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Complexity considerations and market behavior 

Chaim Fershtman * 
and 

Ehud Kalai* * 

The article is concerned with market behavior when firms have limited ability to handle 
efectivelj, the complexity of clzanging market conditions and strategic interaction. Modelling 
tlze managerial bounded rationality by using the concept of strategic complexity as measured 
by ajinite azitomaton, we show that market behavior can be considerably altered once there 
is a limit on the complexity ofstrategies. In particular, we demonstrate that when an incumbent 
jirm operates in several markets, an entry to one market may induce tlze incumbent to exit 
fvom another market (divestiture) in order to "concentrate" on the competition it faces. For 
different parameters the incumbent may react to such an entry by exit from the same market, 
creating specialization. W e  also demonstrate tlzat bounded complexity can serve as an entry 
barrier, giving an advantage to the establislzed incumbentjirm. 

1. Introduction 

Managing corporations is a complex and time-consuming task. Managers need to eval- 
uate changing market conditions, contemplate competitive strategies, decide on new prod- 
ucts, production technologies, and new markets, and so forth. The ability to handle such 
complex situations in an effective way is clearly a key ingredient of successful management. 
Since corporations are run by managers, one cannot ignore the human factor and the un- 
avoidable boundedness of the ability and rationality of human beings (see Simon ( 1972, 
1978) for the original introduction of bounded rationality into the economic literature). 
In analyzing the behavior of firms, the economic literature usually assumes that there is no 
limit to the ability of management to calculate, to remember, to foresee, or to plan. Thus, 
in evaluating the contributions of this literature one should remember that it relies heavily 
on the existence of "supermanagers." 

A casual observation of the modern business world indicates that firms are indeed 
aware of their inability to handle complex situations effectively and costlessly. As an example, 
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consider the recent sale of Fisher-Price by Quaker Oats. As reported by the Wall Street 
Journal (Wednesday, April 25, 1990), "Quaker Oats Co. decided to spin off its troubled 
Fisher-Price toy business to stockholders allowing management to concentrate on other 
difficulties at what, for the first time in two decades, is a 'pure' food company." Another 
example is the recent sale by Zenith Electronics of its computer operations. In its president's 
words, "In focusing on consumer goods, Zenith returns to its core business and could 
strengthen its ability to compete." ' The above statements indicate the advantage that man- 
agers might have when they concentrate on one main business, particularly when this business 
is difficult to manage.2 This article's main concern is the explanation and ramifications of 
these business strategies. 

The general belief in the existence of managerial diseconomies of scale is the driving 
force of the segment of the literature claiming that "small is beautiful." The claim that a 
larger firm is harder to manage can be traced back to Kaldor ( 1934). In his seminal article, 
Coase ( 1937) argued that the optimal size of a firm is determined by the comparative cost 
of internal transaction versus the cost of market transaction and, more important, that at 
some point internal transaction becomes more expensive. There are several sources of such 
organization diseconomies. Calvo and Wellisz ( 1978 ), Mirrlees ( 1976), and Rosen ( 1982) 
discuss the cost of monitoring and its effect on effort. Williamson ( 1967), Geanakoplos and 
Milgrom ( 199 1 ), and Guesnerie and Oddou ( 1988) consider the limited capacity ofmanagers 
to process information. Rotemberg and Saloner ( 199 1 ) demonstrate that when contracts 
are incomplete, firms might benefit from narrow strategies. The narrow strategy enables 
firms to motivate their employees to search for ways to increase profitability. Consequently, 
the inefficiency that is due to contract incompleteness implies that the firm has higher profits 
when it concentrates on one core activity than when it has a broad strategy and carries out 
several activities. McAfee and McMillan ( 1990) discuss the suboptimal activities of firms 
as a result of distorted incentives given by principals, which implies that more layers of 
hierarchy result in larger distortions. This type of inefficiency can also be regarded as a type 
of "influence cost," identified by Milgrom ( 1988) and Milgrom and Roberts ( 1988, 1989) 
as one of the main costs of centralization. Such a cost describes workers' incentives to 
influence their superiors' decisions and the inefficiencies associated with the need to impose 
mechanisms that offset such behavior. 

The main purpose of this article is to study the behavior of a firm when it has bounded 
capacity to handle complex situations. We are interested in examining the relationships 
among having bounded ability to handle complexity, the scope of businesses in which a 
firm operates, and, in particular, the effects of competition on the optimal scope of businesses. 
We consider two aspects of market complexity: the complexity of operating simultaneously 
in different markets when the market conditions are uncertain, and the complexity of com- 
peting with other firms. These two sources of complexity compete for a firm's limited ability 
to handle complex situations. Thus when the firm becomes more responsive to changing 
market conditions, it must use less complex strategies in the games with its competitors. 
Using this setting, we demonstrate the importance of incorporating bounded rationality 
into the study of industrial organization and a formal way of doing so. 

We will follow the literature (e.g., Abreu and Rubinstein (1988), Aumann (1981), 
Ben-Porath ( 1986), Kalai and Stanford ( 1988), Neyman ( 1985), Rubinstein ( 1986), and 
the survey by Kalai ( 1990)) and formalize the measure of strategic complexity using the 
framework of finite automata. Although most of this literature is concerned with repeated 
games, in discussing the market behavior of firms we do not wish to concentrate solely on 

' See the statement of Zenith's president in the Wnshing~oii Pocl, October 3, 1990. 
See also Lichtenberg's ( 1990) empirical work. in which it is pointed out that "the 1960s conglomerate boom 

may have contributed to the slowdown in U.S. productivity growth that began at or slightly after that time." 
Lichtenberg pointed out that the slowdown was partly due to the existence of "unmanageable empires." 
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strategic interaction, excluding the complexity of reacting to changing market  condition^.^ 
We thus define a model in which the firm faces different demand conditions in every period 
and needs to react to such exogenous changes at the same time it is dealing with competition. 
We define the complexity of a strategy as the minimal number of states in an automaton 
implementing it. We then limit the complexity of the firm's strategies and discuss the im- 
plications of such a limit for the scope of the firm's activities and the pattern of competition. 
In particular, we demonstrate the following possible effects: ( i )  in the face of competition 
in one market, the firm might divest from other markets to concentrate on the competition 
in its main business; (i i)  complexity considerations might lead to market segmentation such 
that a firm facing new competition in one of its markets might decide to exit from it, leaving 
its competition as a single producer; and (iii) bounded complexity might serve as an entry 
barrier because the incumbent's bounded complexity might make credible the threat of 
aggressive response to entry. 

We would like to note, however, that putting an upper bound on the complexity of 
strategies that the firm can use ignores its ability to hire more managers and thereby decen- 
tralize decision making and overcome the problem of having bounded complexities. Such 
a view implies that there is no limit to the ability of an organization to handle complex 
situations. Indeed, our results do not hold in situations in which complete decentralization 
of decision is feasible. It is our basic assumption, however, that even when it is possible to 
hire more decision makers, the ability to handle complex situations is limited. 

2. The model 
Market conditions. Let I = { 1, . . . , m } be a set of m independent markets. At each 

market there is a linear demand function p, = a, - q,,  where p, and q, are the price and 
quantity in market i, respectively. a, is assumed to be stochastic such that with probability 
9 2  there is a high demand and p, = h, - qi and with probability ' /2  there is a low demand 
and pi = 1, - q, , where 1; < h, for all i E I. The cost of producing one unit of product i is 
assumed to be ci < hi.  We divide the set I into two subsets as follows: 

At every period there is a signal a of an m-tuple of 0 (low) and 1 (high) that specifies 
the demand condition in each market. We let 2 be the set of all possible signals and a; be 
the ith component of the signal a. We let a 0  be the initial market condition given prior to 
the start of the game. 

Consider now a single firm that faces the above market conditions. Let Q = R;" 
be the set of all possible output combinations. A strategy for the monopolist is a func- 
tion A :  B + Q that specifies an output combination for every possible signal. We further 
let nj,(q, ) and n;(q,) be the monopolistic profit function from market i .  The monopolist's 
optimal strategy is: 

( i )  For i E G, produce (hi - c , ) /2  if ai = 1 and (1, - c , ) /2  if a, = 0. 
(ii) For i E B, produce (hi - c , ) /2  if a, = 1 and 0 otherwise. 

Such a strategy, however, suggests that the firm adjusts its output vector for every 
different signal a and is fully responsive to market conditions. This strategy is optimal as 
long as being responsive to market conditions does not incur any additional costs. When 
changing the output level or monitoring market conditions is costly, the above strategy may 
not be optimal. We let n 1  denote the monopolist's expected profit in market i when it plays 
the above optimal strategy. 

Formally, the game we consider is a stochastic game. 
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Finite automaton. Most of the recent literature using the concept of a finite automaton 
discusses strategic bounded complexity in a repeated-games setting (see Kalai ( 1990)). Our 
model differs in that it assumes, besides the strategic interaction, the possibility of having 
changing market conditions. Thus the definition of an automaton needs to account for 
complexities induced by nature as well as those induced by strategic interactions. 

We define an automaton as a triple ((M, mo),  A ,  T)  with the following interpretation. 
M is the set of states of the automaton, with mo E M being the initial state. A :  M -+ Q is 
a behavioral function that prescribes for each state an output combination q E Q. The 
transition function T: M X Z X Q -+ M governs the transition of the automaton from one 
state to another. Thus the input that the automaton receives at every period consists of a 
signal that describes the new market conditions and the output that was produced at the 
previous p e r i ~ d . ~  

In the single-firm case, an efficient automaton corresponds to a partition of the signal 
space Z such that every subset in the partition can be viewed as a state of the automaton 
and the transition function is degenerate, i.e., does not depend on the current state of the 
automaton or on the last-period production vector. We choose, however, the more general 
formulation, described above, since it can be easily extended to the multifirm case in which 
there is strategic interaction. 

Observation I .  Every strategy of the firm can be described by such an automaton. 

Proof See the Appendix 

We now define the complexity of a strategy to be the number of states of the smallest 
(in the number of states) automaton describing it, or equivalently, as discussed in the 
Appendix, to be the number of different strategies it induced. We will model bounded 
rationality by assuming that firms will use strategies not exceeding a certain finite c~mplexi ty.~ 
We will denote by k the bound on the complexity of strategies. 

The automaton measure of complexity and Observation 1 can be applied to all extensive- 
form games. For example, later we replace the monopoly game described above by an 
oligopoly. Then we assume that the automaton is modified by replacing q by a vector 
consisting of all firms' production levels in all markets. 

Before proceeding it is important to note that the existence of multiple markets does 
not imply immediately that the strategy used is complex. One can, for example, adopt a 
strategy in which constant quantities (possibly zero) are produced in all markets. The com- 
plexity of such a strategy is 1. In general, however, the complexity of a strategy must equal 
at least the number of different actions it may prescribe in the play of the game, which 
implies the following: 

Observation 2. The optimal strategy of the monopoly facing the multimarket problem studied 
above has the complexity of 2". 

Observation 2 implies that the complexity required to implement the monopolist- 
optimal strategy is potentially huge, owing to the many possible production combinations. 
In particular, note that we restrict the demand function to take one of two values. If we 
change this assumption and let the demand function take many possible values, it will 

By including Q, we have chosen the more general notion of automaton, the one allowing for mistakes (the 
input to the automaton can be actions not consistent with the automaton's earlier prescriptions). In addition to 
the greater generality, this will enable us to discuss subgame perfection when we switch to the multiplayer model. 

An alternative formulation would be to assign a certain cost associated with the number of states in the 
automaton (see Abreu and Rubinstein (1988)). We choose our formulation for simplicity's sake. We believe, 
however, that our main results can be obtained with a model of costly states as long as this cost function is convex 
with the number of states. In this case our formulation is a special case, as we assume zero cost until k states and 
infinite cost for every state beyond k .  
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increase the complexity ofthe monopolist's optimal strategy dramatically. The main question 
is, of course: What happens if the firm is restricted to use strategies of complexity not 
exceeding k < 2"'? 

Remark. We choose to consider automata that process all the aggregate signals, in order to 
model a manager who has to make decisions about different markets. Decomposing the 
input signal and letting separate automata deal with different markets is, in our model, 
equivalent to decentralization. Indeed, one way that firms cope with the complexity problem 
is to decentralize into divisions, each dealing with a separate market. While decentralization 
is not the main subject of this article, for our purposes it is important to note that if there 
is a team of automata that need to be coordinated, then the task of coordination implies 
that the total size of all the automata is larger than the sums of the states in the separate 
one-market automata. So to capture this aspect of diseconomies of scale in dealing simul- 
taneously with different markets, we do not allow for decentralization, and we model the 
human decision problem as one automaton that processes the aggregate market signal. 

The optimal automaton for m = 2. Consider a monopolist operating in two 
markets. Let q;, (correspondingly, qj) be the optimal quantities for the ith market for 
a high (low) demand. Further, let z, be the optimal constant level of production in 
market i when the firm does not distinguish between a high and a low signal, i.e., 
z; maximizes (I/z)(h, - ci - z, )z, + (I/2)(li - C; - zi)z; . Let 

y, is thus the gain from being fully responsive to demand conditions in market i versus 
producing the optimal constant quantity. Without loss of generality, let y > y2.  In describing 
the monopolist problem, the only complexities the monopolist faces are from changing 
market conditions. Although we use a finite automaton to model bounded rationality, for 
the one-person decision-making problem examined in this section, our model implies that 
the decision maker needs to partition the signal space and that the number of elements in 
this partition is limited. Thus the basic setting for the monopolist case is similar to Dow 
( 199 1 ), in which a decision maker is searching for the low price and his bounded memory 
of previous prices he observed is modelled by a limited partition of the set of possible prices. 

Claim I. For a monopolist who operates in two markets, the optimal automaton is as 
follows: 

( i )  For k = 1, there is one state of the automaton. Output is (z l  , z2) regardless of the signal. 

(ii) For k = 2, the optimal automaton moves to state 1 whenever the market condition is 
either ( 1,  1 ) or ( 1,  0 ) .  In this state, production is (qj,, z2). The automaton moves to the 
second state if the market condition is either (0, 0 )  or (0, 1 ), and in this case production 
is (qf ,  z2). 

(iii) For k = 3, an optimal automaton moves to state 1 when the market condition is 
( 1,  i ). In this state it produces (qft, q;). It moves to state 2 when the market condition is 
( 1 ,  O), and it produces (qA, 9:). It moves to state 3 whenever the market condition is either 
(0, 1 ) or (0, 0 ) .  In this state it produces (ql], z2).  

(iv) For k = 4, the automaton implements the optimal monopoly strategy as discussed in 
the previous section. 

Proof: See the Appendix. 
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3. Market scope without competition 

When a monopolist can use strategies of unlimited complexity, it would operate in all 
m markets. But when k < 2", operating in all markets is not necessarily optimal. To 
illustrate the problem, consider a firm operating in m markets with a strategy of com- 
plexity k .  Assume that there is an opportunity to enter another market. Given the upper 
bound on the complexity, k ,  the firm has three options that illustrate the tradeoff it faces: 
( i )  to choose a strategy that is (partially) responsive to demand conditions in the new market 
and by so doing reduce its responsiveness to demand conditions in the previous m markets; 
(i i)  to enter the new market by producing a constant quantity; (iii) not to enter the new 
market. 

Since for every i E G,  c, < I , ,  it is clear that there is a constant quantity that yields 
positive expected profits. Thus the firm will always enter markets of type G. One cannot 
extend the above argument to markets of type B. 

Let MB = {i  E Bl[n; , (z , )  + ~ / ( z , ) ]  2 0 )  and VB = B\MB. The monopolist enters 
markets in MB (moderately bad) as, by definition, producing a constant quantity, z, , yields 
positive profits. The entry decisions to a market of type VB (very bad) are more complicated. 
In markets of type VB, in order to make profits one needs to react to changing market 
conditions. On the other hand, there are indirect costs associated with being responsive to 
market conditions. Since the firm can use strategies of bounded complexity, being responsive 
(even partially) to demand conditions implies that the strategy must be less responsive to 
demand conditions in some of the other markets, which, of course, reduces profits from 
these markets. 

Claim 2 (market scope). When m = 2, k = 2 ,  y, > y2, and the second market is of 
type VB, then the firm will not enter the second market. 

Proof: When the firm enters both markets, the optimal automaton is specified by Claim 1. 
For such an automaton the output in the second market is constant and not responsive to 
demand conditions. Since market 2 is of type VB, the firm loses money in this market and 
is therefore better off not entering it. Q.E.D. 

Claim 2 illustrates that bounded complexity considerations can determine the scope 
of activities of firms even in situations in which the only relationship between the different 
activities is that they are managed by the same firm. 

4. Bounded complexity and market competition 

Strategic interaction adds another source of complexity to the firm's decision problem. 
Facing one type of complexity diminishes the firm's ability to handle the other type. This 
tradeoff between the two types of complexity plays an important role in determining the 
firm's behavior in oligopolistic markets. 

There is a fundamental difficulty in the use of a finite-automaton framework to model 
market behavior with bounded complexity. The main question is the ability of players to 
change the automaton they are using. If there is no limit to such ability, then we are back 
in the world of unbounded complexity, as any strategy of any complexity can be imple- 
mented. But to assume that players never change the automaton is too restrictive. Moreover, 
under such an assumption the use of a finite automaton as a modelling tool will tend more 
to capture the ability of players to commit themselves rather than modelling their bounded 
rationality. In this article we assume that once a competitor enters a market, it is possible 
for the incumbent firm to react by changing the automaton. Thus only when a "major" 
event such as entry occurs is it possible to change the automaton. Without this assumption 
it would be possible for the incumbent to commit himself to a certain automaton so as to 
prevent entry or give the incumbent some advantage in the postentry game. 
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Competition in a single market. Consider a single duopolistic market in which demand 
is as specified in Section 2 and both firms have the same cost function. Let x,, and X I  be the 
Cournot equilibrium output for the high and low demand respectively, and let ii be the 
Cournot equilibrium payoffs. Our symmetry assumption implies that both firms realize the 
same profits. 

Observation 3. The Cournot equilibrium can be implemented with strategies of com- 
plexity 2 (for each firm). 

Proof: Consider the following simple automaton: There are two states, M I  and M2,  with 
the initial state MI if the market is high initially and M2 otherwise. The behavioral function 
is A(MI  ) = xh and A(M2) = xl.  The transition function is T(Ml , 1, q,  , q2) = M I  and 
T(M,, 0, q l ,  q2) = M2 for every q l ,  q2, and M i .  Clearly, if for both firms k = 2 and one 
firm uses the above automaton, the best response of the other firm is to use the same 
automaton. Q.E.D. 

Now consider other equilibria of the repeated play of the above dupolistic game, and 
let the two firms maximize discounted profits. Let rl, and rl be the collusive output level for 
the high and low demand respectively, and let %' be the expected collusive payoffs from 
market i.6 As is well documented in the literature, when the discount factor is sufficiently 
close to one, the collusive outcome can be supported as a noncooperative (subgame-perfect) 
Nash equilibrium. For example, one can use the well-known grim-trigger strategies, such 
that firms cooperate until one defects and then both switch to the Cournot-Nash equilibrium 
forever. 

Observation 4. The grim-trigger strategy equilibrium can be implemented as an equilibrium 
with strategies of complexity 4. 

Proof: Can be proved by a straightforward construction. 

One can also verify that it is possible sometimes to economize on the punishment 
phase of the grim-trigger strategies and obtain the collusive outcome by using strategies of 
complexity 3. The need to have states assigned to the punishment phase leads to the following 
observation: 

Observation 5 (collusion is complex). In a single-market duopoly, supporting the collusive 
outcome requires the use of strategy of complexity k > 2,  i.e., above the complexity of the 
Cournot-Nash equilibrium strategies. 

Proof: When an automaton of only two states is used to support the collusive outcome it 
must be that A ( M l )  = rh and A(M2) = rl. Clearly, a pair of such strategies is not an 
equilibrium. Q.E.D. 

Multimarket competition. Let us move to a multimarket setup. Although we assume 
that markets are independent with respect to demand and cost conditions, complexity con- 
siderations may introduce interdependence among markets, as we have already seen in the 
monopoly case. In particular, the introduction of competition in one market may lead to 
a different behavior in the other. To demonstrate this, consider the following example: An 
incumbent firm operates in two markets, k = 2 and y l  > y2.  As Claim 1 suggests, the 
optimal automaton is to be fully responsive in market 1 and produce a constant quantity 
in market 2. Assume now that a new firm enters market 1. As a response to such an entry, 
the incumbent firm may decide to exit from one of the two markets. If it decides to stay in 
both, it needs to determine whether to continue being responsive in the first market and 

Although there might be several collusive levels, let us choose the one yielding the highest possible profits 
among the symmetric outcomes. 
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whether producing a constant quantity in the second market is still its optimal strategy. It 
is possible that as a result of an entry to market 1 ,  it becomes optimal for the firm to be 
responsive to demand conditions in market 2, in which there is no competition, and to 
produce a constant quantity in market 1. 

competition and divestiture policy ofjrms. Consider now a firm that operates in two markets. 
Letting k = 4 implies that the firm operates in both markets and is fully responsive to 
demand conditions. We further assume that y l  > y2 and that the second market is of 
type VB. 

Assume now that a new firm enters the first market. The two firms can now compete 
and produce the Cournot equilibrium quantities, or they can collude. Note, however, that 
as indicated by Observation 5, collusion is complex, i.e., in order to support a collusive 
outcome the firms need to use strategies of complexity exceeding the complexity of the 
Cournot-Nash equilibrium. 

Claim 3. Consider an entry to the first market. ( i )  When fr' > i i l  + n2 and ii' > 0, the 
incumbent's optimal response is to exit from the second market. (i i)  When i i l  s 0 and 
fr ' < n 2 ,  the incumbent's optimal response is to exit from the first market.' 

Proof Facing competition in market 1, the incumbent has three options: he can exit from 
market 1 and remain in market 2, he can exit from market 2 and cooperate in market 1, 
or he can stay in both markets and play the Cournot strategies in market 1 .  Given that 
k = 4 and collusion is complex, the option of staying in both markets-being responsive 
to market conditions in market 2 and yet supporting the collusive outcome in market 1- 
is not available to him, since it requires strategies of complexity exceeding 4. The conditions 
i?' > ii' + n2 and i r '  > 0 imply that supporting the collusive outcome in the first market 
is the incumbent's best strategy. In such a case the incumbent cannot be responsive to 
demand conditions in market 2, and since this market is of type VB,  getting out of it is part 
of the optimal strategy. This completes the proof of ( i ) .  

When fr < n2 and ii ' < 0, supporting the collusive outcome in market 1 is not optimal, 
as it requires getting out of market 2 and losing n2 .  Staying in market 2 while colluding in 
market 1 implies that the firm produces a constant quantity in market 2, and since this 
market is of type VB,  the firm will realize losses from such a policy. Q.E.D. 

Claim 3 demonstrates two possible scenarios. Part ( i )  demonstrates that limited com- 
plexity may lead to divestiture, while part (ii) demonstrates that it can result in specialization. 
Divestiture occurs when the competitor enters the market that contributes significantly to 
the firm's total profits. In such a case, the firm decides to exit from markets that are not its 
main business and to concentrate on its main business, when by "concentrating" we mean 
using a strategy with high complexity. Specialization occurs when, as a result of entry into 
one of the markets, the firm decides to leave this market because the strategic interaction 
is too complicated and thus costly. The outcome of this behavior is a complete specialization 
such that in both markets there is a monopoly. 

Note also the importance of the independence assumption in Claim 3. If markets 1 
and 2 are related such that the conditional probability p (the demand is high in mar- 
ket 2 1 the demand is high in market l ) > 1/2, the optimal behavior might be different. The 
firm can use the correlation to reduce the complexity of its strategy. For example, when the 
above conditional probability is 1 ,  such that the two markets are perfectly correlated, one 
can produce the optimal quantity with strategies of complexity 2. Thus our result of dives- 
titure will not hold when the markets are sufficiently correlated. The firm can collude (use 

'One of the conditions of (ii) is that the expected Cournot equilibrium profits, % I ,  is negative. This can 
happen, for example, when there are sufficiently large fixed costs. 
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a strategy of higher complexity) in the first market and still produce the optimal quantities 
in the second market. This claim supports our intuition that the divestiture will occur in a 
conglomerate firm in which the businesses are not related and not in a firm producing in 
related markets. 

Bounded complexity and entry deterrence. Intuitively, one may think that having bounded 
complexity is always disadvantageous for the firm, as it limits its ability to use complex 
strategies. But as often happens in strategic interaction, one can sometimes benefit from a 
handicap, i.e., it is possible that having bounded complexity will enhance profits (see also 
Gilboa and Samet ( 1989)). 

Consider a firm, I, operating in two markets such that y, > y2.  There is a firm E that 
cansiders entering the second market. In the postentry game the incumbent may choose to 
cooperate and get the profits .fr:, or to use strategies of lower complexity and get the Cournot- 
Nash equilibrium profits ii: < i:. The entrant equilibrium profits are iig < 0 ifthe incumbent 
chooses not to cooperate and $2- > 0 if the incumbent cooperates. Thus entry is attractive 
only when the incumbent cooperates. We assume that the entrant does not have any com- 
plexity constraints, and thus it is the incumbent who decides upon the type of the postentry 
game, i.e., cooperation or fighting. Note, however, that since 2; < 0, an entrant with a 
complexity constraint will not enter the market without the ability to support the collusive 
outcome. 

The above setup can be regarded as the last-period problem in the chain store paradox 
(Selten, 1978). Indeed, without a limit on the complexity of strategies, subgame-perfection 
arguments imply that once entry occurs, the incumbent will cooperate and thus entry is 
profitable. This result holds since supporting cooperation is not costly. This well-known 
result does not hold, however, if there is a bound on the complexity of strategies of the 
incumbent firm. 

Claim 4. ( i )  When k is sufficiently large, the incumbent will react cooperatively and the 
entrant will enter. (ii) When k s 4 and .fr: - ii: < y,, the incumbent will react aggressively 
to an entry and thus the entrant will not enter. 

Proof When k is sufficiently large, the bounded complexity is not a binding constraint and 
subgame perfection implies ( i ) .  When k = 4, the incumbent has two options: The first is 
to cooperate in the second market and to produce a constant quantity in the first market. 
The second is not to react cooperatively and to be responsive to market conditions in the 
first market. Note that the option of reacting cooperatively in the second market while 
remaining responsive to market conditions in the first market is not available, as it requires 
strategies of complexity exceeding 4. Since .fr: - ii: < y, , the second possibility yields higher 
payoffs, the incumbent will not react cooperatively, and thus the entrant will not en- 
ter. Q.E.D. 

The bounded complexity serves here as a credibility device to the threat of noncoop- 
eration in the postentry game. Given the bound on complexity, a cooperative behavior 
becomes costly. If the incumbent reacts cooperatively to an entry it will have to be less 
responsive to market conditions in the first market, which reduces its profits by y l  . 

5. Concluding remarks 

H The literature on transaction cost economics emphasizes the need to revise the analysis 
of markets by taking into account that engaging in a contract, changing production level, 
or generally changing strategies is not without cost. The major claim of this article is that 
the economic analysis of markets needs also to account for the limited ability of management 
to handle effectively the complexity of changing market conditions and strategic interaction 
with competitors. Modelling the managerial limited rationality by using the concept of 
strategic complexity as measured by automata, we show that the outcome of market behavior 
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and conduct can be considerably altered once there is a limit on the complexity of strategies. 
We believe that such an analysis can explain market behaviors that the classical industrial 
organization literature cannot. In this article we discussed only two aspects of market com- 
plexity. There are, however, many other aspects of complex market situations unaccounted 
for here, for example, entry and exit decisions, R&D decisions, contracting complexities, 
and so on. We believe that a positive approach to industrial organization ought to account 
for the effects of such complexities on managerial decision making and market behavior. 

Appendix 

Proofs of Observation I and Claim I follow. 

ProofofObservation 1. We use a generalized version of the construction in Kalai and Stanford (1988). Given a 
game with an initial condition a', we define the set of histories of length zero as H0 = { e ) ,  with e denoting the 
empty history. The set of histories of length I, H', consists of all vectors q l u l ,  . . . , q'u', with a '  E 8 and q' E Q 
for t = 0, 1, . . . , I. We let H = U;"=' H' denote the set of all (finite-length) histories. Now we formally define a 
strategy to be a function f :  H + Q. 

Given a history h E H i t  is useful to discuss entities defined on the subgame induced by h. h is of the form 
h = q l a l ,  . . . , q'u', and we define the game induced by h,  Gh, to be the one with the initial condition 5'. The set 
of induced histories is H: = { e ) ,  and H; is the set of all vectors q l F  I ,  . . . , q'Fr. Starting with a strategy f and a 
history h E H ,  we define the strategy-induced by f and h-on the game Gh to be the functionJ,: HI, -, Q such that 
for every t and every h E H;, J , (h)  = f (hh)  with hh denoting the concatenation of the two histories, i.e., 
hh = q l a l ,  . . . , q'u', q l F 1 ,  . . . , qlF'  (we make the convention that eh = he = h ) .  We usefH = {fh: h E H )  to 
denote the set of all strategies induced by f. Notice that even if GI, i Gi, (when a' i u'), the set of strategies of the 
two games coincide. Thus the setfH induces all the induced strategies from all different induced games and thus it 
may be small even if the number of induced games is larger. Suppose, for example, that a constant strategy is used 
with q' = q* for all t .  ThenfH includes only one element (the constant strategy). 

Now for a given strategy we will exhibit an automaton implementing it. Its states will correspond to the 
different strategies it induces, i.e., M =fH, with the initial state corresponding to f itself, i.e., mo =f .  The behavior 
function assigns to each state the initial action taken by the corresponding induced strategy, i.e., A ( m )  =$(e). The 
transition function is defined by 

T(J), a ,  q)  =h with h = q l u l , .  . . , q'u'qu 

It is easy to check that the automaton just described is well defined and that it implementsf. 
It is worth noting that the above construction used a number of states equal to the cardinality of the set of 

strategies induced byf. This shows that the number of states needed to implement f does not exceed the number 
of strategies induced byf. It is easy to see that the converse is also true, i.e., the number of states needed to implement 
a strategy equals at least the number of different strategies it induces. Thus, we can conclude that the number of 
states needed to implement a strategy equals the number of strategies it produces. Q.E.D. 

ProofofClaim I. k = I is trivial. For k = 2 let us consider all possible partitions. Since y l  > y2,  it is evident that 
having the partition { (  I, I ) ,  (0, I ) ) ,  { ( I ,  0 ) ,  (0, 0 ) )  is not optimal, as it represents a full partition in the second 
market while producing a constant level in the first market. For the partition ( (1 ,  I ) ,  (0, O)) ,  { ( I ,  0 ) ,  (0, I ) ) ,  
the optimal production levels are (z,  , z2) for all states of the automaton, and thus the monopolist does not exploit 
his ability to be partially responsive to market conditions. 

Consider now the partition 8, = { (  1, I ) )  and Z2 = { ( I ,  0 ) ,  (0, 0 ) ,  (0, 1 ) ) .  For such a partition the optimal 
production levels are described in Figure Al ,  whereA is the optimal output when the probability of having a low 
demand is ?/3. We will now show that transforming the quantities produced in Figure A1 to the ones specified in 
Claim I ( i i )  and depicted in Figure A2 yields higher profits for the firm. We will first demonstrate that the quantities 
in Figure A3 (which cannot be implemented by a strategy of complexity) yield higher payoffs than those in Fig- 
ure A l .  We will then demonstrate that the quantities in Figure A2 yield higher payoffs than those in Figure A3. 

Changing from Figure A1 to Figure A3 yields higher payoffs as we first change the quantity produced in the 
second market at state ( h ,  1) to the optimal quantity q:. A similar change occurs in the first market in the state 
(1, h ) .  Then notice that, conditional on having a low demand in the second market, the constant that maximizes 
profits in the first market is z , .  Thus changingf, in the states ( h ,  1) and (1, 1) to z, increases payoffs. In a similar 
manner, changing J; in states (I, h )  and (1, I) to z2 yields higher profits. 

Changing from Figure A3 to Figure A2 yields the following changes in payoffs: 

whlch, after rearranging and uslng our assumption that y ,  > y2, yields that (A1 ) 1s posltive and thus the fitm has 
higher payoffs wlth figure A2 than with Flgure A1 The other partltlons can be analyzed slmllarly. 
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FIGURE A1 

FIGURE A2 

FIGURE A3 
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F o r k  = 3, the only other partition is the one that perfectly uses the information regarding market 2 and only 
partially uses the information regarding market I. Using our assumption that y, > y, and following the above 
procedure would indicate that such a partition yields lower payoffs. The case of k = 4 is trivial. Q.E.D. 
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