ADDING A LOT OF COHEN REALS BY ADDING A FEW I

MOTI GITIK AND MOHAMMAD GOLSHANI

ABSTRACT. In this paper we produce models $V_1 \subseteq V_2$ of set theory such that adding κ -many Cohen reals to V_2 adds λ -many Cohen reals to V_1 , for some $\lambda > \kappa$. We deal mainly with the case when V_1 and V_2 have the same cardinals.

1. Introduction

A basic fact about Cohen reals is that adding λ -many Cohen reals cannot produce more that λ -many of Cohen reals ¹. More precisely, if $\langle s_{\alpha} : \alpha < \lambda \rangle$ are λ -many Cohen reals over V, then in $V[\langle s_{\alpha} : \alpha < \lambda \rangle]$ there are no λ ⁺-many Cohen reals over V. But if instead of dealing with one universe V we consider two, then the above may no longer be true.

The purpose of this paper is to produce models $V_1 \subseteq V_2$ such that adding κ -many Cohen reals to V_2 adds λ -many Cohen reals to V_1 , for some $\lambda > \kappa$. We deal mainly with the case when V_1 and V_2 have the same cardinals.

2. Models with the same reals

In this section we produce models $V_1 \subseteq V_2$ as above with the same reals. We first state a general result.

Theorem 2.1. Let V_1 be an extension of V. Suppose that in V_1 :

- (a) $\kappa < \lambda$ are infinite cardinals,
- (b) λ is regular,
- (c) there exists an increasing sequence $\langle \kappa_n : n < \omega \rangle$ cofinal in κ . In particular $cf(\kappa) = \omega$,
- (d) there exists an increasing (mod finite) sequence $\langle f_{\alpha} : \alpha < \lambda \rangle$ of functions in $\prod_{n < \omega} (\kappa_{n+1} \setminus \kappa_n)$,

and

¹By " λ -many Cohen reals" we mean "a generic object $\langle s_{\alpha} : \alpha < \lambda \rangle$ for the poset $\mathbb{C}(\lambda)$ of finite partial functions from $\lambda \times \omega$ to 2".

(e) there exists a club $C \subseteq \lambda$ which avoids points of countable V-cofinality. Then adding κ -many Cohen reals over V_1 produces λ -many Cohen reals over V.

Proof. We consider two cases.

Case $\lambda = \kappa^+$. Force to add κ -many Cohen reals over V_1 . Split them into two sequences of length κ denoted by $\langle r_i : i < \kappa \rangle$ and $\langle r_i' : i < \kappa \rangle$. Also let $\langle f_\alpha : \alpha < \kappa^+ \rangle \in V_1$ be an increasing (mod finite) sequence in $\prod_{n < \omega} (\kappa_{n+2} \setminus \kappa_{n+1})$. Let $\alpha < \kappa^+$. We define a real s_α as follows:

Case 1. $\alpha \in C$. Then

$$\forall n < \omega, \, s_{\alpha}(n) = r_{f_{\alpha}(n)}(0).$$

Case 2. $\alpha \notin C$. Let α^* and α^{**} be two successor points of C so that $\alpha^* < \alpha < \alpha^{**}$. Let $\langle \alpha_i : i < \kappa \rangle$ be some fixed enumeration of the interval (α^*, α^{**}) . Then for some $i < \kappa$, $\alpha = \alpha_i$. Let $k(i) = \min\{k < \omega : r_i'(k) = 1\}$. Set

$$\forall n < \omega, \, s_{\alpha}(n) = r_{f_{\alpha}(k(i)+n)}(0).$$

The following lemma completes the proof.

Lemma 2.2. $\langle s_{\alpha} : \alpha < \kappa^{+} \rangle$ is a sequence of κ^{+} -many Cohen reals over V.

Notation 2.3. For each set I, let $\mathbb{C}(I)$ be the Cohen forcing notion for adding I-many Cohen reals. Thus $\mathbb{C}(I) = \{p : p \text{ is a finite partial function from } I \times \omega \text{ into } 2 \}$, ordered by reverse inclusion.

Proof. First note that $\langle \langle r_i : i < \kappa \rangle, \langle r'_i : i < \kappa \rangle \rangle$ is $\mathbb{C}(\kappa) \times \mathbb{C}(\kappa)$ -generic over V_1 . By c.c.c of $\mathbb{C}(\kappa^+)$ it suffices to show that for any countable set $I \subseteq \kappa^+$, $I \in V$, the sequence $\langle s_\alpha : \alpha \in I \rangle$ is $\mathbb{C}(I)$ -generic over V. Thus it suffices to prove the following:

for every $(p,q) \in \mathbb{C}(\kappa) \times \mathbb{C}(\kappa)$ and every open dense subset $D \in$

(*) V of $\mathbb{C}(I)$, there is $(\bar{p}, \bar{q}) \leq (p, q)$ such that $(\bar{p}, \bar{q}) \parallel - \text{``} \langle \underline{s}_{\alpha} : \alpha \in I \rangle$ extends some element of D".

Let (p,q) and D be as above. For simplicity suppose that $p=q=\emptyset$. By (e) there are only finitely many $\alpha^* \in C$ such that $I \cap [\alpha^*, \alpha^{**}) \neq \emptyset$, where $\alpha^{**} = \min(C \setminus (\alpha^* + 1))$. For

simplicity suppose that there are two $\alpha_1^* < \alpha_2^*$ in C with this property. Let $n^* < \omega$ be such that for all $n \ge n^*$, $f_{\alpha_1^*}(n) < f_{\alpha_2^*}(n)$. Let $p \in \mathbb{C}(\kappa)$ be such that

$$dom(p) = \{ \langle \beta, 0 \rangle : \exists n < n^*(\beta = f_{\alpha_1^*}(n) \text{ or } \beta = f_{\alpha_2^*}(n)) \}.$$

Then for $n < n^*$ and $j \in \{1, 2\}$,

$$(p,\emptyset) \parallel - \text{``} s_{\alpha_i^*}(n) = r_{f_{\alpha_i^*}(n)}(0) = p(f_{\alpha_i^*(n)},0)$$
''

Thus (p,\emptyset) decides $s_{\alpha_1^*} \upharpoonright n^*$ and $s_{\alpha_2^*} \upharpoonright n^*$. Let $b \in D$ be such that

$$(p,\emptyset)\parallel$$
 - " $\langle b(\alpha_1^*), b(\alpha_2^*)\rangle$ extends $\langle s_{\alpha_1^*} \upharpoonright n^*, s_{\alpha_2^*} \upharpoonright n^*\rangle$ "

Where $b(\alpha)$ is defined by $b(\alpha):\{n:(\alpha,n)\in\mathrm{dom}(b)\}\longrightarrow 2$ and $b(\alpha)(n)=b(\alpha,n)$. Let

$$p' = p \cup \bigcup_{j \in \{1,2\}} \{ \langle f_{\alpha_j^*}(n), 0, b(\alpha_j^*, n) \rangle : n \ge n^*, (\alpha_j^*, n) \in \text{dom}(b) \}.$$

Then $p' \in \mathbb{C}(\kappa)^2$ and

$$(p',\emptyset)\parallel$$
 " $\langle \underline{s}_{\alpha_1^*},\underline{s}_{\alpha_2^*}\rangle$ extends $\langle b(\alpha_1^*),b(\alpha_2^*)\rangle$ "

For $j \in \{1,2\}$, let $\{\alpha_{j_0},...,\alpha_{jk_j-1}\}$ be an increasing enumeration of components of b in the interval $(\alpha_j^*,\alpha_j^{**})$ (i.e. those $\alpha \in (\alpha_j^*,\alpha_j^{**})$ such that $(\alpha,n) \in \text{dom}(b)$ for some n). For $j \in \{1,2\}$ and $l < k_j$ let $\alpha_{jl} = \alpha_{ijl}$ where $i_{jl} < \kappa$ is the index of α_{jl} in the enumeration of the interval $(\alpha_j^*,\alpha_j^{**})$ considered in Case 2 above. Let $m^* < \omega$ be such that for all $n \geq m^*$, $j \in \{1,2\}$ and $l_j < l'_j < k_j$ we have

$$f_{\alpha_1^*}(n) < f_{\alpha_1 \ell_1}(n) < f_{\alpha_1 \ell_1'}(n) < f_{\alpha_2^*}(n) < f_{\alpha_2 \ell_2}(n) < f_{\alpha_2 \ell_2'}(n).$$

Let

$$\bar{q} = \{\langle i_{il}, n, 0 \rangle : j \in \{1, 2\}, l < k_i, n < m^* \}.$$

Then $\bar{q} \in \mathbb{C}(\kappa)$ and for $j \in \{1,2\}$ and $n < m^*$, $(\emptyset, \bar{q}) \parallel - "r'_{i_{jl}}(n) = 0"$, thus $(\emptyset, \bar{q}) \parallel - "k(j,l) = \min\{k < \omega : r'_{i_{jl}}(k) = 1\} \ge m^*$ ". Let

$$\bar{p} = p' \cup \bigcup_{j \in \{1,2\}} \{ \langle f_{\alpha_{jl}}(k(j,t)+n), 0, b(\alpha_{jl},n) \rangle : l < k_j, (\alpha_{jl},n) \in \text{dom}(b) \}.$$

It is easily seen that $\bar{p} \in \mathbb{C}(\kappa)$ is well-defined and for $j \in \{1, 2\}$ and $l < k_j$,

²This is because for $n \ge n^*$, $f_{\alpha_1^*}(n) \ne f_{\alpha_2^*}(n)$ and for $j \in \{1, 2\}$, $f_{\alpha_j^*}(n) \notin \{f_{\alpha_j^*}(m) : m < n\}$, thus there are no collisions.

$$(\bar{p}, \bar{q}) \parallel -$$
" $\underset{\sim}{\mathcal{S}}_{\alpha_{jl}}$ extends $b(\alpha_{jl})$ ".

Thus

$$(\bar{p},\bar{q})\parallel$$
 " $\langle s_{,\alpha}:\alpha\in I\rangle$ extends b".

(*) follows and we are done.

Case $\lambda > \kappa^+$. Force to add κ -many Cohen reals over V_1 . We now construct λ -many Cohen reals over V as in the above case using C and $\langle f_\alpha : \alpha < \lambda \rangle$. Case 2 of the definition of $\langle s_\alpha : \alpha < \lambda \rangle$ is now problematic since the cardinality of an interval (α^*, α^{**}) (using the above notation) may now be above κ and we have only κ -many Cohen reals to play with. Let us proceed as follows in order to overcome this.

Let us rearrange the Cohen reals as $\langle r_{n,\alpha} : n < \omega, \alpha < \kappa \rangle$ and $\langle r_{\eta} : \eta \in [\kappa]^{<\omega} \rangle$. We define by induction on levels a tree $T \subseteq [\lambda]^{<\omega}$, its projection $\pi(T) \subseteq [\kappa]^{<\omega}$ and for each $n < \omega$ and $\alpha \in Lev_n(T)$ a real s_{α} . The union of the levels of T will be λ so $\langle s_{\alpha} : \alpha < \lambda \rangle$ will be defined.

For
$$n = 0$$
, let $Lev_0(T) = \langle \rangle = Lev_0(\pi(T))$.

For n = 1, let $Lev_1(T) = C$, $Lev_1(\pi(T)) = \{0\}$, i.e. $\pi(\langle \alpha \rangle) = \langle 0 \rangle$ for every $\alpha \in C$. For $\alpha \in C$ we define a real s_{α} by

$$\forall m < \omega, \ s_{\alpha}(m) = r_{1,f_{\alpha}(m)}(0).$$

Suppose now that n > 1 and $T \upharpoonright n$ and $\pi(T) \upharpoonright n$ are defined. We define $Lev_n(T)$, $Lev_n(\pi(T))$ and reals s_{α} for $\alpha \in Lev_n(T)$. Let $\eta \in T \upharpoonright n-1$, $\alpha^*, \alpha^{**} \in Suc_T(\eta)$ and $\alpha^{**} = \min(Suc_T(\eta) \setminus (\alpha^* + 1))$. We define $Suc_T(\eta \cap \langle \alpha^{**} \rangle)$ if it is not yet defined ³.

Case A. $|\alpha^{**} \setminus \alpha^*| \leq \kappa$.

Fix some enumeration $\langle \alpha_i : i < \rho \leq \kappa \rangle$ of $\alpha^{**} \setminus \alpha^*$. Let

- $Suc_T(\eta \cap \langle \alpha^{**} \rangle) = \alpha^{**} \setminus \alpha^*$,
- $Suc_T(\eta \land \langle \alpha^{**} \rangle \land \langle \alpha \rangle) = \langle \rangle$ for $\alpha \in \alpha^{**} \setminus \alpha^*$,
- $Suc_{\pi(T)}(\pi(\eta^{\widehat{}}\langle\alpha^{**}\rangle)) = \rho = |\alpha^{**} \setminus \alpha^{*}|,$
- $Suc_{\pi(T)}(\pi(\eta^{\widehat{}}\langle\alpha^{**}\rangle)^{\widehat{}}\langle\imath\rangle) = \langle\rangle$ for $\imath < \rho$.

Now we define s_{α} for $\alpha \in \alpha^{**} \setminus \alpha^{*}$. Let i be such that $\alpha = \alpha_{i}$. let $k = \min\{m < \omega : r_{\pi(\eta \cap \langle \alpha^{**} \rangle) \cap \langle i \rangle}(m) = 1\}$, Finally let

³Then $Lev_n(T)$ will be the union of such $Suc_T(\eta \cap \langle \alpha^{**} \rangle)$'s.

$$\forall m < \omega, s_{\alpha}(m) = r_{n, f_{\alpha}(k+m)}(0).$$

Case B. $|\alpha^{**} \setminus \alpha^*| > \kappa$ and $cf(\alpha^{**}) < \kappa$.

Let $\rho = cf\alpha^{**}$ and let $\langle \alpha_{\nu}^{**} : \nu < \rho \rangle$ be a normal sequence cofinal in α^{**} with $\alpha_0^{**} > \alpha^*$. Let

- $Suc_T(\eta \widehat{\ } \langle \alpha^{**} \rangle) = \{\alpha_{\nu}^{**} : \nu < \rho\},$
- $Suc_{\pi(T)}(\pi(\eta \cap \langle \alpha^{**} \rangle)) = \rho.$

Now we define $s_{\alpha_{\nu}^{**}}$ for $\nu < \rho$. Let $k = \min\{m < \omega : r_{\pi(\eta^{\frown}(\alpha^{**}))^{\frown}(\nu)}(m) = 1\}$ and let

$$\forall m < \omega, s_{\alpha_{\nu}^{**}}(m) = r_{n, f_{\alpha^{**}}(k+m)}(0).$$

Case C. $cf(\alpha^{**}) > \kappa$.

Let ρ and $\langle \alpha_{\nu}^{**} : \nu < \rho \rangle$ be as in Case B. Let

- $Suc_T(\eta \widehat{\ } \langle \alpha^{**} \rangle) = \{\alpha_{\nu}^{**} : \nu < \rho\},$
- $Suc_{\pi(T)}(\pi(\eta^{\widehat{}}\langle\alpha^{**}\rangle)) = \langle 0\rangle.$

We define $s_{\alpha_{\nu}^{**}}$ for $\nu < \rho$. Let $k = \min\{m < \omega : r_{\pi(\eta \cap \langle \alpha^{**} \rangle) \cap \langle 0 \rangle}(m) = 1\}$ and let

$$\forall m < \omega, s_{\alpha_{\nu}^{**}}(m) = r_{n, f_{\alpha^{**}}(k+m)}(0).$$

By the definition, T is a well-founded tree and $\bigcup_{n<\omega} Lev_n(T)=\lambda$. The following lemma completes our proof.

Lemma 2.4. $\langle s_{\alpha} : \alpha < \lambda \rangle$ is a sequence of λ -many Cohen reals over V.

Proof. First note that $\langle \langle r_{n,\alpha} : n < \omega, \alpha < \kappa \rangle, \langle r_{\eta} : \eta \in [\kappa]^{<\omega} \rangle \rangle$ is $\mathbb{C}(\omega \times \kappa) \times \mathbb{C}([\kappa]^{<\omega})$ —generic over V_1 . By c.c.c of $\mathbb{C}(\lambda)$ it suffices to show that for any countable set $I \subseteq \lambda$, $I \in V$, the sequence $\langle s_{\alpha} : \alpha \in I \rangle$ is $\mathbb{C}(I)$ —generic over V. Thus it suffices to prove the following:

For every $(p,q)\in\mathbb{C}(\omega\times\kappa)\times\mathbb{C}([\kappa]^{<\omega})$ and every open dense subset

(*) $D \in V$ of $\mathbb{C}(I)$, there is $(\bar{p}, \bar{q}) \leq (p, q)$ such that $(\bar{p}, \bar{q}) \parallel - \text{``} \langle s_{\alpha} : \alpha \in I \rangle$ extends some element of D".

Let (p,q) and D be as above. for simplicity suppose that $p=q=\emptyset$. For each $n<\omega$ let $I_n=I\cap Lev_n(T)$. Then $I_0=\emptyset$ and $I_1=I\cap C$ is finite. For simplicity let $I_1=\{\alpha_1^*,\alpha_2^*\}$ where $\alpha_1^*<\alpha_2^*$. Pick $n^*<\omega$ such that for all $n\geq n^*$, $f_{\alpha_1^*}(n)< f_{\alpha_2^*}(n)$. Let $p_0\in\mathbb{C}(\omega\times\kappa)$ be such that

$$\mathrm{dom}(p_0) = \{\langle 1,\beta,0\rangle : \exists n < n^*(\beta = f_{\alpha_1^*}(n) \text{ or } \beta = f_{\alpha_2^*}(n))\}.$$

Then for $n < n^*$ and $j \in \{1, 2\}$

$$(p_0,\emptyset)\|-\text{``}s_{\alpha_i^*}(n)=\underset{\sim}{c_{1,f_{\alpha_i^*}(n)}}(0)=p_0(1,f_{\alpha_i^*}(n),0)\text{''}.$$

thus (p_0,\emptyset) decides $s_{\alpha_1^*} \upharpoonright n^*$ and $s_{\alpha_2^*} \upharpoonright n^*$. Let $b \in D$ be such that

$$(p_0,\emptyset)\parallel$$
 " $\langle b(\alpha_1^*),b(\alpha_2^*)\rangle$ extends $\langle s_{\alpha_1^*} \upharpoonright n^*,s_{\alpha_2^*} \upharpoonright n^*\rangle$ ".

Let

$$p_1 = p_0 \cup \bigcup_{j \in \{1,2\}} \{ \langle 1, f_{\alpha_j^*}(n), 0, b(\alpha_j^*, n) \rangle : n \ge n^*, (\alpha_j^*, n) \in \text{dom}(b) \}.$$

Then $p_1 \in \mathbb{C}(\omega \times \kappa)$ is well-defined and letting $q_1 = \emptyset$, we have

$$(p_1,q_1)\parallel$$
 " $\langle s_{\alpha_1^*}, s_{\alpha_2^*} \rangle$ extends $\langle b(\alpha_1^*), b(\alpha_2^*) \rangle$ ".

For each $n < \omega$ let J_n be the set of all components of b which are in I_n , i.e. $J_n = \{\alpha \in I_n : \exists n, (\alpha, n) \in \text{dom}(b)\}$. We note that $J_0 = \emptyset$ and $J_1 = I_1 = \{\alpha_1^*, \alpha_2^*\}$. Also note that for all but finitely many $n < \omega, J_n = \emptyset$. Thus let us suppose $t < \omega$ is such that for all n > t, $J_n = \emptyset$. Let us consider J_2 . For each $\alpha \in J_2$ there are three cases to be considered:

Case 1. There are $\alpha^* < \alpha^{**}$ in $Lev_1(T) = C$, $\alpha^{**} = \min(C \setminus (\alpha^* + 1))$ such that $|\alpha^{**} \setminus \alpha^*| \le \kappa$ and $\alpha \in Suc_T(\langle \alpha^{**} \rangle) = \alpha^{**} \setminus \alpha^*$. Let i_α be the index of α in the enumeration of $\alpha^{**} \setminus \alpha^*$ considered in Case A above, and let $k_\alpha = \min\{m < \omega : r_{\pi(\langle \alpha^{**} \rangle) \cap \langle i_\alpha \rangle}(m) = 1\}$. Then

$$\forall m < \omega, s_{\alpha}(m) = r_{2,f_{\alpha}(k_{\alpha}+m)}(0).$$

Case 2. There are $\alpha^* < \alpha^{**}$ as above such that $|\alpha^{**} \setminus \alpha^*| > \kappa$ and $\rho = cf\alpha^{**} < \kappa$. Let $\langle \alpha_{\nu}^{**} : \nu < \rho \rangle$ be as in Case B. Then $\alpha = \alpha_{\nu_{\alpha}}^{**}$ for some $\nu_{\alpha} < \rho$ and if $k_{\alpha} = \min\{m < \omega : r_{\pi(\langle \alpha^{**} \rangle) \cap \langle \nu_{\alpha} \rangle}(m) = 1\}$. Then

$$\forall m < \omega, \ s_{\alpha}(m) = r_{2,f_{\alpha}(k_{\alpha}+m)}(0).$$

Case 3. There are $\alpha^* < \alpha^{**}$ as above such that $\rho = cf\alpha^{**} > \kappa$. Let $\langle \alpha_{\nu}^{**} : \nu < \rho \rangle$ be as in Case C. Then $\alpha = \alpha_{\nu_{\alpha}}^{**}$ for some $\nu_{\alpha} < \rho$ and if $k_{\alpha} = \min\{m < \omega : r_{\pi(\langle \alpha^{**} \rangle) \cap \langle 0 \rangle}(m) = 1\}$, then

$$\forall m < \omega, \, s_{\alpha}(m) = r_{2, f_{\alpha}(k_{\alpha} + m)}(0).$$

Let $m^* < \omega$ be such that for all $n \ge m^*$ and $\alpha < \alpha'$ in $J_1 \cup J_2$, $f_{\alpha}(n) < f_{\alpha'}(n)$. Let

$$q_2 = \{\langle \eta, n, 0 \rangle : n < m^*, \exists \alpha \in J_2(\eta = \pi(\langle \alpha^{**} \rangle) \cap \langle i_\alpha \rangle \text{ or }$$

$$\eta = \pi(\langle \alpha^{**} \rangle) \cap \langle \nu_\alpha \rangle \text{ or }$$

$$\eta = \pi(\langle \alpha^{**} \rangle) \cap \langle 0 \rangle) \}.$$

Then $q_2 \in \mathbb{C}([\kappa]^{<\omega})$ is well-defined and for each $\alpha \in J_2$, $(\phi, q_2) \parallel - k_\alpha \geq m^*$. Let

$$p_2 = p_1 \cup \{\langle 2, f_\alpha(k_\alpha + m), 0, b(\alpha, m) \rangle : \alpha \in J_2, (\alpha, m) \in \text{dom}(b)\}.$$

Then $p_2 \in \mathbb{C}(\omega \times \kappa)$ is well-defined, $(p_2, q_2) \leq (p_1, q_1)$ and for $\alpha \in J_2$ and $m < \omega$ with $(\alpha, m) \in \text{dom}(b)$,

$$(p_2, q_2) \| - \text{``} s_{\alpha}(m) = r_{2, f_{\alpha}(k_{\alpha} + m)}(0) = p_2(2, f_{\alpha}(k_{\alpha} + m), 0) = b(\alpha, m) = b(\alpha)(m)$$
",

thus $(p_2, q_2) \parallel -$ " $s_{,\alpha}$ extend $b(\alpha)$ " and hence

$$(p_2,q_2)\parallel - \langle s_{\alpha} : \alpha \in J_1 \cup J_2 \rangle \text{ extends } \langle b(\alpha) : \alpha \in J_1 \cup J_2 \rangle$$
.

By induction suppose that we have defined $(p_1, q_1) \ge (p_2, q_2) \ge ... \ge (p_j, q_j)$ for j < t, where for $1 \le i \le j$,

$$(p_i, q_i) \parallel - \langle s, \alpha : \alpha \in J_1 \cup ... \cup J_i \rangle$$
 extends $\langle b(\alpha) : \alpha \in J_1 \cup ... \cup J_i \rangle$.

We define $(p_{j+1}, q_{j+1}) \leq (p_j, q_j)$ such that for each $\alpha \in J_{j+1}, (p_{j+1}, q_{j+1}) \parallel -$ " $\underset{\sim}{s}_{\alpha}$ extends $b(\alpha)$ ".

Let $\alpha \in J_{j+1}$. Then we can find $\eta \in T \upharpoonright j$ and $\alpha^* < \alpha^{**}$ such that $\alpha^*, \alpha^{**} \in Suc_T(\eta)$, $\alpha^{**} = \min(Suc_T(\eta) \setminus (\alpha^* + 1))$ and $\alpha \in Suc_T(\eta \cap \langle \alpha^{**} \rangle)$. As before there are three cases to be considered.

Case 1. $|\alpha^{**} \setminus \alpha^{*}| \leq \kappa$. Then let i_{α} be the index of α in the enumeration of $\alpha^{**} \setminus \alpha^{*}$ considered in Case A and let $k_{\alpha} = \min\{m < \omega : r_{\pi(\eta \cap \langle \alpha^{**} \rangle) \cap \langle i_{\alpha} \rangle}(m) = 1\}$. Then

$$\forall m < \omega, s_{\alpha}(m) = r_{i+1, f_{\alpha}(k_{\alpha}+m)}(0).$$

Case 2. $|\alpha^{**} \setminus \alpha^{*}| > \kappa$ and $\rho = cf\alpha^{**} < \kappa$. Let $\langle \alpha_{\nu}^{**} : \nu < \rho \rangle$ be as in Case B and let $\nu_{\alpha} < \rho$ be such that $\alpha = \alpha_{\nu_{\alpha}}^{**}$. Let $k_{\alpha} = \min\{m < \omega : r_{\pi(\eta \cap \langle \alpha^{**} \rangle) \cap \langle \nu_{\alpha} \rangle}(m) = 1\}$. Then

$$\forall m < \omega, s_{\alpha}(m) = r_{i+1, f_{\alpha}(k_{\alpha}+m)}(0).$$

Case 3. $\rho = cf\alpha^{**} > \kappa$. Let $\langle \alpha_{\nu}^{**} : \nu < \rho \rangle$ be as in Case C. Let $\nu_{\alpha} < \rho$ be such that $\alpha = \alpha_{\nu_{\alpha}}^{**}$ and let $k_{\alpha} = \min\{m < \omega : r_{\pi(\eta \cap \langle \alpha^{**} \rangle) \cap \langle 0 \rangle}(m) = 1\}$. Then

$$\forall m < \omega, s_{\alpha}(m) = r_{i+1, f_{\alpha}(k_{\alpha}+m)}(0).$$

Let $m^* < \omega$ be such that for all $n \ge m^*$ and $\alpha < \alpha'$ in $J_1 \cup ... \cup J_{j+1}, f_{\alpha}(n) < f_{\alpha'}(n)$. Let $q_{j+1} = q_j \cup \{\langle \bar{\eta}, n, 0 \rangle : n < m^*, \exists \alpha \in J_{j+1} \text{ (for some unique } \eta \in T \upharpoonright j,$ $\alpha^{**} \in Suc_T(\eta), \text{ we have } \alpha \in Suc_T(\eta \cap \langle \alpha^{**} \rangle)$

and
$$(\overline{\eta} = \pi(\eta \widehat{\alpha}^{**})\widehat{\alpha}^{i})$$
 or $\overline{\eta} = \pi(\eta \widehat{\alpha}^{**})\widehat{\alpha}^{i}$ or $\overline{\eta} = (\pi(\eta \widehat{\alpha}^{**})\widehat{\alpha}^{i})$ or $\overline{\eta} = (\pi(\eta \widehat{\alpha}^{**})\widehat{\alpha}^{i})$.

It is easily seen that $q_{j+1} \in \mathbb{C}([\kappa]^{<\omega})$ and for each $\alpha \in J_{j+1}$, $(\phi, q_{j+1}) \parallel - k_{\alpha} \geq m^*$. Let

$$p_{j+1} = p_j \cup \{ \langle j+1, f_{\alpha}(k_{\alpha} + m), 0, b(\alpha, m) \rangle : \alpha \in J_{j+1}, (\alpha, m) \in \text{dom}(b) \}.$$

Then $p_{j+1} \in \mathbb{C}(\omega \times \kappa)$ is well-defined and $(p_{j+1}, q_{j+1}) \leq (p_j, q_j)$ and for $\alpha \in J_{j+1}$ we have

$$(p_{j+1}, q_{j+1}) \parallel - \text{``} \underline{s}_{\alpha}(m) = \underline{r}_{j+1, f_{\alpha}(k_{\alpha}+m)}(0) = p_{j+1}(j+1, f_{\alpha}(k_{\alpha}+m), 0) = b(\alpha, m) = b(\alpha)(m)$$
".

Thus $(p_{j+1}, q_{j+1}) \parallel -$ " \lesssim_{α} extends $b(\alpha)$ ". Finally let $(\bar{p}, \bar{q}) = (p_t, q_t)$. Then for each component α of b,

$$(\bar{p}, \bar{q}) \parallel -$$
" $\underset{\sim}{s}_{\alpha}$ extends $b(\alpha)$ ".

Hence

$$(\bar{p}, \bar{q}) \parallel - "\langle s_{,\alpha} : \alpha \in I \rangle$$
 extends b".

(*) follows and we are done

Theorem 2.1 follows.
$$\Box$$

We now give several applications of the above theorem.

Theorem 2.5. Suppose that V satisfies GCH, $\kappa = \bigcup_{n < \omega} \kappa_n$ and $\bigcup_{n < \omega} o(\kappa_n) = \kappa$ (where $o(\kappa_n)$ is the Mitchell order of κ_n). Then there exists a cardinal preserving generic extension V_1 of V satisfying GCH and having the same reals as V does, so that adding κ -many Cohen reals over V_1 produces κ^+ -many Cohen reals over V.

Proof. Rearranging the sequence $\langle \kappa_n : n < \omega \rangle$ we may assume that $o(\kappa_{n+1}) > \kappa_n$ for each $n < \omega$. Let $0 < n < \omega$. By [Mag 1], there exists a forcing notion \mathbb{P}_n such that:

- Each condition in \mathbb{P}_n is of the form (g, G), where g is an increasing function from a finite subset of κ_n^+ into κ_{n+1} and G is a function from $\kappa_n^+ \setminus \text{dom}(g)$ into $\mathcal{P}(\kappa_{n+1})$. We may also assume that conditions have no parts below or at κ_n , and sets of measure one are like this as well.
- Forcing with \mathbb{P}_n preserves cardinals and the GCH, and adds no new subsets to κ_n .
- If G_n is \mathbb{P}_n -generic over V, then in $V[G_n]$ there is a normal function $g_n^*: \kappa_n^+ \longrightarrow \kappa_{n+1}$ such that $ran(g_n^*)$ is a club subset of κ_{n+1} consisting of measurable cardinals of V such that $V[G_n] = V[g_n^*]$.

Let
$$\mathbb{P}^* = \prod_{n < \omega} \mathbb{P}_n$$
, and let
$$\mathbb{P} = \{ \langle \langle g_n, G_n \rangle : n < \omega \rangle \in \mathbb{P}^* : g_n = \emptyset, \text{ for all but finitely many } n \}.$$

Then using simple modification of arguments from [Mag 1,2] we can show that forcing with \mathbb{P} preserves cardinals and the GCH. Let G be \mathbb{P} -generic over V, and let $g_n^*: \kappa_n^+ \longrightarrow \kappa_{n+1}$ be the generic function added by the part of the forcing corresponding to \mathbb{P}_n , for $0 < n < \omega$. Let $X = \bigcup_{0 < n < \omega} ((ran(g_n^*) \setminus \kappa_n^+) \cup \{\kappa_{n+1}\})$ and let $g^*: \kappa \longrightarrow \kappa$ be an enumeration of X in increasing order. Then $X = ran(g^*)$ is club in κ and consists entirely of measurable cardinals of V. Also $V[G] = V[g^*]$.

Working in V[G], let \mathbb{Q} be the usual forcing notion for adding a club subset of κ^+ which avoids points of countable V-cofinality. Thus $\mathbb{Q} = \{p : p \text{ is a closed bounded subset of } \kappa^+$ and avoids points of countable V-cofinality $\}$, ordered by end extension. Let H be \mathbb{Q} -generic over V[G] and $C = \bigcup \{p : p \in H\}$.

Lemma 2.6. (a) (\mathbb{Q}, \leq) satisfies the κ^{++} -c.c,

- (b) (\mathbb{Q}, \leq) is $< \kappa^+ distributive$,
- (c) C is a club subset of κ^+ which avoids points of countable V-cofinality.
- (a) and (c) of the above lemma are trivial. For use later we prove a more general version of (b).

Lemma 2.7. Let $V \subseteq W$, let ν be regular in W and suppose that:

- (a) W is a ν -c.c extension of V,
- (b) For every $\lambda < \nu$ which is regular in W, there is $\tau < \nu$ so that $cf^W(\tau) = \lambda$ and τ has a club subset in W which avoids points of countable V-cofinality.

In W let $\mathbb{Q} = \{ p \subseteq \nu : p \text{ is closed and bounded in } \nu \text{ and avoids points of countable } V-cofinality \}$. Then in W, \mathbb{Q} is $< \nu-distributive$.

Proof. This lemma first appeared in [G-N-S]. We prove it for completeness. Suppose that W = V[G], where G is \mathbb{P} -generic over V for a ν -c.c forcing notion \mathbb{P} . Let $\lambda < \nu$ be regular, $q \in \mathbb{Q}$, $f \in W^{\mathbb{Q}}$ and

$$q \parallel -$$
" $f : \lambda \longrightarrow on$ ".

We find an extension of q which decides f. By f we can find f and f and f and f is a club of f which avoids points of countable f countable f countable f and f is a club of f which avoids points of countable f and f is a club of f which avoids points of countable f contable f and f is a club of f which avoids points of countable f and f is a club of f which avoids points of countable f is a club of f which avoids points of countable f is a club of f which avoids points of f is a club of f which avoids points of f is a club of f which avoids points of f is a club of f which avoids points of f is a club of f which avoids points of f is a club of f which avoids points of f is a club of f which avoids points of f is a club of f which avoids points of f is a club of f which avoids points of f is a club of f which avoids points of f is a club of f which avoids points of f is a club of f which avoids points of f is a club of f which avoids points of f is a club of f which avoids points of f is a club of f which avoids points of f is a club of f which avoids points of f is a club of f which avoids points of f is a club of f is a cl

In W, let $\theta > \nu$ be large enough regular. Working in V, let $\bar{H} \prec V_{\theta}$ and $R : \tau \longrightarrow on$ be such that

- $Card(\bar{H}) < \nu$,
- \bar{H} has $\lambda, \tau, \nu, \mathbb{P}$ and \mathbb{P} —names for p, \mathbb{Q}, f, g and C as elements,
- ran(R) is cofinal in $\sup(\bar{H} \cap \nu)$,
- $R \upharpoonright \beta \in \bar{H}$ for each $\beta < \tau$.

Let $H = \bar{H}[G]$. Then $\sup(H \cap \nu) = \sup(\bar{H} \cap \nu)$, since \mathbb{P} is ν -c.c, $H \prec V_{\theta}^{W}$ and if $\gamma = \sup(H \cap \nu)$, then $cf^{W}(\gamma) = cf^{W}(\tau) = \lambda$. For $\alpha < \lambda$ let $\gamma_{\alpha} = R(g(\alpha))$. Then

- $\langle \gamma_{\alpha} : \alpha < \lambda \rangle \in W$ is a normal sequence cofinal in γ ,
- $\langle \gamma_{\alpha} : \alpha < \beta \rangle \in H$ for each $\beta < \lambda$, since $R \upharpoonright g(\beta) \in \overline{H}$,
- $cf^V(\gamma_\alpha) = cf^V(g(\alpha)) \neq \omega$ for each $\alpha < \lambda$, since R is normal and $g(\alpha) \in C$.

Let $D = \{ \gamma_{\alpha} : \alpha < \lambda \}$. We define by induction a sequence $\langle q_{\eta} : \eta < \lambda \rangle$ of conditions in \mathbb{Q} such that for each $\eta < \lambda$

- $q_0 = q$,
- $q_n \in H$,
- $q_{n+1} \leq q_n$,

- $q_{\eta+1}$ decides $f(\eta)$,
- $D \cap (\max q_{\eta}, \max q_{\eta+1}) \neq \emptyset$,
- $q_{\eta} = \bigcup_{\rho < \eta} q_{\rho} \cup \{\delta_{\eta}\}$, where $\delta_{\eta} = \sup \max_{\rho < \eta} q_{\rho}$, if η is a limit ordinal.

We may further suppose that

• q_{η} 's are chosen in a uniform way (say via a well-ordering which is built in to \bar{H}).

We can define such a sequence using the facts that H contains all initial segments of D and that $\delta_{\eta} \in D$ for every limit ordinal $\eta < \lambda$ (and hence $cf^{V}(\delta_{\eta}) \neq \omega$).

Finally let $q_{\lambda} = \bigcup_{\eta < \lambda} q_{\eta} \cup \{\delta_{\lambda}\}$, where $\delta_{\lambda} = \sup \max_{\eta < \lambda} q_{\eta}$. Then $\delta_{\lambda} \in D \cup \{\gamma\}$, hence $cf^{V}(\delta_{\lambda}) \neq \omega$. It follows that $q_{\lambda} \in \mathbb{Q}$ is well-defined. Trivially $q_{\lambda} \leq q$ and q_{λ} decides f. The lemma follows.

Let $V_1 = V[G * H]$. The following is obvious

Lemma 2.8. (a) V and V_1 have the same cardinals and reals,

(b)
$$V_1 \models$$
 "GCH",

Now the theorem follows from Theorem 2.1.

Let us show that some large cardinals are needed for the previous result.

Theorem 2.9. Assume that $V_1 \supseteq V$ and V_1 and V have the same cardinals and reals. Suppose that for some uncountable cardinal κ of V_1 , adding κ -many Cohen reals to V_1 produces κ^+ -many Cohen reals to V. Then in V_1 there is an inner model with a measurable cardinal.

Proof. Suppose on the contrary that in V_1 there is no inner model with a measurable cardinal. Thus by Dodd-Jensen covering lemma (see [D-J 1,2]) $(K(V_1), V_1)$ satisfies the covering lemma where $K(V_1)$ is the Dodd-Jensen core model as computed in V_1 .

Claim 2.10.
$$K(V) = K(V_1)$$

Proof. The claim is well-known and follows from the fact that V and V_1 have the same cardinals. We present a proof for completeness ⁴. Suppose not. Clearly $K(V) \subseteq K(V_1)$, so

⁴Our proof is the same as in the proof of [Sh 2, Theorem VII. 4.2(1)].

let $A \subseteq \alpha, A \in K(V_1), A \notin K(V)$. Then there is a mice of $K(V_1)$ to which A belongs, hence there is such a mice of $K(V_1)$ —power α . It then follows that for every limit cardinal $\lambda > \alpha$ of V_1 there is a mice with critical point λ to which A belongs, and the filter is generated by end segments of

$$\{\chi: \chi < \lambda, \chi \text{ a cardinal in } V_1\}.$$

As V and V_1 have the same cardinals, this mice is in V, hence in K(V).

Let us denote this common core model by K. Then $K \subseteq V$, and hence (V, V_1) satisfies the covering lemma. It follows that $([\kappa^+]^{\leq \omega_1})^V$ is unbounded in $([\kappa^+]^{\leq \omega})^{V_1}$ and since $\omega_1^V = \omega_1^{V_1}$, we can easily show that $([\kappa^+]^{\leq \omega})^V$ is unbounded in $([\kappa^+]^{\leq \omega})^{V_1}$. Since V_1 and V have the same reals, $([\kappa^+]^{\leq \omega})^V = ([\kappa^+]^{\leq \omega})^{V_1}$ and we get a contradiction.

If we relax our assumptions, and allow some cardinals to collapse, then no large cardinal assumptions are needed.

Theorem 2.11. (a) Suppose V is a model of GCH. Then there is a generic extension V_1 of V satisfying GCH so that the only cardinal of V which is collapsed in V_1 is \aleph_1 and such that adding \aleph_{ω} -many Cohen reals to V_1 produces $\aleph_{\omega+1}$ -many of them over V.

(b) Suppose V satisfies GCH. Then there is a generic extension V_1 of V satisfying GCH and having the same reals as V does, so that the only cardinals of V which are collapsed in V_1 are \aleph_2 and \aleph_3 and such that adding \aleph_{ω} -many Cohen reals to V_1 produces $\aleph_{\omega+1}$ -many of them over V.

Proof. (a) Working in V, let $\mathbb{P} = Col(\aleph_0, \aleph_1)$ and let G be \mathbb{P} -generic over V. Also let $S = \{\alpha < \omega_2 : cf^V(\alpha) = \omega_1\}$. Then S remains stationary in V[G]. Working in V[G], let \mathbb{Q} be the standard forcing notion for adding a club subset of S with countable conditions, and let H be \mathbb{Q} -generic over V[G]. Let $C = \bigcup H$. Then C is a club subset of $\omega_1^{V[G]} = \omega_2^V$ such that $C \subseteq S$, and in particular C avoids points of countable V-cofinality. Working in V[G*H], let

$$\mathbb{R} = \left\langle \left\langle \mathbb{P}_{\nu} : \aleph_2 \leq \nu \leq \aleph_{\omega+2}, \nu \text{ regular } \right\rangle, \left\langle \mathbb{Q}_{\nu} : \aleph_2 \leq \nu \leq \aleph_{\omega+1}, \nu \text{ regular } \right\rangle \right\rangle$$

be the Easton support iteration by letting \mathbb{Q}_{ν} name the poset $\{p \subset \nu : p \text{ is closed and bounded in } \nu \text{ and avoids points of countable } V-\text{cofinality}\}$ as defined in $V[G*H]^{\mathbb{P}_{\nu}}$. Let

$$K = \langle \langle G_{\nu} : \aleph_2 \leq \nu \leq \aleph_{\omega+2}, \nu \text{ regular } \rangle, \langle H_{\nu} : \aleph_2 \leq \nu \leq \aleph_{\omega+1}, \nu \text{ regular } \rangle \rangle$$

be \mathbb{R} -generic over V[G*H] (i.e G_{ν} is \mathbb{P}_{ν} -generic over V[G*H] and H_{ν} is $\mathbb{Q}_{\nu} = \mathbb{Q}_{\nu}[G_{\nu}]$ -generic over $V[G*H*G_{\nu}]$). Then

Lemma 2.12. (a) \mathbb{P}_{ν} adds a club disjoint from $\{\alpha < \lambda : cf^{V}(\alpha) = \omega\}$ for each regular $\lambda \in (\aleph_{1}, \nu)$,

- (b) (By 2.7) $V[G*H*G_{\nu}] \models \text{``}\mathbb{Q}_{\nu} \text{ is } < \nu-distributive'',$
- (c) V[G*H] and V[G*H*K] have the same cardinals and reals, and satisfy GCH,
- (d) In V[G*H*K] there is a club subset C of $\aleph_{\omega+1}$ which avoids points of countable V-cofinality.

Let $V_1 = V[G * H * K]$. By above results, V_1 satisfies GCH and the only cardinal of V which is collapsed in V_1 is \aleph_1 . The proof of the fact that adding \aleph_{ω} —many Cohen reals over V_1 produces $\aleph_{\omega+1}$ — many of them over V follows from Theorem 2.1.

(b) Working in V, let \mathbb{P} be the following version of Namba forcing:

$$\mathbb{P}=\{T\subseteq\omega_2^{<\omega}: T \text{ is a tree and for every } s\in T \text{, the set } \{t\in T: t\supset s\} \text{ has size } \aleph_2\}$$

ordered by inclusion. Let G be \mathbb{P} -generic over V. It is well-known that forcing with \mathbb{P} adds no new reals, preserves cardinals $\geq \aleph_4$ and that $|\aleph_2^V|^{V[G]} = |\aleph_3^V|^{V[G]} = \aleph_1^{V[G]} = \aleph_1^V$ (see [Sh 1]). Let $S = \{\alpha < \omega_3 : cf^V(\alpha) = \omega_2\}$.

Lemma 2.13. S remains stationary in V[G].

Proof. See [Ve-W, Lemma 3].
$$\Box$$

Now the rest of the proof is exactly as in (a).

The Theorem follows
$$\Box$$

By the same line but using stronger initial assumptions, adding κ -many Cohen reals may produce λ -many of them for λ much larger than κ^+ .

Theorem 2.14. Suppose that κ is a strong cardinal, $\lambda \geq \kappa$ is regular and GCH holds. Then there exists a cardinal preserving generic extension V_1 of V having the same reals as V does, so that adding κ -many Cohen reals over V_1 produces λ -many of them over V.

Proof. Working in V, build for each δ a measure sequence \vec{u}_{δ} from a j witnessing " κ strong" out to the first weak repeat point. Find \vec{u} such that $\vec{u} = \vec{u}_{\delta}$ for unboundedly many δ . Let $\mathbb{R}_{\vec{u}}$ be the corresponding Radin forcing notion and let G be $\mathbb{R}_{\vec{u}}$ -generic over V. Then

Lemma 2.15. (a) Forcing with $\mathbb{R}_{\vec{u}}$ preserves cardinals and the GCH and adds no new reals,

- (b) In V[G], there is a club $C_{\kappa} \subseteq \kappa$ consisting of inaccessible cardinals of V and $V[G] = V[C_{\kappa}]$,
 - (c) κ remains strong in V[G].

Working in V[G], let

$$E = \langle \langle U_{\alpha} : \alpha < \lambda \rangle, \langle \pi_{\alpha\beta} : \alpha \leq_E \beta \rangle \rangle$$

be a nice system satisfying conditions (0)-(9) in [Git 2, page 37]. Also let

$$\mathbb{R} = \langle \langle \mathbb{P}_{\nu} : \kappa^{+} \leq \nu \leq \lambda^{+}, \nu \text{ regular } \rangle, \langle \mathbb{Q}_{\nu} : \kappa^{+} \leq \nu \leq \lambda, \nu \text{ regular } \rangle \rangle$$

be the Easton support iteration by letting \mathbb{Q}_{ν} name the poset $\{p \subseteq \nu : p \text{ is closed and bounded in } \nu \text{ and avoids points of countable } V-\text{cofinality}\}$ as defined in $V[G]^{\mathbb{P}_{\nu}}$. Let

$$K = \langle \langle G_{\nu} : \kappa^{+} \leq \nu \leq \lambda^{+}, \nu \text{ regular } \rangle, \langle H_{\nu} : \kappa^{+} \leq \nu \leq \lambda, \nu \text{ regular } \rangle \rangle$$

be \mathbb{R} -generic over V[G]. Then

Lemma 2.16. (a) \mathbb{P}_{ν} adds a club disjoint form $\{\alpha < \delta : cf^{V}(\alpha) = \omega\}$ for each regular $\delta \in (\kappa, \nu)$,

- $(b) \ (By \ 2.7) \ V[G*G_{\nu}] \models \text{``}\mathbb{Q}_{\nu} = \mathbb{Q}_{\nu}[G_{\nu}] \ is < \nu distributive",$
- (c) V[G] and V[G*K] have the same cardinals, and satisfy GCH,
- (d) \mathbb{R} is $\leq \kappa$ -distributive, hence forcing with \mathbb{R} adds no new κ -sequences,
- (e) In V[G * K], for each regular cardinal $\kappa \leq \nu \leq \lambda$ there is a club $C_{\nu} \subseteq \nu$ such that C_{ν} avoids points of countable V-cofinality.

By 2.16.(d), E remains a nice system in V[G*K], except that the condition (0) is replaced by (λ, \leq_E) is κ^+ -directed closed. Hence working in V[G*K], by results of [Git-Mag 1,2] and [Mer], we can find a forcing notion S such that if L is S-generic over V[G*H] then

- V[G*K] and V[G*K*L] have the same cardinals and reals,
- In V[G*K*L], $2^{\kappa} = \lambda$, $cf(\kappa) = \aleph_0$ and there is an increasing sequence $\langle \kappa_n : n < \omega \rangle$ of regular cardinals cofinal in κ and an increasing (mod finite) sequence $\langle f_{\alpha} : \alpha < \lambda \rangle$ in $\prod (\kappa_{n+1} \setminus \kappa_n)$.

in $\prod_{n<\omega} (\kappa_{n+1} \setminus \kappa_n)$. Let $V_1 = V[G*K*L]$. Then V_1 and V have the same cardinals and reals. The fact that adding κ -many Cohen reals over V_1 produces λ -many Cohen reals over V follows from Theorem 2.1.

If we allow many cardinals between V and V_1 to collapse, then using [Git-Mag 1,Sec 2] one can obtain the following

Theorem 2.17. Suppose that there is a strong cardinal and GCH holds. Let $\alpha < \omega_1$. Then there is a model $V_1 \supset V$ having the same reals as V and satisfying GCH below $\aleph_{\omega}^{V_1}$ such that adding $\aleph_{\omega}^{V_1}$ -many Cohen reals to V_1 produces $\aleph_{\alpha+1}^{V_1}$ -many of them over V.

Proof. Proceed as in Theorem 2.14 to produce the model V[G*K]. Then working in V[G*K], we can find a forcing notion S such that if L is S-generic over V[G*H] then

- V[G*K] and V[G*K*L] have the same reals,
- In V[G*K*L], cardinals $\geq \kappa$ are preserved, $\kappa = \aleph_{\omega}$, GCH holds below \aleph_{ω} , $2^{\kappa} = \aleph_{\alpha+1}$ and there is an increasing (mod finite) sequence $\langle f_{\beta} : \beta < \aleph_{\alpha+1} \rangle$ in $\prod_{n < \omega} (\aleph_{n+1} \setminus \aleph_n)$. Let $V_1 = V[G*K*L]$. Then V_1 and V have the same reals. The fact that adding $\aleph_{\omega}^{V_1}$ -many Cohen reals over V_1 produces $\aleph_{\alpha+1}^{V_1}$ -many Cohen reals over V follows from Theorem 2.1.

3. Models with the same cofinality function but different reals

This section is completely devoted to the proof of the following theorem.

Theorem 3.1. Suppose that V satisfies GCH. Then there is a cofinality preserving generic extension V_1 of V satisfying GCH so that adding a Cohen real over V_1 produces \aleph_1 —many Cohen reals over V.

The basic idea of the proof will be to split ω_1 into ω sets such that none of them will contain an infinite set of V. Then something like in section 2 will be used for producing

Cohen reals. It turned out however that just not containing an infinity set of V is not enough. We will use a stronger property. As a result the forcing turns out to be more complicated. We are now going to define the forcing sufficient for proving the theorem. Fix a nonprincipal ultrafilter U over ω .

Definition 3.2. Let $(\mathbb{P}_U, \leq, \leq^*)$ be the Prikry (or in this context Mathias) forcing with U, i.e.

- $\mathbb{P}_U = \{ \langle s, A \rangle \in [\omega]^{<\omega} \times U : maxs < \min A \},$
- $\langle t, B \rangle \leq \langle s, A \rangle \iff t \ end \ extends \ s \ and \ (t \setminus s) \cup B \subseteq A$,
- $\langle t, B \rangle \leq^* \langle s, A \rangle \iff t = s \text{ and } B \subseteq A.$

We call \leq^* a direct or *-extension. The following are the basic facts on this forcing that will be used further.

Lemma 3.3. (a) The generic object of \mathbb{P}_U is generated by a real,

- (b) (\mathbb{P}_U, \leq) satisfies the c.c.c,
- (c) If $\langle s, A \rangle \in \mathbb{P}_U$ and $b \subseteq \omega \setminus (maxs + 1)$ is finite, then there is a *-extension of $\langle s, A \rangle$, forcing the generic real to be disjoint to b.

Proof. (a) If G is \mathbb{P}_U -generic over V, then let $r = \bigcup \{s : \exists A, \langle s, A \rangle \in G\}$. r is a real and $G = \{\langle s, A \rangle \in \mathbb{P}_U : r \text{ end extends } s \text{ and } r \setminus s \subseteq A\}$.

(b) Trivial using the fact that for $\langle s, A \rangle$, $\langle t, B \rangle \in \mathbb{P}_U$, if s = t then $\langle s, A \rangle$ and $\langle t, B \rangle$ are compatible.

(c) Consider
$$\langle s, A \setminus (maxb+1) \rangle$$
.

We now define our main forcing notion.

Definition 3.4. $p \in \mathbb{P}$ iff $p = \langle p_0, p_1 \rangle$ where

- (1) $p_0 \in \mathbb{P}_U$,
- (2) p_1 is a \mathbb{P}_U -name such that for some $\alpha < \omega_1$, $p_0 \parallel -\text{``} p_1 : \alpha \longrightarrow \omega$ '' and such that the following hold
 - (2a) For every $\beta < \alpha$, $p_1(\beta) \subseteq \mathbb{P}_U \times \omega$ is a \mathbb{P}_U -name for a natural number such that

- $p_1(\beta)$ is partial function from \mathbb{P}_U into ω ,
- for some fixed $l < \omega$, dom $p_1(\beta) \subseteq \{\langle s, \omega \setminus \max s + 1 \rangle : s \in [\omega]^l \}$,
- for all $\beta_1 \neq \beta_2 < \alpha$, $ran \underbrace{p}_1(\beta_1) \cap ran \underbrace{p}_1(\beta_2)$ is finite ⁵.
- (2b) for every $I \subseteq \alpha$, $I \in V$, $p'_0 \leq p_0$ and finite $J \subseteq \omega$ there is a finite set $a \subseteq \alpha$ such that for every finite set $b \subseteq I \setminus a$ there is $p''_0 \leq^* p'_0$ such that $p''_0 \parallel \text{``}(\forall \beta \in b, \forall k \in J, p_1(\beta) \neq k) \& (\forall \beta_1 \neq \beta_2 \in b, p_1(\beta_1) \neq p_1(\beta_2)) \text{''}.$

Notation 3.5. (1) Call α the length of p (or p_1) and denote it by lh(p) (or $lh(p_1)$).

(2) For $n < \omega$ let $\underline{\mathbb{Z}}_{p,n}$ be a \mathbb{P}_U -name such that $p_0 \parallel - \underline{\mathbb{Z}}_{p,n} = \{ \beta < \alpha : p_1(\beta) = n \}$ ". Then we can coincide \underline{p}_1 with $\langle \underline{\mathbb{Z}}_{p,n} : n < \omega \rangle$.

Remark 3.6. (2a) will guarantee that for $\beta < \alpha$, $p_0 \parallel - \text{``}p_1(\beta) \in \omega$ ''. The last condition in (2a) is a technical fact that will be used in several parts of the argument. The condition (2b) appears technical but it will be crucial for producing numerous Cohen reals.

Definition 3.7. For $p = \langle p_0, p_1 \rangle, q = \langle q_0, q_1 \rangle \in \mathbb{P}$, define

- (1) $p \leq q$ iff
 - $p_0 \leq_{\mathbb{P}_U} q_0$,
 - $lh(q) \leq lh(p)$,
 - $p_0 \parallel \text{``} \forall n < \omega, \underline{I}_{q,n} = \underline{I}_{p,n} \cap lh(q)$ ".
- (2) $p \leq^* q$ iff
 - $p_0 \leq_{\mathbb{P}_U}^* q_0$,
 - $p \leq q$.

 $we\ call \leq^*\ a\ direct\ or *-extension.$

Remark 3.8. In the definition of $p \le q$, we can replace the last condition by $p_0 \parallel - q_1 = p_1 \mid lh(q)$ ".

Lemma 3.9. Let $\langle p_0, \underset{\sim}{p_1} \rangle \| - \text{``}\alpha \text{ is an ordinal''}$. Then there are \mathbb{P}_U -names $\underset{\sim}{\beta}$ and $\underset{\sim}{q_1}$ such that $\langle p_0, \underset{\sim}{q_1} \rangle \leq^* \langle p_0, \underset{\sim}{p_1} \rangle$ and $\langle p_0, \underset{\sim}{q_1} \rangle \| - \text{``}\alpha = \underset{\sim}{\beta}$ ".

⁵Thus if G and r are as in the proof of Lemma 3.3 with $p_0 \in G$, then $p_o \parallel - "p_1(\beta)$ is the l-th element of r"

Proof. Suppose for simplicity that $\langle p_0, \underline{p}_1 \rangle = \langle \langle <>, \omega \rangle, \phi \rangle$. Let θ be large enough regular and let $\langle N_n : n < \omega \rangle$ be an increasing sequence of countable elementary submodels of H_{θ} such that \mathbb{P} , $\alpha \in N_0$ and $N_n \in N_{n+1}$ for each $n < \omega$. Let $N = \bigcup_{n < \omega} N_n$, $\delta_n = N_n \cap \omega_1$ for $n < \omega$ and $\delta = \bigcup_{n < \omega} \delta_n = N \cap \omega_1$. Let $\langle J_n : n < \omega \rangle \in N_0$ be a sequence of infinite subsets of $\omega \setminus \{0\}$ such that $\bigcup_{n < \omega} J_n = \omega \setminus \{0\}$, $J_n \subseteq J_{n+1}$, and $J_{n+1} \setminus J_n$ is infinite for each $n < \omega$. Also let $\langle \alpha_i : 0 < i < \omega \rangle$ be an enumeration of δ such that for every $n < \omega$, $\{\alpha_i : i \in J_n\} \in N_{n+1}$ is an enumeration of δ_n and $\{\alpha_i : i \in J_{n+1}\} \cap \delta_n = \{\alpha_i : i \in J_n\}$.

We define by induction on the length of s, a sequence $\langle p^s : s \in [\omega]^{<\omega} \rangle$ of conditions such that

- $p^s = \langle p_0^s, p_1^s \rangle = \langle \langle s, A_s \rangle, p_1^s \rangle$,
- $p^s \in N_{s(lhs-1)+1}$,
- $lh(p^s) = \delta_{s(lhs-1)+1}$,
- if t does not contradict p_0^s (i.e if t end extends s and $t \setminus s \subseteq A_S$) then $p^t \leq p^s$.

For s=<>, let $p^{<>}=\langle\langle<>,\omega\rangle,\phi\rangle$. Suppose that $<>\neq s\in[\omega]^{<\omega}$ and $p^{s{\upharpoonright}lhs-1}$ is defined. We define p^s . First we define $t^{s{\upharpoonright}lhs-1}\leq^*p^{s{\upharpoonright}lhs-1}$ as follows: If there is no *-extension of $p^{s{\upharpoonright}lhs-1}$ deciding α then let $t^{s{\upharpoonright}lhs-1}=p^{s{\upharpoonright}lhs-1}$. Otherwise let $t^{s{\upharpoonright}lhs-1}\in N_{s(lhs-2)+1}$ be such an extension. Note that $lh(t^{s{\upharpoonright}lhs-1})\leq \delta_{s(lhs-2)+1}$.

Let $t^{s \mid lhs-1} = \langle t_0, \underline{t}_1 \rangle, t_0 = \langle s \mid lhs-1, A \rangle$. Let $C \subseteq \omega$ be an infinite set almost disjoint to $\langle ran\underline{t}_1(\beta) : \beta < lh(\underline{t}_1) \rangle$. Split C into ω infinite disjoint sets C_i , $i < \omega$. Let $\langle c_{ij} : j < \omega \rangle$ be an increasing enumeration of C_i , $i < \omega$. We may suppose that all of these is done in $N_{s(lhs-1)+1}$. Let $p^s = \langle p_0^s, \underline{p}_1^s \rangle$, where

- $p_0^s = \langle s, A \setminus (maxs + 1) \rangle$,
- for $\beta < lh(t_1)$, $p_1^s(\beta) = t_1(\beta)$,
- for $i \in J_{s(lhs-1)}$ such that $\alpha_i \in \delta_{s(lhs-1)} \setminus lh(t_i)$

$$p_1^s(\alpha_i) = \left\{ \langle \langle s ^{\smallfrown} \langle r_1, ..., r_i \rangle, \omega \setminus (r_i + 1) \rangle, c_{ir_i} \rangle : r_1 > \max s, \langle r_1, ..., r_i \rangle \in [\omega]^i \right\}.$$

Trivially $p^s \in N_{s(lhs-1)+1}$, $lh(p^s) = \delta_{s(lhs-1)}$, and if $s(lhs-1) \in A$, then $p^s \le t^{s \upharpoonright lhs-1}$.

Claim 3.10. $p^s \in \mathbb{P}$.

Proof. We check conditions in Definition 3.4.

- (1) i.e. $p_0^s \in \mathbb{P}_U$ is trivial.
- - (*) For every finite set $b \subseteq I \cap lh(\underset{\sim}{t_1}) \setminus a'$ there is $p' \leq^* p$ such that $p' = (\forall \beta \in b, \forall k \in J, \underset{\sim}{t_1}(\beta) \neq k) \& (\forall \beta_1 \neq \beta_2 \in b, \underset{\sim}{t_1}(\beta_1) \neq \underset{\sim}{t_1}(\beta_2))$.

Let $p = \langle s \widehat{\ } \langle r_1, ..., r_m \rangle, B \rangle$. Suppose that $\delta_{s(lhs-1)} \setminus lh(\underbrace{t}_1) = \{\alpha_{J_1}, ..., \alpha_{J_i}, ...\}$ where $J_1 < J_2 < ...$ are in $J_{s(lhs-1)}$. Let

$$a = a' \cup \{\alpha_{J_1}, ..., \alpha_{J_m}\}.$$

We show that a is as required. Thus suppose that $b \subseteq I \setminus a$ is finite. Apply (*) to $b \cap lh(\underset{\sim}{t_1})$ to find $p' = \langle s \cap \langle r_1, ..., r_m \rangle, B' \rangle \leq^* p$ such that

$$p' \| - \text{``}(\forall \beta \in b \cap lh(t_1), \forall k \in J, t_1(\beta) \neq k) \& (\forall \beta_1 \neq \beta_2 \in b \cap lh(t_1), t_1(\beta_1) \neq t_1(\beta_2))$$
''.

Also note that

$$p' \| - \text{``}\forall \beta \in b \cap lh(\underset{}{t}_{1}), \, \underset{}{p}_{1}^{s}(\beta) = \underset{}{t}_{1}(\beta)\text{''}.$$

Pick $k < \omega$ such that

$$\forall \beta \in b \cap lh(\underbrace{t}_{1}), \forall \alpha_{i} \in b \setminus lh(\underbrace{t}_{1}), ran \underbrace{p}_{1}^{s}(\beta_{1}) \cap (ran \underbrace{p}_{1}^{s}(\alpha_{i}) \setminus k) = \phi.$$

Let $q = \langle s ^{\smallfrown} \langle r_1, ..., r_m \rangle, B \rangle = \langle s ^{\smallfrown} \langle r_1, ..., r_m \rangle, B' \setminus (\max J + k + 1) \rangle$. Then $q \leq^* p' \leq^* p$. We show that q is as required. wee need to show that

- $(1) \ q \| ``\forall \beta \in b \setminus lh(\underbrace{t}_1), \forall k \in J, \underbrace{p}_1^s(\beta) \neq k",$
- (2) $q \parallel \text{``} \forall \beta_1 \neq \beta_2 \in b \setminus lh(\underline{t}_1), p_1^s(\beta_1) \neq p_1^s(\beta_2)$ ",
- $(3) \ q \| \text{``} \forall \beta_1 \in b \cap lh(\underline{t}_1), \forall \beta_2 \in b \setminus lh(\underline{t}_1), \, p_1^s(\beta_1) \neq p_1^s(\beta_2) \text{''}.$

This completes our definition of the sequence $\langle p^s : s \in [\omega]^{<\omega} \rangle$. Let

$$q_1 = \{ \langle p_0^s, \langle \beta, p_1^s(\beta) \rangle \rangle : s \in [\omega]^{<\omega}, \beta < lh(p^s) \}.$$

Then \underline{q}_1 is a \mathbb{P}_U -name and for $s \in [\omega]^{<\omega}$, $p_0^s \parallel - \ \ \underline{p}_1^s = \underline{q}_1 \upharpoonright lh(\underline{p}_1^s)$.

Claim 3.11. $\langle \langle \cdot \rangle, \varrho_1 \rangle \in \mathbb{P}$.

Proof. We check conditions in Definition 3.4.

- (1) i.e. $\langle \langle \rangle, \omega \rangle \in \mathbb{P}_U$ is trivial.
- (2) It is clear from our definition that

$$\langle <>, \omega \rangle \| - ``q_1 \text{ is a well-defined function into } \omega".$$

Let us show that $lh(\underline{q}_1) = \delta$. By the construction it is trivial that $lh(\underline{q}_1) \leq \delta$. We show that $lh(\underline{q}_1) \geq \delta$. It suffices to prove the following

(*) For every $\tau < \delta$ and $p \in \mathbb{P}_U$ there is $q \leq p$ such that $q \parallel - "q_1(\tau)$ is defined ".

(2a) is trivial. Let us prove (2b). Thus suppose that $I \subseteq \delta$, $I \in V$, $p \leq \langle <>, \omega \rangle$ and $J \subseteq \omega$ is finite. Let $p = \langle s, A \rangle$.

First we consider the case where s=<>. Let $a=\emptyset$. We show that a is as required. Thus let $b\subseteq I$ be finite. Let $n\in A$ be such that $n>\max J+1$ and $b\subseteq \delta_n$. Let $t=s^{\frown}\langle n\rangle$. Note that

$$\forall \beta_1 \neq \beta_2 \in b, \ ran \underbrace{p_1^t(\beta_1)} \cap ran \underbrace{p_1^t(\beta_2)} = \emptyset.$$

Let $q = \langle \langle \rangle, B \rangle = \langle \langle \rangle, A \setminus (\max J + 1) \rangle$. Then $q \leq^* p$ and q is compatible with p_0^t . We show that q is as required. We need to show that

- (1) $q \parallel \forall \beta \in b, \forall k \in J, q_1(\beta) \neq k$,
- (2) $q \parallel \forall \beta_1 \neq \beta_2 \in b, q_1(\beta_1) \neq q_1(\beta_2)$.

For (1), if it fails, then we can find $\langle r, D \rangle \leq q, p_0^t, \beta \in b$ and $k \in J$ such that $\langle r, D \rangle \leq^* p_0^r$ and $\langle r, D \rangle \parallel - "\underline{q}_1(\beta) = k"$. But $\langle r, D \rangle \parallel - "\underline{q}_1(\beta) = \underline{p}_1^t(\beta) = \underline{p}_1^t(\beta)$, hence $\langle r, D \rangle \parallel - "\underline{p}_1^t(\beta) = k"$. This is impossible since $\min D \geq \min B > \max J$. For (2), if it fails, then we can find $\langle r, D \rangle \leq q, p_0^t$ and $\beta_1 \neq \beta_2 \in b$ such that $\langle r, D \rangle \leq^* p_0^r$ and $\langle r, D \rangle \parallel - "\underline{q}_1(\beta_1) = \underline{q}_1(\beta_2)$ ". As

Now consider the case $s \neq <>$. First we apply (2b) to t^s , $I \cap lh(t^s)$, p and J to find a finite set $a' \subseteq lh(t^s)$ such that

(**) For every finite set $b \subseteq I \cap lh(t^s) \setminus a'$ there is $p' \leq^* p$ such that p' $\|-\text{``}(\forall \beta \in b, \forall k \in J, \ p_1^s(\beta) \neq k) \& (\forall \beta_1 \neq \beta_2 \in b, \ p_1^s(\beta_1) \neq p_1^s(\beta_2))\text{''}$

Let $t^s = \langle t_0, t_1 \rangle, \delta_{s(lhs-1)+1} \setminus \delta_{s(lhs-1)} = \{\alpha_{J_1}, \alpha_{J_2}, \ldots\}$, where $J_1 < J_2 < \ldots$ are in $J_{s(lhs-1)+1}$. Define

$$a = a' \cup \{\alpha_1, \alpha_2, ..., \alpha_{J_{lhs+1}}\}.$$

We show that a is as required. First apply (**) to $b \cap lh(t^s)$ to find $p' = \langle s, A' \rangle \leq^* p$ such that

$$p'\|-\text{``}(\forall \beta \in b \cap lh(t^s), \forall k \in J, \underbrace{t}_{1}(\beta) \neq k) \& (\forall \beta_1 \neq \beta_2 \in b \cap lh(t^s), \underbrace{t}_{1}(\beta_1) \neq \underbrace{t}_{1}(\beta_2))\text{''}.$$

Pick $n \in A'$ such that $n > \max J + 1$ and $b \subseteq \delta_n$ and let $r = s^{\smallfrown} \langle n \rangle$. Then

$$\forall \beta_1 \neq \beta_2 \in b \setminus lh(t^s), ran p_1^r(\beta_1) \cap ran p_1^r(\beta_2) = \emptyset.$$

Pick $k < \omega$ such that k > n and

$$\forall \beta_1 \in b \cap lh(t^s), \forall \beta_2 \in b \setminus lh(t^s), ran p_1^r(\beta_1) \cap (ran p_1^r(\beta_2) \setminus k) = \emptyset.$$

Let $q = \langle s, B \rangle = \langle s, A' \setminus (\max J + k + 1) \cup \{n\} \rangle$. Then $q \leq^* p' \leq^* p$ and q is compatible with p_0^r (since $n \in B$). We show that q is as required. We need to prove the following

- $(1) \ q \| ``\forall \beta \in b, \forall k \in J, \, q_1(\beta) \neq k",$
- (2) $q \parallel \text{``}\forall \beta_1 \neq \beta_2 \in b \setminus lh(t^s), \ q_1(\beta_1) \neq q_1(\beta_2)\text{''},$
- $(3) \ q \parallel -\text{``}\forall \beta_1 \in b \cap lh(t^s), \forall \beta_2 \in b \setminus lh(t^s), \underbrace{q}_1(\beta_1) \neq \underbrace{q}_1(\beta_2)\text{''}.$

The proofs of (1) and (2) are as in the case s=<>. Let us prove (3). Suppose that (3) fails. Thus we can find $\langle u, D \rangle \leq q, p_0^r$, $\beta_1 \in b \cap lh(t^s)$ and $\beta_2 \in b \setminus lh(t^s)$ such that $\langle u, D \rangle \leq^* p_0^u$ and $\langle u, D \rangle \| - \underbrace{a_1(\beta_1)} = \underbrace{a_1(\beta_2)}$. But $\langle u, D \rangle \| - \underbrace{a_1(\beta)} = \underbrace{a_1(\beta$

$$\langle u, D \rangle \| - p_1^r(\beta_2) \ge (i - lhs) - th$$
 element of $D > k$.

By our choice of k, $ran \underset{\sim}{p_1^r}(\beta_1) \cap (ran \underset{\sim}{p_1^r}(\beta_2) \setminus k) = \emptyset$ and we get a contradiction. (3) follows. Thus q is as required, and the claim follows.

Let

$$\beta = \{ \langle p_0^s, \delta \rangle : s \in [\omega]^{<\omega}, \exists \gamma (\delta < \gamma, p^s || - \alpha = \gamma) \}.$$

Then $\underset{\sim}{\beta}$ is a \mathbb{P}_{U} -name of an ordinal.

Claim 3.12.
$$\langle\langle <>,\omega\rangle, \underset{\sim}{q}_1\rangle \parallel$$
 " $\underset{\sim}{\alpha}=\underset{\sim}{\beta}$ ".

Proof. Suppose not. There are two cases to be considered.

Case 1. There are $\langle r_0, \chi_1 \rangle \leq \langle \langle <>, \omega \rangle, \chi_1 \rangle$ and δ such that $\langle r_0, \chi_1 \rangle \| - ``\delta \in \chi$ and $\delta \not\in \beta$." We may suppose that for some ordinal α , $\langle r_0, \chi_1 \rangle \| - ``\alpha = \alpha$ ". Then $\delta < \alpha$. Let $r_0 = \langle s, A \rangle$. Consider $p^s = \langle p_0^s, \chi_1^s \rangle$. Then p_0^s is compatible with r_0 and there is a *-extension of p^s deciding χ . Let $t \in N_{s(lhs-1)+1}$ be the *-extension of p^s deciding χ chosen in the proof of Lemma 3.9. Let $t = \langle t_0, \chi_1 \rangle, t_0 = \langle s, B \rangle$, and let γ be such that $\langle t_0, \chi_1 \rangle \| - ``\alpha = \gamma$ ". Let $n \in A \cap B$. Then

- $p_0^{s^\frown\langle n\rangle}, t_0$ and p_0^s are compatible and $\langle s^\frown\langle n\rangle, A\cap B\cap A_{s^\frown\langle n\rangle}\rangle$ extends them,
- $p^{s^{\frown}\langle n \rangle} < t$

Thus $p^{s^{\frown}\langle n \rangle} \parallel - "\alpha = \gamma$ ". Let $u = \langle s^{\frown}\langle n \rangle, A \cap B \cap A_{s^{\frown}\langle n \rangle} \setminus (n+1) \rangle$.

Then $u \leq p_0^{s^\frown \langle n \rangle}$ and $u \parallel - " \chi_1$ extends $\chi_1^{s^\frown \langle n \rangle}$ which extends χ_1 ". Thus $\langle u, \chi_1 \rangle \leq t, \langle r_0, \chi_1 \rangle, p^{s^\frown \langle n \rangle}$. It follows that $\alpha = \gamma$. Now $\delta < \gamma$ and $p^{s^\frown \langle n \rangle} \parallel - " \chi = \gamma$ ". Hence $\langle p_0^{s^\frown \langle n \rangle}, \delta \rangle \in \chi$ and $p^{s^\frown \langle n \rangle} \parallel - " \delta \in \chi$ ". This is impossible since $\langle r_0, \chi_1 \rangle \parallel - " \delta \notin \chi$ ".

Case 2. There are $\langle r_0, \chi_1 \rangle \leq \langle \langle <>, \omega \rangle, \underline{q}_1 \rangle$ and δ such that $\langle r_0, \chi_1 \rangle | - \text{``}\delta \in \underline{\beta}$ and $\delta \notin \underline{\alpha}$ ". We may further suppose that for some ordinal α , $\langle r_0, \chi_1 \rangle | - \text{``}\alpha = \alpha$ ". Thus $\delta \geq \alpha$. Let $r = \langle s, A \rangle$. Then as above p_0^s is compatible with r and there is a *-extension of p^s deciding $\underline{\alpha}$. Choose t as in Case 1, $t = \langle t_0, \chi_1 \rangle, t_0 = \langle s, B \rangle$ and let γ be such that $\langle t_0, \chi_1 \rangle | - \text{``}\alpha = \gamma$ ". Let $n \in A \cap B$. Then as in Case 1, $\alpha = \gamma$ and $p^{s \cap \langle n \rangle} | - \text{``}\alpha = \gamma$ ". On the other hand since $\langle r_0, \chi_1 \rangle | - \text{``}\delta \in \underline{\beta}$ ", we can find \bar{s} such that \bar{s} does not contradict $p_0^{s \cap \langle n \rangle}, \langle p_0^{\bar{s}}, p_1^{\bar{s}} \rangle | - \text{``}\alpha = \bar{\gamma}$ " for some $\bar{\gamma} > \delta$ and $\langle p_0^{\bar{s}}, \delta \rangle \in \underline{\beta}$. Now $\bar{\gamma} = \gamma = \alpha > \delta$ which is in contradiction with $\delta \geq \alpha$. The claim follows.

This completes the proof of Lemma 3.9.

Lemma 3.13. Let $\langle p_0, \underset{\sim}{p_1} \rangle || - \underset{\sim}{"} \underline{f} : \omega \longrightarrow 0n$ ". Then there are \mathbb{P}_U -names $\underset{\sim}{g}$ and $\underset{\sim}{q_1}$ such that $\langle p_0, \underset{\sim}{q_1} \rangle \leq^* \langle p_0, \underset{\sim}{p_1} \rangle$ and $\langle p_0, \underset{\sim}{q_1} \rangle || - \underset{\sim}{"} \underline{f} = \underline{g}$ ".

Proof. For simplicity suppose that $\langle p_0, p_1 \rangle = \langle \langle <>, \omega \rangle, \emptyset \rangle$. Let θ be large enough regular and let $\langle N_n : n < \omega \rangle$ be an increasing sequence of countable elementary submodels of H_{θ} such that $\mathbb{P}, f \in N_0$ and $N_n \in N_{n+1}$ for every $n < \omega$. Let $N = \bigcup_{n < \omega} N_n$, $\delta_n = N_n \cap \omega_1$ for $n < \omega$ and $\delta = \bigcup_{n < \omega} \delta_n = N \cap \omega_1$. Let $\langle J_n : n < \omega \rangle \in N_0$ and $\langle \alpha_i : 0 < i < \omega \rangle$ be as in Lemma 3.9.

We define by induction a sequence $\langle p^s : s \in [\omega]^{<\omega} \rangle$ of conditions and a sequence $\langle \underset{\sim}{\beta_s} : s \in [\omega]^{<\omega} \rangle$ of \mathbb{P}_U -names for ordinals such that

- $\bullet \ p^s = \langle p^s_0, p^s_1 \rangle = \langle \langle s, \omega \setminus (\max s + 1) \rangle, p^s_1 \rangle,$
- $p^s \in N_{s(lhs-1)+1}$,
- $lh(p^s) \ge \delta_{s(lhs-1)}$,
- $p^s \| \text{``} f(lhs 1) = \beta_s\text{''},$
- if t end extends s, then $p^t \leq p^s$.

For s=<>, let $p^{<>}=\langle\langle\langle<>,\omega\rangle,\emptyset\rangle$. Now suppose that $s\neq<>$ and $p^{s\restriction lhs-1}$ is defined. We define p^s . Let $C_{s\restriction lhs-1}$ be an infinite subset of ω almost disjoint to $\langle ran \underset{\sim}{p_1^{s\restriction lhs-1}}(\beta):$ $\beta < lh(p^{s\restriction lhs-1})\rangle$. Split $C_{s\restriction lhs-1}$ into ω infinite disjoint sets $\langle C_{s\restriction lhs-1,t}:t\in [\omega]^{<\omega}$ and t end extends $s\restriction lhs-1\rangle$. Again split $C_{s\restriction lhs-1,s}$ into ω infinite disjoint sets $\langle C_i:i<\omega\rangle$. Let $\langle c_{ij}:j<\omega\rangle$ be an increasing enumeration of $C_i,i<\omega$. We may suppose that all of these is done in $N_{s(lhs-1)+1}$. Let $q^s=\langle q_0^s, q_1^s\rangle$, where

- $q_0^s = \langle s, \omega \setminus (\max s + 1) \rangle$,
- for $\beta < lh(p^{s \upharpoonright lhs 1}), \ q_1^s(\beta) = p_1^{s \upharpoonright lhs 1}(\beta),$
- for $i \in J_{s(lhs-1)}$ such that $\alpha_i \in \delta_{s(lhs-1)} \setminus lh(p^{s \restriction lhs-1})$

$$q_1^s(\alpha_i) = \{ \langle \langle s ^{\smallfrown} \langle r_1, ..., r_i \rangle, \omega \setminus (r_i + 1) \rangle, c_{ir_i} \rangle : r_1 > \max s, \langle r_1, ..., r_i \rangle \in [\omega]^i \}.$$

Then $q^s \in N_{s(lhs-1)+1}$ and as in the proof of claim 3.10, $q^s \in \mathbb{P}$. By Lemma 3.9, applied inside $N_{s(lhs-1)+1}$, we can find \mathbb{P}_U -names $\underset{\sim}{\mathcal{D}}_s$ and $\underset{\sim}{\mathcal{D}}_1^s$ such that $\langle q_0^s, \underset{\sim}{\mathcal{D}}_1^s \rangle \leq \langle q_0^s, \underset{\sim}{\mathcal{D}}_1^s \rangle$ and $\langle q_0^s, \underset{\sim}{\mathcal{D}}_1^s \rangle \| - \underset{\sim}{"} \underbrace{f}(lhs-1) = \underset{\sim}{\mathcal{D}}_s$ ". Let $p^s = \langle p_0^s, \underset{\sim}{\mathcal{D}}_1^s \rangle = \langle q_0^s, \underset{\sim}{\mathcal{D}}_1^s \rangle$. Then $p^s \leq p^{s \restriction lhs-1}$ and $p^s \| - \underset{\sim}{"} \underbrace{f}(lhs = \{\langle i, \underset{\sim}{\mathcal{D}}_{s \restriction i+1} \rangle : i < lhs\}$ ".

This completes our definition of the sequences $\langle p^s : s \in [\omega]^{<\omega} \rangle$ and $\langle \beta_s : s \in [\omega]^{<\omega} \rangle$. Let

$$\underbrace{q_1}_{\sim} = \{ \langle p_0^s, \langle \beta, \underbrace{p_1^s(\beta)} \rangle \rangle : s \in [\omega]^{<\omega}, \beta < lh(p^s) \},$$

$$\underbrace{g}_{\sim} = \{ \langle p_0^s, \langle i, \beta_{s \restriction i+1} \rangle \rangle : s \in [\omega]^{<\omega}, i < lhs \}.$$

Then q_1 and g are \mathbb{P}_U -names.

Claim 3.14. $\langle \langle \cdot \rangle, \omega \rangle, q_1 \rangle \in \mathbb{P}$.

Proof. We check conditions in Definition 3.4.

- (1) i.e $\langle \langle \rangle, \omega \rangle \in \mathbb{P}_U$ is trivial.
- (2) It is clear by our construction that

$$\langle <>, \omega \rangle \parallel$$
 " q_1 is a well-defined function"

and as in the proof of claim 3.11, we can show that $lh(q_1) = \delta$. (2a) is trivial. Let us prove (2b). Thus suppose that $I \subseteq \delta$, $I \in V$, $p \le \langle <>, \omega \rangle$ and $J \subseteq \omega$ is finite. Let $p = \langle s, A \rangle$. If s = <>, then as in the proof of 3.11, we can show that $a = \emptyset$ is a required. Thus suppose that $s \ne <>$. First we apply (2b) to p^s , $I \cap lh(p^s)$, p and J to find $a' \subseteq lh(p^s)$ such that

(*) For every finite $b \subseteq I \cap lh(p^s) \setminus a'$ there is $p' \leq^* p$ such that p' $\parallel - "(\forall \beta \in b, \forall k \in J, \underbrace{p}_1^s(\beta) \neq k) \& (\forall \beta_1 \neq \beta_2 \in b, \underbrace{p}_1^s(\beta_1) \neq \underbrace{p}_1^s(\beta_2))".$ Let $\delta_{s(lhs-1)+1} \setminus \delta_{s(lhs-1)} = \{\alpha_{J_1}, ..., \alpha_{J_i}, ...\}$ where $J_1 < J_2 < ...$ are in $J_{s(lhs-1)+1}$. Let

$$a = a' \cup \{\alpha_1, \alpha_2, ..., \alpha_{I_{k-1}}\}.$$

We show that a is as required. Let $b \subseteq I \setminus a$ be finite. First we apply (*) to $b \cap lh(p^s)$ to find $p' = \langle s, A' \rangle \leq *p$ such that

$$p'\|-\text{``}(\forall\beta\in b\cap lh(p^s),\forall k\in J, \underbrace{p_1^s(\beta)\neq k})\&(\forall\beta_1\neq\beta_2\in b\cap lh(p^s), \underbrace{p_1^s(\beta_1)\neq \underbrace{p_1^s(\beta_2)})\text{''}}.$$

Also note that for $\beta \in b \cap lh(p^s)$, $p' \parallel - "q_1(\beta) = p_1^s(\beta)$ ". Pick m such that $\max s + \max J + 1 < m < \omega$ and if t end extends s and $m < \max t$, then $C_{s,t}$ is disjoint to J and to $ran p_1^s(\beta)$ for $\beta \in b \cap lh(p^s)$. Then pick $n > m, n \in A'$ such that $b \subseteq \delta_n$, and let $t = s \cap \langle n \rangle$. Then

- $\forall \beta_1 \neq \beta_2 \in b \setminus lh(p^s), \ ran \underbrace{p}_1^t(\beta_1) \cap ran \underbrace{p}_1^t(\beta_2) = \emptyset,$
- $\bullet \ \forall \beta_1 \in b \cap lh(p^s), \forall \beta_2 \in b \setminus lh(p^s), \ ran \ \underline{p}_1^{\ t}(\beta_1) \cap ran \ \underline{p}_1^{\ t}(\beta_2) = \emptyset,$

$$\bullet \ \forall \beta \in b \setminus lh(p^s), ran\, p\, _1^t(\beta) \cap J = \emptyset.$$

Let $q = \langle s, B \rangle = \langle s, A' \setminus (n+1) \rangle$. Then $q \leq^* p' \leq^* p$ and using the above facts we can show that

$$q \parallel -\text{``}(\forall \beta \in b, \forall k \in J, \underline{q}_1(\beta) = \underbrace{p}_1^t(\beta) \neq k) \& (\forall \beta_1 \neq \beta_2 \in b, \underline{q}_1(\beta_1) = \underbrace{p}_1^t(\beta_1) \neq \underline{p}_1^t(\beta_2) = \underbrace{q}_1(\beta_2))\text{''}.$$

Thus q is as required and the claim follows.

Claim 3.15.
$$\langle \langle \langle \rangle, \omega \rangle, q_1 \rangle \parallel - "f = g$$
".

Proof. Suppose not. Then we can find $\langle r_0, \chi_1 \rangle \leq \langle \langle <>, \omega \rangle, \chi_1 \rangle$ and $i < \omega$ such that $\langle r_0, \chi_1 \rangle \| - \text{``} \underbrace{f}(i) \neq \chi(i)$ ''. Let $r_0 = \langle s, A \rangle$. Then r_0 is compatible with p_0^s and $r_0 \| - \text{``} \chi_1 \rangle$ extends p_1^s ''. Hence $\langle r_0, \chi_1 \rangle \leq \langle p_0^s, \chi_1^s \rangle = p^s$. Now $p^s \| - \text{``} \chi(i) = \chi_1^s \rangle = \chi(i)$ '' and we get a contradiction. The claim follows.

This completes the proof of Lemma 3.13.

The following is now immediate.

Lemma 3.16. The forcing (\mathbb{P}, \leq) preserves cofinalities.

Proof. By Lemma 3.13, \mathbb{P} preserves cofinalities $\leq \omega_1$. On the other hand by a Δ -system argument, \mathbb{P} satisfies the ω_2 -c.c and hence it preserves cofinalities $\geq \omega_2$.

Lemma 3.17. Let G be (\mathbb{P}, \leq) -generic over V. Then $V[G] \models GCH$.

Proof. By Lemma 3.13, $V[G] \models CH$. Now let $\kappa \geq \omega_1$. Then

$$(2^{\kappa})^{V[G]} \le ((|\mathbb{P}|^{\omega_1})^{\kappa})^V \le (2^{\kappa})^V = \kappa^+.$$

The result follows. \Box

Now we return to the proof of Theorem 3.1. Suppose that G is (\mathbb{P}, \leq) -generic over V, and let $V_1 = V[G]$. Then V_1 is a cofinality and GCH preserving generic extension of V. We show that adding a Cohen real over V_1 produces \aleph_1 -many Cohen reals over V. Thus force to add a Cohen real over V_1 . Split it into ω Cohen reals over V_1 . Denote them by $\langle r_{n,m}: n, m < \omega \rangle$. Also let $\langle f_i: i < \omega_1 \rangle \in V$ be a sequence of almost disjoint functions from ω into ω . First we define a sequence $\langle s_{n,i}: i < \omega_1 \rangle$ of reals by

$$\forall k < \omega, \, s_{n,i}(k) = r_{n,f_i(k)}(0).$$

Let $\langle I_n : n < \omega \rangle$ be the partition of ω_1 produced by G. For $\alpha < \omega_1$ let

- $n(\alpha) = \text{that } n < \omega \text{ such that } \alpha \in I_n$,
- $i(\alpha) = \text{that } i < \omega_1 \text{ such that } \alpha \text{ is the } i\text{--th element of } I_{n(\alpha)}$.

We define a sequence $\langle t_{\alpha} : \alpha < \omega_1 \rangle$ of reals by $t_{\alpha} = s_{n(\alpha),i(\alpha)}$. The following lemma completes the proof of Theorem 3.1.

Lemma 3.18. $\langle t_{\alpha} : \alpha < \omega_1 \rangle$ is a sequence of \aleph_1 -many Cohen reals over V.

Proof. First note that $\langle r_{n,m} : n, m < \omega \rangle$ is $\mathbb{C}(\omega \times \omega)$ -generic over V_1 . By c.c.c of $\mathbb{C}(\omega_1)$ it suffices to show that for every countable $I \subseteq \omega_1$, $I \in V$, $\langle t_\alpha : \alpha \in I \rangle$ is $\mathbb{C}(I)$ -generic over V. Thus it suffices to prove the following

For every $\langle\langle p_0,p_1\rangle,q\rangle\in\mathbb{P}*\mathbb{C}(\omega\times\omega)$ and every open dense subset

(*)
$$D \in V$$
 of $\mathbb{C}(I)$, there is $\langle \langle q_0, \underline{q}_1 \rangle, r \rangle \leq \langle \langle p_0, \underline{p}_1 \rangle, q \rangle$ such that $\langle \langle q_0, \underline{q}_1 \rangle, r \rangle \| - \langle \underline{t}_{\nu} : \nu \in I \rangle$ extends some element of D "

Let $\langle \langle p_0, p_1 \rangle, q \rangle$ and D be as above. Let $\alpha = \sup(I)$. We may suppose that $lh(p_1) \geq \alpha$. Let $J = \{n : \exists m, k, \langle n, m, k \rangle \in \operatorname{dom}(q)\}$. We apply (2b) to $\langle p_0, p_1 \rangle, I, p_0$ and J to find a finite set $a \subseteq I$ such that:

(**) For every finite
$$b \subseteq I \setminus a$$
 there is $p'_0 \le p_0$ such that $p'_0 = p_0 = p_0$ ($\forall \beta \in b, \forall k \in J, p_1(\beta) \neq k$) & $(\forall \beta_1 \neq \beta_2 \in b, p_1(\beta_1) \neq p_1(\beta_2))$ ".

Let

$$S = \{ \langle \nu, k, j \rangle : \nu \in a, k < \omega, j < 2, \langle n(\nu), f_{i(\nu)}(k), 0, j \rangle \in q \}.$$

Then $S \in \mathbb{C}(\omega_1)$. Pick $k_0 < \omega$ such that for all $\nu_1 \neq \nu_2 \in a$, and $k \geq k_0$, $f_{i(\nu_1)}(k) \neq f_{i(\nu_2)}(k)$. Let

$$S^* = S \cup \{\langle \nu, k, 0 \rangle : \nu \in a, k < \kappa_0, \langle \nu, k, 1 \rangle \notin S\}.$$

The reason for defining S^* is to avoid possible collisions. Then $S^* \in \mathbb{C}(\omega_1)$. Pick $S^{**} \in D$ such that $S^{**} \leq S^*$. Let $b = \{\nu : \exists k, j, \langle \nu, k, j \rangle \in S^{**}\} \setminus q$. By (**) there is $p'_0 \leq^* p_0$ such that

$$p_0' \| - \text{``}(\forall \nu \in b, \forall k \in J, \, p_1(\nu) \neq k) \& (\forall \nu_1 \neq \nu_2 \in b, \, p_1(\nu_1) \neq p_1(\nu_2))\text{''}.$$

Let $p_0'' \leq p_0'$ be such that $\langle p_0'', p_1 \rangle$ decides all the colors of elements of $a \cup b$. Let

$$q^* = q \cup \{ \langle n(\nu), f_{i(\nu)}(k), 0, S^{**}(\nu, k) \rangle : \langle \nu, k \rangle \in \text{dom}(S^{**}) \}.$$

Then q^* is well defined and $q^* \in \mathbb{C}(\omega \times \omega)$. Now $q^* \leq q$, $\langle \langle p_0'', p_1 \rangle, q^* \rangle \leq \langle \langle p_0, p_1 \rangle, q \rangle$ and for $\langle \nu, k \rangle \in \text{dom}(S^{**})$

$$\langle \langle p_0'', p_1 \rangle, q^* \rangle \| - S^{**}(\nu, k) = q^*(n(\nu), f_{i(\nu)}(k), 0) = \sum_{n(\nu), f_{i(\nu)}(k)} (0) = \sum_{\nu} (k)^n.$$

It follows that

$$\langle \langle p_0'', p_1 \rangle, q^* \rangle \| - \langle \underbrace{t}_{\nu} : \nu \in I \rangle \text{ extends } S^{**}.$$

(*) and hence Lemma 3.18 follows.

References

- [Cu] J. Cummings, A model in which GCH holds at successors but fails at limits, Trans. Amer. Math. Soc. 329 (1992), no. 1, 139. MR1041044 (92h:03076)
- [D-J 1] A. Dodd, R. Jensen, The covering lemma for L[U]. Ann. Math. Logic 22 (1982), no. 2, 127135. MR0667224 (83i:03082b)
- [D-J 2] A. Dodd, R. Jensen, The covering lemma for K. Ann. Math. Logic 22 (1982), no. 1, 130. MR0661475 (83i:03082a)
- [Git 1] M. Gitik, Adding a lot of Cohen reals by adding a few, Unpublished paper.
- [Git 2] M. Gitik, Prikry type forcings, Handbook of Set Theory, (2010), 1351-1447.
- [Git-Mag 1] M. Gitik, M. Magidor, The singular cardinal hypothesis revisited. Set theory of the continuum (Berkeley, CA, 1989), 243279, Math. Sci. Res. Inst. Publ., 26, Springer, New York, 1992. MR1233822 (95c:03131)
- [Git-Mag 2] M. Gitik, M. Magidor, Extender based forcings, J. Symbolic Logic 59 (1994), no. 2, 445460.
 MR1276624 (95k:03079)
- [G-N-S] M. Gitik, I. Neeman, D. Sinapova, A cardinal preserving extension making the set of points of countable VV cofinality nonstationary. Arch. Math. Logic 46 (2007), no. 5-6, 451456. MR2321586 (2008e:03085)
- [Mag 1] M. Magidor, Changing cofinality of cardinals, Fund. Math. 99 (1978), no. 1, 6171. MR0465868 (57:5754)
- [Mag 2] M. Magidor, How large is the first strongly compact cardinal, Ann. Math. Logic 10 (1976), no. 1, 3357. MR0429566 (55:2578)
- [Mer] C. Merimovich, Prikry on extenders, revisited. Israel J. Math. 160 (2007), 253280. MR2342498 (2008j:03075)

- [Sh 1] S. Shelah, Proper forcing, Lecture Notes in Mathematics, 940. Springer-Verlag, Berlin-New York, 1982. MR0675955(84h:03002)
- [Sh 2] S. Shelah, Cardinal arithmetic, Oxford Logic Guides, 29. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1994. MR1318912 (96e:03001)
- [Ve-W] B. Veličković, H. Woodin, Complexity of reals in inner models of set theory, Ann. Pure Appl. Logic 92 (1998), no. 3, 283295. MR1640916 (99f:03067)