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ABSTRACT

Exons are typically only 140 nt in length and are sur-
rounded by intronic oceans that are thousands of
nucleotides long. Four core splicing signals, aided
by splicing-regulatory sequences (SRSs), direct the
splicing machinery to the exon/intron junctions.
Many different algorithms have been developed to
identify and score the four splicing signals and thou-
sands of putative SRSs have been identified, both
computationally and experimentally. Here we
describe SROOGLE, a webserver that makes spli-
cing signal sequence and scoring data available to
the biologist in an integrated, visual, easily interpre-
table, and user-friendly format. SROOGLE’s input
consists of the sequence of an exon and flanking
introns. The graphic browser output displays the
four core splicing signals with scores based on
nine different algorithms and highlights sequences
belonging to 13 different groups of SRSs. The inter-
face also offers the ability to examine the effect of
point mutations at any given position, as well a
range of additional metrics and statistical measures
regarding each potential signal. SROOGLE is avail-
able at http://sroogle.tau.ac.il, and may also be
downloaded as a desktop version.

INTRODUCTION

The splicing machinery accurately identifies short exonic
regions, typically 140 nt, in the context of intronic regions
that are thousands of nucleotides long. Four core splicing
signals direct the splicing machinery to the exon/intron
junctions. These signals are the 50 and 30 splice sites (50ss
and 30ss), which are located at the 50 and 30 ends of the
intron; the polypyrimidine tract, located upstream of
the 30ss; and the branch site (BS), which is upstream of
the PPT. These four signals are too short and too degen-
erate to account for precise recognition of exons. Over the

last decade many studies have identified exonic and intro-
nic sequence motifs that either boost or repress recogni-
tion of exons; these sequences presumably serve as binding
sites for different splicing factors. These sequences are
known as exonic or intronic splicing enhancers or silencers
(ESEs/ISEs and ESSs/ISSs, respectively) and we collec-
tively refer to them as splicing-regulating sequences
(SRSs) (1,2). In order to understand the regulatory pres-
sures to which pre-mRNA is exposed, it is necessary to
obtain a comprehensive overview of the splicing signals
that act on the exon and on the two introns flanking it.
Numerous methods have been devised for identifying

and scoring the four splicing signals. In parallel, different
groups of SRSs have been identified based on both
computational and experimental methodologies. Several
servers exist that provide partial information pertaining
to splicing signals (http://genes.mit.edu/burgelab/
software.html; http://ast.bioinfo.tau.ac.il/BranchSite.
htm), and regulatory sequences (http://genes.mit.edu/
burgelab/rescue-ese/; http://genes.mit.edu/fas-ess/; http://
ast.bioinfo.tau.ac.il/ESR.htm; http://rulai.cshl.edu/cgi-
bin/tools/ESE3/esefinder.cgi?process=home). As each of
these servers provides only limited data, to obtain a more
comprehensive view pertaining to splicing signals within a
particular sequence, a user must visit a number of web-
sites. Moreover, even when used collectively, these servers
are non-comprehensive, and provide access to only a lim-
ited number of splicing signals and SRSs. Finally, the
output yielded by the different servers is often not directly
interpretable. For instance, splice sites or splicing regula-
tors are often scored based on a position specific scoring
matrix (PSSM) log-odd score. For most users such a score
is arbitrary and of little value.
With SROOGLE, we provide a comprehensive plat-

form to allow biologists to visualize potential splice signals
in their sequence of interest in an integrated, user-friendly
and easily interpretable format. We placed emphasis on:
(i) availability of data: SROOGLE allows biologists access
to large sets of published data that are not available on
any other public servers; (ii) integration of data: we aimed
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to offer an integrative overview of the signals characteriz-
ing the exon of interest, combining many different datasets
of SRSs and different methodologies for scoring the four
core splicing signals; (iii) intuitive statistical measures:
whenever possible, we have provided percentile scores,
indicating the strength of a signal with respect to scores
within two large pre-compiled pools of alternatively and
constitutively spliced exons; (iv) user friendliness: We put
much emphasis into development of an intuitive, interac-
tive, graphic user interface, based on dynamic client-side
programming, which enables users to interactively modify
their input.

USING SROOGLE

Input form

Upon entering the website, users enter the sequence of
their exon and the two introns flanking it. The server

will accept either consecutive stretches of DNA or
stretches of DNA separated by spaces and numbers, the
format obtained from the UCSC Genome web browser or
GenBank. A valid DNA sequence may consist of stretches
of the 4 nt (A, C, G and T), or the spacer N. Users may
also choose to explore the website using our sample exons
and introns by clicking on the relevant link.

Output

SROOGLE’s output consists of a webpage with three
main components: A graphic browser (Figure 1A),
a table summarizing data related to the four core splicing
signals (Figure 1B), and a table summarizing data related
to SRSs (Figure 1C).

Graphic browser

The graphic browser interactively displays splicing-related
data along the sequences provided as input (Figure 1A).

Figure 1. SROOGLE output. (A) Graphic browser. The intron is presented in blue, exons in grey. Callout boxes indicate different features presented
along the sequence. (B) Table summarizing data pertaining to splicing scores. The start and end position of each signal are indicated, along with its
crude score, and a set of percentile scores relative to a dataset of constitutive and alternative exons. (C) Table summarizing data pertaining to splicing
regulatory signals. Density scores, indicating the proportion of the exon covered by splicing signals, are presented for each signal, along with two
accompanying percentile scores relative to a constitutive and alternative dataset.
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The sequences of the two introns are displayed over a light
blue background and the exon over a grey one. The core
splicing signals are presented as dashed lines above the
sequence, whereas the SRSs are presented in solid lines
below the sequence. Setting the cursor on the lines
above or below the sequences displays a tooltip providing
additional information regarding the nature and strength
of the signals. Two plots may be displayed along the
sequence: one displays neighborhood inference data and
the other the mutability indexes (see below).

The various annotations and score values are computed
on the web server, using an efficient matching algorithm.
In order to maximize the application’s responsiveness and
interactivity, the visual rendering and the dynamic display
behavior are implemented via client-side javascript code
which controls the Microsoft Silverlight (a browser plug-
in) Extensible Application Markup Language (XAML)
based display structure. This design also enables offline
exploring of result pages that were saved locally, and sim-
plifies the derivation of the desktop version of the applica-
tion. To view the graphic browser, Microsoft Silverlight
must be installed. A link for this program is automatically
provided for first-time users, if this application is not
detected. This link can be used to automatically download
and install browser plug-in; once installed, the browser
must be refreshed.

Annotation of four core splicing signals

SROOGLE scores the four main splicing signals based on
nine different algorithms. Specifically, the BS and polypyr-
imidine tract are detected and scored based on the algo-
rithms described in (3) and (4). The 30ss and 50ss are
detected and scored based on both the maximum entropy
based method developed by (5) and the position-specific
scoring matrix (PSSM) method as described in (6). For the
50ss, we also implemented an additional method based on
calculation of the free energy (�G8) of binding between
U1 snRNA and a given 50ss (7). Each of these signals is
marked in the graphic browser above the sequence in
dashed lines in a different color. Additional information
regarding the splicing signal is presented in a table
(Figure 1B), including percentile scores relative to datasets
of alternatively and constitutively spliced exons (see
below).

Annotation of SRSs

SROOGLE identifies and visualizes specific SRSs from 13
different datasets (Figure 1C). These include the exonic
splicing enhancers identified in (8–10), exonic splicing
silencers identified in (10,11), exonic regulators from
(12), upstream intronic regulators from (13,14), and
downstream intronic regulators from (13,14). Each SRS
dataset was classified either as a splicing enhancer (marked
by an E and visualized in red), silencer (S, visualized in
green), or regulator (R, visualized in grey). The user can
interactively select the group or groups of SRSs to display
within each intron/exon/intron segment. These sequences
are visualized in the browser beneath the sequence and
setting the cursor on a particular sequence will provide
the SRS sequence, the SRS group to which it belongs, as

well as normalized rank scores, if available. The normal-
ized rank score is a score between 0 and 1, indicating the
ranking of a given sequence with respect to the different
sequences identified in a given group of SRS. These scores
are only available for datasets of SRSs for which either
P-values or PSSM scores were provided by the studies
identifying them. In each such group, we ranked sequences
based on their P-values (from high to low) or on the
PSSM log-odd scores (from low to high), and normalized
this rank by the number of sequences in the group. Thus, a
score of 1 indicates that a sequence received either the
lowest P-value (i.e. most significant) or the highest
PSSM log odd score with respect to all other sequences
in the dataset. Finally, for each group of SRSs, two
metrics are provided: exon density values and density per-
centile scores. Density values are calculated as the number
of nucleotides within an exon covered by a group of SRSs,
divided by the length of the exon. The rationale for this
metric is that different splicing regulators require more
than one binding site in order to mediate their function
(2) and, therefore, greater binding site densities are likely
to reflect increased probabilities of binding.

Percentile scores

To calculate percentile scores, we relied on two datasets.
The first contains information on over 50 000 constitu-
tively spliced exons and the second contains data on
3000 alternatively spliced exons all from the human
genome and based on EST data, generated as described
in (15). In each of these datasets, the splicing signals were
detected and scored based on the algorithms used by
SROOGLE. Based on the distribution of values for each
of these signals within each of these two datasets, percen-
tile scores were calculated. The percentile score for a user-
entered sequence indicates the ranking of the user’s
sequence within these two pre-calculated distributions.
Thus, a value of 0.95 indicates that 95% of the exons
have lower scores and only 5% have higher ones.

Effect of mutations

We aimed to allow biologists to readily obtain an under-
standing of the potential effects of point mutations in their
sequence. The user first checks the ‘Display Matches for
Mutations’ box. When this is chosen, placing the cursor
on a specific nucleotide along the sequence displays a
window listing the various SRSs that would overlap the
nucleotide if the residue were mutated to any of the three
other possible nucleotides.

Neighborhood inference (NI) scores

SROOGLE reports neighborhood inference (NI) scores
based on (16). Positive and negative scores indicate that
a hexamer beginning at a given position resembles exonic
splicing enhancers and silencers, respectively.

Mutability index

This novel index aims to provide an overview of the
extent to which a given nucleotide is involved in
splicing regulation. This index is calculated as
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(sum_nonmut � sum_mut)/(sum_nonmut+sum_mut),
where sum non_mut is the numbers of SRSs overlapping
a given nucleotide and sum_nonmut is the average number
of SRSs overlapping that position when the nucleotide in
it is mutated to each of the three other possible options.
Thus, high values of this index indicate that once a given
nucleotide is mutated, fewer SRSs will overlap that posi-
tion, whereas low values indicate that SRSs will overlap
this nucleotide no matter what its identity.

CONCLUSION

SROOGLE combines a variety of algorithms for identify-
ing and scoring splicing signals, numerous datasets of
splicing regulatory signals, and previously described and
novel measures to obtain a rapid overview of splicing
related data for a user-input sequence. SROOGLE also
allows a user to examine the effects of mutations at any
position thus providing a useful tool for experimental
design. SROOGLE was built in a flexible and readily
extendible platform to allow incorporation of further
datasets once they are made available.
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