
a club at j2(κ). In addition, j2(C) ∩ κ1 = j1(C). Now, j1(C) is a club in j1(κ). It follows
that j1(κ) ∈ j2(C).
In order to show that

{ν ∈ C | ν is an inaccessible} ∈ W,
just note that j1(κ) is an inaccessible in N2, and so W concentrates on inaccessibles.
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Force with Prikry(W ) over V [Gκ].
Let

C = 〈ηn | n < ω〉

be a generic Prikry sequence.
By (2) in the previous proposition, there is n∗ < ω such that for every m ≥ n∗, at the stage
ηm of the forcing Pκ, xηm was picked, and, hence, a Cohen function fηm : ηm → 2 was added.

Define now H : κ→ 2 in V [Gκ, C] as follows:

H = fηn∗ ∪
⋃

n∗≤m<ω

fηm+1 � [ηm, ηm+1).

Proposition 7.2 H is a Cohen generic function for κ over V [Gκ].

Proof Work in V [Gκ]. Let D ∈ V [Gκ] be a dense open subset of Cohen(κ). Consider a set

C = {α < κ | if α is an inaccessible, then D∩Vα[Gα] is a dense open subset of Cohen(α) in V [Gα]}.

Claim 1 C is a club.

Proof. Suppose otherwise. Then S = κ \C is stationary. It consists of inaccessible cardinals
by the definition of C.
Pick a cardinal χ large enough and consider an elementary submodel X of 〈Hχ,∈ 〉 such
that

1. X ∩ (Vκ)
V [Gκ] = (Vδ)

V [Gκ], for some δ ∈ S,

2. κ, Pκ, D ∈ X

Note that it is possible to find such X due to stationarity of S. Note also that (Vκ)
V [Gκ] =

Vκ[Gκ] and (Vδ)
V [Gκ] = Vδ[Gδ], since the iteration Pκ splits nicely at inaccessibles.

Let us argue that D ∩ Vδ[Gδ] is a dense open subset of Cohen(δ) in V [Gδ].
Just note that

D ∩X = D ∩X ∩ (Vκ)
V [Gκ] = D ∩ (Vδ)

V [Gκ] = D ∩ Vδ[Gδ].
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So let q ∈ (Cohen(δ))Vδ[Gδ]. Then q ∈ X. Remember X � Hχ. So,

X |= D is dense open ,

hence there is p ≥ q, p ∈ D ∩X. But then, p ∈ D ∩ Vδ[Gδ], and we are done.
Contradiction.

�of claim

It follows now that C ∈ W . Hence there is n∗∗ ≥ n∗ such that for every m,n∗∗ ≤ m < ω,

ηm ∈ C.

So, for every m,n∗∗ ≤ m < ω,
fηm ∈ D,

since D is open.
It is almost what we need, however H � ηm need not be fηm , since an initial segment may
was changed.
In order to overcome this, let us note the following basic property of the Cohen forcing:

Claim 2 Let E be a dense open subset of Cohen(κ, 2), then there is a dense subset E∗

of E such that for every p ∈ E∗ and every inaccessible cardinal τ ∈ dom(p) for every q :
δ → 2, p � [δ, κ) ∪ q ∈ E∗.

The proof is an easy use of κ−completeness of the forcing.

Now we can finish just replacing D by its dense subset which satisfies the conclusion of
the claim. Then, H � ηm will belong to it as a bounded change of fηm .
So we are done.

�
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