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A dynamic oligopoly with collusion and 
price wars 

Chaim Fershtman* 

and 

Ariel Pakes** 

We provide a collusive framework with heterogeneity among jirms, investment, entry, 
and exit. It is a symmetric-information model in which it is hard to sustain collusion 
when there is an activeJim that is likely to exit in the near future. Numerical analysis 
is used to compare a collusive to a noncollusive environment. Only the collusive in- 
dustry generates price wars. Also, the collusive industry offers both more and higher- 
quality products to consumers, albeit often at a higher price. The positive effect of 
collusion on variety and quality more than compensates consumers for the negative 
effect of collusive prices, so that consumer surplus is larger with collusion. 

1. Introduction 

Most of the theoretical work on collusive behavior in oligopolistic markets assumes 
identical firms andlor an unchanging environment.' Useful as these assumptions are in 
clarifying both the process by which collusion can be supported and how it can break 
down, the framework needs to be modified before the alternative pricing schemes it 
generates will be used extensively by applied researchers. 

Empirical researchers have constantly emphasized the extent of heterogeneity 
among firms within markets, and applied work is loath to assume that the different 
firms in a market have the same policy-cum-profitability options. This is particularly 
unfortunate because there is a very limited range of pricing models currently available 
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to the applied researcher, and what there is does not conform terribly well to the 
movements in price vectors over time observed in a number of datasets. 

Equally important is the fact that the assumptions of identical firms and an un- 
changing environment enable only a limited investigation of the implications of col- 
lusion; they only allow us to investigate the impact of collusion on prices. Whether an 
industry can or cannot support collusion also affects the incentives to launch products 
in (or to enter) the industry and to develop the products after they are launched. That 
is, the ability to collude will have an impact on the variety, cost, and quality of the 
products marketed by the industry, and this can have as much or more of an effect on 
welfare as do the price effects of collusion. 

Much of the literature on collusion developed with an explanation for the price 
war phenomenon in mind. It was Stigler (1964) who first pointed out that price wars 
may be the outcomes of cheating on a collusive agreement, or of new entry into markets 
in which firms behave collusively. However, the first formalizations of these ideas in 
the literature on repeated games indicated that though the threat of reverting to price 
wars does play an important role in sustaining collusion, price wars did not exist on 
the equilibrium path (see Friedman, 1971; Rubinstein, 1979; and Abreu, 1986). 

These early articles did make it clear that to analyze collusion we need to focus 
on the balance between the short-run gains from undercutting one's competitors (or 
deviating) and the expected long-run losses from the possibility of a breakdown in the 
collusive agreement caused by the deviation. By allowing for uncertainty and asym- 
metric information, Green and Porter (1984) were the first to obtain price wars as a 
part of equilibrium behavior. They considered repeated oligopolistic interaction with 
imperfect monitoring; the demand function was subject to random unobservable shocks, 
and firms did not observe their rivals' outputs. When a low price was observed, firms 
did not know if it was a consequence of a deviation from collusive pricing by one of 
their competitors or if there was a low realization of the demand shock. Green and 
Porter showed that some degree of collusion can be sustained in such games by trigger 
strategies that involve switching to price wars (punishment mode) whenever the price 
becomes lower than some endogenously determined threshold level. This result was 
later extended by Abreu, Pearce, and Stacchetti (1986), who considered the optimal 
cartel agreement in a repeated game with a general strategy space. The price war in 
the imperfect-monitoring model does not indicate a failure of the collusive agreement 
but is part of the equilibrium strategies designed to support the collusive outcome (see 
also Porter, 1983a, 1983b, and Ellison, 1994). 

A second model with equilibrium price wars was introduced by Rotemberg and 
Saloner (1986); they modelled oligopolistic collusion with time-varying demand. In 
their setup, a period with high demand, a "boom," generates a greater temptation to 
deviate from the collusive agreement and hence countercyclical pricing2 

We follow these models in allowing firms to condition their quantity (or price) 
choices on the history of their interaction (thus allowing for collusive possibilities). 
We also allow, however, for investments to affect dynamic interactions. That is, in our 
model investment entry and exit processes allow firms to partially control the evolution 
of the vector of states that determine profits and consumer surplus. The incentives that 
underlie the investment decisions are determined by the nature of the collusive possi- 
bilities, while the ability to sustain collusion will depend on the vector of states that 
the investments have led to.3 

For further analysis of this model, see Bagwell and Staiger (1997), Staiger and Wolak (1992), Kandori 
(1991), and Haltiwanger and Harrington (1991). For a comparison of the two models and an empirical 
assessment of their applicability to the 1880 railroad cartel, see Ellison (1994). 

Davidson and Deneckere (1990) do provide a two-stage model of investment and collusion. However, 
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Since the outcome of the investment and entry processes is stochastic, over time 
the different firms will find themselves in different states facing different incentives. 
This will allow us to explicitly analyze the interaction between market structure and 
the ability to support collusion. It will also allow us to generate price wars (price vectors 
whose components all fall in response to a small change in structure) and to analyze 
the effects of collusion on welfare, taking account of the fact that collusive possibilities 
not only change prices conditional on achieved states but also change the distribution 
of states (the market structures) that are likely to be achieved. 

We begin by modifying the framework presented in Ericson and Pakes (1995) to 
allow for collusion. This is a sequential model of oligopolistic interactions among a 
group of incumbents and potential entrants investing to explore profit opportunities. 
Firms' current states, together with the state of competitors from outside the industry, 
determine the current pr0fit.s that result from any given price vector. Each period the 
incumbents engage in a pricing game that determines those profits and an investment 
game that determines the likelihood of tuples of future states. We follow Fershtman 
and Muller (1986) and consider a semicollusive industry in which firms may collude 
with respect to prices but play noncooperatively with respect to investment. Implicitly 
we are assuming prices are easy to observe while investment is not, and that this, 
together with the long-run and noisy nature of the outcomes of the investment process, 
makes collusion on investment decisions too difficult to s ~ p p o r t . ~  As in Ericson and 
Pakes, equilibrium is Markov perfect, but now strategies are allowed to depend on past 
pricing behavior, as well as on the "payoff relevant" states used in Maskin and Tirole 
(1988) and later in Ericson and P a k e ~ . ~  

The model allows for exit from and entry into the industry. Exit rewards firms 
with a fixed selloff value for its equipment and occurs when the firm's continuation 
value is below this selloff value. The specification of the model ensures that in equi- 
librium each firm exits the industry in a finite number of periods with probability one. 
When a firm is near an exit state, we expect the market to have difficulty supporting 
collusion for two reasons. First, the ability to punish a firm that is near an exit state is 
limited. Second, the fact that one or more firms might exit provides an incentive for 
the continuing incumbent(s) to prefer noncollusive (lower-profit) current prices, since 
they will hasten the competitors' exit and leave the incumbent with fewer competitors, 
and hence higher profits, in the f ~ t u r e . ~  

To allow for these phenomena in a realistic setting and still get fairly detailed 
results, we give up on the elegance of analytic results and rely instead on numerical 
analysis. In particular, we modify the computational algorithm developed by Pakes and 
McGuire (1994) to allow for collusion. To isolate the aspects of our results that are 
due to collusion, we compare the numerical results from an institutional structure that 
allows for collusive behavior to an industry with the same cost, demand, and investment 

they assume all the investment takes place in the first stage and that there is no subsequent entry or exit, so 
that the second stage is a repeated game in which firms may differ in their capacity. 

For further analysis of semicollusive markets, see Davidson and Deneckere (1990), Fershtman and 
Gandal (1994), and Friedman and Thisse (1993). 

Note, however, that information remains symmetric, as in Maskin and Tirole (1997); for a discussion 
of extensions, see our Section 5 .  

Of course, the exit of one competitor might be followed by the entry of another, but the fact that 
there are sunk costs and time required to enter ensures that the continuing incumbent will be temporarily 
better off. We note that it is assumed that at each market structure firms choose between a small number of 
easy-to-calculate price vectors (a collusive price, a noncollusive price, and a deviating price), and do not 
consider whether prices outside this set could be supported (see the discussion below). 
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primitives but with no collusive possibilities (perhaps because of an active antitrust 
authority). 

Section 1 of the Sherman Act prohibits all contracts, combinations, and conspir- 
acies in restraint of trade. Over the years the courts have used this act to take a clear 
position on collusive behavior such as price fixing. This behavior is per se illegal (it 
is considered illegal without having to prove that its effects are harmful). This position 
reflects the results of standard static economic analysis. Clearly, if we prohibit price 
fixing in a given period, consumer surplus in that period will rise (or at least not fall). 
However, the possibility of collusion and the type of collusive equilibrium affect firms' 
investment, entry, and exit decisions, as well as their pricing decision. That is, the 
market structure is determined, in part, by the collusive possibilities. 

When we compare the equilibrium our model generates when we allow for col- 
lusion to the equilibrium that prohibits collusion, we find that the equilibrium with 
collusion generates a less concentrated market structure and offers both more and higher- 
quality products to consumers, albeit often at a higher price. Moreover, the positive 
effect of collusion on the variety and quality of products marketed more than compen- 
sates consumers for the negative effect of collusion on prices, so that consumer surplus 
is larger in the collusive environment. That is, our analysis shows that the presumption 
that collusion is necessarily bad for consumers is wrong, and this leads us to question 
the per se nature of antitrust policy toward collusion. 

2. The model 
We adapt the framework presented in Ericson and Pakes (1995) and the algorithm 

for computing it presented in Pakes and McGuire (1994) to allow for collusion. In each 
period there are n, incumbent firms that differ in their physical characteristics, in say 
w,,,. w,,, is the state of firm j at period t and evolves over time with the outcomes of an 
investment process. Positive outcomes in the investment process lead to states in which 
the firm makes higher profits. All investment decisions, including entry and exit de- 
cisions, are choice variables. Thus both the number of firms active, and their states, 
evolve as a controlled Markov process. 

Decision making proceeds as follows. At the beginning of the period the incumbents 
decide whether to exit and potential entrants decide whether to enter. Entrants who do 
enter pay a sunk cost of entry and enter at a particular state in the following period (it 
takes one period to set up their plant and equipment). The incumbents who continue engage 
in a pricing and investment game. The pricing game sets each incumbent's price, say p,,,, 
as a function of history. These prices, together with the firms' state variables, determine 
the profits of each active firm, say ?,,(or, p,) = ~(o, , , ,  p,,,, o-,,,, p-,,,), where 

- 
W-j,r = (ul,r, . . r Wj-l,r, uj+l,r, . . . on,,!) and pj,, (PI,,, . . . 3 Pj-l,r, Pj+l,r, . . . r ~n,,t).' 
Investments are directed at improving the firm's "physical" state, its w value. The period 
concludes with the realizations of the stochastic outcomes of the investment and entry 
 decision^.^ 

Physical states, investment, and entry and exit. As in Ericson and Pakes (1995), 
we assume that o,,, takes on values in the positive integers, o,,, E fi C Z+, so 

Note that our notation differs from that used in Pakes and McGuire. We index the state of the system 
facing the firm's decision maker by simply listing the firm's own state and the states of the firm's competitors. 

Though a change in the order of the moves would not change our characterization of behavior, it 
might change the actual numerical results. On the other hand, it would make no difference at all to what 
follows if we assumed that T(. )  were expected profits, i.e., that realized profits could differ from it by a 
disturbance whose conditional mean is zero. 
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w, = (wl,,, . . . , w,,,,) E ant C @+)"I. wj,, evolves over time with the outcomes of the 
firm's investment process, say q,,,, and an industry-specific exogenous process that 
affects the profit opportunities facing the industry in a given period, say v,. v, captures 
the effects of factor prices and improvements in competition from products outside the 
industry-factors that generate positive correlation among the profits of our competing 
firms. Thus 

Both q and v will be nonnegative random variables, and the distribution of q,,r+l 
will be better, in the stochastic dominance sense, the larger is investment, our xj,,. That 
is, the distribution of q is determined by the family 

which is assumed stochastically increasing in x. The distribution of v is given exoge- 
nously. 

If an incumbent decides to exit, it gets a selloff value of 4 dollars and never 
reappears. We let xj,, E (0, 1)  indicate whether a firm exits ('xist = 0) or continues 
(xist = 1). 

Potential entrants decide whether to enter. To enter they must pay a sunk cost of 
xe. An entrant appears in the following period as an incumbent at an o = we E CP C 
with probability pe. For simplicity we assume that there is one potential entrant in every 
period, and we indicate whether entry occurs by the indicator function xe = (0, I ) ,  
,ye = 1 indicating entry.9 

Profits conditional on prices. The version of the Pakes and McGuire (1994) 
algorithm currently available computes equilibria for different types of markets as de- 
termined by the profit function used in the ca lc~la t ions ,~~ but Pakes and McGuire 
themselves provide a detailed numerical analysis of a dynamic differentiated product 
model. For explicit numerical results we will also need to work with a particular spec- 
ification for cost and demand; to make it easy to compare our results to the noncollusive 
results available, we use the demand and cost structure used in Pakes and McGuire 
(however, as will become clear, we could have introduced collusive possibilities into 
any of the institutional structures computed by their algorithm). 

Specifically, there are M consumers, each of which either chooses one of the 
j = 1, . . . , n, goods in the market being studied or chooses to spend all of its income 
on the "outside alternative" (good 0). Consumer i who chooses good j obtains utility 
Uij = g(wj) + (y, - p,) + E ~ ,  where w, is an index of the quality of the product, g(wj) 
is the mean utility of consumers choosing good j (the average over consumers of the 
E is zero for each j), p j  is its price, and y, is the consumer's income. Since g(0) = 0, 
if the consumer chooses the outside alternative, its utility is Ui, = y, + E,. Each 
consumer makes the choice that maximizes its utility. 

Note that the subset of w at which the entrant enters is independent of the general progress of the 
industry, i.e., of the realizations of 7) and v. Thus entrants improve with the improvement of knowledge in 
the industry. If this did not occur, entry would eventually go to zero and stay there. 

lo A program to implement the algorithm can be accessed by FTP and is described in Pakes, Gowri- 
sankaran, and McGuire (1 995). 
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The function g(.) is introduced here simply to let us bound mean utility without 
resorting to a more complicated indirect utility function. Thus we set g(w) = w if 
o < w*, while if w > o* we choose g(.) to be increasing and have lim,,, g(w) 5 K. l1 

To obtain the traditional logit form we assume that the { E ~ )  have independent 
(over both i and j) and identical type-1 extreme value distributions. Then the expected 
fraction of consumers who choose good j (where the expectation is taken over the E), 
say a,(o, p) = u(wj, m j ,  pj, P-~), is given by 

So if marginal cost is the constant c, then conditional on any set of prices, the profits 
of firm j are 

Equilibrium. A subgame-perfect equilibrium for the above game consists of a 
collection of strategies that constitute a Nash equilibrium for every history of the game. 
The strategies include price, investment and exit strategies for all incumbents, and entry 
strategies for potential entrants. We do not consider all such equilibria, only Markov 
equilibria that allow for collusive pricing arrangements enforced by punishment 
schemes. All strategies are allowed to depend upon both the "payoff relevant" physical 
states, the or used in Maskin and Tirole (1988 and 1997), and on a set of indicator 
functions that keep track of whether any of the existing firms have ever deviated from 
a collusive pricing agreement in the past. 

Formally we define the vector a, = (a  ,,,, . . . , a ,,,, ), with each aj E (0, I ) ,  to 
indicate which, if any, of the existing firms have deviated in the past from the collusive 
strategies (in which case cr, = 1). So the state of the system in period t will be char- 
acterized by the couple (w,, a,) E &! X (0, 1 )",. The indicator function aj,, evolves in 
a simple way: when a new firm enters the industry its cr, = 0, and it becomes one only 
if the firm deviates. If the firm does deviate, its "a" stays at one for the remainder of 
its life.12 

All strategies are assumed to be a function of the current value of the state vector, 
(w,, a,). Consequently, a Markov-perfect equilibrium to our game is a tuple of strategies 
for the incumbent firms, {p,(w, a), xj(o, a), xj(w, a)), and an entry strategy for the 
potential entrant, {xe(w, a) E (0, I ) ) ,  that constitute a Nash equilibrium at every 
(0, a).13 

Since we have already outlined investment, exit, and entry possibilities, to com- 
plete the specification of our model we need only a description of the pricing options 
facing a firm. 

l 1  More precisely, for o > w*, g(o) = o*[2 - exp - ( o  - w*)], so the limit of g(.) is 2w*. 
l2  One could modify this setup in several ways. For example, we could assume the indicator function 

stays at one for only a finite number of periods. This would, however, enlarge the state space and hence 
increase the computational burden of the problem. Alternatively, we could consider a stochastic punishment; 
in every period in the punishment phase there could be a fixed exogenous probability of ending the punish- 
ment and jumping back to the collusive mode. 

l 3  Since we use numerical methods to compute our equilibrium, what we are actually investigating is 
an E Markov-perfect equilibrium (the computational procedure only ensures that the players are "nearly" 
optimizing). We, however, may make this E as small as we wish. 
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Pricing and collusive behavior. Since we are allowing for asymmetric firms, 
even simple pricing rules generate prices that can be quite difficult to compute. Add 
to this the possibility of switching among different collusive pricing arrangements, and 
it is easy to see how the problem of determining equilibrium prices and the punishment 
scheme that can support them, and then coordinating which arrangement is to be used 
in every period, might be beyond the powers of any group of firms (especially firms 
that are worried about leaving a "smoking gun" the regulatory authorities might trace 
to them). 

We thus limit our attention to an equilibrium with simple pricing possibilities. 
Specifically, we define a collusive, a deviant, and a noncollusive price, and we require 
that each of these prices can be computed from knowledge of the form of the current 
profit function (equation 3). We do, however, ensure that collusive prices will be used 
only when they can be supported by a punishment scheme. Since the deterrent value 
of the punishment must account for entry and exit, as well as for the fact that the states 
of incumbents vary over time, there is still a nontrivial computational problem in 
determining which states can support collusive prices. 

Our model has the feature that the prices the firm chooses do not affect the evo- 
lution of the physical state, o. This implies that one equilibrium of the pricing game 
is the Nash equilibrium to the static (one-shot) pricing game. The static Nash equilib- 
rium ensures that each firm's price maximizes its current profits (given by (3)) given 
its competitor's prices and the characteristics of all products. As a result, these prices 
satisfy the vector of first-order conditions 

where a;(o, p) is given by (2). The unique solution to these first-order conditions (see 
Caplin and Nalebuff, 1991) will be denoted by pN(o), and the profits from this pricing 
rule and the current w-tuple will be denoted by .rrN(wj, o-~) (they are obtained by 
substituting pN for p in (3)). 

The equilibrium obtained when the pricing strategies pN(w,, u -~)  are always fol- 
lowed is the equilibrium that Pakes and McGuire (1994) analyze. We will compare it 
to an equilibrium that allows for collusive pricing but reverts to the one-shot Nash 
prices when collusion cannot be sustained. For this we need two other pricing rules: a 
collusive price to be denoted by pC(oj, w j )  and the price a firm would charge if it 
were to deviate from the collusive pricing. 

When all firms are identical, it is natural to focus on collusive arrangements in 
which the gains from collusion are distributed identically among firms, and the price 
maximizes total profits. There is less agreement on collusive rules when firms differ 
from one another and side payments are not possible, except perhaps for the conditions 
that the collusive agreement should increase all firms' profits and leave "better" firms 
better off (or at least firms with a higher "threat" value better off; for a discussion, 
see Schmalensee (1987)). A relatively simple solution to this problem that abides by 
these conditions is to assume that collusive prices are obtained as the solution to a 
(possibly implicit) bargaining game, and then use the Nash (1950) solution to that 
game.14 Since we assume that when the collusive prices cannot be supported prices 
revert to pN(o) and profits to .rrN(o), we take the threat point for the bargaining game 

l4 Related examples are often found in descriptive work. Thus when Scherer (1980) describes the cartel 
agreement in Germany during the 1920s and 1930s, he observes that since production capacity affected the 
firms' bargaining power, it determined market shares. 
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to be the one-shot Nash equilibrium payoffs, ~ r ~ ( o ) . ' ~  Thus the collusive pricing vector, 
say pC(w), is the solution to 

max n [ ' rr(~j ,  w-j, P,, P-,) - 'rrN(w,, w-,)l+, 
P I  ,..., P,,, j = l  

where the + notation provides the positive part of the function (i.e., [g]+ = max[g, 01). 
Collusive profits as a function of the current o-tuple are obtained by substituting pC 
into the profit equation in (3) and will be denoted by 'rrc(wj, wj). 

The price an individual firm sets if it were to deviate from the collusive arrange- 
ment is the price that would maximize the deviant firm's profits given that the rest of 
the firms maintain collusive prices. That is, if the deviant firm's price is pf(.), then it 
is obtained as the (unique) solution to 

max 'rr(wj, u - ~ ,  pD(o), pCj(w)), 
[pD1 

(6 )  

with deviant profits given by 'rr(wj, mj ,  pf ,  pCj) (with T( . )  from (3)). 
We thus study an equilibrium with a very familiar pattern. Firms will choose the 

cooperative price pC(w) as long as none of the incumbent firms have deviated in the 
past and the collusive prices can be supported (see below). If there is ever a deviation 
by one of the incumbents, the firms revert to playing static Nash equilibrium prices, 
pN(w). Thus the strategies are in effect grim trigger strategies adapted to the dynamic 
setup that we study in this article. Since the environment changes over time, in every 
period in which collusion is possible (i.e., a, = 0) all incumbents must check to see if 
there are incentives for any one of them to deviate from the collusive agreement and 
play pD(o).16 If there is a firm with an incentive to deviate, the collusive arrangement 
is not implemented and the firms revert to playing pN(w). 

This completes the outline of our model. We have purposely kept it simple, perhaps 
too simple to be an adequate approximation to the institutional structure of any given 
industry. However, as we note, there are many modifications that can be made to our 
setup. Indeed, perhaps the biggest benefit of computational frameworks are that they 
can be perturbed to mimic many different institutions quite easily, hopefully enabling 
the researcher to map knowledge of the industry's institutions into the industry's col- 
lusive possibilities. 

Our model does, however, have several features that are more realistic than most 
models used in the past to analyze collusion. In particular, we allow for heterogeneous 
firms whose states evolve over time according to the outcomes of an investment pro- 
cess, and we allow for entry and exit. We also allow for two types of strategic controls: 
prices and investments (defined to include entry and exit costs). Our base case assumes 
that firms can collude on prices provided the collusive prices can be sustained, but it 
does not allow for collusive investment rules. This reflects our belief that in many 
industries it is more difficult to discern and punish deviations from collusive investment 

l5 We choose this "myopic" threat point, i.e., the per-period Nash equilibrium profits, for simplicity. 
An alternative that would make the analysis considerably more complicated would be to relate the threat 
point to the dynamic value of the Nash reversion. Actually, any procedure for selecting individually rational 
collusive prices in an environment that allows for asymmetric firms could be used here, and the appropriate 
procedure might well vary across industries. 

l6 Note also that since, conditional on the state, any deviation is followed by the same punishment, the 
deviating price pp( . )  is indeed the optimal deviation strategy. 
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policies than from collusive pricing policies. We will, however, present numerical re- 
sults that compare this base case to two other possibilities, one in which there are no 
collusive possibilities for either prices or investment, and one in which there can be 
"perfect" collusion on both strategic variables (by perfect we mean that we need not 
worry about enforcement constraints, as would be the case if the industry were run as 
a multiproduct monopoly). 

3. Computing the equilibrium 
1 This section modifies the iterative computational algorithm provided in Pakes and 
McGuire (1994) to allow for our model of collusion. 

As in that article, we assume that o resides on the integers and invoke arguments 
analogous to those in Ericson and Pakes (1995) to show that in equilibrium, 

- 
(i) We only observe o values in a finite set, say [I ,  . . . , o ] ,  and 
(ii) We never observe more than a finite set of firms active, say T( 

It follows that if we let oj = 0 indicate that the jth firm is not active, then the 
- 

observed o-tuples take values in W, where f l  = [O, 1, . . . , o] .  
Recall that in our model behavior depends both on the o-tuple and on whether 

any of the currently active firms have ever deviated from a collusive agreement in the 
past, on a E (0, 11% [aj = 0 if oj = 01. Thus the "state" of our industry is fully 
described by the couple (o, a) C fl% X (0, 11%. 

We also use Pakes and McGuire's adaptation of the Ericson-Pakes model for the 
transitions of w for the firms that remain active. Since oj can be interpreted as a difference 
between the quality, or average utility, of the good marketed by firm j and the mean 
value of the outside alternative, differences in the value of o over time are a result of 
the difference between the outcomes of the firm's investments and any exogenous in- 
crements in the value of the outside alternative.17 We assume that in each period the state 
of the quality both of the firm's product and of the outside alternative can move by at 
most one unit, and we let p(x) be the probability that the firm's product improves and S 
be the probability that the outside alternative improves. Then y,,, = oj, + 1 with 
probability p(x)[l - S], wj,,+, = oj, - 1 with probability [ l  - p(x)]S, and mi,,+, = ojt 
with the remaining probability. 

Firms that invest more have a larger chance of improving their w, so we require 
ap(x)lax r 0. Moreover, we assume both that p(0) = 0 (so that a lirm cannot improve its 
o without investment) and that p(.) is concave in x (this makes it easier to solve for the 
optimal x). A specification for p(x) that satisfies all these conditions is p(x) = axl(1 + ax), 
and we use this specification in the numerical calculations. 

We compute the equilibrium strategies using the value function approach (for more 
details, see Starr and Ho (1969)). Any suggested strategies will be Markov-perfect 
equilibrium strategies if they are optimal given the value function, and the value func- 
tion is the continuation value of the game if the firms indeed play those strategies. We 
then show how that value function, and the associated strategies, can be computed. 

The Bellman equation. We compute an equilibrium in which no firm ever de- 
viates, but the values generated by deviant behavior (i.e., by behavior "off the equi- 
librium path") determine when the industry can support collusion and hence must be 

l7 Note that the realizations of u cause positive correlation in the demand, and hence the profits, of the 
firms in the industry. Without the u the model would predict a negative correlation among their profits, a 
prediction at odds with the data on the evolution of most industries (see Pakes and McGuire (1994) for more 
details). 
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computed. Since the punishments from deviating are determined by values in which 
only one firm has deviated, it suffices to compute values for (w ,  a )  E S, where 

S =  {(w,  a ) l a €  ( 0 ,  11% and 2 a j E  ( 0 ,  1 ) , w €  0%). 

We first present the Bellman equation, and then we explain it. For each (w, a )  E S, 
the value of the jth firm satisfies 

V(w,; aj, a )  = rnax 
(7) 

V(w:; wYj, a l )p(wj  I w,, x)p(wl_, I w, a )  

where 

and 

I  a )  € 1 0 with I (w ,  a )  = 1 if and only if 

(i) a = 0 ,  and 
(ii) for all j who continue, 

T,? + max -xi + /3 x V(wjl; wYj, al)p(wjl I wj, X ~ ) ~ ( ~ Y , I  w, x, a, = 1 ,  a - j  = 0 )  
x~ I 

< + max -x, + /3 x V(w; ,  oYj, al )p(wi  I wj, x,)p(wl_,I u ,  X, a = 0)  . 
x~ I I 

The first max operator compares the exit value of the firm (4) to its continuation 
value. If 4 is larger, the firm shuts down. We let x(wj;  6.-,, a )  be the indicator function, 
which takes the value of one if the firm remains active and zero elsewhere. 

If the firm does continue, it earns current profits plus the expected discounted 
value of future returns. Current profits are either Nash profits or collusive profits ac- 
cording to whether the indicator function, I( .) ,  is zero or one. If a # 0 ,  that is, if one 
of the current participants deviated in the past, then I = 0 and the firms earn the one- 
shot Nash equilibrium profits. If a = 0, then the firms collude only if collusion can be 
sustained; that is, if for every active firm collusive profits plus the expected discounted 
value of future net cash flows conditional on the firm colluding are greater than de- 
fector's profits plus the expected discounted value of future net cash flows conditional 
on the firm defecting. 

Note that the distribution of the firm's future competitors, wi,, depends on entry 
and exit decisions made this period. We have already formalized exit. As noted, we 
allow for one potential entrant in every period. If the entrant enters, it must incur 
(sunk) setup costs of x e  (> 4 )  dollars and spend a period building its plant. In the 
subsequent period it becomes an incumbent with (wj ,  q) = (we,  0 )  with probability pe 
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(the set of oe and their probabilities, pe, are exogenously specified). The entrant enters 
if it is profitable to do so, that is, if 

If this condition is satisfied we set xe(o, a) = 1, otherwise xe(o, a) = 0. 
Note also that a '  is determined by o' and a. If a = 0, then, since neither incum- 

bents nor entrants deviate on the equilibrium path, a '  = 0. If (q, = (1, 0) for 
some j, then in states where the ith firm remains active, a' has a one in the ith slot 
and zero elsewhere, whereas if the ith firm exits, a' = 0. 

Finally we adopt the convention that in each period exit decisions are made first, 
followed by entry decisions, and then investment decisions. Firms that exit are assumed 
not to make profits in the current period. Since entrants do not make profits either, 
profits are calculated from the o-tuple of the incumbents that remain active. 

If there is a function V(.): S + R, and a set of investment, exit, entry, and collusion 
rules that satisfy the Bellman equation pointwise for each (oj, m j ,  a)  E S, then those 
policies, by construction, are equilibrium policies to our game. That is, given these 
policies the value function V(.) provides the (expected discounted) value of all incum- 
bents and potential entrants, and given this value function the policies are optimal at 
every history of the game. 

Computing the fixed point. This subsection is designed to provide the reader 
with one algorithm for computing the collusive equilibria (the fixed point to the Bell- 
man equation in (7)).18 

The computational algorithm is iterative. Temporarily assume S, i.e., 73 and %, are 
known. Given (53, 9() we explain what is in memory at each iteration and then show 
how these objects are updated. We then come back to the problem of finding (53, N). 

Letting zk denote the kth iteration's estimate of z, going into iteration k + 1 we 
have in memory 

(i) for each (w, a)  E S 

(a) the prior iteration's estimates of the value function and the investment 
policies, say (Vk(.), xk(.)), and 

(ii) nD(.), nc(.) for the subset of S in which a = 0. 

To go from iteration k to iteration k + 1 we need to update our estimates of 
(V(.), x(.)). To do so we cycle through the points in S in a predetermined order, per- 
forming the following sequence of calculations. l9 We start the calculations at the current 
point by determining its entry policy for iteration k + 1. This is done by substituting 
the appropriate components from (Vk(.), xk(.)) held in memory for the V's and x's 

There are a number of ways one might modify the procedure we introduce here, several of which 
are discussed in more detail for the analogous problem in Pakes and McGuire (1994). That article also 
formally introduces the operators that define the algorithm (a step that seemed unnecessary here, given that 
it has already been done once). 

l9 Note that the calculations at each point use the current iteration's estimates of V(.),  x ( . )  for the points 
ordered before the point being currently updated; i.e., we use Gauss-Seidel iterations and not the method of 
successive approximations. 
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appearing in equation (9), and then setting x,k+l(.) = 1 if that condition is satisfied and 
zero otherwise. 

Next we determine the collusion rule for this iteration at the given point. This is 
done by using the information in memory and x,k+l(.) to determine whether Ik+l(o, a)  
in the Bellman equation in (7) should be set to one (in which case prices are the 
collusive prices) or zero. If a = 1 (somebody has deviated in the past) the firms do 
not collude and we set Ik+'(.) = 0. If a = 0 we substitute the appropriate elements of 
(Vk(.), xk(.)) from memory for the V's and the x's in (8) and then check whether they 
imply that we can support the collusive equilibrium (in which case Ik+l(w, a)  = 1). 

Given the entry and collusion rules, the k + lth iteration's investment policy for 
each incumbent at the given point is determined to 

where p(oij  I xFj, x,k+l) is notation for the probability of wlj given x,k+l(.) and that 
the incumbent's competitors invest the amount determined in the prior iteration, i.e., 
xk(.). Note that xkj = xFj(w, a) and differs if an incumbent has deviated in the past. 

This calculation produces both an xf+l, which is the investment policy copied 
directly into memory, and an ability to calculate the continuation value for firm j, the 
value 

If this value is greater then the selloff value of the firm (4), we set x F 1 ,  the 
indicator function for whether the firm remains, to one, otherwise this indicator function 
is set to zero. 

If none of the incumbents exit, we copy the continuation values in (1 1) into mem- 
ory, thus completing the sequence of calculations for the current point for this iteration. 
If one or more of the incumbents have continuation values less than 4, we set those 
firms' Vf+l to 4 and copy over all policies (entry, collusion, investment, and exit 
policies) from the (w, a)  point obtained from the current (w, a)  by resetting the (wj, aj) 
couple for the exiting firm(s) to zero. 

That completes an iteration. We continue iterating until norms of the difference 
between the estimates of both the value function and the investment policies calculated 
at successive iterations are below some critical value.20 It is straightforward to check 
that if (Vk+l(.), xk+l(.)) = (Vk(.), xk(.)) = (V*(.), x*(.)), then (V*(.), x*(.)) and the 
associated entry, exit, and collusion policies (all of which are uniquely determined by 
(V*(.), x*(.)) satisfy the fixed-point condition in the Bellman equation. 

20 For a discussion of stopping rules, see Judd (1998). We used a Euclidean norm normalized by the 
standard deviations at a given iteration to measure the difference between successive iterations. The nor- 
malization is to ensure that differences between iterations are independent of the units of measurement used. 
Since we started with an overestimate of the value function, we also found it useful to keep track of 
differences between the means of successive iterations. The algorithm stopped when both norms were within 

of zero and the difference between successive iterations' means were less than 
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Note that we use last-iteration's investment policies to calculate both the entry and 
the collusion rules and to form the expected discounted value of the future that deter- 
mines the incumbents' new investment values. This simplifies the calculations at each 
point significantly. In particular, with these substitutions at each point we need only 

(i) check the entry condition 
(ii) check the collusion condition 
(iii) solve a set of single agent optimization problems (for the investment of in- 

cumbents), and 
(iv) check for exit. 

Had we attempted to obtain a simultaneous solution for the entry, collusion, exit, 
and investment rules that are consistent with the current iteration's value function, we 
would have had to solve a simultaneous equations system at each point at each iteration. 
Of course at the fixed point the current iteration's policies are identical to those of the 
last iteration, so the solution for the policies is  a simultaneous solution. 

We now come back to the problem of obtaining S. As in Pakes and McGuire 
(1994), the 0 and 55 that determine fl are taken from the solution to the monopolist's 
problem, i.e., by the point at which the monopolist exits and the point at which the 
monopolist stops investing, re~pectively.~~ !7( (the maximal number of firms ever active) 
is determined by first computing the equilibrium by limiting the number of firms ever 
active to some small number, and then gradually increasing that number until there are 
no equilibrium points for which there are !7(* firms active and at which a potential 
entrant would want to enter. Then !7( = !7( *.22 

4. Numerical results 
We begin with a description of the parameters of the problem together with a short 

description of the industry equilibrium when collusion is not allowed. We then describe 
the entry, exit, investment, and collusion policies in the collusive equilibrium. The last 
section provides the descriptive and normative statistics we obtained when we simulated 
our market's evolution twice, once allowing for collusion and once not. 

Parameter values and the noncollusive equilibrium. The precise parameter val- 
ues used to obtain numerical results are similar to those in Pakes and McGuire (1994) 
(an article that did not allow for collusion). We did decrease the market size parameter 
(M) by a factor of five (from M = 5 to M = 1) and increase the entry costs by a factor 
of 4 (from x e  = .2 to x e  = .8). The scrap value at exit (4)  stays at . l ,  so that the 
unrecoverable entry costs go up from .1 to .7. Entry costs are now about '/, of total 
production costs within a period, compared to about '/,,, in Pakes and McGuire. As in 
that study, the entrant who pays the sunk costs enters in the following period at w = 4, 

2L It can be shown that an w low enough to induce the monopolist to exit will induce exit from any 
alternative market structure. Ericson and Pakes (1995) show that the boundedness of the value function 
implies that there exists an w above which no firm invests. Since without investment a firm cannot improve 
its w, this puts an upper bound on the observed w's. Numerically, we have found that the w at which the 
monopolist stops investing is higher than the w that halts investing in any other market structure (though we 
have no proof that this must be so). The program checks that there is no equilibrium point at which a firm 
with an w = Sj  actually wants to invest. 

22 We note that as in Pakes and McGuire there is no guarantee either that the algorithm will converge 
or that, given convergence, the equilibrium is unique. We have run into periodic convergence problems, and 
these are treated as in Pakes and McGuire. As noted, it is clear that the Nash equilibrium without collusion 
is an equilibrium, but if we started out with high-enough initial conditions, we always converged to the one 
equilibrium reported in the text. 
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if the outside alternative does not move up in the interim, and at w = 3, if it does 
move 

Pakes and McGuire's base case had the maximum number of firms ever active 
7( = 6 ,  and it generated an industry in which it is relatively cheap to start up and 
explore a new idea. Most startups were unsuccessful (had negative realized discounted 
values), but the few that were successful tended to earn phenomenal rates of return on 
their investment. The changes we have made in the parameters make the industry 
smaller (now % = 4 when we don't allow for collusion), and entry and exit are much 
less frequent. So we introduce the possibility of collusion in a fairly stable environment, 
one where one might think collusion could be reasonably successful. 

For our parameter values the noncollusive industry is largely a "natural monop- 
oly." Simulating 100,000 periods of industry evolution, we found that in 90% of the 
periods there was only one firm producing. The quality of the product of the monopolist 
did eventually fall low enough relative to advances in the outside alternative to induce 
entry. Entry was followed by a period of active investment competition among firms 
with low-quality products. The competitive phase was very unstable; there was a third 
entrant if the investments of the first two were not successful, and it was quite likely 
that one or both of the firms that were initially competing, and some of the subsequent 
entrants would fail (the modal life span is two years and the median is three). This 
competitive phase typically ended with one firm pulling away from the others, and the 
others finding it unprofitable to compete with the superior product and exiting the 
industry. 

Entry only occurs in such an industry when the incumbent firms have a relatively 
low w. For example, when there are two active firms in the industry, entry by a third 
firm occurs only when both active firms have w 5 4. Incumbents invest more when 
their states are more similar, since this is when competition for developing a successful 
high-quality product is most intense. 

The collusive industry: policy output. Collusive states. Figure 1 looks at three 
firm states; it first asks which of the three firms will continue and which will exit, and 
then it plots the borders of the region in which we will observe collusion among the 
continuing firms. The origin is the point hidden behind the intersection of the tunnels, 
and a firm typically exits when its w is two. 

The continuing firms cannot support collusion inside the three tunnels along the 
axis, but they can support collusion everywhere else. The inside of each of these 
tunnels represents a set of points in which two of the three firms are near an exit 
state. The diagram does not have a raised "floor" in each orthant. That would rep- 
resent a region in which two of the three firms have relatively high w's, and collusion 
breaks down because of a low w of the third firm. This is because when two of the 
three firms have a high w and the third firm does not exit (its w r 3), the three firms 
always collude. 

Thus we only observe breakdowns of collusion among three continuing firms when 
two of the three firms have w's that are near (but still above) the exit state. Just how 
low depends on how high the w of the leading firm is. The higher the leading firm's 
w, the smaller the area in which collusion can be supported. Thus collusion can be 

23 The other parameters are set at P = .9, 6 = .65 (6 is the probability that the outside alternative moves 
up), and c = 5. We note that these parameters produced an 53 = 25, and = 4. Lemma 4 in Pakes (1994) 
and the definition of S in Section 3 then imply that S contains about 100,000 points. When there were no 
convergence problems, a run would take about four hours on our Sun Sparc 2 workstation. 
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FIGURE 1 

BOUNDARIES OF COLLUSION REGION 

supported at (8, 6, 6), but it cannot be supported at any ( o  r 9, 6, 6), etc. As we shall 
see, the higher the o of the leading firm, the more likely that firm is to outlast its 
weaker competitors and eventually obtain a dominant monopoly position. 

The orthants of this figure provide the collusive regions when two firms are active. 
Collusion breaks down when one of the two is near an exit state, but again just how 
near depends on where the larger competitor is. When the two firms have the same 
value of w, then they will collude as long as that o r 5. On the other hand, when their 
w's differ, collusion can break down even when both values of w are much higher than 
that. Thus collusion cannot be supported at o couples equal to either ( 5 ,  o 2 6) or 
(8, w r 12) (below we see more clearly the collusive region when two firms are active). 
Though 5( = 4, the results below indicate that we will rarely observe periods with 
n = 4, so we ignore those states here. 

There are two reasons to think that it might be harder to support collusion when 
some of the continuing incumbents are close to states that would induce exit. Both 
have to do with the fact that all players realize that in these states the smaller firms 
have a good chance of exiting over the next few periods. 

InsufJicient punishment. The small firm(s) realizes that the other market participants 
may not be able to punish it severely enough if it deviates, and this provides it with 
an incentive to deviate. 

"Predatory" behavior. The large firm realizes that the future will be better if it 
can "force" the small firm(s) to exit and then monopolize the market until the next 
entrant arrives. Since the smaller firm is more likely to exit if there is no collusion, 
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the larger firm has an incentive to deviate from the collusive pricing in order to increase 
the likelihood of the smaller firm exiting.24 

To distinguish between these two reasons for not being able to support collusion, 
we looked at the policy output at each point in the set of two- and three-firm equilibria 
where collusion breaks down and checked which firms preferred to deviate. In most 
states where collusion broke down, all firms preferred to deviate. However, at states 
near the border of the collusive region, we found that frequently the smaller firm(s) 
would have preferred a collusive arrangement; only the large firm would have deviated 
(indeed, the largest firm preferred to deviate at every point at which collusion could 
not be sustained). On the other hand, as one might have guessed, in three-firm equilibria 
the middle-sized firm had the least incentive to deviate; i.e., if two firms preferred to 
deviate, it was always the largest and the smallest firm. 

This is an industry that is extremely profitable to a monopolist with an even 
modestly large w. The relatively large entry costs imply that a monopolist with a 
moderately large w can deter entry, so it is likely that the monopolist can maintain its 
monopoly position for some time. As a result, when there are a number of active 
incumbents and one draws ahead of its competitors, that incumbent finds itself better 
off acting "predatorily," and increasing its probability of becoming a monopolist, than 
c o l l ~ d i n g . ~ ~  On the other hand, whenever the states of two or more incumbents are 
sufficiently high, monopoly becomes too remote a possibility, and collusion can be 
supported. 

In models that allow for exit, there is a "predatory" reason for not colluding, and 
we find that it is often the reason collusion cannot be supported. We investigate a 
particular model that allows for such behavior, but it is clear that many of our detailed 
assumptions could be changed and this difficulty in supporting collusion would per- 
~ i s t . ~ ~  

One final point about the collusive region illustrated in Figure 1: Recall that if two 
firms have high-enough states, they will collude even if there is a third firm at a much 
lower state (w, = 3 or 4). Since we have set the states at which a potential entrant 
will enter if it should desire to do so (our we) at 3 or 4, this implies that there is likely 
to be collusion after entry provided the incumbents' states are high enough-a fact 
that helps produce a rather complex set of entry regions. 

Entry states. Figure 2 provides a three-dimensional plot of the states at which entry 
occurs (the shaded area). There is an entry "hill" at the origin and a single entry 
"plateau" in each of the other orthants (as explained below, each of the plateaus 
actually has two levels). The plateaus correspond to entry states in which multiple firms 

24 When the firms are not colluding, the market prices are the Nash equilibrium prices, so none of the 
firms ever charges a price below marginal cost. Thus the use here of the phrase "predatory" is meant only 
to be indicative of the fact that the leading firm wishes to break the collusive agreement to induce its 
competitors to exit and not to predatory pricing, as the term is commonly used in the Industrial Organization 
literature. 

25 Relatedly, when only a single firm is active, if that firm were given the option of being labelled a 
"deviant" firm, it would take it. This is because an incumbent that is a deviant does better at deterring future 
entry. See also the discussion in the next footnote. 

26 For example, we could assume that punishment phases last only a finite number of periods, andlor 
terminate when there is only one firm in the market (which would eliminate the advantage to deviating that 
results from an ability of the single firm to deter future entry). Alternatively, we could allow the incumbent 
firms to revert to the Nash price equilibrium for a fixed number of periods immediately following entry, thus 
"fighting" instead of "accommodating" the entry (though this might risk a predatory pricing investigation). 
Though our techniques can be adapted to investigate such alternatives, we do not do so here. 
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FIGURE 2 

ENTRY REGION 

are active and at least two of their w's are quite large. The hill at the origin corresponds 
to entry states in which all active firms have very low values of o. 

The discussion of collusion makes it clear why we should expect the plateaus. 
When there are multiple firms active and they all have high values of o,  then, as 
illustrated in Figure 1, an entrant knows that the incumbents will collude with it after 
it enters. The entry question is then a question of whether the inducement generated 
by the possibility of collusive profits will be sufficient to generate entry. It will be if 
there are only two firms active. But when there are three firms active, then the in- 
ducement generated by collusive profits will generate entry only when the third incum- 
bent has an o = 3 (the third incumbent would exit were its o to drop to two). Thus 
the upper "tier" of the entry plateau corresponds to entry with three firms active with 
one of those firms at an o = 3, and the lower tier corresponds to entry with only two 
(large) incumbents. 

Entry also occurs when all incumbents have relatively low o values. In this case, 
the entrant enters despite the fact that it will not earn collusive profits because it has 
a reasonable probability of becoming either a large dominant player in the future or 
one of a small set of profitable future colluders (see below). 

Entry does not occur when two firms are active when those firms have only mod- 
erately high o's; i.e., w's larger than the likely postentry states of the entrant, but not 
high enough for collusion to be supported after entry. Note that this implies that entrants 
prefer an industry with very strong incumbents to one where incumbents are only 
modestly strong, as collusion can be sustained in the former but not the latter case. So 
entrants prefer industries with either very strong or very weak incumbents. 
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Finally, when only one firm is active it can deter entry provided its o is at least 
moderately large (25). This is because the potential entrant knows that were the entrant 
to enter, the larger incumbent would both price "predatorily" and invest heavily. This 
plus the relatively large entry costs deters entry. 

The contrast between the entry states in the model that allows for collusion and 
the entry states in the model that does not is quite striking. The plateaus simply dis- 
appear when collusion is not allowed. Further, without collusion, when two firms are 
active entry occurs only when both active firms have an w 5 4. Therefore there are 
also more low states at which entry occurs when there is the possibility of collusion 
in the future. 

As a result, we should expect to see more firms active when we allow for collusion 
than when we do not. Indeed, if in a situation that allows for collusion, the profits at 
any given tuple of states when collusion breaks down are at least as high as the profits 
that would be earned at the same tuple of states in an institutional setting that does not 
allow for collusion, we would always expect more entry when collusion is allowed. 
This is a fact that has largely been ignored in the literature and has important impli- 
cations for the welfare analysis of collusive behavior. Interestingly, it is also consistent 
with empirical findings. Thus Symeonidis (1999) concludes that the introduction of 
laws to restrict cartels in the United Kingdom in the late 1950s "had no significant 
effect on profits, while it had a strong negative effect on the number of firms" (p. 1). 

The value function and investment. Figures 3 and 4 are plots of sections of the value 
function of the firm. Figure 3 assumes two firms are active: the firm we are studying 
(which has an o that increases as we move away from the reader) and its competitor 
(whose o increases as we move to the right on the graph). Figure 4 assumes three firms 
are active: the two whose o's are plotted on the axis and a third firm at w = 3. Figure 
5 provides the probability that our firm's research is successful when only two firms 
are active (recall that this is a monotone transform of the firm's investment expendi- 
tures), while Figure 6 provides the same probability but this time when there is a third 
firm active and its o = 4. Since the role of investment in this model is to provide a 
larger probability of moving up the value function, the relationship between the two 
figures is that the slope of the value function determines the level of investment. The 
darkly shaded areas in these figures provide the states at which another firm would 
enter; the lightly shaded area, when added to the entry area in the northeast portion of 
the figure, provides the states at which collusion can be sustained. 

These figures reinforce some of our earlier remarks. Thus they show that collusion 
is more likely to be sustained when the firms are more similar, and that entry will 
occur when the incumbents have either very low or very high values of o,  but not 
when their w's are in an intermediate range. They also show that there can be entry 
when there is a third firm and its w = 3, but if the third firm has an w = 4 or more, 
and the other incumbents have moderately high states, there will be no further entry. 

A few other points also come out clearly. First, the firm's value, though monotone 
in its own o,  is not monotone in its competitor's state. The firm clearly prefers to be 
the orly firm with a high o,  for then it can force its competitor to exit and charge 
monopoly prices until another entrant appears. But if its competitor is moderately large, 
the firm would prefer that the competitor become larger yet, as this would enable them 
to sustain collusion. That is, the firm's value function actually increases in the value 
of its competitor's state in the region bordering the collusive states. Once both firms 
are in the collusive region, the value function looks relatively flat (though, as we shall 
presently see, there are small "hills" in this region that don't become apparent with 
the resolution in this figure). When there is collusion, the benefits from a firm increasing 
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FIGURE 3 

VALUE FUNCTION, ~3 = 0 

the quality of its product are shared among the incumbents, and sometimes with a new 
entrant also. The result is a value function that flattens out rather quicMy after entering 
the collusive region. 

There is one clear difference between Figures 3 and 4. In Figure 3 (which, recall, 
assumes only two firms active), there is only a narrow band of states in which the two 

FIGURE 4 

VALUE FUNCTION, 

Q RAND 2000 
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FIGURE 5 

INVESTMENT (PROBABILITY OF SUCCESSFUL RESEARCH), w, = 0 

FIGURE 6 

INVESTMENT (PROBABILITY OF SUCCESSFUL RESEARCH), w, = 4 
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firms are colluding, and yet that collusion does not induce entry (this is the lightly 
shaded region in the figure). Any movement from these states downward will cause 
collusion to break down, while any movement upward will induce entry. When there 
is a third firm active at w = 3 (Figure 4), the band in which collusion can be sustained 
but entry is not induced becomes quite a bit larger. Moreover, if the third firm's w 
increases to 4, collusion is maintained and entry disappears altogether (see Figure 5). 

As noted, Figures 5 and 6 are a transform of the derivatives of the value function 
in Figures 3 and 4, and hence they provide more details on the shape of that function. 
It is clear that the firm invests heavily when successful research has a large impact on 
its likelihood of being in the collusive region. Moreover, when the o's of the incumbents 
are both moderately high, and one firm pulls ahead of the other just enough to endanger 
the collusive agreement, the leader stops investing and lets the follower catch up. 

Once firms are comfortably in the region where collusion can be sustained, in- 
vestments go to zero and stay there. Apparently, the Nash bargaining solution implies 
that the benefits to increasing one's w in this region are diffused so thoroughly among 
the incumbents that there is insufficient inducement to invest (this implies that tuples 
of incumbents with very high w's will never be observed). Finally, there are also small 
"hills" in investment surrounding the entry region; hills that correspond to entry de- 
terring and exit-inducing behavior. 

Though not shown here, the value function and the investment policies for the 
model where firms are not allowed to collude are markedly different from those in 
Figures 3-4 and 5-6. First, the value functions with collusion are noticeably larger, 
especially in the collusive region (where it is a factor of two to three higher). Moreover, 
with no collusion there is no rise in the value function, and no corresponding increase 
in investment, around the borders of the collusive region. Investment of the leading 
firm increases when its competitor's w approaches it from below, for it is precisely 
when two firms have similar w's that competition is most intense. In contrast, when 
there was collusion, the leading firm decreases its investment when the second firm 
approaches it from below (for if the two firms' o's become similar enough they can 
sustain collusion). Moreover, if in the noncollusive case we move out along a diagonal 
with both firms having similar w's, the investments remain high for some time (instead 
of going fairly rapidly to zero, as in the collusive case). These observations should 
lead us to believe that an industry which can collude is likely to have quite a different 
distribution of both the number and the states of active firms than would an industry 
in which there are no collusive possibilities. 

Descriptive and welfare analysis. We used these policies to simulate 100,000 
periods of industry evolution, starting from an initial condition with no firms active. 
We then did the same for an industry in which collusion was not allowed. Statistics 
from these runs appear in Table 1. 

As noted, the noncollusive industry is largely a "natural monopoly" (i.e., in 90% 
of the periods there is only a single firm). The industry is also quite "stable"; the 
average length of a run with the same firm monopolizing production is 68 periods (the 
last set of rows in Table 1). The quality of the monopolist's product does eventually 
fall low enough relative to advances in the outside alternative to induce entry. Entry 
is followed by a period of active investment competition among firms with low-quality 
products. The competitive phase is very unstable; there will be a third entrant if the 
investments of the first two are not successful, and it is quite likely that one or both 
of the firms that were initially competing, and some of the subsequent entrants, fail 
(this is why the modal life span is two periods and the median is three). This com- 
petitive phase typically ends with one firm pulling away from the others, and the others 
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TABLE 1 Market Structure 

Markov Perfect Markov Perfect 
with Collusion no Collusion 

Percentage of equilibria with n active firms 

n = 2  
Of these, with I = 1 

n = 3  
Of these, with I = 1 

n = 4  
Of these, with I = 1 

With entry 

With exit 

89.1 

10.0 
Not relevant 

.8 
Not relevant 

1 
Not relevant 

1.12 

Statistics on life-span distribution 

Median 

Mean 

Average length of runs for given (n ,  I )  couplesa 

68.0 

5.7 

Not relevant 

Not relevant 

1.3 

Not relevant 

Not relevant 

Not relevant 

a The (2, -) row represents runs with the same two firms 
active, (2, 1) runs with the same two firms colluding, etc. 
The (-, 1) row represents a run of continuous collusion 
(though not necessarily between the same firms). 

finding it unprofitable to compete with the superior product developed by that firm 
exiting the industry. 

When we "take away the antitrust authority" and simulate from the policies com- 
puted from the institutions that allow for collusion, we obtain an industry with more 
competition. The fraction of the periods in which there is a monopoly producer falls 
from 90% to 48%, and the length of the average run with the same firm monopolizing 
production is cut by more than half. The collusive industry is more likely to generate 
an entrant to compete with an incumbent monopolist. 

This is a result of the fact that the possibility of future collusion induces the entrant 
to enter when the incumbent monopolist is at a higher w (it enters with the incumbent 
at w = 5, in contrast to w = 4 when there is no collusion) and is in spite of the fact 
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that an incumbent monopolist invests more when future collusion is possible. The 
combined effect of the monopolist facing earlier entry, and of it investing more when 
there is the possibility of future collusion, results in the quality distribution of the 
product produced by a monopolist when collusion is possible being better (in the sto- 
chastic dominance sense) then the quality of the product produced when collusion is 
not allowed. 

The fact that when collusion is possible entry occurs with the incumbent monop- 
olist at a higher w also implies that initially the entrant will tend to be farther behind 
the incumbent monopolist. Moreover, since collusion cannot be sustained from the 
states realized after entry (see Figure 2), immediately after entry there will be full price 
and investment competition just as in the noncollusive case. Indeed, if the w of the 
initial incumbent continues to fall we will see two successive entry periods and com- 
petition among three competitors with low w's. This type of competition, however, does 
not last long (on average less than two periods), as one of the three firms typically 
falls behind its two competitors and exits. Thus with or without the possibility of future 
collusion, entry will be followed by an initial unstable period with a high likelihood 
of one or both of the initial firms failing and subsequent entry. 

The major difference between the collusive and noncollusive cases is that when 
we allow for collusion, any initial success by one firm in the competitive phase does 
not invariably turn into that firm dominating the market. When collusion is allowed, 
the firm that fell behind still invests heavily, since it realizes that if it does get close 
to the higher-quality firm the two will be able to share collusive (instead of pure Nash) 
profits, while for the same reason the firm with the higher state is less averse to the 
smaller firm catching up and invests less heavily (see Figures 3 and 4). Consequently, 
the way out of the low-quality competition that follows entry when there is the pos- 
sibility of future collusion is often for two firms to develop a fairly successful product, 
successful enough to enable them to collude. This also implies that the two-firm states 
we observe when collusion is allowed are generally higher-quality couples of states 
than the couples of two-firm states we observe when collusion is not allowed (just as 
was the case for the observed monopoly states). 

Recall that the set of states at which the two firms collude and do not induce entry 
by a third firm is very narrow. Firms that are just inside the collusive region must 
invest in order to maintain states that are high enough to allow them to collude, but if 
the investments are too successful, the firms move to a couple of states that induce 
entry. It is for this reason that the length of the run with the same two firms colluding 
is typically quite short (on average 3.3 periods). As noted, when the two-colluding- 
firms states are high enough to induce entry, collusion will be maintained after entry. 
As a result, the average length of a run with collusion i s  a much larger, 7.3 periods. 

Most of the entry from a state when two firms are active is entry to a collusive 
state (62% of it; as noted, the alternative is to a state where three small firms are 
competing). Consequently, we observe collusion in about 75% of the states when three 
firms are active. The three collusive firms typically invest enough to deter a fourth 
entrant and then let investment fall to almost zero (see Figures 5 and 6). Note, however, 
that when there is collusion, we do observe three firms active with two of them pro- 
ducing a high-quality product; when there is no collusion, the only times we see three 
active firms is when all their products are low quality. 

So the industry with collusive possibilities generates quite different evolutionary 
patterns than the industry without collusion. The industry without collusion looks a lot 
like a natural monopoly that offers one relatively low-quality product. Occasionally it 
is challenged by a new product and a competition ensues. The competition continues, 
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however, only so long as none of the competing firms has a run of successful invest- 
ment. Once one firm gets ahead, it tends to attain a dominant position and we revert 
to monopoly. 

In contrast, when collusion is allowed the monopolist tends to invest more and 
develop a higher-quality product. This is required to forestall a potential entrant who 
sees a future with more lucrative collusive possibilities. Despite its greater investment, 
the monopolist in the collusive industry is not nearly as successful in deterring entry, 
so that we see many more periods with more than one product offered. Further, since 
to sustain collusion the couple of firms must have qualities sufficiently high to make 
exit a remote possibility, the two-firm periods in the equilibria that allow for collusion 
have tuples of states that are quite high. Indeed, we frequently move to a tuple high 
enough to induce yet a thirdpentrant. Consequently, not only are there more multiprod- 
uct periods in the collusive industry, but even conditioning on the number of incum- 
bents, the quality of the products offered is typically higher when there are collusive 
possibilities than when there are none. 

Though allowing for collusion tends to generate both more and higher-quality 
products for consumers to choose from, collusion need not make consumers better off: 
it depends on the prices that consumers have to pay for those products. We know that 
collusive prices are higher than noncollusive prices at a given tuple of states. So given 
the tuples of states, the consumers will prefer not to have collusion. The question of 
whether we wish to rid ourselves of collusive possibilities is then a question of whether 
the benefits from lower prices conditional on the states outweighs the losses from 
having both a smaller number and lower quality of products available. 

Price information is provided in Table 2. That table has the average, over periods, 
of the sales-weighted average of the prices under the alternative institutional regimes. 
Recall that marginal cost is always 5, so one can read the markups directly off this 
table. Consumer surplus differs with both this markup and the w's, so we require a 
separate calculation for that. 

Perhaps the most striking fact from Table 2 is the difference between prices in 
collusive and noncollusive periods: conditional on the number of firms active, that 
difference is over 50%. Moreover, virtually all this difference occurs in the one-period 
transition between collusive and noncollusive regimes; there is on average a 50% in- 
crease in prices when collusion begins and a 50% fall in prices in periods when col- 
lusion breaks down. Thus the equilibrium generates price patterns that look very much 
like price wars. 

Note that the collusive prices when they occur are (again on average) even higher 
than the monopoly price. Recall that to support collusion all colluding firms must have 
w's that are quite high (see Figure 2). The single firm wants to deter entry, but it can 
do this at an w that is typically lower than the w's needed to sustain collusion. That is, 
the states of colluding firms are typically higher than the states of a monopolist; this 
explains why prices are typically higher when there are colluding firms than when there 
is a monopolist. 

Indeed, the whole comparison between prices in collusive industries and prices in 
industries where collusion is prohibited is quite complicated. On average, prices in the 
noncollusive industry are slightly higher. This is because there are so many more 
monopoly periods when collusion is not allowed. But if we compare either just mo- 
nopoly or just duopoly periods, the industry with collusion has higher prices. In mo- 
nopoly periods, the higher prices are solely a reflection of the fact that the monopolist 
in the industry that allows for collusion is typically at a larger w than a monopolist in 
an industry that does not allow collusion. When we look at periods when two goods 
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TABLE 2 Prices and Benefits 

Markov Perfect Markov Perfect 
with Collusion no Collusion 

Prices with n firms activea 

n = 2  
Of these, with I = 1 
Of these, with I = 0 

n  = 3 
Of these, with I = 1 
Of these, with I = 0 

Average 

Average percentage price change 

When collusion begins 47.0 

When collusion ends -48.0 

Consumer surplusb 

Mean 22.8 

Standard deviation 6.3 

Producer surplusb 

Mean 34.5 

Standard deviation 11.1 

7.3 
Not relevant 
Not relevant 

6.4 
Not relevant 
Not relevant 

Not relevant 

Not relevant 

a The prices are the average, over periods, of the sales- 
weighted average price. 

The consumer (producer) surplus meansures are the 
mean and standard deviation of the discounted sum of 
consumer (producer) benefits over a 100-year period av- 
eraged over 1,000 runs started at random draws from the 
ergodic distribution of states. 

are offered, one of two different scenarios unfolds. If there is a price war, the prices 
that emerge from the industry with collusive possibilities are very similar to the average 
prices that occur when two firms are active in an industry in which collusion is not 
allowed (this occurs because price wars occur at relatively low w states, and these are 
just about the only two-firm states observed when collusion isn't allowed). On the other 
hand, when collusion can be sustained, the prices of the colluding products are higher 
than just about anything we ever see in an environment in which collusion is not 
allowed. 

This brings us to the consumer and producer surplus calculations (the last two sets 
of rows on Table 2). Producer surplus is the discounted sum of total profits minus total 
investment and entry costs plus any exit values, over a 100-year period. Consumer 
surplus is the discounted sum of consumer utility over the same period. Table 2 contains 
the means and the standard deviations of the figures over 1,000 separate samples from 
randomly drawn initial conditions (we ran one long run of length 100,000, and then 
broke the output up into 1,000 subsamples of 100 periods each). 
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There is quite a bit of variance in these figures over runs in both institutional 
environments; indeed, the standard error of each surplus measure (over samples) is 
more than twice as large as the differences between the average surplus with and 
without collusion. Note also that the average of the sum of consumer and producer 
surplus when we allow for collusion is virtually identical to the average of this sum 
when we do not allow for collusion (they are within one-half of a standard deviation 
of those averages). Thus a social planner whose decision were based on an unweighted 
sum of consumer and producer surplus would be indifferent between the environment 
that allowed for collusion and the one that did not. 

The results from the consumer surplus calculations are rather striking. Recall that 
the consumer is typically offered a larger number of products when collusion is al- 
lowed, and the products offered are typically of higher quality. On the other hand, 
when there is collusion the ,consumer is offered those goods at relatively high prices 
(higher than the prices that would be generated at the same states if there were no 
collusive possibilities), and the low-quality (and low-priced) alternative products are 
typically not available. Still, consumer surplus is on average signijicantly higher when 
collusion is allowed (the difference between the two means is over six times its standard 
error). The fact that the consumer benefits are higher when we allow for collusion is 
entirely because of the difference in dynamic incentives (investment, and entry and 
exit). For any given state, prices will be higher and consumer surplus will be lower 
when collusion is not allowed. However, the distribution of states is so much more 
favorable to the consumer when collusion is allowed that its effect overcomes the 
negative impact of higher prices on consumer welfare. It follows that a social planner 
who gave more weight to consumer than to producer surplus would prefer a set of 
institutions that allowed for collusion to one that did not. 

We should note here that if we had worked with a more realistic distribution of 
utility functions, in particular a distribution that allowed for differences among con- 
sumers in their sensitivity to prices due to differences in their incomes, then what we 
would have undoubtedly found out is that consumers with income greater than some 
amount would have preferred the collusive industry, but lower-income consumers 
would have preferred an environment where collusion is not allowed. That is, there are 
distributional consequences of the choice between allowing or not allowing for collu- 
sion, and we have abstracted from such considerations here. Nonetheless, the idea that 
collusion is necessarily bad for the consumer is simply wrong. A collusive industry 
has different dynamic incentives than an industry in which collusion is not allowed, 
and this fact may lead to a distribution of states that is so preferred by the consumers 
that they favor the collusive industry despite its higher prices. 

It is interesting that producer surplus is (again on average) higher for the industry 
that cannot collude. As noted, when we see collusion it is because the expected dis- 
counted value of net cash flows to each incumbent is larger when the firms collude 
than when they do not (else collusion could not be sustained). On the other hand, there 
is free entry into the collusive industry, and this pushes the discounted value of the 
marginal firm toward the sunk cost of entry. With our parameters, the difference be- 
tween the monopoly and duopoly values when there is no collusion is often quite large. 
As a result, even in situations where the monopolist is quite profitable there is very 
little incentive to enter. When there are collusive possibilities, the duopoly values are 
larger, often large enough to induce entry (indeed, we often see three active firms), and 
this dissipates the rents accruing to the existing incumbents. 

Some final points: We have also calculated the equilibrium for the perfect cartel 
(a multiproduct monopolist who controls all entry, exit, investment, and pricing deci- 
sions to maximize the discounted sum of producer net cash flow) and for the social 
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planner (who sets price equal to marginal cost and sets entry, exit, and investment 
decisions to maximize the discounted sum of consumer surplus minus the resultant 
investment costs). For this set of parameter values, the perfect cartel generates industry 
structures, and producer and consumer surpluses, that are very similar to those gen- 
erated by the noncollusive Nash equilibria (this should not be surprising given the 
results in Table 1). 

The social planner also has one firm active in the vast majority of the periods, but 
that firm develops its product to higher states than in the other institutional environ- 
ments, and the planner's firm sells at marginal cost. Recall that our planner maximizes 
the sum of consumer and producer surplus, and all the planner's surplus is allocated 
to consumers. In spite of this, Table 2 indicates that if a consumer-oriented planner 
were given a choice between the noncollusive Nash solution, a solution which from 
the point of view of concentration measures looks very much the planner's solution, 
or the collusive Nash solution, a solution which typically involves marketing a larger 
number of higher-quality products at collusive prices, the planner would take the col- 
lusive outcome. 

All these results are for an industry that has high-enough sunk costs relative to 
demand for there to be only a small number of firms when collusion is allowed, and 
that is often a monopoly when there are no collusive possibilities. On the other hand, 
we have traditionally worried about collusion in industries with small numbers of active 
firms. Often the firms being investigated for collusion couch their defense in terms of 
the implications of "destructive competition." If their argument is interpreted as saying 
that if they were forced into a more "competitive" (say Nash) pricing arrangement the 
industry would produce fewer (and possibly lower-quality) products, and that this 
would hurt consumers, our calculations clearly indicate that there are situations when 
the firms are right. 

5. Extensions 
We have two goals in this article. One is to present a particular model of collusive 

behavior and analyze its implications. The other is to provide a framework in which 
we can analyze the implications of collusion in a variety of dynamic settings. The 
framework has two important elements of dynamic interactions: (i) the strategic aspect, 
that is, we allow firms to condition their actions on the history of the interaction, and 
(ii) the structural aspect, that is, we allow for the existence of state variables that affect 
the profit function and evolve over time in a manner that is partially controlled by the 
firms' actions. 

As we note in the article, if one is concerned only with these two aspects of 
dynamic interactions, our framework is quite flexible in the sense that we can change 
the more detailed assumptions to better suit a given institutional setting and then re- 
compute and analyze the optimal policies. Further, the dynamic logic that underlies our 
questioning of the belief that collusion is necessarily bad for consumers carries over, 
in slightly different guises, to these alternative environments. In particular, by intro- 
ducing dynamics we introduce "marginal" conditions with respect to entry and in- 
vestment, and these conditions tend to limit the extent to which collusion can lead to 
a sustained increase in profitability, as well as transfer some of the benefits from col- 
lusion to consumers. 27 

27 Consider, for example, a homogeneous goods industry that used a quantity-based Nash bargaining 
solution for the collusive outcome with a Cournot Nash in quantities solution for both the threat points and 
the reversion, and compare it to a standard Cournot solution when collusion is not allowed. The increase in 
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On the other hand, a large part of the literature on collusion has focussed on 
settings where asymmetric information is important. As an example, consider a model 
in which the collusive periods and the price war periods also differ in the information 
they provide on the firms' state variables. For simplicity, assume that during collusive 
periods firms do not observe the outcomes of the investments of their competitors and 
hence their competitors' current states, while during price wars all states are revealed. 
Price wars conclude with an agreement on collusive prices (or quantities) based on the 
knowledge revealed during the war. These prices determine the allocation of the col- 
lusive rents among the firms. The prices (or quantity quotas) remain in force as long 
as there are no firms that demand to change them. But, if one of the firms has good 
realizations of its investment efforts, then that firm may no longer be content with the 
prior allocation and might demand a change that would reflect its new superior position. 

The new position of the incumbent with successful investments is not observed 
by rival firms. Moreover, the other incumbents cannot immediately accept each demand 
for a new division of the collusive rents, since this would induce firms to announce 
successful investments when there were none. Assume then that the demand for change 
is accompanied by a threat of price war, and that in equilibrium some of these demands 
are rejected and the price war ensues. While this model is beyond the scope of the 
current article, it could be developed in a way that provided a role for asymmetric 
information, as well as the structural and strategic aspects of collusion discussed above. 
The price wars would reflect disagreement on the allocation of the collusive profits, so 
the model and the resultant price wars have some similarities with bargaining models 
with incomplete information about player characteristics (models that generate delays 
and strikes as part of the equilibrium). The bargaining process is required because the 
environment changes periodically, and when a sufficiently large change occurs, the old 
collusive agreement is no longer acceptable to some of the agents. The price wars in 
such a model occur as part of a bargaining process in which one of the producers 
demands a renegotiation of the collusive agreement. This feature of price wars is, for 
example, central to Levenstein's (1997) description of collusive behavior among bro- 
mine producers between 1885 and 1914. 

6. Concluding remark 
Standard antitrust analysis of collusive behavior is static in that it conditions on 

"market structure" and discusses the implications of collusion on quantities or prices 
for the given structure. This ignores the impact of collusion on the incentives to launch 
new products, or to invest in existing ones. Clearly, for a given market structure (a 
given set of state variables) society is better off when the firms compete and do not 
collude. But whether or not we allow for collusion also impacts on the market structures 
that are likely to be developed, and once we take these dynamic effects into account 
it is not at all clear that an antitrust authority interested in maximizing social welfare 
should forbid collusion. Indeed, our example shows that if the worry is about collusive 
prices in a market that supports only a small number of firms, we may well be better 
off encouraging collusion than deterring it (especially if the incentives generated by 

entry and investment incentives provided by the collusive possibilities imply that the periods in which 
collusion could not be supported would be accompanied by greater output, and lower prices, than we would 
typically see in an equilibrium that never allowed firms to collude. Alternatively, we could complicate our 
model by allowing for multiproduct firms. Then, depending on parameter values, either we would find the 
type of equilibrium described here or we would find that the greater threat of entry due to the collusive 
possibilities would induce the monopolist to deter entry by producing more products than the monopolist 
would produce were collusion impossible. 
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the collusive possibilities allow us to avert a monopoly situation). More generally, a 
blanket per se aversion to collusion seems to be clearly off the mark. 

This article suggests, then, that there is a need to revise standard teaching and 
policy practice vis-8-vis collusion, and it sets forth the beginnings of a framework to 
enable this to be done. We say "beginnings" both because the framework, even if 
applicable to a given situation, is incomplete without filling in institutional detail on 
the industry of interest, and because the framework itself needs to be enriched in a 
nontrivial way to be appropriate for settings in which asymmetric information is an 
important component of how collusion works. So to get from these beginnings to a 
cogent analysis of any particular industry will require a fairly in-depth knowledge of 
institutional detail, parameter values, and theoretical and computational possibilities. 
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