ADDING A LOT OF COHEN REALS BY ADDING A FEW I

MOTI GITIK AND MOHAMMAD GOLSHANI

Abstract

In this paper we produce models $V_{1} \subseteq V_{2}$ of set theory such that adding κ-many Cohen reals to V_{2} adds λ-many Cohen reals to V_{1}, for some $\lambda>\kappa$. We deal mainly with the case when V_{1} and V_{2} have the same cardinals.

1. Introduction

A basic fact about Cohen reals is that adding λ-many Cohen reals cannot produce more that λ-many of Cohen reals ${ }^{1}$. More precisely, if $\left\langle s_{\alpha}: \alpha<\lambda\right\rangle$ are λ-many Cohen reals over V, then in $V\left[\left\langle s_{\alpha}: \alpha<\lambda\right\rangle\right]$ there are no λ^{+}-many Cohen reals over V. But if instead of dealing with one universe V we consider two, then the above may no longer be true.

The purpose of this paper is to produce models $V_{1} \subseteq V_{2}$ such that adding κ-many Cohen reals to V_{2} adds λ-many Cohen reals to V_{1}, for some $\lambda>\kappa$. We deal mainly with the case when V_{1} and V_{2} have the same cardinals.

2. Models with the same reals

In this section we produce models $V_{1} \subseteq V_{2}$ as above with the same reals. We first state a general result.

Theorem 2.1. Let V_{1} be an extension of V. Suppose that in V_{1} :
(a) $\kappa<\lambda$ are infinite cardinals,
(b) λ is regular,
(c) there exists an increasing sequence $\left\langle\kappa_{n}: n<\omega\right\rangle$ cofinal in κ. In particular $c f(\kappa)=\omega$,
(d) there exists an increasing (mod finite) sequence $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ of functions in $\prod_{n<\omega}\left(\kappa_{n+1} \backslash\right.$ $\left.\kappa_{n}\right)$,
and

[^0](e) there exists a club $C \subseteq \lambda$ which avoids points of countable V-cofinality.

Then adding $\kappa-$ many Cohen reals over V_{1} produces λ-many Cohen reals over V.

Proof. We consider two cases.
Case $\lambda=\kappa^{+}$. Force to add κ-many Cohen reals over V_{1}. Split them into two sequences of length κ denoted by $\left\langle r_{\imath}: \imath<\kappa\right\rangle$ and $\left\langle r_{\imath}^{\prime}: \imath<\kappa\right\rangle$. Also let $\left\langle f_{\alpha}: \alpha<\kappa^{+}\right\rangle \in V_{1}$ be an increasing $(\bmod$ finite $)$ sequence in $\prod_{n<\omega}\left(\kappa_{n+2} \backslash \kappa_{n+1}\right)$. Let $\alpha<\kappa^{+}$. We define a real s_{α} as follows:

Case 1. $\alpha \in C$. Then

$$
\forall n<\omega, s_{\alpha}(n)=r_{f_{\alpha}(n)}(0)
$$

Case 2. $\alpha \notin C$. Let α^{*} and $\alpha^{* *}$ be two successor points of C so that $\alpha^{*}<\alpha<\alpha^{* *}$. Let $\left\langle\alpha_{\imath}: \imath<\kappa\right\rangle$ be some fixed enumeration of the interval $\left(\alpha^{*}, \alpha^{* *}\right)$. Then for some $\imath<\kappa$, $\alpha=\alpha_{\imath}$. Let $k(\imath)=\min \left\{k<\omega: r_{\imath}^{\prime}(k)=1\right\}$. Set

$$
\forall n<\omega, s_{\alpha}(n)=r_{f_{\alpha}(k(\imath)+n)}(0)
$$

The following lemma completes the proof.

Lemma 2.2. $\left\langle s_{\alpha}: \alpha<\kappa^{+}\right\rangle$is a sequence of κ^{+}-many Cohen reals over V.

Notation 2.3. For each set I, let $\mathbb{C}(I)$ be the Cohen forcing notion for adding I-many Cohen reals. Thus $\mathbb{C}(I)=\{p: p$ is a finite partial function from $I \times \omega$ into 2 $\}$, ordered by reverse inclusion.

Proof. First note that $\left\langle\left\langle r_{\imath}: \imath<\kappa\right\rangle,\left\langle r_{\imath}^{\prime}: \imath<\kappa\right\rangle\right\rangle$ is $\mathbb{C}(\kappa) \times \mathbb{C}(\kappa)$-generic over V_{1}. By c.c.c of $\mathbb{C}\left(\kappa^{+}\right)$it suffices to show that for any countable set $I \subseteq \kappa^{+}, I \in V$, the sequence $\left\langle s_{\alpha}: \alpha \in I\right\rangle$ is $\mathbb{C}(I)$-generic over V. Thus it suffices to prove the following:
for every $(p, q) \in \mathbb{C}(\kappa) \times \mathbb{C}(\kappa)$ and every open dense subset $D \in$ V of $\mathbb{C}(I)$, there is $(\bar{p}, \bar{q}) \leq(p, q)$ such that $(\bar{p}, \bar{q}) \|-$ " $\langle\underset{\sim}{s} \alpha: \alpha \in I\rangle$ extends some element of $D^{\prime \prime}$.

Let (p, q) and D be as above. For simplicity suppose that $p=q=\emptyset$. By (e) there are only finitely many $\alpha^{*} \in C$ such that $I \cap\left[\alpha^{*}, \alpha^{* *}\right) \neq \emptyset$, where $\alpha^{* *}=\min \left(C \backslash\left(\alpha^{*}+1\right)\right)$. For
simplicity suppose that there are two $\alpha_{1}^{*}<\alpha_{2}^{*}$ in C with this property. Let $n^{*}<\omega$ be such that for all $n \geq n^{*}, f_{\alpha_{1}^{*}}(n)<f_{\alpha_{2}^{*}}(n)$. Let $p \in \mathbb{C}(\kappa)$ be such that

$$
\operatorname{dom}(p)=\left\{\langle\beta, 0\rangle: \exists n<n^{*}\left(\beta=f_{\alpha_{1}^{*}}(n) \text { or } \beta=f_{\alpha_{2}^{*}}(n)\right)\right\}
$$

Then for $n<n^{*}$ and $j \in\{1,2\}$,

$$
(p, \emptyset) \|-" \underset{\sim}{s} \alpha_{j}^{*}(n)=\underset{\sim}{\underset{\sim}{r}} f_{\alpha_{j}^{*}}(n)(0)=p\left(f_{\alpha_{j}^{*}(n)}, 0\right) "
$$

Thus (p, \emptyset) decides $s_{\alpha_{1}^{*}} \upharpoonright n^{*}$ and $s_{\alpha_{2}^{*}} \upharpoonright n^{*}$. Let $b \in D$ be such that

$$
(p, \emptyset) \|-"\left\langle b\left(\alpha_{1}^{*}\right), b\left(\alpha_{2}^{*}\right)\right\rangle \quad \text { extends } \quad\left\langle s_{\alpha_{1}^{*}} \upharpoonright n^{*}, s_{\alpha_{2}^{*}} \upharpoonright n^{*}\right\rangle "
$$

Where $b(\alpha)$ is defined by $b(\alpha):\{n:(\alpha, n) \in \operatorname{dom}(b)\} \longrightarrow 2$ and $b(\alpha)(n)=b(\alpha, n)$. Let

$$
p^{\prime}=p \cup \bigcup_{j \in\{1,2\}}\left\{\left\langle f_{\alpha_{j}^{*}}(n), 0, b\left(\alpha_{j}^{*}, n\right)\right\rangle: n \geq n^{*},\left(\alpha_{j}^{*}, n\right) \in \operatorname{dom}(b)\right\}
$$

Then $p^{\prime} \in \mathbb{C}(\kappa)^{2}$ and

$$
\left(p^{\prime}, \emptyset\right) \|-"\left\langle\underset{\sim}{s} \alpha_{1}^{*}, \underset{\sim}{s} \alpha_{2}^{*}\right\rangle \quad \text { extends } \quad\left\langle b\left(\alpha_{1}^{*}\right), b\left(\alpha_{2}^{*}\right)\right\rangle "
$$

For $j \in\{1,2\}$, let $\left\{\alpha_{j_{0}}, \ldots, \alpha_{j k_{j}-1}\right\}$ be an increasing enumeration of components of b in the interval $\left(\alpha_{j}^{*}, \alpha_{j}^{* *}\right)$ (i.e. those $\alpha \in\left(\alpha_{j}^{*}, \alpha_{j}^{* *}\right)$ such that $(\alpha, n) \in \operatorname{dom}(b)$ for some $\left.n\right)$. For $j \in\{1,2\}$ and $l<k_{j}$ let $\alpha_{j l}=\alpha_{\imath_{j l}}$ where $\imath_{j l}<\kappa$ is the index of $\alpha_{j l}$ in the enumeration of the interval $\left(\alpha_{j}^{*}, \alpha_{j}^{* *}\right)$ considered in Case 2 above. Let $m^{*}<\omega$ be such that for all $n \geq m^{*}$, $j \in\{1,2\}$ and $l_{j}<l_{j}^{\prime}<k_{j}$ we have

$$
f_{\alpha_{1}^{*}}(n)<f_{\alpha_{1 \ell_{1}}}(n)<f_{\alpha_{1 \ell_{1}^{\prime}}}(n)<f_{\alpha_{2}^{*}}(n)<f_{\alpha_{2 \ell_{2}}}(n)<f_{\alpha_{2 \ell_{2}^{\prime}}}(n)
$$

Let

$$
\bar{q}=\left\{\left\langle\imath_{j l}, n, 0\right\rangle: j \in\{1,2\}, l<k_{j}, n<m^{*}\right\} .
$$

Then $\bar{q} \in \mathbb{C}(\kappa)$ and for $j \in\{1,2\}$ and $n<m^{*},(\emptyset, \bar{q}) \|-" r_{\imath_{j l}}^{\prime}(n)=0 "$, thus $(\emptyset, \bar{q}) \|-" k(j, l)=$ $\min \left\{k<\omega: r_{\imath_{j l}}^{\prime}(k)=1\right\} \geq m^{* \prime \prime}$. Let

$$
\bar{p}=p^{\prime} \cup \bigcup_{j \in\{1,2\}}\left\{\left\langle f_{\alpha_{j l}}(k(j, t)+n), 0, b\left(\alpha_{j l}, n\right)\right\rangle: l<k_{j},\left(\alpha_{j l}, n\right) \in \operatorname{dom}(b)\right\}
$$

It is easily seen that $\bar{p} \in \mathbb{C}(\kappa)$ is well-defined and for $j \in\{1,2\}$ and $l<k_{j}$,

[^1]$$
(\bar{p}, \bar{q}) \|-{ }_{\sim}^{s} \alpha_{j l} \text { extends } b\left(\alpha_{j l}\right) "
$$

Thus

$$
(\bar{p}, \bar{q}) \|- \text { " }\langle\underset{\sim}{s} \alpha: \alpha \in I\rangle \text { extends } b " .
$$

$\left.{ }^{*}\right)$ follows and we are done.

Case $\lambda>\kappa^{+}$. Force to add κ-many Cohen reals over V_{1}. We now construct λ-many Cohen reals over V as in the above case using C and $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$. Case 2 of the definition of $\left\langle s_{\alpha}: \alpha<\lambda\right\rangle$ is now problematic since the cardinality of an interval ($\alpha^{*}, \alpha^{* *}$) (using the above notation) may now be above κ and we have only κ-many Cohen reals to play with. Let us proceed as follows in order to overcome this.

Let us rearrange the Cohen reals as $\left\langle r_{n, \alpha}: n<\omega, \alpha<\kappa\right\rangle$ and $\left\langle r_{\eta}: \eta \in[\kappa]^{<\omega}\right\rangle$. We define by induction on levels a tree $T \subseteq[\lambda]^{<\omega}$, its projection $\pi(T) \subseteq[\kappa]^{<\omega}$ and for each $n<\omega$ and $\alpha \in \operatorname{Lev} v_{n}(T)$ a real s_{α}. The union of the levels of T will be λ so $\left\langle s_{\alpha}: \alpha<\lambda\right\rangle$ will be defined.

For $n=0$, let $\operatorname{Lev}_{0}(T)=\langle \rangle=\operatorname{Lev}_{0}(\pi(T))$.
For $n=1$, let $\operatorname{Lev}_{1}(T)=C, \operatorname{Lev}_{1}(\pi(T))=\{0\}$, i.e. $\pi(\langle\alpha\rangle)=\langle 0\rangle$ for every $\alpha \in C$. For $\alpha \in C$ we define a real s_{α} by

$$
\forall m<\omega, s_{\alpha}(m)=r_{1, f_{\alpha}(m)}(0)
$$

Suppose now that $n>1$ and $T \upharpoonright n$ and $\pi(T) \upharpoonright n$ are defined. We define $\operatorname{Lev}_{n}(T)$, $\operatorname{Lev}_{n}(\pi(T))$ and reals s_{α} for $\alpha \in \operatorname{Lev}_{n}(T)$. Let $\eta \in T \upharpoonright n-1, \alpha^{*}, \alpha^{* *} \in \operatorname{Suc}_{T}(\eta)$ and $\alpha^{* *}=\min \left(\operatorname{Suc}_{T}(\eta) \backslash\left(\alpha^{*}+1\right)\right)$. We define $S u c_{T}\left(\eta^{\frown}\left\langle\alpha^{* *}\right\rangle\right)$ if it is not yet defined ${ }^{3}$.

Case A. $\left|\alpha^{* *} \backslash \alpha^{*}\right| \leq \kappa$.
Fix some enumeration $\left\langle\alpha_{\imath}: \imath<\rho \leq \kappa\right\rangle$ of $\alpha^{* *} \backslash \alpha^{*}$. Let

- $\operatorname{Suc}_{T}\left(\eta \frown\left\langle\alpha^{* *}\right\rangle\right)=\alpha^{* *} \backslash \alpha^{*}$,
- $S u c_{T}\left(\eta^{\frown}\left\langle\alpha^{* *}\right\rangle \frown\langle\alpha\rangle\right)=\langle \rangle$ for $\alpha \in \alpha^{* *} \backslash \alpha^{*}$,
- $\operatorname{Suc}_{\pi(T)}\left(\pi\left(\eta^{\frown}\left\langle\alpha^{* *}\right\rangle\right)\right)=\rho=\left|\alpha^{* *} \backslash \alpha^{*}\right|$,
- $\operatorname{Suc}_{\pi(T)}\left(\pi\left(\eta^{\frown}\left\langle\alpha^{* *}\right\rangle\right) \frown\langle\imath\rangle\right)=\langle \rangle$ for $\imath<\rho$.

Now we define s_{α} for $\alpha \in \alpha^{* *} \backslash \alpha^{*}$. Let \imath be such that $\alpha=\alpha_{\imath}$. let $k=\min \{m<\omega$: $\left.r_{\left.\pi\left(\eta \frown\left\langle\alpha^{* *}\right\rangle\right) \frown\langle \rangle\right\rangle}(m)=1\right\}$, Finally let

[^2]$$
\forall m<\omega, s_{\alpha}(m)=r_{n, f_{\alpha}(k+m)}(0)
$$

Case B. $\left|\alpha^{* *} \backslash \alpha^{*}\right|>\kappa$ and $c f\left(\alpha^{* *}\right)<\kappa$.
Let $\rho=c f \alpha^{* *}$ and let $\left\langle\alpha_{\nu}^{* *}: \nu<\rho\right\rangle$ be a normal sequence cofinal in $\alpha^{* *}$ with $\alpha_{0}^{* *}>\alpha^{*}$. Let

- $S u c_{T}\left(\eta^{\frown}\left\langle\alpha^{* *}\right\rangle\right)=\left\{\alpha_{\nu}^{* *}: \nu<\rho\right\}$,
- $S u c_{\pi(T)}\left(\pi\left(\eta \frown\left\langle\alpha^{* *}\right\rangle\right)\right)=\rho$.

Now we define $s_{\alpha_{\nu}^{* *}}$ for $\nu<\rho$. Let $k=\min \left\{m<\omega: r_{\pi\left(\eta \frown\left\langle\alpha^{* *}\right\rangle\right) \leftharpoonup\langle\nu\rangle}(m)=1\right\}$ and let

$$
\forall m<\omega, s_{\alpha_{\nu}^{* *}}(m)=r_{n, f_{\alpha_{\nu}^{* *}}(k+m)}(0)
$$

Case C. $c f\left(\alpha^{* *}\right)>\kappa$.
Let ρ and $\left\langle\alpha_{\nu}^{* *}: \nu<\rho\right\rangle$ be as in Case B. Let

- $S u c_{T}\left(\eta^{\frown}\left\langle\alpha^{* *}\right\rangle\right)=\left\{\alpha_{\nu}^{* *}: \nu<\rho\right\}$,
- $\operatorname{Suc}_{\pi(T)}\left(\pi\left(\eta^{\frown}\left\langle\alpha^{* *}\right\rangle\right)\right)=\langle 0\rangle$.

We define $s_{\alpha_{\nu}^{* *}}$ for $\nu<\rho$. Let $k=\min \left\{m<\omega: r_{\pi\left(\eta \frown\left\langle\alpha^{* *}\right\rangle\right) \frown\langle 0\rangle}(m)=1\right\}$ and let

$$
\forall m<\omega, s_{\alpha_{\nu}^{* *}}(m)=r_{n, f_{\alpha_{\nu}^{* *}}(k+m)}(0)
$$

By the definition, T is a well-founded tree and $\bigcup_{n<\omega} \operatorname{Lev}_{n}(T)=\lambda$. The following lemma completes our proof.

Lemma 2.4. $\left\langle s_{\alpha}: \alpha<\lambda\right\rangle$ is a sequence of λ-many Cohen reals over V.

Proof. First note that $\left\langle\left\langle r_{n, \alpha}: n<\omega, \alpha<\kappa\right\rangle,\left\langle r_{\eta}: \eta \in[\kappa]^{<\omega}\right\rangle\right\rangle$ is $\mathbb{C}(\omega \times \kappa) \times \mathbb{C}\left([\kappa]^{<\omega}\right)$ - generic over V_{1}. By c.c.c of $\mathbb{C}(\lambda)$ it suffices to show that for any countable set $I \subseteq \lambda, I \in V$, the sequence $\left\langle s_{\alpha}: \alpha \in I\right\rangle$ is $\mathbb{C}(I)$-generic over V. Thus it suffices to prove the following:

For every $(p, q) \in \mathbb{C}(\omega \times \kappa) \times \mathbb{C}\left([\kappa]^{<\omega}\right)$ and every open dense subset
$D \in V$ of $\mathbb{C}(I)$, there is $(\bar{p}, \bar{q}) \leq(p, q)$ such that $(\bar{p}, \bar{q}) \|-"\langle\underset{\sim}{s} \alpha: \alpha \in I\rangle$ extends some element of D ".

Let (p, q) and D be as above. for simplicity suppose that $p=q=\emptyset$. For each $n<\omega$ let $I_{n}=I \cap \operatorname{Lev}_{n}(T)$. Then $I_{0}=\emptyset$ and $I_{1}=I \cap C$ is finite. For simplicity let $I_{1}=\left\{\alpha_{1}^{*}, \alpha_{2}^{*}\right\}$ where $\alpha_{1}^{*}<\alpha_{2}^{*}$. Pick $n^{*}<\omega$ such that for all $n \geq n^{*}, f_{\alpha_{1}^{*}}(n)<f_{\alpha_{2}^{*}}(n)$. Let $p_{0} \in \mathbb{C}(\omega \times \kappa)$ be such that

$$
\operatorname{dom}\left(p_{0}\right)=\left\{\langle 1, \beta, 0\rangle: \exists n<n^{*}\left(\beta=f_{\alpha_{1}^{*}}(n) \text { or } \beta=f_{\alpha_{2}^{*}}(n)\right)\right\} .
$$

Then for $n<n^{*}$ and $j \in\{1,2\}$

$$
\left(p_{0}, \emptyset\right) \|-" \underset{\sim}{s} \alpha_{j}^{*}(n)={\underset{\sim}{r}}_{1, f_{\alpha_{j}^{*}}(n)}(0)=p_{0}\left(1, f_{\alpha_{j}^{*}}(n), 0\right) " .
$$

thus $\left(p_{0}, \emptyset\right)$ decides $s_{\alpha_{1}^{*}} \upharpoonright n^{*}$ and $s_{\alpha_{2}^{*}} \upharpoonright n^{*}$. Let $b \in D$ be such that

$$
\left(p_{0}, \emptyset\right) \|-"\left\langle b\left(\alpha_{1}^{*}\right), b\left(\alpha_{2}^{*}\right)\right\rangle \text { extends }\left\langle s_{\alpha_{1}^{*}} \upharpoonright n^{*}, s_{\alpha_{2}^{*}} \upharpoonright n^{*}\right\rangle "
$$

Let

$$
p_{1}=p_{0} \cup \bigcup_{j \in\{1,2\}}\left\{\left\langle 1, f_{\alpha_{j}^{*}}(n), 0, b\left(\alpha_{j}^{*}, n\right)\right\rangle: n \geq n^{*},\left(\alpha_{j}^{*}, n\right) \in \operatorname{dom}(b)\right\} .
$$

Then $p_{1} \in \mathbb{C}(\omega \times \kappa)$ is well-defined and letting $q_{1}=\emptyset$, we have

$$
\left(p_{1}, q_{1}\right) \|-"\left\langle\underset{\sim}{s} \alpha_{1}^{*}, \underset{\sim}{s} \alpha_{2}^{*}\right\rangle \text { extends }\left\langle b\left(\alpha_{1}^{*}\right), b\left(\alpha_{2}^{*}\right)\right\rangle " \text {. }
$$

For each $n<\omega$ let J_{n} be the set of all components of b which are in I_{n}, i.e. $J_{n}=\{\alpha \in$ $\left.I_{n}: \exists n,(\alpha, n) \in \operatorname{dom}(b)\right\}$. We note that $J_{0}=\emptyset$ and $J_{1}=I_{1}=\left\{\alpha_{1}^{*}, \alpha_{2}^{*}\right\}$. Also note that for all but finitely many $n<\omega, J_{n}=\emptyset$. Thus let us suppose $t<\omega$ is such that for all $n>t$, $J_{n}=\emptyset$. Let us consider J_{2}. For each $\alpha \in J_{2}$ there are three cases to be considered:

Case 1. There are $\alpha^{*}<\alpha^{* *}$ in $\operatorname{Lev}_{1}(T)=C, \alpha^{* *}=\min \left(C \backslash\left(\alpha^{*}+1\right)\right)$ such that $\left|\alpha^{* *} \backslash \alpha^{*}\right| \leq \kappa$ and $\alpha \in \operatorname{Suc}_{T}\left(\left\langle\alpha^{* *}\right\rangle\right)=\alpha^{* *} \backslash \alpha^{*}$. Let \imath_{α} be the index of α in the enumeration of $\alpha^{* *} \backslash \alpha^{*}$ considered in Case A above, and let $k_{\alpha}=\min \left\{m<\omega: r_{\pi\left(\left\langle\alpha^{* *}\right\rangle\right)-\left\langle\imath_{\alpha}\right\rangle}(m)=1\right\}$. Then

$$
\forall m<\omega, s_{\alpha}(m)=r_{2, f_{\alpha}\left(k_{\alpha}+m\right)}(0)
$$

Case 2. There are $\alpha^{*}<\alpha^{* *}$ as above such that $\left|\alpha^{* *} \backslash \alpha^{*}\right|>\kappa$ and $\rho=c f \alpha^{* *}<\kappa$. Let $\left\langle\alpha_{\nu}^{* *}: \nu<\rho\right\rangle$ be as in Case B. Then $\alpha=\alpha_{\nu_{\alpha}}^{* *}$ for some $\nu_{\alpha}<\rho$ and if $k_{\alpha}=\min \{m<\omega$: $\left.r_{\pi\left(\left\langle\alpha^{* *}\right\rangle\right)-\left\langle\nu_{\alpha}\right\rangle}(m)=1\right\}$. Then

$$
\forall m<\omega, s_{\alpha}(m)=r_{2, f_{\alpha}\left(k_{\alpha}+m\right)}(0)
$$

Case 3. There are $\alpha^{*}<\alpha^{* *}$ as above such that $\rho=c f \alpha^{* *}>\kappa$. Let $\left\langle\alpha_{\nu}^{* *}: \nu<\rho\right\rangle$ be as in Case C. Then $\alpha=\alpha_{\nu_{\alpha}}^{* *}$ for some $\nu_{\alpha}<\rho$ and if $k_{\alpha}=\min \left\{m<\omega: r_{\pi\left(\left\langle\alpha^{* *}\right\rangle\right) \leftharpoonup\langle 0\rangle}(m)=1\right\}$, then

$$
\forall m<\omega, s_{\alpha}(m)=r_{2, f_{\alpha}\left(k_{\alpha}+m\right)}(0)
$$

Let $m^{*}<\omega$ be such that for all $n \geq m^{*}$ and $\alpha<\alpha^{\prime}$ in $J_{1} \cup J_{2}, f_{\alpha}(n)<f_{\alpha^{\prime}}(n)$. Let

$$
\begin{array}{r}
q_{2}=\left\{\langle\eta, n, 0\rangle: n<m^{*}, \exists \alpha \in J_{2}\left(\eta=\pi\left(\left\langle\alpha^{* *}\right\rangle\right) \leftharpoonup\left\langle i_{\alpha}\right\rangle\right. \text { or }\right. \\
\eta=\pi\left(\left\langle\alpha^{* *}\right\rangle\right) \leftharpoonup\left\langle\nu_{\alpha}\right\rangle \text { or } \\
\left.\left.\eta=\pi\left(\left\langle\alpha^{* *}\right\rangle\right) \leftharpoonup\langle 0\rangle\right)\right\} .
\end{array}
$$

Then $q_{2} \in \mathbb{C}\left([\kappa]^{<\omega}\right)$ is well-defined and for each $\alpha \in J_{2},\left(\phi, q_{2}\right) \|-$ " $k_{\alpha} \geq m^{*}$ ". Let

$$
p_{2}=p_{1} \cup\left\{\left\langle 2, f_{\alpha}\left(k_{\alpha}+m\right), 0, b(\alpha, m)\right\rangle: \alpha \in J_{2},(\alpha, m) \in \operatorname{dom}(b)\right\} .
$$

Then $p_{2} \in \mathbb{C}(\omega \times \kappa)$ is well-defined, $\left(p_{2}, q_{2}\right) \leq\left(p_{1}, q_{1}\right)$ and for $\alpha \in J_{2}$ and $m<\omega$ with $(\alpha, m) \in \operatorname{dom}(b)$,

$$
\left(p_{2}, q_{2}\right) \|- \text { " } \underset{\sim}{\mathcal{S}}(m)={\underset{\sim}{r}}_{2, f_{\alpha}\left(k_{\alpha}+m\right)}(0)=p_{2}\left(2, f_{\alpha}\left(k_{\alpha}+m\right), 0\right)=b(\alpha, m)=b(\alpha)(m) ",
$$

thus $\left(p_{2}, q_{2}\right) \|-$ " $\mathcal{\sim}_{\alpha}$ extend $b(\alpha)$ " and hence

$$
\left(p_{2}, q_{2}\right) \|-"\left\langle{\underset{\sim}{\alpha}}_{\alpha}: \alpha \in J_{1} \cup J_{2}\right\rangle \text { extends }\left\langle b(\alpha): \alpha \in J_{1} \cup J_{2}\right\rangle \text { ". }
$$

By induction suppose that we have defined $\left(p_{1}, q_{1}\right) \geq\left(p_{2}, q_{2}\right) \geq \ldots \geq\left(p_{j}, q_{j}\right)$ for $j<t$, where for $1 \leq i \leq j$,

$$
\left(p_{i}, q_{i}\right) \|-"\left\langle s_{\alpha}: \alpha \in J_{1} \cup \ldots \cup J_{i}\right\rangle \text { extends }\left\langle b(\alpha): \alpha \in J_{1} \cup \ldots \cup J_{i}\right\rangle \text { ". }
$$

We define $\left(p_{j+1}, q_{j+1}\right) \leq\left(p_{j}, q_{j}\right)$ such that for each $\alpha \in J_{j+1},\left(p_{j+1}, q_{j+1}\right) \|-$ " ${\underset{\sim}{\alpha} \alpha}$ extends $b(\alpha) "$.

Let $\alpha \in J_{j+1}$. Then we can find $\eta \in T \upharpoonright j$ and $\alpha^{*}<\alpha^{* *}$ such that $\alpha^{*}, \alpha^{* *} \in \operatorname{Suc}_{T}(\eta)$, $\alpha^{* *}=\min \left(\operatorname{Suc}_{T}(\eta) \backslash\left(\alpha^{*}+1\right)\right)$ and $\alpha \in \operatorname{Suc}_{T}\left(\eta\left\ulcorner\left\langle\alpha^{* *}\right\rangle\right)\right.$. As before there are three cases to be considered.

Case 1. $\left|\alpha^{* *} \backslash \alpha^{*}\right| \leq \kappa$. Then let i_{α} be the index of α in the enumeration of $\alpha^{* *} \backslash \alpha^{*}$ considered in Case A and let $k_{\alpha}=\min \left\{m<\omega: r_{\pi\left(\eta \smile\left\langle\alpha^{* *}\right\rangle\right)-\left\langle i_{\alpha}\right\rangle}(m)=1\right\}$. Then

$$
\forall m<\omega, s_{\alpha}(m)=r_{j+1, f_{\alpha}\left(k_{\alpha}+m\right)}(0) .
$$

Case 2. $\left|\alpha^{* *} \backslash \alpha^{*}\right|>\kappa$ and $\rho=c f \alpha^{* *}<\kappa$. Let $\left\langle\alpha_{\nu}^{* *}: \nu<\rho\right\rangle$ be as in Case B and let $\nu_{\alpha}<\rho$ be such that $\alpha=\alpha_{\nu_{\alpha}}^{* *}$. Let $k_{\alpha}=\min \left\{m<\omega: r_{\pi\left(\eta-\left\langle\alpha^{* *}\right\rangle\right)<\left\langle\nu_{\alpha}\right\rangle}(m)=1\right\}$. Then

$$
\forall m<\omega, s_{\alpha}(m)=r_{j+1, f_{\alpha}\left(k_{\alpha}+m\right)}(0) .
$$

Case 3. $\rho=c f \alpha^{* *}>\kappa$. Let $\left\langle\alpha_{\nu}^{* *}: \nu<\rho\right\rangle$ be as in Case C. Let $\nu_{\alpha}<\rho$ be such that $\alpha=\alpha_{\nu_{\alpha}}^{* *}$ and let $k_{\alpha}=\min \left\{m<\omega: r_{\pi\left(\eta \frown\left\langle\alpha^{* *}\right\rangle\right) \frown\langle 0\rangle}(m)=1\right\}$. Then

$$
\forall m<\omega, s_{\alpha}(m)=r_{j+1, f_{\alpha}\left(k_{\alpha}+m\right)}(0)
$$

Let $m^{*}<\omega$ be such that for all $n \geq m^{*}$ and $\alpha<\alpha^{\prime}$ in $J_{1} \cup \ldots \cup J_{j+1}, f_{\alpha}(n)<f_{\alpha^{\prime}}(n)$. Let $q_{j+1}=q_{j} \cup\left\{\langle\bar{\eta}, n, 0\rangle: n<m^{*}, \exists \alpha \in J_{j+1}\right.$ (for some unique $\eta \in T \upharpoonright j$, $\alpha^{* *} \in \operatorname{Suc}_{T}(\eta)$, we have $\alpha \in \operatorname{Suc}_{T}\left(\eta \frown\left\langle\alpha^{* *}\right\rangle\right)$ and $\left(\bar{\eta}=\pi\left(\eta \frown\left\langle\alpha^{* *}\right\rangle\right) \frown\left\langle i_{\alpha}\right\rangle\right.$ or $\bar{\eta}=\pi\left(\eta \frown\left\langle\alpha^{* *}\right\rangle\right) \frown\left\langle\nu_{\alpha}\right\rangle$ or $\left.\left.\bar{\eta}=\left(\pi\left(\eta \frown\left\langle\alpha^{* *}\right\rangle\right) \frown\langle 0\rangle\right)\right)\right\}$.

It is easily seen that $q_{j+1} \in \mathbb{C}\left([\kappa]^{<\omega}\right)$ and for each $\alpha \in J_{j+1},\left(\phi, q_{j+1}\right) \|-" k_{\alpha} \geq m^{*}$ ". Let

$$
p_{j+1}=p_{j} \cup\left\{\left\langle j+1, f_{\alpha}\left(k_{\alpha}+m\right), 0, b(\alpha, m)\right\rangle: \alpha \in J_{j+1},(\alpha, m) \in \operatorname{dom}(b)\right\}
$$

Then $p_{j+1} \in \mathbb{C}(\omega \times \kappa)$ is well-defined and $\left(p_{j+1}, q_{j+1}\right) \leq\left(p_{j}, q_{j}\right)$ and for $\alpha \in J_{j+1}$ we have

$$
\begin{gathered}
\left(p_{j+1}, q_{j+1}\right) \|-" \underset{\sim}{\underset{\sim}{s}} \alpha(m)={\underset{\sim}{r}}_{j+1, f_{\alpha}\left(k_{\alpha}+m\right)}(0)=p_{j+1}\left(j+1, f_{\alpha}\left(k_{\alpha}+m\right), 0\right)=b(\alpha, m)= \\
b(\alpha)(m) " .
\end{gathered}
$$

Thus $\left(p_{j+1}, q_{j+1}\right) \|-$ "s α extends $b(\alpha)$ ". Finally let $(\bar{p}, \bar{q})=\left(p_{t}, q_{t}\right)$. Then for each component α of b,

$$
(\bar{p}, \bar{q}) \|-{ }_{\sim}^{s} \alpha \text { extends } b(\alpha) "
$$

Hence

$$
(\bar{p}, \bar{q}) \|-"\langle\underset{\sim}{s} \alpha: \alpha \in I\rangle \text { extends } b "
$$

$\left.{ }^{*}\right)$ follows and we are done

Theorem 2.1 follows.

We now give several applications of the above theorem.

Theorem 2.5. Suppose that V satisfies $G C H, \kappa=\bigcup_{n<\omega} \kappa_{n}$ and $\bigcup_{n<\omega} o\left(\kappa_{n}\right)=\kappa$ (where $o\left(\kappa_{n}\right)$ is the Mitchell order of κ_{n}). Then there exists a cardinal preserving generic extension V_{1} of V satisfying $G C H$ and having the same reals as V does, so that adding $\kappa-$ many Cohen reals over V_{1} produces κ^{+}-many Cohen reals over V.

Proof. Rearranging the sequence $\left\langle\kappa_{n}: n<\omega\right\rangle$ we may assume that $o\left(\kappa_{n+1}\right)>\kappa_{n}$ for each $n<\omega$. Let $0<n<\omega$. By [Mag 1], there exists a forcing notion \mathbb{P}_{n} such that:

- Each condition in \mathbb{P}_{n} is of the form (g, G), where g is an increasing function from a finite subset of κ_{n}^{+}into κ_{n+1} and G is a function from $\kappa_{n}^{+} \backslash \operatorname{dom}(g)$ into $\mathcal{P}\left(\kappa_{n+1}\right)$. We may also assume that conditions have no parts below or at κ_{n}, and sets of measure one are like this as well.
- Forcing with \mathbb{P}_{n} preserves cardinals and the $G C H$, and adds no new subsets to κ_{n}.
- If G_{n} is \mathbb{P}_{n} - generic over V, then in $V\left[G_{n}\right]$ there is a normal function $g_{n}^{*}: \kappa_{n}^{+} \longrightarrow$ κ_{n+1} such that $\operatorname{ran}\left(g_{n}^{*}\right)$ is a club subset of κ_{n+1} consisting of measurable cardinals of V such that $V\left[G_{n}\right]=V\left[g_{n}^{*}\right]$.

Let $\mathbb{P}^{*}=\prod_{n<\omega} \mathbb{P}_{n}$, and let

$$
\mathbb{P}=\left\{\left\langle\left\langle g_{n}, G_{n}\right\rangle: n<\omega\right\rangle \in \mathbb{P}^{*}: g_{n}=\emptyset, \text { for all but finitely many } n\right\}
$$

Then using simple modification of arguments from [Mag 1,2] we can show that forcing with \mathbb{P} preserves cardinals and the $G C H$. Let G be \mathbb{P}-generic over V, and let $g_{n}^{*}: \kappa_{n}^{+} \longrightarrow \kappa_{n+1}$ be the generic function added by the part of the forcing corresponding to \mathbb{P}_{n}, for $0<n<\omega$. Let $X=\bigcup_{0<n<\omega}\left(\left(\operatorname{ran}\left(g_{n}^{*}\right) \backslash \kappa_{n}^{+}\right) \cup\left\{\kappa_{n+1}\right\}\right)$ and let $g^{*}: \kappa \longrightarrow \kappa$ be an enumeration of X in increasing order. Then $X=\operatorname{ran}\left(g^{*}\right)$ is club in κ and consists entirely of measurable cardinals of V. Also $V[G]=V\left[g^{*}\right]$.

Working in $V[G]$, let \mathbb{Q} be the usual forcing notion for adding a club subset of κ^{+}which avoids points of countable V-cofinality. Thus $\mathbb{Q}=\{p: p$ is a closed bounded subset of κ^{+}and avoids points of countable V-cofinality $\}$, ordered by end extension. Let H be \mathbb{Q}-generic over $V[G]$ and $C=\bigcup\{p: p \in H\}$.

Lemma 2.6. (a) (\mathbb{Q}, \leq) satisfies the $\kappa^{++}-c . c$,
(b) (\mathbb{Q}, \leq) is $<\kappa^{+}-$distributive,
(c) C is a club subset of κ^{+}which avoids points of countable V-cofinality.
(a) and (c) of the above lemma are trivial. For use later we prove a more general version of (b).

Lemma 2.7. Let $V \subseteq W$, let ν be regular in W and suppose that:
(a) W is a $\nu-c . c$ extension of V,
(b) For every $\lambda<\nu$ which is regular in W, there is $\tau<\nu$ so that $c f^{W}(\tau)=\lambda$ and τ has a club subset in W which avoids points of countable V-cofinality.

In W let $\mathbb{Q}=\{p \subseteq \nu: p$ is closed and bounded in ν and avoids points of countable V-cofinality $\}$. Then in W, \mathbb{Q} is $<\nu$-distributive.

Proof. This lemma first appeared in [G-N-S]. We prove it for completeness. Suppose that $W=V[G]$, where G is \mathbb{P}-generic over V for a $\nu-$ c.c forcing notion \mathbb{P}. Let $\lambda<\nu$ be regular, $q \in \mathbb{Q}, \underset{\sim}{f} \in W^{\mathbb{Q}}$ and

$$
q \|-" \underset{\sim}{f}: \lambda \longrightarrow o n " .
$$

We find an extension of q which decides $\underset{\sim}{f}$. By (b) we can find $\tau<\nu$ and $g: \lambda \longrightarrow \tau$ such that $c f^{W}(\tau)=\lambda, g$ is normal and $C=\operatorname{ran}(g)$ is a club of τ which avoids points of countable V-cofinality.

In W, let $\theta>\nu$ be large enough regular. Working in V, let $\bar{H} \prec V_{\theta}$ and $R: \tau \longrightarrow o n$ be such that

- $\operatorname{Card}(\bar{H})<\nu$,
- \bar{H} has $\lambda, \tau, \nu, \mathbb{P}$ and \mathbb{P}-names for $p, \mathbb{Q}, \underset{\sim}{f}, g$ and C as elements,
- $\operatorname{ran}(R)$ is cofinal in $\sup (\bar{H} \cap \nu)$,
- $R \upharpoonright \beta \in \bar{H}$ for each $\beta<\tau$.

Let $H=\bar{H}[G]$. Then $\sup (H \cap \nu)=\sup (\bar{H} \cap \nu)$, since \mathbb{P} is $\nu-$ c.c, $H \prec V_{\theta}^{W}$ and if $\gamma=\sup (H \cap \nu)$, then $c f^{W}(\gamma)=c f^{W}(\tau)=\lambda$. For $\alpha<\lambda$ let $\gamma_{\alpha}=R(g(\alpha))$. Then

- $\left\langle\gamma_{\alpha}: \alpha<\lambda\right\rangle \in W$ is a normal sequence cofinal in γ,
- $\left\langle\gamma_{\alpha}: \alpha<\beta\right\rangle \in H$ for each $\beta<\lambda$, since $R \upharpoonright g(\beta) \in \bar{H}$,
- $c f^{V}\left(\gamma_{\alpha}\right)=c f^{V}(g(\alpha)) \neq \omega$ for each $\alpha<\lambda$, since R is normal and $g(\alpha) \in C$.

Let $D=\left\{\gamma_{\alpha}: \alpha<\lambda\right\}$. We define by induction a sequence $\left\langle q_{\eta}: \eta<\lambda\right\rangle$ of conditions in \mathbb{Q} such that for each $\eta<\lambda$

- $q_{0}=q$,
- $q_{\eta} \in H$,
- $q_{\eta+1} \leq q_{\eta}$,
- $q_{\eta+1}$ decides $\underset{\sim}{f}(\eta)$,
- $D \cap\left(\max q_{\eta}, \max q_{\eta+1}\right) \neq \emptyset$,
- $q_{\eta}=\bigcup_{\rho<\eta} q_{\rho} \cup\left\{\delta_{\eta}\right\}$, where $\delta_{\eta}=\sup \max _{\rho<\eta} q_{\rho}$, if η is a limit ordinal.

We may further suppose that

- q_{η} 's are chosen in a uniform way (say via a well-ordering which is built in to \bar{H}).

We can define such a sequence using the facts that H contains all initial segments of D and that $\delta_{\eta} \in D$ for every limit ordinal $\eta<\lambda$ (and hence $c f^{V}\left(\delta_{\eta}\right) \neq \omega$).

Finally let $q_{\lambda}=\bigcup_{\eta<\lambda} q_{\eta} \cup\left\{\delta_{\lambda}\right\}$, where $\delta_{\lambda}=\sup \max _{\eta<\lambda} q_{\eta}$. Then $\delta_{\lambda} \in D \cup\{\gamma\}$, hence $c f^{V}\left(\delta_{\lambda}\right) \neq \omega$. It follows that $q_{\lambda} \in \mathbb{Q}$ is well-defined. Trivially $q_{\lambda} \leq q$ and q_{λ} decides $\underset{\sim}{f}$. The lemma follows.

Let $V_{1}=V[G * H]$. The following is obvious

Lemma 2.8. (a) V and V_{1} have the same cardinals and reals,
(b) $V_{1} \models$ " $G C H "$,

Now the theorem follows from Theorem 2.1.

Let us show that some large cardinals are needed for the previous result.

Theorem 2.9. Assume that $V_{1} \supseteq V$ and V_{1} and V have the same cardinals and reals. Suppose that for some uncountable cardinal κ of V_{1}, adding κ-many Cohen reals to V_{1} produces κ^{+}-many Cohen reals to V. Then in V_{1} there is an inner model with a measurable cardinal.

Proof. Suppose on the contrary that in V_{1} there is no inner model with a measurable cardinal. Thus by Dodd-Jensen covering lemma (see [D-J 1,2]) $\left(K\left(V_{1}\right), V_{1}\right)$ satisfies the covering lemma where $K\left(V_{1}\right)$ is the Dodd-Jensen core model as computed in V_{1}.

Claim 2.10. $K(V)=K\left(V_{1}\right)$

Proof. The claim is well-known and follows from the fact that V and V_{1} have the same cardinals. We present a proof for completeness ${ }^{4}$. Suppose not. Clearly $K(V) \subseteq K\left(V_{1}\right)$, so

[^3]let $A \subseteq \alpha, A \in K\left(V_{1}\right), A \notin K(V)$. Then there is a mice of $K\left(V_{1}\right)$ to which A belongs, hence there is such a mice of $K\left(V_{1}\right)$-power α. It then follows that for every limit cardinal $\lambda>\alpha$ of V_{1} there is a mice with critical point λ to which A belongs, and the filter is generated by end segments of
$$
\left\{\chi: \chi<\lambda, \chi \text { a cardinal in } V_{1}\right\} .
$$

As V and V_{1} have the same cardinals, this mice is in V, hence in $K(V)$.

Let us denote this common core model by K. Then $K \subseteq V$, and hence $\left(V, V_{1}\right)$ satisfies the covering lemma. It follows that $\left(\left[\kappa^{+}\right]^{\leq \omega_{1}}\right)^{V}$ is unbounded in $\left(\left[\kappa^{+}\right]^{\leq \omega}\right)^{V_{1}}$ and since $\omega_{1}^{V}=\omega_{1}^{V_{1}}$, we can easily show that $\left(\left[\kappa^{+}\right]^{\leq \omega}\right)^{V}$ is unbounded in $\left(\left[\kappa^{+}\right] \leq \omega\right)^{V_{1}}$. Since V_{1} and V have the same reals, $\left(\left[\kappa^{+}\right]^{\leq \omega}\right)^{V}=\left(\left[\kappa^{+}\right]^{\leq \omega}\right)^{V_{1}}$ and we get a contradiction.

If we relax our assumptions, and allow some cardinals to collapse, then no large cardinal assumptions are needed.

Theorem 2.11. (a) Suppose V is a model of $G C H$. Then there is a generic extension V_{1} of V satisfying $G C H$ so that the only cardinal of V which is collapsed in V_{1} is \aleph_{1} and such that adding $\aleph_{\omega}-$ many Cohen reals to V_{1} produces $\aleph_{\omega+1}-$ many of them over V.
(b) Suppose V satisfies $G C H$. Then there is a generic extension V_{1} of V satisfying $G C H$ and having the same reals as V does, so that the only cardinals of V which are collapsed in V_{1} are \aleph_{2} and \aleph_{3} and such that adding $\aleph_{\omega}-$ many Cohen reals to V_{1} produces $\aleph_{\omega+1}-$ many of them over V.

Proof. (a) Working in V, let $\mathbb{P}=\operatorname{Col}\left(\aleph_{0}, \aleph_{1}\right)$ and let G be \mathbb{P}-generic over V. Also let $S=\left\{\alpha<\omega_{2}: c f^{V}(\alpha)=\omega_{1}\right\}$. Then S remains stationary in $V[G]$. Working in $V[G]$, let \mathbb{Q} be the standard forcing notion for adding a club subset of S with countable conditions, and let H be \mathbb{Q}-generic over $V[G]$. Let $C=\bigcup H$. Then C is a club subset of $\omega_{1}^{V[G]}=\omega_{2}^{V}$ such that $C \subseteq S$, and in particular C avoids points of countable V-cofinality. Working in $V[G * H]$, let

$$
\mathbb{R}=\left\langle\left\langle\mathbb{P}_{\nu}: \aleph_{2} \leq \nu \leq \aleph_{\omega+2}, \nu \text { regular }\right\rangle,\left\langle\mathbb{Q}_{\nu}: \aleph_{2} \leq \nu \leq \aleph_{\omega+1}, \nu \text { regular }\right\rangle\right\rangle
$$

be the Easton support iteration by letting ${\underset{\sim}{\mathbb{Q}}}_{\nu}$ name the poset $\{p \subset \nu: p$ is closed and bounded in ν and avoids points of countable V-cofinality $\}$ as defined in $V[G * H]^{\mathbb{P}_{\nu}}$. Let

$$
K=\left\langle\left\langle G_{\nu}: \aleph_{2} \leq \nu \leq \aleph_{\omega+2}, \nu \text { regular }\right\rangle,\left\langle H_{\nu}: \aleph_{2} \leq \nu \leq \aleph_{\omega+1}, \nu \text { regular }\right\rangle\right\rangle
$$

be \mathbb{R} - generic over $V[G * H]$ (i.e G_{ν} is \mathbb{P}_{ν} - generic over $V[G * H]$ and H_{ν} is $\mathbb{Q}_{\nu}=\mathbb{Q}_{\nu}\left[G_{\nu}\right]$-generic over $\left.V\left[G * H * G_{\nu}\right]\right)$. Then

Lemma 2.12. (a) \mathbb{P}_{ν} adds a club disjoint from $\left\{\alpha<\lambda: c f^{V}(\alpha)=\omega\right\}$ for each regular $\lambda \in\left(\aleph_{1}, \nu\right)$,
(b) (By 2.7) $V\left[G * H * G_{\nu}\right] \models{ }^{(} \mathbb{Q}_{\nu}$ is $<\nu$-distributive",
(c) $V[G * H]$ and $V[G * H * K]$ have the same cardinals and reals, and satisfy $G C H$,
(d) In $V[G * H * K]$ there is a club subset C of $\aleph_{\omega+1}$ which avoids points of countable V-cofinality.

Let $V_{1}=V[G * H * K]$. By above results, V_{1} satisfies $G C H$ and the only cardinal of V which is collapsed in V_{1} is \aleph_{1}. The proof of the fact that adding \aleph_{ω}-many Cohen reals over V_{1} produces $\aleph_{\omega+1}-$ many of them over V follows from Theorem 2.1.
(b) Working in V, let \mathbb{P} be the following version of Namba forcing:

$$
\mathbb{P}=\left\{T \subseteq \omega_{2}^{<\omega}: T \text { is a tree and for every } s \in T, \text { the set }\{t \in T: t \supset s\} \text { has size } \aleph_{2}\right\}
$$

ordered by inclusion. Let G be \mathbb{P}-generic over V. It is well-known that forcing with \mathbb{P} adds no new reals, preserves cardinals $\geq \aleph_{4}$ and that $\left|\aleph_{2}^{V}\right|^{V[G]}=\left|\aleph_{3}^{V}\right|^{V[G]}=\aleph_{1}^{V[G]}=\aleph_{1}^{V}$ (see [Sh 1]). Let $S=\left\{\alpha<\omega_{3}: c f^{V}(\alpha)=\omega_{2}\right\}$.

Lemma 2.13. S remains stationary in $V[G]$.

Proof. See [Ve-W, Lemma 3].

Now the rest of the proof is exactly as in (a).
The Theorem follows

By the same line but using stronger initial assumptions, adding κ-many Cohen reals may produce λ-many of them for λ much larger than κ^{+}.

Theorem 2.14. Suppose that κ is a strong cardinal, $\lambda \geq \kappa$ is regular and $G C H$ holds. Then there exists a cardinal preserving generic extension V_{1} of V having the same reals as V does, so that adding $\kappa-$ many Cohen reals over V_{1} produces λ-many of them over V.

Proof. Working in V, build for each δ a measure sequence \vec{u}_{δ} from a j witnessing " κ strong" out to the first weak repeat point. Find \vec{u} such that $\vec{u}=\vec{u}_{\delta}$ for unboundedly many δ. Let $\mathbb{R}_{\vec{u}}$ be the corresponding Radin forcing notion and let G be $\mathbb{R}_{\vec{u}}$ - generic over V. Then

Lemma 2.15. (a) Forcing with $\mathbb{R}_{\vec{u}}$ preserves cardinals and the $G C H$ and adds no new reals,
(b) In $V[G]$, there is a club $C_{\kappa} \subseteq \kappa$ consisting of inaccessible cardinals of V and $V[G]=$ $V\left[C_{\kappa}\right]$,
(c) κ remains strong in $V[G]$.

Proof. See [Git 2] and $[\mathrm{Cu}]$.

Working in $V[G]$, let

$$
E=\left\langle\left\langle U_{\alpha}: \alpha<\lambda\right\rangle,\left\langle\pi_{\alpha \beta}: \alpha \leq_{E} \beta\right\rangle\right\rangle
$$

be a nice system satisfying conditions (0)-(9) in [Git 2, page 37]. Also let

$$
\mathbb{R}=\left\langle\left\langle\mathbb{P}_{\nu}: \kappa^{+} \leq \nu \leq \lambda^{+}, \nu \text { regular }\right\rangle,\left\langle\mathbb{Q}_{\sim}, \kappa^{+} \leq \nu \leq \lambda, \nu \text { regular }\right\rangle\right\rangle
$$

be the Easton support iteration by letting \mathbb{Q}_{ν} name the poset $\{p \subseteq \nu: p$ is closed and bounded in ν and avoids points of countable V-cofinality $\}$ as defined in $V[G]^{\mathbb{P}_{\nu}}$. Let

$$
K=\left\langle\left\langle G_{\nu}: \kappa^{+} \leq \nu \leq \lambda^{+}, \nu \text { regular }\right\rangle,\left\langle H_{\nu}: \kappa^{+} \leq \nu \leq \lambda, \nu \text { regular }\right\rangle\right\rangle
$$

be \mathbb{R}-generic over $V[G]$. Then

Lemma 2.16. (a) \mathbb{P}_{ν} adds a club disjoint form $\left\{\alpha<\delta: c f^{V}(\alpha)=\omega\right\}$ for each regular $\delta \in(\kappa, \nu)$,
(b) (By 2.7) $V\left[G * G_{\nu}\right] \models$ " $\mathbb{Q}_{\nu}={\underset{\mathbb{Q}}{\sim}}_{\sim}^{\sim}\left[G_{\nu}\right]$ is $<\nu$-distributive",
(c) $V[G]$ and $V[G * K]$ have the same cardinals, and satisfy $G C H$,
(d) \mathbb{R} is $\leq \kappa$-distributive, hence forcing with \mathbb{R} adds no new κ-sequences,
(e) In $V[G * K]$, for each regular cardinal $\kappa \leq \nu \leq \lambda$ there is a club $C_{\nu} \subseteq \nu$ such that C_{ν} avoids points of countable V-cofinality.

By 2.16.(d), E remains a nice system in $V[G * K]$, except that the condition (0) is replaced by $\left(\lambda, \leq_{E}\right)$ is κ^{+}-directed closed. Hence working in $V[G * K]$, by results of [Git-Mag 1,2] and [Mer], we can find a forcing notion S such that if L is S-generic over $V[G * H]$ then

- $V[G * K]$ and $V[G * K * L]$ have the same cardinals and reals,
- In $V[G * K * L], 2^{\kappa}=\lambda, c f(\kappa)=\aleph_{0}$ and there is an increasing sequence $\left\langle\kappa_{n}: n<\omega\right\rangle$ of regular cardinals cofinal in κ and an increasing (mod finite) sequence $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ in $\prod_{n<\omega}\left(\kappa_{n+1} \backslash \kappa_{n}\right)$.
Let $V_{1}=V[G * K * L]$. Then V_{1} and V have the same cardinals and reals. The fact that adding κ-many Cohen reals over V_{1} produces λ-many Cohen reals over V follows from Theorem 2.1.

If we allow many cardinals between V and V_{1} to collapse, then using [Git-Mag 1,Sec 2] one can obtain the following

Theorem 2.17. Suppose that there is a strong cardinal and GCH holds. Let $\alpha<\omega_{1}$. Then there is a model $V_{1} \supset V$ having the same reals as V and satisfying $G C H$ below $\aleph_{\omega}^{V_{1}}$ such that adding $\aleph_{\omega}^{V_{1}}-$ many Cohen reals to V_{1} produces $\aleph_{\alpha+1}^{V_{1}}-$ many of them over V.

Proof. Proceed as in Theorem 2.14 to produce the model $V[G * K]$. Then working in $V[G * K]$, we can find a forcing notion S such that if L is S-generic over $V[G * H]$ then

- $V[G * K]$ and $V[G * K * L]$ have the same reals,
- In $V[G * K * L]$, cardinals $\geq \kappa$ are preserved, $\kappa=\aleph_{\omega}, G C H$ holds below $\aleph_{\omega}, 2^{\kappa}=\aleph_{\alpha+1}$ and there is an increasing $(\bmod$ finite $)$ sequence $\left\langle f_{\beta}: \beta<\aleph_{\alpha+1}\right\rangle$ in $\prod_{n<\omega}\left(\aleph_{n+1} \backslash \aleph_{n}\right)$. Let $V_{1}=V[G * K * L]$. Then V_{1} and V have the same reals. The fact that adding $\aleph_{\omega}^{V_{1}}$-many Cohen reals over V_{1} produces $\aleph_{\alpha+1}^{V_{1}}$-many Cohen reals over V follows from Theorem 2.1.

3. Models with the same cofinality function but different reals

This section is completely devoted to the proof of the following theorem.

Theorem 3.1. Suppose that V satisfies $G C H$. Then there is a cofinality preserving generic extension V_{1} of V satisfying $G C H$ so that adding a Cohen real over V_{1} produces $\aleph_{1}-$ many Cohen reals over V.

The basic idea of the proof will be to split ω_{1} into ω sets such that none of them will contain an infinite set of V. Then something like in section 2 will be used for producing

Cohen reals. It turned out however that just not containing an infinity set of V is not enough. We will use a stronger property. As a result the forcing turns out to be more complicated. We are now going to define the forcing sufficient for proving the theorem. Fix a nonprincipal ultrafilter U over ω.

Definition 3.2. Let $\left(\mathbb{P}_{U}, \leq, \leq^{*}\right)$ be the Prikry (or in this context Mathias) forcing with U, i.e.

- $\mathbb{P}_{U}=\left\{\langle s, A\rangle \in[\omega]^{<\omega} \times U:\right.$ maxs $\left.<\min A\right\}$,
- $\langle t, B\rangle \leq\langle s, A\rangle \Longleftrightarrow t$ end extends s and $(t \backslash s) \cup B \subseteq A$,
- $\langle t, B\rangle \leq^{*}\langle s, A\rangle \Longleftrightarrow t=s$ and $B \subseteq A$.

We call \leq^{*} a direct or $*$-extension. The following are the basic facts on this forcing that will be used further.

Lemma 3.3. (a) The generic object of \mathbb{P}_{U} is generated by a real,
(b) $\left(\mathbb{P}_{U}, \leq\right)$ satisfies the c.c.c,
(c) If $\langle s, A\rangle \in \mathbb{P}_{U}$ and $b \subseteq \omega \backslash($ maxs +1$)$ is finite, then there is $a *$-extension of $\langle s, A\rangle$, forcing the generic real to be disjoint to b.

Proof. (a) If G is \mathbb{P}_{U}-generic over V, then let $r=\bigcup\{s: \exists A,\langle s, A\rangle \in G\} . r$ is a real and $G=\left\{\langle s, A\rangle \in \mathbb{P}_{U}: r\right.$ end extends s and $\left.r \backslash s \subseteq A\right\}$.
(b) Trivial using the fact that for $\langle s, A\rangle,\langle t, B\rangle \in \mathbb{P}_{U}$, if $s=t$ then $\langle s, A\rangle$ and $\langle t, B\rangle$ are compatible.
(c) Consider $\langle s, A \backslash(\max b+1)\rangle$.

We now define our main forcing notion.

Definition 3.4. $p \in \mathbb{P}$ iff $p=\left\langle p_{0}, \underset{\sim}{p}{ }_{1}\right\rangle$ where
(1) $p_{0} \in \mathbb{P}_{U}$,
(2) $\underset{\sim}{p} 1$ is a $\mathbb{P}_{U}-$ name such that for some $\alpha<\omega_{1}, p_{0} \|-{ }_{\sim}^{p}{\underset{\sim}{1}}: \alpha \longrightarrow \omega$ " and such that the following hold
(2a) For every $\beta<\alpha, \underset{\sim}{p} 1(\beta) \subseteq \mathbb{P}_{U} \times \omega$ is a $\mathbb{P}_{U}-$ name for a natural number such that

- ${\underset{\sim}{\sim}}_{1}(\beta)$ is partial function from \mathbb{P}_{U} into ω,
- for some fixed $l<\omega$, $\operatorname{dom} \underset{\sim}{p}{ }_{1}(\beta) \subseteq\left\{\langle s, \omega \backslash \max s+1\rangle: s \in[\omega]^{l}\right\}$,
- for all $\beta_{1} \neq \beta_{2}<\alpha$, $\operatorname{ran}_{\underset{\sim}{p}}^{1} 1\left(\beta_{1}\right) \cap \operatorname{ran}{\underset{\sim}{p}}_{1}\left(\beta_{2}\right)$ is finite ${ }^{5}$.
(2b) for every $I \subseteq \alpha, I \in V, p_{0}^{\prime} \leq p_{0}$ and finite $J \subseteq \omega$ there is a finite set $a \subseteq \alpha$ such that for every finite set $b \subseteq I \backslash$ a there is $p_{0}^{\prime \prime} \leq^{*} p_{0}^{\prime}$ such that $p_{0}^{\prime \prime} \|-"(\forall \beta \in b, \forall k \in J, \underset{\sim}{\underset{\sim}{p}} 1(\beta) \neq k) \&\left(\forall \beta_{1} \neq \beta_{2} \in b, \underset{\sim}{\underset{\sim}{p}} 1\left(\beta_{1}\right) \neq \underset{\sim}{p}{ }_{1}\left(\beta_{2}\right)\right) "$.

Notation 3.5. (1) Call α the length of $p(\underset{\sim}{\underset{\sim}{p}} 1)$ and denote it by $\operatorname{lh}(p)(\operatorname{or} \operatorname{lh} \underset{\sim}{\underset{\sim}{p}} 1))$.
(2) For $n<\omega$ let $\underset{\sim}{I} p, n$ be a $\mathbb{P}_{U}-$ name such that $p_{0} \|-{ }_{\sim}^{\sim} \underset{\sim}{\sim} p, n=\left\{\beta<\alpha: \underset{\sim}{p}{ }_{1}(\beta)=n\right\}$ ".

Then we can coincide $\underset{\sim}{\underset{\sim}{p}} 1$ with $\left\langle\underset{\sim}{\underset{\sim}{I}}{ }_{p, n}: n<\omega\right\rangle$.

Remark 3.6. (2a) will guarantee that for $\beta<\alpha, p_{0} \|-{ }_{\sim}^{p}{\underset{\sim}{1}}^{1}(\beta) \in \omega$ ". The last condition in (2a) is a technical fact that will be used in several parts of the argument. The condition (2b) appears technical but it will be crucial for producing numerous Cohen reals.

Definition 3.7. For $p=\left\langle p_{0}, \underset{\sim}{p} 1\right\rangle, q=\left\langle q_{0}, \underset{\sim}{q}{ }_{1}\right\rangle \in \mathbb{P}$, define
(1) $p \leq q$ iff

- $p_{0} \leq_{\mathbb{P}_{U}} q_{0}$,
- $\operatorname{lh}(q) \leq \operatorname{lh}(p)$,
- $p_{0} \|-$ " $\forall n<\omega, \underset{\sim}{I} q, n=\underset{\sim}{I} p, n \cap l h(q) "$.
(2) $p \leq^{*} q$ iff
- $p_{0} \leq_{\mathbb{P}_{U}}^{*} q_{0}$,
- $p \leq q$.
we call $\leq *$ direct or $*-$ extension.

Remark 3.8. In the definition of $p \leq q$, we can replace the last condition by $p_{0} \|-$ " $q_{1}=$ $\underset{\sim}{p} 1 \upharpoonright l h(q) "$.

Lemma 3.9. Let $\left\langle p_{0}, \underset{\sim}{p} p_{1}\right\rangle \|-" \alpha$ is an ordinal". Then there are $\mathbb{P}_{U}-$ names $\underset{\sim}{\beta}$ and $\underset{\sim}{q_{1}}$ such that $\left\langle p_{0},{\underset{\sim}{q}}_{1}\right\rangle \leq^{*}\left\langle p_{0}, \underset{\sim}{p}{ }_{1}\right\rangle$ and $\left\langle p_{0}, \underset{\sim}{q} 1\right\rangle \|-" \underset{\sim}{\alpha}=\underset{\sim}{\beta} "$.

[^4]Proof. Suppose for simplicity that $\left\langle p_{0}, \underset{\sim}{p}{ }_{1}\right\rangle=\langle\langle\langle \rangle, \omega\rangle, \phi\rangle$. Let θ be large enough regular and let $\left\langle N_{n}: n<\omega\right\rangle$ be an increasing sequence of countable elementary submodels of H_{θ} such that $\mathbb{P}, \underset{\sim}{\alpha} \in N_{0}$ and $N_{n} \in N_{n+1}$ for each $n<\omega$. Let $N=\bigcup_{n<\omega} N_{n}, \delta_{n}=N_{n} \cap \omega_{1}$ for $n<\omega$ and $\delta=\bigcup_{n<\omega} \delta_{n}=N \cap \omega_{1}$. Let $\left\langle J_{n}: n<\omega\right\rangle \in N_{0}$ be a sequence of infinite subsets of $\omega \backslash\{0\}$ such that $\bigcup_{n<\omega} J_{n}=\omega \backslash\{0\}, J_{n} \subseteq J_{n+1}$, and $J_{n+1} \backslash J_{n}$ is infinite for each $n<\omega$. Also let $\left\langle\alpha_{i}: 0<i<\omega\right\rangle$ be an enumeration of δ such that for every $n<\omega,\left\{\alpha_{i}: i \in J_{n}\right\} \in N_{n+1}$ is an enumeration of δ_{n} and $\left\{\alpha_{i}: i \in J_{n+1}\right\} \cap \delta_{n}=\left\{\alpha_{i}: i \in J_{n}\right\}$.

We define by induction on the length of s, a sequence $\left\langle p^{s}: s \in[\omega]^{<\omega}\right\rangle$ of conditions such that

- $p^{s}=\left\langle p_{0}^{s}, \underset{\sim}{p}{ }_{1}^{s}\right\rangle=\left\langle\left\langle s, A_{s}\right\rangle, \underset{\sim}{p}{ }_{1}^{s}\right\rangle$,
- $p^{s} \in N_{s(l h s-1)+1}$,
- $l h\left(p^{s}\right)=\delta_{s(l h s-1)+1}$,
- if t does not contradict p_{0}^{s} (i.e if t end extends s and $t \backslash s \subseteq A_{S}$) then $p^{t} \leq p^{s}$.

For $s=<\rangle$, let $\left.p^{<>}=\langle\langle<\rangle, \omega\rangle, \phi\right\rangle$. Suppose that $\left.<\right\rangle \neq s \in[\omega]^{<\omega}$ and $p^{s \upharpoonright l h s-1}$ is defined. We define p^{s}. First we define $t^{s l l h s-1} \leq^{*} p^{s l h s-1}$ as follows: If there is no $*-$ extension of $p^{s\lceil l h s-1}$ deciding $\underset{\sim}{\alpha}$ then let $t^{s\lceil l h s-1}=p^{s\lceil l h s-1}$. Otherwise let $t^{s\lceil l h s-1} \in N_{s(l h s-2)+1}$ be such an extension. Note that $l h\left(t^{s \rho l h s-1}\right) \leq \delta_{s(l h s-2)+1}$.

Let $t^{s l l h s-1}=\left\langle t_{0}, \underset{\sim}{t}{ }_{1}\right\rangle, t_{0}=\langle s \upharpoonright l h s-1, A\rangle$. Let $C \subseteq \omega$ be an infinite set almost disjoint to $\langle\operatorname{ran} \underset{\sim}{\underset{\sim}{1}} 1(\beta): \beta<l h(\underset{\sim}{t} 1)\rangle$. Split C into ω infinite disjoint sets $C_{i}, i<\omega$. Let $\left\langle c_{i j}: j<\omega\right\rangle$ be an increasing enumeration of $C_{i}, i<\omega$. We may suppose that all of these is done in $N_{s(l h s-1)+1}$. Let $p^{s}=\left\langle p_{0}^{s}, \underset{\sim}{p}{ }_{1}^{s}\right\rangle$, where

- $p_{0}^{s}=\langle s, A \backslash(\operatorname{maxs}+1)\rangle$,
- for $\beta<\operatorname{lh}(\underset{\sim}{t} 1),{\underset{\sim}{p}}_{1}^{s}(\beta)=\underset{\sim}{t}{ }_{1}(\beta)$,
- for $i \in J_{s(l h s-1)}$ such that $\alpha_{i} \in \delta_{s(l h s-1)} \backslash l h(\underset{\sim}{t} 1)$

$$
\underset{\sim}{p} s\left(\alpha_{i}\right)=\left\{\left\langle\left\langle s \frown\left\langle r_{1}, \ldots, r_{i}\right\rangle, \omega \backslash\left(r_{i}+1\right)\right\rangle, c_{i r_{i}}\right\rangle: r_{1}>\max s,\left\langle r_{1}, \ldots, r_{i}\right\rangle \in[\omega]^{i}\right\} .
$$

Trivially $p^{s} \in N_{s(l h s-1)+1}, \operatorname{lh}\left(p^{s}\right)=\delta_{s(l h s-1)}$, and if $s(l h s-1) \in A$, then $p^{s} \leq t^{s \upharpoonright l h s-1}$.

Claim 3.10. $p^{s} \in \mathbb{P}$.

Proof. We check conditions in Definition 3.4.
(1) i.e. $p_{0}^{s} \in \mathbb{P}_{U}$ is trivial.
(2) It is clear that $p_{0}^{s} \|-{ }_{\sim}^{p}{ }_{1}^{s}: \delta_{s(l h s-1)} \longrightarrow \omega$ " and that (2a) holds. Let us prove (2b). Thus suppose that $I \subseteq \delta_{s(l h s-1)}, I \in V, p \leq p_{0}^{s}$ and $J \subseteq \omega$ is finite. First we apply (2b) to $\left\langle p, \underset{\sim}{t}{ }_{1}\right\rangle, I \cap l h(\underset{\sim}{t} 1), p$ and J to find a finite set $a^{\prime} \subseteq l h\left(\underset{\sim}{t}{ }_{1}\right)$ such that
$\left(^{*}\right)$ For every finite set $b \subseteq I \cap l h\left({\underset{\sim}{1}}_{1}\right) \backslash a^{\prime}$ there is $p^{\prime} \leq^{*} p$ such that p^{\prime}

$$
\|-"\left(\forall \beta \in b, \forall k \in J, \underset{\sim}{t}{ }_{1}(\beta) \neq k\right) \&\left(\forall \beta_{1} \neq \beta_{2} \in b, \underset{\sim}{t}{ }_{1}\left(\beta_{1}\right) \neq \underset{\sim}{t}{ }_{1}\left(\beta_{2}\right)\right) " .
$$

Let $p=\left\langle s \frown\left\langle r_{1}, \ldots, r_{m}\right\rangle, B\right\rangle$. Suppose that $\delta_{s(l h s-1)} \backslash \operatorname{lh}\left(\underset{\sim}{t}{ }_{1}\right)=\left\{\alpha_{J_{1}}, \ldots, \alpha_{J_{i}}, \ldots\right\}$ where $J_{1}<J_{2}<\ldots$ are in $J_{s(l h s-1)}$. Let

$$
a=a^{\prime} \cup\left\{\alpha_{J_{1}}, \ldots, \alpha_{J_{m}}\right\}
$$

We show that a is as required. Thus suppose that $b \subseteq I \backslash a$ is finite. Apply (*) to $b \cap l h\left(\underset{\sim}{t}{ }_{1}\right)$ to find $p^{\prime}=\left\langle s^{\frown}\left\langle r_{1}, \ldots, r_{m}\right\rangle, B^{\prime}\right\rangle \leq^{*} p$ such that

$$
p^{\prime} \|-"\left(\forall \beta \in b \cap l h\left({\underset{\sim}{t}}_{1}\right), \forall k \in J, \underset{\sim}{t}{ }_{1}(\beta) \neq k\right) \&\left(\forall \beta_{1} \neq \beta_{2} \in b \cap l h\left({\underset{\sim}{1}}_{1}\right),{\underset{\sim}{1}}_{1}\left(\beta_{1}\right) \neq{\underset{\sim}{1}}_{1}^{t}\left(\beta_{2}\right)\right) " .
$$

Also note that

$$
p^{\prime} \|-" \forall \beta \in b \cap l h(\underset{\sim}{t} 1), \underset{\sim}{p}{ }_{1}^{s}(\beta)=\underset{\sim}{t}{ }_{1}(\beta) " .
$$

Pick $k<\omega$ such that

$$
\forall \beta \in b \cap l h(\underset{\sim}{t} 1), \forall \alpha_{i} \in b \backslash l h\left(\underset{\sim}{t}{ }_{1}\right), \operatorname{ran}_{\sim}^{p}{ }_{1}^{s}\left(\beta_{1}\right) \cap\left(\operatorname{ran}_{\sim}^{p}{ }_{1}^{s}\left(\alpha_{i}\right) \backslash k\right)=\phi .
$$

Let $q=\left\langle s \frown\left\langle r_{1}, \ldots, r_{m}\right\rangle, B\right\rangle=\left\langle s \frown\left\langle r_{1}, \ldots, r_{m}\right\rangle, B^{\prime} \backslash(\max J+k+1)\right\rangle$. Then $q \leq^{*} p^{\prime} \leq^{*} p$.
We show that q is as required. wee need to show that
(1) $q \|-" \forall \beta \in b \backslash l h\left(\underset{\sim}{t}{ }_{1}\right), \forall k \in J,{\underset{\sim}{p}}_{1}^{s}(\beta) \neq k "$,
(2) $q \|-" \forall \beta_{1} \neq \beta_{2} \in b \backslash l h(\underset{\sim}{t} 1), \underset{\sim}{p}{ }_{1}^{s}\left(\beta_{1}\right) \neq \underset{\sim}{p}{ }_{1}^{s}\left(\beta_{2}\right) "$,
(3) $q \|-" \forall \beta_{1} \in b \cap l h(\underset{\sim}{t} 1), \forall \beta_{2} \in b \backslash l h(\underset{\sim}{t} 1), \underset{\sim}{p}{ }_{1}^{s}\left(\beta_{1}\right) \neq \underset{\sim}{p}{ }_{1}^{s}\left(\beta_{2}\right)$ ".

Now (1) follows from the fact that $q \|-$ " ${\underset{\sim}{1}}_{s}^{s}\left(\alpha_{i}\right) \geq(i-m)-t h$ element of $B>\max J$ ". (2) follows from the fact that for $i \neq j<\omega, C_{i} \cap C_{j}=\emptyset$, and $\operatorname{ran}_{\sim}^{\underset{\sim}{p}} \underset{1}{s}\left(\alpha_{i}\right) \subseteq C_{i}$. (3) follows from the choice of k. The claim follows.

This completes our definition of the sequence $\left\langle p^{s}: s \in[\omega]^{<\omega}\right\rangle$. Let

$$
\underset{\sim}{q}=\left\{\left\langle p_{0}^{s},\langle\beta, \underset{\sim}{p} \underset{1}{s}(\beta)\rangle\right\rangle: s \in[\omega]^{<\omega}, \beta<\operatorname{lh}\left(p^{s}\right)\right\} .
$$

Then $\underset{\sim}{q} 1$ is a \mathbb{P}_{U}-name and for $s \in[\omega]^{<\omega}, p_{0}^{s} \|-{ }_{\sim}^{p}{\underset{1}{1}}_{s}={\underset{\sim}{q}}_{1} \upharpoonright \operatorname{lh}\left({\underset{\sim}{p}}_{1}^{s}\right)$ ".

Claim 3.11. $\left.\langle\langle<\rangle, \omega\rangle,{\underset{\sim}{q}}_{1}\right\rangle \in \mathbb{P}$.

Proof. We check conditions in Definition 3.4.
(1) i.e. $\langle<\rangle, \omega\rangle \in \mathbb{P}_{U}$ is trivial.
(2) It is clear from our definition that

$$
\langle<\rangle, \omega\rangle \|-\quad q_{1} \text { is a well-defined function into } \omega " .
$$

Let us show that $l h(\underset{\sim}{q} 1)=\delta$. By the construction it is trivial that $l h\left({\underset{\sim}{q}}_{1}\right) \leq \delta$. We show that $l h\left({\underset{\sim}{q}}_{1}\right) \geq \delta$. It suffices to prove the following
${ }^{(*)}$ For every $\tau<\delta$ and $p \in \mathbb{P}_{U}$ there is $q \leq p$ such that $q \|-$ " ${\underset{\sim}{q}}_{1}(\tau)$ is defined ".

Fix $\tau<\delta$ and $p=\langle s, A\rangle \in \mathbb{P}_{U}$ as in $\left(^{*}\right)$. Let t be an end extension of s such that $t \backslash s \subseteq A$ and $\delta_{t(l h t-1)}>\tau$. Then p_{0}^{t} and p are compatible and $p_{0}^{t} \|-{ }_{\sim}^{q} q_{1}(\tau)={\underset{\sim}{p}}_{1}^{t}(\tau)$ is defined". Let $q \leq p_{0}^{t}, p$. Then $q \|-{ }_{\sim}^{q}{\underset{\sim}{1}}(\tau)$ is defined" and $(*)$ follows. Thus $l h\left({\underset{\sim}{q}}_{1}\right)=\delta$.
(2a) is trivial. Let us prove (2b). Thus suppose that $I \subseteq \delta, I \in V, p \leq\langle<\rangle, \omega\rangle$ and $J \subseteq \omega$ is finite. Let $p=\langle s, A\rangle$.

First we consider the case where $s=<>$. Let $a=\emptyset$. We show that a is as required. Thus let $b \subseteq I$ be finite. Let $n \in A$ be such that $n>\max J+1$ and $b \subseteq \delta_{n}$. Let $t=s^{\frown}\langle n\rangle$. Note that

$$
\forall \beta_{1} \neq \beta_{2} \in b, \operatorname{ran}{\underset{\sim}{p}}_{1}^{t}\left(\beta_{1}\right) \cap \operatorname{ran}{\underset{\sim}{p}}_{1}^{t}\left(\beta_{2}\right)=\emptyset .
$$

Let $q=\langle<\rangle, B\rangle=\langle<\rangle, A \backslash(\max J+1)\rangle$. Then $q \leq^{*} p$ and q is compatible with p_{0}^{t}. We show that q is as required. We need to show that
(1) $q \|-" \forall \beta \in b, \forall k \in J,{\underset{\sim}{q}}_{1}(\beta) \neq k "$,
(2) $q \|-" \forall \beta_{1} \neq \beta_{2} \in b,{\underset{\sim}{\sim}}_{q_{1}}^{\sim}\left(\beta_{1}\right) \neq \underset{\sim}{q}{ }_{1}\left(\beta_{2}\right) "$.

For (1), if it fails, then we can find $\langle r, D\rangle \leq q, p_{0}^{t}, \beta \in b$ and $k \in J$ such that $\langle r, D\rangle \leq^{*} p_{0}^{r}$ and $\langle r, D\rangle \|-$ " ${\underset{\sim}{q}}_{1}(\beta)=k "$. But $\langle r, D\rangle \|-{ }_{\sim}^{q}{\underset{\sim}{1}}_{1}(\beta)=\underset{\sim}{p}{ }_{1}^{r}(\beta)=\underset{\sim}{p} \underset{1}{t}(\beta) "$, hence $\langle r, D\rangle \|-$ " ${\underset{\sim}{1}}_{t}^{t}(\beta)=$ k ". This is impossible since $\min D \geq \min B>\max J$. For (2), if it fails, then we can find $\langle r, D\rangle \leq q, p_{0}^{t}$ and $\beta_{1} \neq \beta_{2} \in b$ such that $\langle r, D\rangle \leq^{*} p_{0}^{r}$ and $\langle r, D\rangle \|-{ }_{\sim}^{q} q_{1}\left(\beta_{1}\right)={\underset{\sim}{q}}_{1}\left(\beta_{2}\right)$ ". As
above it follows that $\langle r, D\rangle \|-$ " $\underset{\sim}{p}{ }_{1}^{t}\left(\beta_{1}\right)={\underset{\sim}{p}}_{1}^{t}\left(\beta_{2}\right) "$. This is impossible since for $\beta_{1} \neq \beta_{2} \in b$, $\operatorname{ran}{\underset{\sim}{1}}_{1}^{t}\left(\beta_{1}\right) \cap \operatorname{ran} \underset{\sim}{p} \underset{1}{t}\left(\beta_{2}\right)=\emptyset$. Hence q is as required and we are done.

Now consider the case $s \neq<>$. First we apply (2b) to $t^{s}, I \cap l h\left(t^{s}\right), p$ and J to find a finite set $a^{\prime} \subseteq l h\left(t^{s}\right)$ such that
$\left({ }^{* *}\right) \quad$ For every finite set $b \subseteq I \cap l h\left(t^{s}\right) \backslash a^{\prime}$ there is $p^{\prime} \leq^{*} p$ such that p^{\prime}

$$
\|-"\left(\forall \beta \in b, \forall k \in J,{\underset{\sim}{p}}_{1}^{s}(\beta) \neq k\right) \&\left(\forall \beta_{1} \neq \beta_{2} \in b, \underset{\sim}{p}{ }_{1}^{s}\left(\beta_{1}\right) \neq \underset{\sim}{p}{ }_{1}^{s}\left(\beta_{2}\right)\right) "
$$

Let $t^{s}=\left\langle t_{0}, \underset{\sim}{t} 1\right\rangle, \delta_{s(l h s-1)+1} \backslash \delta_{s(l h s-1)}=\left\{\alpha_{J_{1}}, \alpha_{J_{2}}, \ldots\right\}$, where $J_{1}<J_{2}<\ldots$ are in $J_{s(l h s-1)+1}$. Define

$$
a=a^{\prime} \cup\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{J_{l h s+1}}\right\} .
$$

We show that a is as required. First apply $\left({ }^{* *}\right)$ to $b \cap l h\left(t^{s}\right)$ to find $p^{\prime}=\left\langle s, A^{\prime}\right\rangle \leq^{*} p$ such that

$$
p^{\prime} \|-"\left(\forall \beta \in b \cap l h\left(t^{s}\right), \forall k \in J, \underset{\sim}{t}{ }_{1}(\beta) \neq k\right) \&\left(\forall \beta_{1} \neq \beta_{2} \in b \cap l h\left(t^{s}\right),{\underset{\sim}{1}}_{1}\left(\beta_{1}\right) \neq{\underset{\sim}{1}}_{1}^{t}\left(\beta_{2}\right)\right) " .
$$

Pick $n \in A^{\prime}$ such that $n>\max J+1$ and $b \subseteq \delta_{n}$ and let $r=s^{\frown}\langle n\rangle$. Then

$$
\forall \beta_{1} \neq \beta_{2} \in b \backslash \operatorname{lh}\left(t^{s}\right), \operatorname{ran} \underset{\sim}{p}{ }_{1}^{r}\left(\beta_{1}\right) \cap \operatorname{ran} \underset{\sim}{p}{ }_{1}^{r}\left(\beta_{2}\right)=\emptyset .
$$

Pick $k<\omega$ such that $k>n$ and

$$
\forall \beta_{1} \in b \cap \operatorname{lh}\left(t^{s}\right), \forall \beta_{2} \in b \backslash \operatorname{lh}\left(t^{s}\right), \operatorname{ran} \underset{\sim}{p}{ }_{1}^{r}\left(\beta_{1}\right) \cap\left(\operatorname{ran} \underset{\sim}{p} r\left(\beta_{2}\right) \backslash k\right)=\emptyset .
$$

Let $q=\langle s, B\rangle=\left\langle s, A^{\prime} \backslash(\max J+k+1) \cup\{n\}\right\rangle$. Then $q \leq^{*} p^{\prime} \leq^{*} p$ and q is compatible with p_{0}^{r} (since $n \in B$). We show that q is as required. We need to prove the following
(1) $q \|-" \forall \beta \in b, \forall k \in J,{\underset{\sim}{q}}_{1}(\beta) \neq k "$,
(2) $q \|-" \forall \beta_{1} \neq \beta_{2} \in b \backslash \operatorname{lh}\left(t^{s}\right),{\underset{\sim}{q}}_{1}\left(\beta_{1}\right) \neq \underset{\sim}{q}{ }_{1}\left(\beta_{2}\right) "$,
(3) $q \|-" \forall \beta_{1} \in b \cap l h\left(t^{s}\right), \forall \beta_{2} \in b \backslash l h\left(t^{s}\right), \underset{\sim}{q} 1\left(\beta_{1}\right) \neq \underset{\sim}{q}\left(\beta_{2}\right) "$.

The proofs of (1) and (2) are as in the case $s=<>$. Let us prove (3). Suppose that (3) fails. Thus we can find $\langle u, D\rangle \leq q, p_{0}^{r}, \beta_{1} \in b \cap l h\left(t^{s}\right)$ and $\beta_{2} \in b \backslash l h\left(t^{s}\right)$ such that $\langle u, D\rangle \leq^{*} p_{0}^{u}$ and $\langle u, D\rangle \|-{ }_{\sim}^{q}{\underset{\sim}{1}}_{1}\left(\beta_{1}\right)={\underset{\sim}{q}}_{1}\left(\beta_{2}\right) "$. But $\langle u, D\rangle \|-{\underset{\sim}{q}}_{q}^{q}(\beta)={\underset{\sim}{p}}_{1}^{u}(\beta)={\underset{\sim}{p}}_{1}^{r}(\beta) "$ for $\beta \in b$, hence $\langle u, D\rangle \|-{ }_{\sim}^{p} \underset{1}{r}\left(\beta_{1}\right)=\underset{\sim}{p} \underset{1}{r}\left(\beta_{2}\right)$ ". Now note that $\beta_{2}=\alpha_{i}$ for some $i>l h s+1, \min D \geq n$ and $\min (D \backslash\{n\})>k$, hence by the construction of p^{r}

$$
\langle u, D\rangle \|- \text { "p} \underset{\sim}{p}\left(\beta_{2}\right) \geq(i-l h s)-\text { th element of } D>k "
$$

By our choice of $k, \operatorname{ran}_{\sim}^{\underset{\sim}{p}} \underset{1}{r}\left(\beta_{1}\right) \cap\left(\operatorname{ran}_{\sim}^{\underset{\sim}{p}} \underset{1}{r}\left(\beta_{2}\right) \backslash k\right)=\emptyset$ and we get a contradiction. (3) follows. Thus q is as required, and the claim follows.

Let

$$
\underset{\sim}{\beta}=\left\{\left\langle p_{0}^{s}, \delta\right\rangle: s \in[\omega]^{<\omega}, \exists \gamma\left(\delta<\gamma, p^{s} \|-" \underset{\sim}{\alpha}=\gamma "\right)\right\}
$$

Then $\underset{\sim}{\beta}$ is a \mathbb{P}_{U} - name of an ordinal.

Claim 3.12. $\langle\langle\rangle, \omega\rangle, \underset{\sim}{q} 1\rangle \|-" \underset{\sim}{\alpha}=\underset{\sim}{\beta} "$.

Proof. Suppose not. There are two cases to be considered.
Case 1. There are $\left\langle r_{0},{\underset{\sim}{r}}_{1}\right\rangle \leq\langle\langle\langle \rangle, \omega\rangle, \underset{\sim}{q}{\underset{\sim}{~}}\rangle$ and δ such that $\left\langle r_{0}, \underset{\sim}{r} 1\right\rangle \|-" \delta \in \underset{\sim}{\alpha} \underset{\sim}{\alpha}$ and $\delta \notin \underset{\sim}{\beta}$ ". We may suppose that for some ordinal $\alpha,\left\langle r_{0}, \underset{\sim}{r}{ }_{1}\right\rangle \|-" \underset{\sim}{\alpha}=\alpha$ ". Then $\delta<\alpha$. Let $r_{0}=\langle s, A\rangle$. Consider $p^{s}=\left\langle p_{0}^{s},{\underset{\sim}{\sim}}_{1}^{s}\right\rangle$. Then p_{0}^{s} is compatible with r_{0} and there is a *-extension of p^{s} deciding $\underset{\sim}{\alpha}$. Let $t \in N_{s(l h s-1)+1}$ be the $*-$ extension of p^{s} deciding $\underset{\sim}{\alpha}$ chosen in the proof of Lemma 3.9. Let $t=\left\langle t_{0}, \underset{\sim}{t} 1\right\rangle, t_{0}=\langle s, B\rangle$, and let γ be such that $\left.\left\langle t_{0}, \underset{\sim}{t}\right\rangle\right\rangle-$ " $\alpha=\gamma$ ". Let $n \in A \cap B$. Then

- $p_{0}^{s \sim\langle n\rangle}, t_{0}$ and p_{0}^{s} are compatible and $\left\langle s \frown\langle n\rangle, A \cap B \cap A_{s \sim\langle n\rangle}\right\rangle$ extends them,
- $p^{s^{\curvearrowleft}\langle n\rangle} \leq t$.

Thus $p^{s\ulcorner\langle n\rangle} \|-$ " $\underset{\sim}{\alpha}=\gamma$ ". Let $u=\left\langle s \frown\langle n\rangle, A \cap B \cap A_{s \leftharpoonup\langle n\rangle} \backslash(n+1)\right\rangle$.
Then $u \leq p_{0}^{s^{\sim}}{ }^{\langle n\rangle}$ and $u \|-" \underset{\sim}{r} 1$ extends ${\underset{\sim}{p}}_{1}^{p^{\curvearrowleft}\langle n\rangle}$ which extends $\underset{\sim}{t} 1 "$. Thus $\left\langle u, \underset{\sim}{r}{ }_{1}\right\rangle \leq$ $t,\left\langle r_{0},{\underset{\sim}{r}}_{1}\right\rangle, p^{s \sim\langle n\rangle}$. It follows that $\alpha=\gamma$. Now $\delta<\gamma$ and $p^{s \sim\langle n\rangle} \|-$ " $\alpha \sim \gamma$ ". Hence $\left\langle p_{0}^{s}{ }^{s}\langle n\rangle, \delta\right\rangle \in \underset{\sim}{\beta}$ and $p^{s}{ }^{\sim}\langle n\rangle \|-" \delta \in \underset{\sim}{\beta}$ ". This is impossible since $\left.\left\langle r_{0}, \underset{\sim}{r}\right\rangle\right\rangle \|-" \delta \notin \underset{\sim}{\beta}$ " .

Case 2. There are $\left\langle r_{0},{\underset{\sim}{r}}_{1}\right\rangle \leq\left\langle\langle\langle \rangle, \omega\rangle,{\underset{\sim}{q}}_{1}\right\rangle$ and δ such that $\left\langle r_{0}, \underset{\sim}{r} 1\right\rangle \|-" \delta \in \underset{\sim}{\beta}$ and $\delta \notin \underset{\sim}{\alpha}$ ". We may further suppose that for some ordinal $\alpha,\left\langle r_{0}, \underset{\sim}{r}{ }_{1}\right\rangle \|-\quad$ " $\alpha=\alpha$ ". Thus $\delta \geq \alpha$. Let $r=\langle s, A\rangle$. Then as above p_{0}^{s} is compatible with r and there is a $*$-extension of p^{s} deciding $\underset{\sim}{\alpha}$. Choose t as in Case $1, t=\left\langle t_{0}, \underset{\sim}{t} 1\right\rangle, t_{0}=\langle s, B\rangle$ and let γ be such that $\left\langle t_{0}, \underset{\sim}{t}{ }_{1}\right\rangle \|-$ " $\underset{\sim}{\alpha}=\gamma$ ". Let $n \in A \cap B$. Then as in Case $1, \alpha=\gamma$ and $p^{s}\langle n\rangle \|-\quad \underset{\sim}{\alpha}=\gamma$ ". On the other hand since $\left\langle r_{0}, \underset{\sim}{\underset{\sim}{r}}{ }_{1}\right\rangle \|-$ " $\delta \in \underset{\sim}{\beta}$ ", we can find \bar{s} such that \bar{s} does not contradict $p_{0}^{s\ulcorner\langle n\rangle},\left\langle p_{0}^{\bar{s}}, p_{1}^{\bar{s}}\right\rangle \|-$ " $\underset{\sim}{\alpha}=\bar{\gamma}$ " for some $\bar{\gamma}>\delta$ and $\left\langle p_{0}^{\bar{s}}, \delta\right\rangle \in \underset{\sim}{\beta}$. Now $\bar{\gamma}=\gamma=\alpha>\delta$ which is in contradiction with $\delta \geq \alpha$. The claim follows.

This completes the proof of Lemma 3.9.

Lemma 3.13. Let $\left\langle p_{0}, \underset{\sim}{p} 1\right\rangle \|-" \underset{\sim}{f}: \omega \longrightarrow 0 n "$. Then there are $\mathbb{P}_{U}-$ names $\underset{\sim}{g}$ and $\underset{\sim}{q}{ }_{1}$ such that $\left\langle p_{0},{\underset{\sim}{q}}_{1}\right\rangle \leq^{*}\left\langle p_{0}, \underset{\sim}{p}{ }^{1}\right\rangle$ and $\left\langle p_{0}, \underset{\sim}{q} 1\right\rangle \|-" \underset{\sim}{f}=\underset{\sim}{g} "$.

Proof. For simplicity suppose that $\left\langle p_{0}, \underset{\sim}{p}{ }_{1}\right\rangle=\langle\langle\langle \rangle, \omega\rangle, \emptyset\rangle$. Let θ be large enough regular and let $\left\langle N_{n}: n<\omega\right\rangle$ be an increasing sequence of countable elementary submodels of H_{θ} such that $\mathbb{P}, \underset{\sim}{f} \in N_{0}$ and $N_{n} \in N_{n+1}$ for every $n<\omega$. Let $N=\bigcup_{n<\omega} N_{n}, \delta_{n}=N_{n} \cap \omega_{1}$ for $n<\omega$ and $\delta=\bigcup_{n<\omega} \delta_{n}=N \cap \omega_{1}$. Let $\left\langle J_{n}: n<\omega\right\rangle \in N_{0}$ and $\left\langle\alpha_{i}: 0<i<\omega\right\rangle$ be as in Lemma 3.9.

We define by induction a sequence $\left\langle p^{s}: s \in[\omega]^{<\omega}\right\rangle$ of conditions and a sequence $\left\langle\underset{\sim}{\beta_{s}}: s \in\right.$ $\left.[\omega]^{<\omega}\right\rangle$ of \mathbb{P}_{U}-names for ordinals such that

- $p^{s}=\left\langle p_{0}^{s}, \underset{\sim}{p}{ }_{1}^{s}\right\rangle=\left\langle\langle s, \omega \backslash(\max s+1)\rangle, \underset{\sim}{p}{ }_{1}^{s}\right\rangle$,
- $p^{s} \in N_{s(l h s-1)+1}$,
- $\operatorname{lh}\left(p^{s}\right) \geq \delta_{s(l h s-1)}$,
- $p^{s} \|-" \underset{\sim}{f}(l h s-1)=\underset{\sim}{\underset{\sim}{\beta}}{ }_{s} "$,
- if t end extends s, then $p^{t} \leq p^{s}$.

For $s=<\rangle$, let $\left.p^{<>}=\langle\langle<\rangle, \omega\rangle, \emptyset\right\rangle$. Now suppose that $s \neq<>$ and $p^{s \mid l h s-1}$ is defined. We define p^{s}. Let $C_{s \upharpoonright l h s-1}$ be an infinite subset of ω almost disjoint to $\left\langle\operatorname{ran}{\underset{\sim}{p}}_{1}^{s l h s-1}(\beta)\right.$: $\left.\beta<l h\left(p^{s \upharpoonright l h s-1}\right)\right\rangle$. Split $C_{s \upharpoonright l h s-1}$ into ω infinite disjoint sets $\left\langle C_{s \upharpoonright l h s-1, t}: t \in[\omega]^{<\omega}\right.$ and t end extends $s \upharpoonright l h s-1\rangle$. Again split $C_{s \upharpoonright l h s-1, s}$ into ω infinite disjoint sets $\left\langle C_{i}: i<\omega\right\rangle$. Let $\left\langle c_{i j}: j<\omega\right\rangle$ be an increasing enumeration of $C_{i}, i<\omega$. We may suppose that all of these is done in $N_{s(l h s-1)+1}$. Let $q^{s}=\left\langle q_{0}^{s}, \underset{\sim}{q}{ }_{1}^{s}\right\rangle$, where

- $q_{0}^{s}=\langle s, \omega \backslash(\max s+1)\rangle$,
- for $\beta<\operatorname{lh}\left(p^{s \upharpoonright l h s-1}\right),{\underset{\sim}{q}}_{1}^{s}(\beta)={\underset{\sim}{p}}_{1}^{s\lceil l h s-1}(\beta)$,
- for $i \in J_{s(l h s-1)}$ such that $\alpha_{i} \in \delta_{s(l h s-1)} \backslash \operatorname{lh}\left(p^{s \mid l h s-1}\right)$

$$
\underset{\sim}{q}\left(\alpha_{i}\right)=\left\{\left\langle\left\langle s \frown\left\langle r_{1}, \ldots, r_{i}\right\rangle, \omega \backslash\left(r_{i}+1\right)\right\rangle, c_{i r_{i}}\right\rangle: r_{1}>\max s,\left\langle r_{1}, \ldots, r_{i}\right\rangle \in[\omega]^{i}\right\} .
$$

Then $q^{s} \in N_{s(l h s-1)+1}$ and as in the proof of claim 3.10, $q^{s} \in \mathbb{P}$. By Lemma 3.9, applied inside $N_{s(l h s-1)+1}$, we can find \mathbb{P}_{U}-names $\underset{\sim}{\beta}{ }_{s}$ and $\underset{\sim}{p} \underset{1}{s}$ such that $\left\langle q_{0}^{s}, \underset{\sim}{p}{ }_{1}^{s}\right\rangle \leq\left\langle q_{0}^{s}, \underset{\sim}{q}\right\rangle$ and $\left\langle q_{0}^{s}, \underset{\sim}{p}{ }_{1}^{s}\right\rangle \|-" \underset{\sim}{f}(l h s-1)=\underset{\sim}{\beta} s^{\prime} "$. Let $p^{s}=\left\langle p_{0}^{s},{\underset{\sim}{\sim}}_{1}^{s}\right\rangle=\left\langle q_{0}^{s},{\underset{\sim}{1}}_{1}^{s}\right\rangle$. Then $p^{s} \leq p^{s \upharpoonright l h s-1}$ and $p^{s} \|-$ " $\underset{\sim}{f} \upharpoonright l h s=\left\{\left\langle i, \underset{\sim}{\underset{\sim}{\beta}}{ }_{s \uparrow i+1}\right\rangle: i<l h s\right\} "$.

This completes our definition of the sequences $\left\langle p^{s}: s \in[\omega]^{<\omega}\right\rangle$ and $\left\langle\underset{\sim}{\beta}{ }_{s}: s \in[\omega]^{<\omega}\right\rangle$. Let

$$
\begin{aligned}
&{\underset{\sim}{q}}_{1}=\left\{\left\langlep_{0}^{s},\langle\beta, \underset{\sim}{p}\right.\right. \\
& 1 \\
& \underset{\sim}{g}\left.(\beta)\rangle\rangle: s \in[\omega]^{<\omega}, \beta<\operatorname{lh}\left(p^{s}\right)\right\}, \\
&=\left\langle\left\langle p_{0}^{s},\left\langle i,{\underset{\sim}{\beta}}_{s \mid i+1}\right\rangle\right\rangle: s \in[\omega]^{<\omega}, i<\operatorname{lh} s\right\} .
\end{aligned}
$$

Then $\underset{\sim}{q} 1$ and $\underset{\sim}{g}$ are \mathbb{P}_{U} - names.

Claim 3.14. $\left.\langle\langle<\rangle, \omega\rangle,{\underset{\sim}{q}}_{1}\right\rangle \in \mathbb{P}$.

Proof. We check conditions in Definition 3.4.
(1) i.e $\left\langle\rangle, \omega\rangle \in \mathbb{P}_{U}\right.$ is trivial.
(2) It is clear by our construction that

$$
\langle<\rangle, \omega\rangle \|-{ }_{\sim}^{q} q_{1} \text { is a well-defined function" }
$$

and as in the proof of claim 3.11, we can show that $\operatorname{lh}\left({\underset{\sim}{\sim}}_{1}\right)=\delta$. (2a) is trivial. Let us prove (2b). Thus suppose that $I \subseteq \delta, I \in V, p \leq\langle<\rangle, \omega\rangle$ and $J \subseteq \omega$ is finite. Let $p=\langle s, A\rangle$. If $s=<>$, then as in the proof of 3.11 , we can show that $a=\emptyset$ is a required. Thus suppose that $s \neq<>$. First we apply (2b) to $p^{s}, I \cap l h\left(p^{s}\right), p$ and J to find $a^{\prime} \subseteq l h\left(p^{s}\right)$ such that
$\left(^{*}\right) \quad$ For every finite $b \subseteq I \cap \operatorname{lh}\left(p^{s}\right) \backslash a^{\prime}$ there is $p^{\prime} \leq^{*} p$ such that p^{\prime}

$$
\|-"(\forall \beta \in b, \forall k \in J, \underset{\sim}{p} 1(\beta) \neq k) \&\left(\forall \beta_{1} \neq \beta_{2} \in b, \underset{\sim}{p} s\left(\beta_{1}\right) \neq \underset{\sim}{p} s\left(\beta_{2}\right)\right) "
$$

Let $\delta_{s(l h s-1)+1} \backslash \delta_{s(l h s-1)}=\left\{\alpha_{J_{1}}, \ldots, \alpha_{J_{i}}, \ldots\right\}$ where $J_{1}<J_{2}<\ldots$ are in $J_{s(l h s-1)+1}$. Let

$$
a=a^{\prime} \cup\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{J_{l h s}}\right\} .
$$

We show that a is as required. Let $b \subseteq I \backslash a$ be finite. First we apply $\left(^{*}\right)$ to $b \cap l h\left(p^{s}\right)$ to find $p^{\prime}=\left\langle s, A^{\prime}\right\rangle \leq^{*} p$ such that

$$
p^{\prime} \|-"\left(\forall \beta \in b \cap l h\left(p^{s}\right), \forall k \in J, \underset{\sim}{p}=1(\beta) \neq k\right) \&\left(\forall \beta_{1} \neq \beta_{2} \in b \cap l h\left(p^{s}\right),{\underset{\sim}{p}}_{1}^{s}\left(\beta_{1}\right) \neq \underset{\sim}{p} s\left(\beta_{2}\right)\right) " .
$$

Also note that for $\left.\beta \in b \cap l h\left(p^{s}\right), p^{\prime} \|-{ }_{\sim}^{q} q_{1}(\beta)=\underset{\sim}{p} \underset{1}{s}(\beta)\right)$. . Pick m such that max $s+$ $\max J+1<m<\omega$ and if t end extends s and $m<\max t$, then $C_{s, t}$ is disjoint to J and to $\operatorname{ran}{\underset{\sim}{1}}_{1}^{s}(\beta)$ for $\beta \in b \cap l h\left(p^{s}\right)$. Then pick $n>m, n \in A^{\prime}$ such that $b \subseteq \delta_{n}$, and let $t=s \frown\langle n\rangle$. Then

- $\forall \beta_{1} \neq \beta_{2} \in b \backslash \operatorname{lh}\left(p^{s}\right), \operatorname{ran} \underset{\sim}{p}{ }_{1}^{t}\left(\beta_{1}\right) \cap \operatorname{ran} \underset{\sim}{p}{ }_{1}^{t}\left(\beta_{2}\right)=\emptyset$,
- $\forall \beta_{1} \in b \cap \operatorname{lh}\left(p^{s}\right), \forall \beta_{2} \in b \backslash \operatorname{lh}\left(p^{s}\right), \operatorname{ran}_{\sim}^{p} \underset{1}{t}\left(\beta_{1}\right) \cap \operatorname{ran} \underset{\sim}{p} \underset{1}{t}\left(\beta_{2}\right)=\emptyset$,
- $\forall \beta \in b \backslash \operatorname{lh}\left(p^{s}\right), \operatorname{ran}_{\underset{\sim}{p}}^{1}{ }_{1}^{t}(\beta) \cap J=\emptyset$.

Let $q=\langle s, B\rangle=\left\langle s, A^{\prime} \backslash(n+1)\right\rangle$. Then $q \leq^{*} p^{\prime} \leq^{*} p$ and using the above facts we can show that

$$
\begin{gathered}
q \|-"(\forall \beta \in b, \forall k \in J, \underset{\sim}{q} 1(\beta)=\underset{\sim}{p} \\
\underset{\sim}{t}(\beta) \neq k) \&\left(\forall \beta_{1} \neq \beta_{2} \in b,{\underset{\sim}{q}}_{1}\left(\beta_{1}\right)=\underset{\sim}{p}\right. \\
\left.{\underset{\sim}{q}}_{1}^{t}\left(\beta_{2}\right)\right) " .
\end{gathered}
$$

Thus q is as required and the claim follows.

Claim 3.15. $\left.\langle\langle<\rangle, \omega\rangle,{\underset{\sim}{q}}_{1}\right\rangle \|-" \underset{\sim}{f}=\underset{\sim}{g} "$.
Proof. Suppose not. Then we can find $\left.\left\langle r_{0},{\underset{\sim}{r}}_{1}\right\rangle \leq\langle\langle<\rangle, \omega\rangle,{\underset{\sim}{q}}_{1}\right\rangle$ and $i<\omega$ such that $\left\langle r_{0},{\underset{\sim}{r}}_{1}\right\rangle \|-$ " $\underset{\sim}{f}(i) \neq \underset{\sim}{g}(i) "$. Let $r_{0}=\langle s, A\rangle$. Then r_{0} is compatible with p_{0}^{s} and $r_{0} \|-{ }_{\sim}^{r} r_{1}$ extends $p_{1}^{s "}$. Hence $\left\langle r_{0},{\underset{\sim}{\sim}}_{1}\right\rangle \leq\left\langle p_{0}^{s}, \underset{\sim}{p}{ }_{1}^{s}\right\rangle=p^{s}$. Now $p^{s} \|-{ }_{\sim}^{g} \underset{\sim}{g}(i)=\underset{\sim}{\underset{\sim}{s} \backslash i+1}{ }^{f} \underset{\sim}{f}(i) "$ and we get a contradiction. The claim follows.

This completes the proof of Lemma 3.13.

The following is now immediate.

Lemma 3.16. The forcing (\mathbb{P}, \leq) preserves cofinalities.

Proof. By Lemma $3.13, \mathbb{P}$ preserves cofinalities $\leq \omega_{1}$. On the other hand by a Δ-system argument, \mathbb{P} satisfies the $\omega_{2}-$ c.c and hence it preserves cofinalities $\geq \omega_{2}$.

Lemma 3.17. Let G be (\mathbb{P}, \leq)-generic over V. Then $V[G] \models G C H$.

Proof. By Lemma 3.13, $V[G] \models C H$. Now let $\kappa \geq \omega_{1}$. Then

$$
\left(2^{\kappa}\right)^{V[G]} \leq\left(\left(|\mathbb{P}|^{\omega_{1}}\right)^{\kappa}\right)^{V} \leq\left(2^{\kappa}\right)^{V}=\kappa^{+}
$$

The result follows.

Now we return to the proof of Theorem 3.1. Suppose that G is (\mathbb{P}, \leq)-generic over V, and let $V_{1}=V[G]$. Then V_{1} is a cofinality and $G C H$ preserving generic extension of V. We show that adding a Cohen real over V_{1} produces \aleph_{1}-many Cohen reals over V. Thus force to add a Cohen real over V_{1}. Split it into ω Cohen reals over V_{1}. Denote them by $\left\langle r_{n, m}: n, m<\omega\right\rangle$. Also let $\left\langle f_{i}: i<\omega_{1}\right\rangle \in V$ be a sequence of almost disjoint functions from ω into ω. First we define a sequence $\left\langle s_{n, i}: i<\omega_{1}\right\rangle$ of reals by

$$
\forall k<\omega, s_{n, i}(k)=r_{n, f_{i}(k)}(0)
$$

Let $\left\langle I_{n}: n<\omega\right\rangle$ be the partition of ω_{1} produced by G. For $\alpha<\omega_{1}$ let

- $n(\alpha)=$ that $n<\omega$ such that $\alpha \in I_{n}$,
- $i(\alpha)=$ that $i<\omega_{1}$ such that α is the $i-$ th element of $I_{n(\alpha)}$.

We define a sequence $\left\langle t_{\alpha}: \alpha<\omega_{1}\right\rangle$ of reals by $t_{\alpha}=s_{n(\alpha), i(\alpha)}$. The following lemma completes the proof of Theorem 3.1.

Lemma 3.18. $\left\langle t_{\alpha}: \alpha<\omega_{1}\right\rangle$ is a sequence of \aleph_{1}-many Cohen reals over V.

Proof. First note that $\left\langle r_{n, m}: n, m<\omega\right\rangle$ is $\mathbb{C}(\omega \times \omega)$-generic over V_{1}. By c.c.c of $\mathbb{C}\left(\omega_{1}\right)$ it suffices to show that for every countable $I \subseteq \omega_{1}, I \in V,\left\langle t_{\alpha}: \alpha \in I\right\rangle$ is $\mathbb{C}(I)$-generic over V. Thus it suffices to prove the following

> For every $\left\langle\left\langle p_{0}, \underset{\sim}{p} 1\right\rangle, q\right\rangle \in \mathbb{P} * \mathbb{C}(\omega \times \omega)$ and every open dense subset $D \in V$ of $\mathbb{C}(I)$, there is $\left\langle\left\langle q_{0},{\underset{\sim}{q}}_{1}\right\rangle, r\right\rangle \leq\left\langle\left\langle p_{0}, \underset{\sim}{p} 1\right\rangle, q\right\rangle$ such that $\left\langle\left\langle q_{0},{\underset{\sim}{q}}_{1}\right\rangle\right.$
> $, r\rangle \|-$ " $\langle\underset{\sim}{t} \nu: \nu \in I\rangle$ extends some element of $D "$

Let $\left\langle\left\langle p_{0}, \underset{\sim}{p}{ }_{1}\right\rangle, q\right\rangle$ and D be as above. Let $\alpha=\sup (I)$. We may suppose that $\operatorname{lh}(\underset{\sim}{p} 1) \geq \alpha$. Let $J=\{n: \exists m, k,\langle n, m, k\rangle \in \operatorname{dom}(q)\}$. We apply $(2 \mathrm{~b})$ to $\left\langle p_{0}, \underset{\sim}{p}{ }_{1}\right\rangle, I, p_{0}$ and J to find a finite set $a \subseteq I$ such that:
$(* *) \quad$ For every finite $b \subseteq I \backslash a$ there is $p_{0}^{\prime} \leq^{*} p_{0}$ such that $p_{0}^{\prime} \|-$ " $(\forall \beta$

$$
\in b, \forall k \in J, \underset{\sim}{p} 1(\beta) \neq k) \&\left(\forall \beta_{1} \neq \beta_{2} \in b, \underset{\sim}{p}{\underset{\sim}{p}}_{1}\left(\beta_{1}\right) \neq \underset{\sim}{p} 1\left(\beta_{2}\right)\right) " .
$$

Let

$$
S=\left\{\langle\nu, k, j\rangle: \nu \in a, k<\omega, j<2,\left\langle n(\nu), f_{i(\nu)}(k), 0, j\right\rangle \in q\right\} .
$$

Then $S \in \mathbb{C}\left(\omega_{1}\right)$. Pick $k_{0}<\omega$ such that for all $\nu_{1} \neq \nu_{2} \in a$, and $k \geq k_{0}, f_{i\left(\nu_{1}\right)}(k) \neq f_{i\left(\nu_{2}\right)}(k)$. Let

$$
S^{*}=S \cup\left\{\langle\nu, k, 0\rangle: \nu \in a, k<\kappa_{0},\langle\nu, k, 1\rangle \notin S\right\}
$$

The reason for defining S^{*} is to avoid possible collisions. Then $S^{*} \in \mathbb{C}\left(\omega_{1}\right)$. Pick $S^{* *} \in D$ such that $S^{* *} \leq S^{*}$. Let $b=\left\{\nu: \exists k, j,\langle\nu, k, j\rangle \in S^{* *}\right\} \backslash q$. By $(* *)$ there is $p_{0}^{\prime} \leq^{*} p_{0}$ such that

$$
p_{0}^{\prime} \|-"(\forall \nu \in b, \forall k \in J, \underset{\sim}{p} 1(\nu) \neq k) \&\left(\forall \nu_{1} \neq \nu_{2} \in b,{\underset{\sim}{p}}_{1}\left(\nu_{1}\right) \neq \underset{\sim}{p} 1\left(\nu_{2}\right)\right) " .
$$

Let $p_{0}^{\prime \prime} \leq p_{0}^{\prime}$ be such that $\left\langle p_{0}^{\prime \prime}, \underset{\sim}{p}{ }_{1}\right\rangle$ decides all the colors of elements of $a \cup b$. Let

$$
q^{*}=q \cup\left\{\left\langle n(\nu), f_{i(\nu)}(k), 0, S^{* *}(\nu, k)\right\rangle:\langle\nu, k\rangle \in \operatorname{dom}\left(S^{* *}\right)\right\}
$$

Then q^{*} is well defined and $q^{*} \in \mathbb{C}(\omega \times \omega)$. Now $q^{*} \leq q,\left\langle\left\langle p_{0}^{\prime \prime}, \underset{\sim}{p} 1\right\rangle, q^{*}\right\rangle \leq\left\langle\left\langle p_{0}, \underset{\sim}{p} 1\right\rangle, q\right\rangle$ and for $\langle\nu, k\rangle \in \operatorname{dom}\left(S^{* *}\right)$

$$
\left\langle\left\langle p_{0}^{\prime \prime}, \underset{\sim}{p} 1\right\rangle, q^{*}\right\rangle \|-\quad \text { S } S^{* *}(\nu, k)=q^{*}\left(n(\nu), f_{i(\nu)}(k), 0\right)=\underset{\sim}{r} n(\nu), f_{i(\nu)}(k)(0)=\underset{\sim}{t} \nu(k) " .
$$

It follows that

$$
\left\langle\left\langle p_{0}^{\prime \prime}, \underset{\sim}{p}{ }_{1}\right\rangle, q^{*}\right\rangle \|-"\langle\underset{\sim}{t} \nu: \nu \in I\rangle \text { extends } S^{* *} .
$$

$\left(^{*}\right)$ and hence Lemma 3.18 follows.

References

[Cu] J. Cummings, A model in which $G C H$ holds at successors but fails at limits, Trans. Amer. Math. Soc. 329 (1992), no. 1, 139. MR1041044 (92h:03076)
[D-J 1] A. Dodd, R. Jensen, The covering lemma for $L[U]$. Ann. Math. Logic 22 (1982), no. 2, 127135. MR0667224 (83i:03082b)
[D-J 2] A. Dodd, R. Jensen, The covering lemma for K. Ann. Math. Logic 22 (1982), no. 1, 130. MR0661475 (83i:03082a)
[Git 1] M. Gitik, Adding a lot of Cohen reals by adding a few, Unpublished paper.
[Git 2] M. Gitik, Prikry type forcings, Handbook of Set Theory, (2010), 1351-1447.
[Git-Mag 1] M. Gitik, M. Magidor, The singular cardinal hypothesis revisited. Set theory of the continuum (Berkeley, CA, 1989), 243279, Math. Sci. Res. Inst. Publ., 26, Springer, New York, 1992. MR1233822 (95c:03131)
[Git-Mag 2] M. Gitik, M. Magidor, Extender based forcings, J. Symbolic Logic 59 (1994), no. 2, 445460. MR1276624 (95k:03079)
[G-N-S] M. Gitik, I. Neeman, D. Sinapova, A cardinal preserving extension making the set of points of countable VV cofinality nonstationary. Arch. Math. Logic 46 (2007), no. 5-6, 451456. MR2321586 (2008e:03085)
[Mag 1] M. Magidor, Changing cofinality of cardinals, Fund. Math. 99 (1978), no. 1, 6171. MR0465868 (57:5754)
[Mag 2] M. Magidor, How large is the first strongly compact cardinal, Ann. Math. Logic 10 (1976), no. 1, 3357. MR0429566 (55:2578)
[Mer] C. Merimovich, Prikry on extenders, revisited. Israel J. Math. 160 (2007), 253280. MR2342498 (2008j:03075)
[Sh 1] S. Shelah, Proper forcing, Lecture Notes in Mathematics, 940. Springer-Verlag, Berlin-New York, 1982. MR0675955(84h:03002)
[Sh 2] S. Shelah, Cardinal arithmetic, Oxford Logic Guides, 29. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1994. MR1318912 (96e:03001)
[Ve-W] B. Veličković, H. Woodin, Complexity of reals in inner models of set theory,Ann. Pure Appl. Logic 92 (1998), no. 3, 283295. MR1640916 (99f:03067)

[^0]: ${ }^{1}$ By " λ-many Cohen reals" we mean "a generic object $\left\langle s_{\alpha}: \alpha<\lambda\right\rangle$ for the poset $\mathbb{C}(\lambda)$ of finite partial functions from $\lambda \times \omega$ to 2 ".

[^1]: ${ }^{2}$ This is because for $n \geq n^{*}, f_{\alpha_{1}^{*}}(n) \neq f_{\alpha_{2}^{*}}(n)$ and for $j \in\{1,2\}, f_{\alpha_{j}^{*}}(n) \notin\left\{f_{\alpha_{j}^{*}}(m): m<n\right\}$, thus there are no collisions.

[^2]: ${ }^{3}$ Then $\operatorname{Lev}_{n}(T)$ will be the union of such $S u c_{T}\left(\eta \frown\left\langle\alpha^{* *}\right\rangle\right)$'s.

[^3]: ${ }^{4}$ Our proof is the same as in the proof of [Sh 2, Theorem VII. 4.2(1)].

[^4]: ${ }^{5}$ Thus if G and r are as in the proof of Lemma 3.3 with $p_{0} \in G$, then $p_{o} \|-$ " ${\underset{\sim}{p}}_{1}(\beta)$ is the $l-$ th element of $r^{\prime \prime}$

