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Abstract. We study pairs (V, V1) of models of ZFC such that adding κ-many random

reals over V1 adds λ-many random reals over V , for some λ > κ.

1. Introduction

In [1] and [2], we studied pairs (V, V1) of models of ZFC such that adding κ-many Cohen

reals over V1 adds λ-many Cohen reals over V , for some λ > κ. In this paper we prove

similar results for random forcing, by producing pairs (V, V1) of models of ZFC such that

adding κ-many random reals over V1 adds λ-many random reals over V , where by κ-random

reals over V , we mean a sequence 〈ri : i < κ〉 which is R(κ)-generic over V and R(κ) is the

usual forcing notion for adding κ-many random reals (see Section 2). The proofs are more

involved than those given in [1] and [2] for Cohen reals. This is because random reals, in

contrast to Cohen reals, may depend on ω-many coordinates, instead of finitely many as in

the Cohen case. Also the proofs in [1] and [2] were based on the fact that the product of

Cohen forcing with itself is essentially the same as Cohen forcing, while this is not true in

the case of random forcing.

2. Random real forcing

In this section we briefly review random forcing and refer to [3] for more details. Suppose

I is a non-empty set and consider the product measure space 2I×ω with the standard product

measure µI on it. Let B(I) denote the class of Borel subsets of 2I×ω. Note that sets of the

form

[s] = {x ∈ 2I×ω : x � dom(s) = s},

where s : I × ω → 2 is a finite partial function form a basis of open sets of 2I×ω.
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For Borel sets S, T ∈ B(I) set

S ∼ T ⇐⇒ S 4 T is null,

where S 4 T denotes the symmetric difference of S and T . The relation ∼ is easily seen

to be an equivalence relation on B(I). Then R(I), the forcing for adding |I|-many random

reals, is defined as

R(I) = B(I)/ ∼ .

Thus elements of R(I) are equivalent classes [S] of Borel sets modulo null sets. The order

relation is defined by

[S] ≤ [T ] ⇐⇒ µ(S \ T ) = 0.

The following fact is standard.

Lemma 2.1. R(I) is c.c.c.

Using the above lemma, we can easily show that R(I) is in fact a complete Boolean

algebra. Let F∼ be an R(I)-name for a function from I×ω to 2 such that for each i ∈ I, n ∈ ω

and k < 2, ‖ F∼(i, n) = k ‖R(I)= pi,n
k , where

pi,n
k = [x ∈ 2I×ω : x(i, n) = k].

This defines R(I)-names r∼i ∈ 2ω, i ∈ I, such that

‖ ∀n < ω, r∼i(n) = F∼(i, n) ‖R(I)= 1R(I) = [2I×ω].

Lemma 2.2. Assume G is R(I)-generic over V and for each i ∈ I set ri = r∼i[G]. Then

each ri ∈ 2ω is a new real and for i 6= j in I, ri 6= rj. Further, V [G] = V [〈ri : i ∈ I〉].

The reals ri are called random reals. By κ-random reals over V , we mean a sequence

〈ri : i < κ〉 which is R(κ)-generic over V .

Given b = [T ] ∈ R(I) and |I|-random reals 〈ri : i ∈ I〉 over V , we say 〈ri : i ∈ I〉 extends

b, if

∀i ∈ I,∀n < ω,∃x ∈ T (µI(T ∩ [x � {(i,m) : m < n}]) > 0 and ∀m < n, x(i, m) = ri(m) ).
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This simply says that if i and n are given, then we can extend b to some

b̄ = [T ∩ [x � {(i,m) : m < n}]]

such that b̄ decides ri � n. In fact, b̄ 
“∀m < n, r∼i(m) = x(i, m)”. Note that if 〈ri : i < κ〉

is a sequence of |I|-random reals generated by G, then

G = {[T ] ∈ R(I) : 〈ri : i ∈ I〉 extends [T ]}

The next lemma follows from Lemma 2.1.

Lemma 2.3. The sequence 〈ri : i < κ〉 is R(κ)-generic over V iff for each countable set

I ⊆ κ, I ∈ V, the sequence 〈ri : i ∈ I〉 is R(I)-generic over V .

3. The first general fact about adding many random reals

In this section we prove the following theorem, which is an analogue of Theorem 2.1 from

[1], and use it to get some consequences.

Theorem 3.1. Let V1 be an extension of V . Suppose that in V1 :

(a) κ < λ are infinite cardinals,

(b) λ is regular,

(c) there exists an increasing sequence 〈κn : n < ω〉 cofinal in κ. In particular cf(κ) = ω,

(d) there exists an increasing ( mod finite ) sequence 〈fα : α < λ〉 of functions in the

product
∏
n<ω

(κn+1 \ κn),

(e) there exists a club C ⊆ λ which avoids points of countable V−cofinality.

Then adding κ−many random reals over V1 produces λ−many random reals over V .

Proof. There are two cases to consider: (1) : λ = κ+ and (2) : λ > κ+. We give a proof for

the first case, as the second case can be proved similarly, using ideas from [1, Theorem 2.1]

(combined with the proof of the first case given below). We assume that min(C) = 0.

Thus assume that λ = κ+, and force to add κ−many random reals over V1. We denote

them by 〈rı,τ : ı, τ < κ〉. Also let 〈fα : α < κ+〉 ∈ V1 be an increasing (mod finite) sequence

in
∏
n<ω

(κn+1 \ κn). We define a sequence 〈sα : α < κ+〉 of reals as follows:
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Assume α < κ+. Let α∗ and α∗∗ be two successor points of C so that α∗ ≤ α < α∗∗.

Let 〈αı : ı < κ〉 be some fixed enumeration of the interval [α∗, α∗∗) with α0 = α∗. Then for

some ı < κ, α = αı. Let k(ı) = min{k < ω : rı,ı(k) = 1}. Set

∀n < ω, sα(n) = rfα(k(ı)+n),fα(k(ı)+n)(0).

The following lemma completes the proof.

Lemma 3.2. 〈sα : α < κ+〉 is a sequence of κ+−many random reals over V .

Proof. First note that 〈rı,τ : ı, τ < κ〉 is R(κ× κ)-generic over V1. By Lemma 2.3, it suffices

to show that for any countable set I ⊆ κ+, I ∈ V , the sequence 〈sα : α ∈ I〉 is R(I)−generic

over V . Thus it suffices to prove the following:

for every p ∈ R(κ× κ) and every open dense subset D ∈ V

(∗) of R(I), there is p̄ ≤ p such that p̄‖−“〈 s∼α : α ∈ I〉 extends

some element of D”.

Let p and D be as above. For simplicity suppose that p = 1R(κ×κ) = [2(κ×κ)×ω]. By (e)

there are only finitely many α∗ ∈ C such that I∩[α∗, α∗∗) 6= ∅, where α∗∗ = min(C\(α∗+1)).

For simplicity suppose that there are two α∗
1 < α∗

2 in C with this property. Let n∗ < ω be

such that for all n ≥ n∗, fα∗
1
(n) < fα∗

2
(n).

Let b = [Tb] ∈ D, where Tb ⊆ 2I×ω. For j ∈ {1, 2}, let {αjl
: l < kj ≤ ω} be an

enumeration of I ∩ [α∗
j , α

∗∗
j ). For j ∈ {1, 2} and l < kj let αjl = αıjl

where ıjl < κ is the

index of αjl in the enumeration of the interval [α∗
j , α

∗∗
j ) considered above.

For every j1, j2 ∈ {1, 2}, l1 < kj1 , l2 < kj2 and n1, n2 < ω set

c(j1, j2, l1, l2, n1, n2) =‖ s∼αj1,l1
(n1) 6= s∼αj2,l2

(n2) ‖ .

Claim 3.3. The set ∆ = {(j1, j2, l1, l2, n1, n2) : b ≤ c(j1, j2, l1, l2, n1, n2)} is finite. Also

(j1, j2, l1, l2, n1, n2) ∈ ∆ implies (j2, j1, l2, l1, n2, n1) ∈ ∆.

Proof. Recall that b = [Tb]. By shrinking Tb if necessary, we can assume that Tb is closed.

Then 2I×ω \ Tb is open, so there are finite partial functions tk : I × ω → 2 such that

2I×ω \Tb =
⋃

k<ω[tk] and for k 6= l, [tk]∩[tl] = ∅. For each k set Ωk = {t : dom(t) = dom(tk)
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and t 6= tk}. Then each Ωk is finite and 2I×ω \ [tk] =
⋃

t∈Ωk
[t]. So

Tb =
⋂

k<ω

(2I×ω \ [tk]) =
⋂

k<ω

(
⋃

t∈Ωk

[t]).

Also, as µI(Tb) > 0, we have

µI(2I×ω \ Tb) =
∑
k<ω

2−|tk| < 1.

Note that µI(Tb) = 1−
∑

k<ω 2−|tk| > 0. Fix an increasing sequence 〈ηk : k < ω〉 of natural

numbers such that

(†)
∑

k<ω 2−ηk <
1− µI(2ω \ Tb)
1 + µI(2ω \ Tb)

.

Assume on the contrary that the set ∆ is infinite. For each k ∈ ω, choose

Xk = {(jk,u
1 , jk,u

2 , lk,u
1 , lk,u

2 , nk,u
1 , nk,u

2 ) : u < ηk} ⊆ ∆

such that for each u,(αjk,u
1 ,lk,u

1
, nk,u

1 ), (αjk,u
2 ,lk,u

2
, nk,u

2 ) /∈ dom(tk). Set

Yk = dom(tk) ∪ {(αjk,u
1 ,lk,u

1
, nk,u

1 ), (αjk,u
2 ,lk,u

2
, nk,u

2 ) : (jk,u
1 , jk,u

2 , lk,u
1 , lk,u

2 , nk,u
1 , nk,u

2 ) ∈ Xk}.

This is possible, as ∆ is infinite. We also assume all (jk,u
1 , jk,u

2 , lk,u
1 , lk,u

2 , nk,u
1 , nk,u

2 )’s, for

k < ω, u < ηk are different. For each t ∈ Ωk let

Λk,t = {t′ : Yk → 2 : t′ ⊇ t and for some u < ηk, t′(αjk,u
1 ,lk,u

1
, nk,u

1 ) = t′(αjk,u
2 ,lk,u

2
, nk,u

2 )}.

Set T̄ =
⋂

k<ω(
⋃

t∈Ωk
(
⋃

t′∈Λk,t
[t′])). Clearly, |Ωk| = 2|tk| − 1, |Λk,t| = 22ηk − 2ηk =

2ηk(2ηk − 1) and for each t′ ∈ Λk,t, |t′| = |t|+ 2ηk = |tk|+ 2ηk, and so

µI(
⋃

t∈Ωk

(
⋃

t′∈Λk,t

[t′])) =
∑
t∈Ωk

(
∑

t′∈Λk,t

µI([t′])) = (2|tk| − 1)2ηk(2ηk − 1)2−(|tk|+2ηk).

But we have

(2|tk| − 1)2ηk(2ηk − 1)2−(|tk|+2ηk) = (1− 2−ηk)(1− 2−|tk|),

and so

µI(
⋃

t∈Ωk

(
⋃

t′∈Λk,t

[t′])) = (1− 2−ηk)(1− 2−|tk|).

It follows that

µI(2ω \ T̄ ) ≤
∑

k<ω(1− (1− 2−ηk)(1− 2−|tk|))

=
∑

k<ω(2−|tk| + 2−ηk − 2−|tk|−ηk)

=
∑

k<ω 2−|tk| +
∑

k<ω 2−ηk +
∑

k<ω 2−|tk|−ηk
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≤
∑

k<ω 2−|tk| +
∑

k<ω 2−ηk + (
∑

k<ω 2−|tk|)(
∑

k<ω 2−ηk)

≤ µI(2ω \ Tb) +
∑

k<ω 2−ηk + µI(2ω \ Tb)(
∑

k<ω 2−ηk)

< 1 (by (†)).

Hence

µI(T̄ ) = 1− µI(2ω \ T̄ ) > 0.

Set b̄ = [T̄ ], Then b̄ ∈ R(I) and b̄ ≤ b. Also note that:

∀x ∈ T̄ ,∀k < ω,∃u < 2k, x(αjk,u
1 ,lk,u

1
, nk,u

1 ) = x(αjk,u
2 ,lk,u

2
, nk,u

2 ).

Let S′ consists of those y ∈ 2(κ×κ)×ω such that for some k < ω, some u < 2k and some

x ∈ T̄

(1) y(fα
j
k,u
1 l

k,u
1

(nk,u
1 ), fα

j
k,u
1 l

k,u
1

(nk,u
1 ), nk,u

1 ) = x(αjk,u
1 lk,u

1
, nk,u

1 ).

(2) y(fα
j
k,u
2 l

k,u
2

(nk,u
2 ), fα

j
k,u
2 l

k,u
2

(nk,u
2 ), nk,u

2 ) = x(αjk,u
2 lk,u

2
, nk,u

2 ).

(3) x(αjk,u
1 lk,u

1
, nk,u

1 ) = x(αjk,u
2 lk,u

2
, nk,u

2 ).

Clearly, µκ×κ(S′) > 0. For each y ∈ S′ let ky denote the least k as above. Similarly, let uy

denote the least u as above. For some k̄ < ω and ū < 2k̄, the set S′′ = {y ∈ S′ : ky = k̄ and

uy = ū} has positive measure. Let

S̄ = {y ∈ S′′ : y(ı
jk̄,ū
1 lk̄,ū

1
, ı

jk̄,ū
1 lk̄,ū

1
, 0) = y(ı

jk̄,ū
2 lk̄,ū

2
, ı

jk̄,ū
2 lk̄,ū

2
, 0) = 1}.

Then µκ×κ(S̄) =1
4µκ×κ(S′′) > 0 and if p̄ = [S̄], then p̄ ∈ R(κ× κ) and

p̄ 
 “k∼(ı
jk̄,ū
1 lk̄,ū

1
) = k∼(ı

jk̄,ū
2 lk̄,ū

2
) = 0”.

For each y ∈ S̄, if x (with k̄ and ū) is a witness as above, then

p̄ 
 “ s∼α
j
k̄,ū
1 l

k̄,ū
1

(nk̄,ū
1 ) = r∼fα

j
k̄,ū
1 l

k̄,ū
1

(nk̄,ū
1 ),fα

j
k̄,ū
1 l

k̄,ū
1

(nk̄,ū
1 )

(0)

= y(fα
j
k̄,ū
1 l

k̄,ū
1

(nk̄,ū
1 ), fα

j
k̄,ū
1 l

k̄,ū
1

(nk̄,ū
1 ), nk̄,ū

1 )

= x(α
jk̄,ū
1 ,lk̄,ū

1
, nk̄,ū

1 ) (by (1))

= x(α
jk̄,ū
2 ,lk̄,ū

2
, nk̄,ū

2 ) (by (3))

= y(fα
j
k̄,ū
2 l

k̄,ū
2

(nk̄,ū
2 ), fα

j
k̄,ū
2 l

k̄,ū
2

(nk̄,ū
2 ), nk̄,ū

2 ) (by (2))

= r∼fα
j
k̄,ū
2 l

k̄,ū
2

(nk̄,ū
2 ),fα

j
k̄,ū
2 l

k̄,ū
2

(nk̄,ū
2 )

(0)

= s∼α
j
k̄,ū
2 l

k̄,ū
2

(nk̄,ū
2 )”.
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So b̄ �‖ s∼α
j
k̄,ū
1 ,l

k̄,ū
1

(nk̄,ū
1 ) 6= s∼α

j
k̄,ū
2 ,l

k̄,ū
2

(nk̄,ū
2 ) ‖, and since b̄ ≤ b, we have

b �‖ s∼α
j
k̄,ū
1 ,l

k̄,ū
1

(nk̄,ū
1 ) 6= s∼α

j
k̄,ū
2 ,l

k̄,ū
2

(nk̄,ū
2 ) ‖ .

It follows that (jk̄,ū
1 , jk̄,ū

2 , lk̄,ū
1 , lk̄,ū

2 , nk̄,ū
1 , nk̄,ū

2 ) /∈ ∆, which is a contradiction. The second

part of the claim is evident and the claim follows. �

Call (j, l) appears in ∆ if (j, l) = (j1, l1) for some (j1, j2, l1, l2, n1, n2) ∈ ∆. Also set

Λ = {(j, l) : (j, l) appears in ∆}.

Then |Λ| ≤ 2|∆| is finite. Let m∗, with n∗ ≤ m∗ < ω, be such that for all n ≥ m∗ all of the

values

fα∗
1
(n), fαj1,l1

(n), fαj2,l2
(n), fα∗

2
(n),

where (j1, l1), (j2, l2) ∈ Λ.

Claim 3.4. There exists p1 ≤ p such that for all (j, l) ∈ Λ

p1 
 “k(ıjl) = min{k < ω : r∼ıjl,ıjl
(k) = 1} = m∗ ”.

Proof. Let Sp1 ⊆ 2(κ×κ)×ω be defined by

Sp1 = {y ∈ 2(κ×κ)×ω : ∀(j, l) ∈ Λ [(∀n < m∗, y(ıjl, ıjl, n) = 0) and y(ıjl, ıjl,m
∗) = 1]}.

Then µκ×κ(Sp1) = 2−|Λ|(m
∗+1) > 0, so p1 = [Sp1 ] ∈ R(κ× κ). Further, for all (j, l) ∈ Λ and

n < m∗, p1 
 “ r∼ıjl,ıjl
(n) = 0”, also p1 
 “ r∼ıjl,ıjl

(m∗) = 1”, thus for (j, l) ∈ Λ,

p1 
 “k(ıjl) = min{k < ω : r∼ıjl,ıjl
(k) = 1} = m∗ ”,

as required �

Before we continue, let us make an assumption on Tb. For each n < ω let Φn = {(αıjl
,m) :

(j, l) ∈ Λ,m < n} ⊆ I×ω. Then for a countable subset T ′ of I×ω, {x � Φn : x ∈ T ′} = 2Hn ,

for all n < ω. As [Tb] = [Tb ∪ T ′], so let’s assume without lose of generality that T ′ ⊆ Tb.

Set

J = {fαjl
(m∗ + m) : (j, l) ∈ Λ and m < ω} ⊆ κ.
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Note that by our choice of m∗, for all m and all (j1, l1), (j2, l2) ∈ Λ, fαj1l1
(m∗ + m) 6=

fαj2l2
(m∗ + m). Set

S̄ = {y ∈ Sp1 : ∀n < ω,∃x ∈ Tb,∀(j, l) ∈ Λ,∀m < n

( y(fαjl
(m∗ + m), fαjl

(m∗ + m),m) = x(αıjl
,m) )}.

By the above remarks, S̄ is well-defined. We also have S̄ =
⋂

n<ω Sn, where

Sn = {y ∈ Sp1 : ∃x ∈ Tb,∀(j, l) ∈ Λ,∀m < n( y(fαjl
(m∗+m), fαjl

(m∗+m),m) = x(αıjl
,m) )}.

Let

Wn = {(fαjl
(m∗ + m), fαjl

(m∗ + m),m) : (j, l) ∈ Λ,m < n}

and

∆n = {t : Wn → 2 : ∃x ∈ Tb,∀(j, l) ∈ Λ,∀m < n, (y(fαjl
(m∗+m), fαjl

(m∗+m),m) = x(αıjl
,m))}.

By our assumption T ′ ⊆ Tb, |∆n| = 2|Wn| and hence, µκ×κ(
⋃

t∈∆n
[t]) =

∑
t∈∆n

2|t| =

2|Wn|2−|Wn| = 1. We have, Sn = Sp1 ∩
⋃

t∈∆n
[t], so

µκ×κ(Sn) = µκ×κ(Sp1) + µκ×κ(
⋃

t∈∆n
[t])− µκ×κ(Sp1 ∪

⋃
t∈∆n

[t]) = µκ×κ(Sp1).

It follows that µκ×κ(Sp1 \ S) = µκ×κ(
⋃

n<ω(Sp1 \ Sn) ≤
∑

n<ω µκ×κ(Sp1 \ Sn) = 0, and

so µκ×κ(S) = µκ×κ(Sp1) > 0. Let p̄ = [S̄]. Then p̄ ∈ R(κ× κ) and p̄ ≤ p.

Claim 3.5. p̄ 
“〈 s∼αjl
: (j, l) ∈ Λ〉 extends b”.

Proof. Suppose (j, l) ∈ Λ and n < ω. Let y ∈ S̄. Thus we can find x ∈ Tb such that

∀m < n ( y(fαjl
(m∗ + m), fαjl

(m∗ + m),m) = x(αıjl
,m) ).

But then

p̄ 
 “ s∼α(m) = s∼αjl
(m)

= r∼fαjl
(m∗+m),fαjl

(m∗+m)(0)

= y(fαjl
(m∗ + m), fαjl

(m∗ + m), 0)

= x(αjl,m)

= x(α, m)”.

The result follows. �
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We now consider those (j, l)’s, j ∈ {1, 2}, l < kj , which do not appear in ∆. Fix such

a pair (j, l). Also let n < ω. Then there is (j1, l1) ∈ Λ and such that for each m < n,

b � c(j, j1, l, l1,m, m), i.e., b 1“ s∼αj,l
(m) 6= s∼αj1,l1

(m)”. So there exists bjln = [Tjln] ≤ b

such that ∀m < n, bjln 
“ s∼αj,l
(m) = s∼αj1,l1

(m)”.

Note that µI(Tjln \ Tb) = 0. Since there are only countably many such tuples (j, l, n),

µI(
⋃

n<ω,(j,l)∈Λ Tjln \ Tb) = 0.

This implies [Tb] = [Tb ∪
⋃

n<ω,(j,l)∈Λ Tjln], so without loss of generality, each Tjln ⊆ Tb,

where n < ω and (j, l) ∈ Λ. Now Claim 3.5 implies the following:

Claim 3.6. p̄ 
“〈 s∼α : α ∈ I〉 extends b”.

(∗) follows, which completes the proof of Lemma 3.2. �

Theorem 3.1 follows. �

The next theorem follows immediately from Theorem 3.1 and the arguments from [1].

Theorem 3.7. (a) Suppose that V satisfies GCH, κ =
⋃

n<ω κn and
⋃

n<ω o(κn) = κ

(where o(κn) is the Mitchell order of κn). Then there exists a cardinal preserving

generic extension V1 of V satisfying GCH and having the same reals as V does, so

that adding κ−many random reals over V1 produces κ+−many random reals over V .

(b) Suppose V is a model of GCH. Then there is a generic extension V1 of V satisfying

GCH so that the only cardinal of V which is collapsed in V1 is ℵ1 and such that

adding ℵω−many random reals to V1 produces ℵω+1−many of them over V .

(c) Suppose V satisfies GCH. Then there is a generic extension V1 of V satisfying

GCH and having the same reals as V does, so that the only cardinals of V which

are collapsed in V1 are ℵ2 and ℵ3 and such that adding ℵω−many random reals to

V1 produces ℵω+1−many of them over V .

(d) Suppose that κ is a strong cardinal, λ ≥ κ is regular and GCH holds. Then there

exists a cardinal preserving generic extension V1 of V having the same reals as V

does, so that adding κ−many random reals over V1 produces λ−many of them over

V .
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(e) Suppose that there is a strong cardinal and GCH holds. Let α < ω1. Then there

is a model V1 ⊃ V having the same reals as V and satisfying GCH below ℵV1
ω such

that adding ℵV1
ω −many random reals to V1 produces ℵV1

α+1−many of them over V .

We can also use ideas of the proof of Theorem 3.1, to get the following theorem, which is

an analogue of [1, Theorem 3.1] for random reals.

Theorem 3.8. Suppose that V satisfies GCH. Then there is a cofinality preserving generic

extension V1 of V satisfying GCH so that adding a random real over V1 produces ℵ1−many

random reals over V .

4. The second general fact about adding many random reals

In this section, we prove our second general result which is an analogue of Theorem 2.1

form [2]. Then we use the result to obtain similar results as in [2] for random reals.

Theorem 4.1. Suppose κ < λ are infinite (regular or singular) cardinals, and let V1 be an

extension of V. Suppose that in V1 :

(a) κ < λ are still infinite cardinals.

(b) there exists an increasing sequence 〈κn : n < ω〉 of regular cardinals, cofinal in κ. In

particular cf(κ) = ω.

(c) there is an increasing (mod finite) sequence 〈fα : α < λ〉 of functions in the product∏
n<ω(κn+1 \ κn).

(d) there is a splitting 〈Sσ : σ < κ〉 of λ into sets of size λ such that for every countable

set I ∈ V and every σ < κ we have |I ∩ Sσ| < ℵ0.

Then adding κ−many random reals over V1 produces λ−many random reals over V.

Proof. Force to add κ−many random reals over V1. Let us write them as 〈ri,σ : i, σ < κ〉.

Also in V, split κ into κ−blocks Bσ, σ < κ, each of size κ, and let 〈fα : α < λ〉 ∈ V1 be an

increasing (mod finite) sequence in
∏

n<ω(κn+1 \ κn). Let α < λ. We define a real sα as

follows. Pick σ < κ such that α ∈ Sσ. Let kα = min{k < ω : rσ,σ(k)} = 1 and set

∀n < ω, sα(n) = rfα(n+kα),σ(0).

The following lemma completes the proof.
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Lemma 4.2. 〈sα : α < λ〉 is a sequence of λ−many random reals over V .

Proof. First note that 〈ri,σ : i, σ < κ〉 is R(κ×κ)-generic over V1. By Lemma 2.3, it suffices

to show that for any countable set I ⊆ λ, I ∈ V , the sequence 〈sα : α ∈ I〉 is R(I)-generic

over V . Thus it suffices to prove the following

For every p ∈ R(κ× κ) and every open dense subset D ∈ V

(∗) of R(I), there is p̄ ≤ p such that p̄ 
 p〈 s∼α : α ∈ I〉 extends

some element of Dq.

Let p and D be as above and for simplicity suppose that p = 1R(κ×κ) = [2κ×κ×ω]. Let

b = [Tb] ∈ D, where Tb ⊆ 2I×ω. As I is countable, we can find {σj : j < ω̄ ≤ ω} ⊆ λ such

that

I = I ∩
⋃

σ<λ

Sσ =
⋃
j<ω̄

(I ∩ Sσj
),

and each I ∩ Sσj
is non-empty. By (d), each I ∩ Sσj

is finite, say

I ∩ Sσj = {αj,0, . . . , αj,kj−1}.

For every j1, j2 < ω̄, l1 < kj1 , l2 < kj2 and n1, n2 < ω set

c(j1, j2, l1, l2, n1, n2) =‖ s∼αj1,l1
(n1) 6= s∼αj2,l2

(n2) ‖ .

The following can be proved as in Claim 3.3.

Claim 4.3. The set ∆ = {(j1, j2, l1, l2, n1, n2) : b ≤ c(j1, j2, l1, l2, n1, n2)} is finite. Also

(j1, j2, l1, l2, n1, n2) ∈ ∆ implies (j2, j1, l2, l1, n2, n1) ∈ ∆.

Let Λ = {j < ω̄ : there exists (j1, j2, l1, l2, n1, n2) ∈ ∆ with j = j1}. Then Λ is finite. For

each j ∈ Λ, by (c), we can find n∗j < ω such that for all n ≥ n∗j and α∗
1 < α∗

2 in I ∩ Sσj
we

have fα∗
1
(n) < fα∗

2
(n).

Let

S′ = [{x ∈ 2κ×κ×ω : ∀j ∈ Λ(∀n < n∗j , x(σj , σj , n) = 0 and x(σj , σj , n
∗
j ) = 1)}]

Then µκ×κ(S′) = 2−|Λ|(n
∗
j +1) > 0, and so p′ = [S′] ∈ R(κ × κ). Also, for each j ∈ Λ and

l < kj , p′ 
 pkαjl
= n∗jq. Let

S̄ = {y ∈ S′ : ∀n < ω∃x ∈ Tb,∀j ∈ Λ∀l < kj∀m < n ( y(fαjl
(n∗j + m), σj , 0) = x(αjl,m) )}.
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By our choice of n∗j there are no collisions and the above definition is well-defined. Also, by

the same arguments as before, µκ×κ(S̄) = µκ×κ(S′) > 0.

Let p̄ = [S̄]. Then p̄ ∈ R(κ× κ) is well-defined and for all α = αjl ∈ I, where j ∈ Λ and

l < kj , and all y ∈ Sp̄ we can find x ∈ Tb such that for m < n

p̄ 
 “ s∼α(m) = s∼αjl
(m)

= r∼fαjl
(n∗

j +m),σj
(0)

= y(fαjl
(n∗j + m), σj , 0)

= x(αjl,m)

= x(α, m)”.

This implies

p̄ 
 p〈 s∼αjl
: j ∈ Λ, l < kj〉 extends bq.

Now, as in the proof of Claim 3.6, we have the following:

Claim 4.4. p̄ 
 p〈 s∼α : α ∈ I〉 extends bq.

(∗) follows and we are done. �

The theorem follows. �

The following theorem follows from Theorem 4.1 and the arguments from [2].

Theorem 4.5. (a) Suppose that GCH holds in V, κ is a cardinal of countable cofinal-

ity and there are κ−many measurable cardinals below κ. Then there is a cardinal

preserving not adding a real extension V1 of V such that adding κ−many random

reals over V1 produces κ+−many random reals over V .

(b) Suppose that V1 ⊇ V are such that:

(1) V1 and V have the same cardinals and reals,

(2) κ < λ are infinite cardinals of V1,

(3) there is no splitting 〈Sσ : σ < κ〉 of λ in V1 as in Theorem 3.1(d).

Then adding κ−many random reals over V1 cannot produce λ−many random reals

over V.

(c) The following are equiconsistent:
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(1) There exists a pair (V1, V2), V1 ⊆ V2 of models of set theory with the same

cardinals and reals and a cardinal κ of cofinality ω (in V2) such that adding

κ−many random reals over V2 adds more than κ−many random reals over V1.

(2) There exists a cardinal δ which is a limit of δ−many measurable cardinals.

(d) Suppose that V1 ⊇ V are such that V1 and V have the same cardinals and reals

and ℵδ is less than the first fixed point of the ℵ−function. Then adding ℵδ−many

random reals over V1 cannot produce ℵδ+1−many random reals over V.

(e) Suppose GCH holds and there exists a cardinal κ which is of cofinality ω and is

a limit of κ−many measurable cardinals. Then there is pair (V1, V2) of models of

ZFC, V1 ⊆ V2 such that:

(1) V1 and V2 have the same cardinals and reals.

(2) κ is the first fixed point of the ℵ−function in V1 (and hence in V2).

(3) Adding κ−many random reals over V2 adds κ+−many random reals over V1.
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