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Consider a market in which firms accumulate capital according to the 
Nerlove-Arrow capital accumulation equation. Each player chooses a path of 
investment and thus an induced path of capital to maximize his total discounted 
profits which depend on his own capital and the capital stocks of his rivals. 
Existence is proved for such a nonzero sum, infinite horizon differential game and 
conditions under which the game converges to a particular stationary point, 
regardless of the initial conditions are shown. Thus, the game possesses the 
property of conditional global asymptotic stability. Journal of Economic Literature, 
Classification Numbers: 022. 611. 

1. INTRODUCTION 

The main purpose of this paper is to investigate a class of games in which 
each player accumulates some form of capital. The payoff of each player 
depends on his own capital and the capital stocks of his rivals. Changes in 
stock, however, are not instantaneous. The firm can invest in the capital 
stock and it deteriorates at a certain constant proportional rate. Each player 
thus chooses a path of investment and thus an induced path of capital 
accumulation so as to maximize his total discounted profits. 

The first issue in such a game is the problem of existence of paths which 
form a Nash solution, i.e., given the paths of the rivals, the firm’s strategy is 
the best response for these paths. 

When the existence issue is solved, the main issue is whether such markets 
have a stationary equilibrium and whether the market will converge to the 
stationary point. It is straightforward to show that even if a stationary 
equilibrium path exists, in the finite horizon case the market will not 
converge to the stationary equilibrium point. Thus the issue of convergence 
necessitates introducing infinite horizons. To clarify the economic situations 
of our games, the following are examples that fall into our general class. 

EXAMPLE 1 (Durable good production). Consider a market for a 
durable good. The rental price p is a function of the total stock in the 
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market. Firm i can change its stock of durables, Q,(t), by producing x(t) 
units at time t and its stock depreciates at a constant rate of 6. Thus its 
equation is Q, = xi - 6,Qi. Its revenues at time t are given by p(Qi + Q2) Qi 
and its cost of production is C,(x). 

EXAMPLE 2 (Advertising and goodwill). Consider a market in which the 
firms accumulate goodwill Gi according to the Nerlove-Arrow equation 
6, = ai - diGi, were ai is the advertising investment and 6, the depreciation 
due to forgetting and other reasons. Sales of firm i will be some concave 
function of its relative market share. Price will be determined by a Cournot- 
type solution. Thus the revenues of firm i is given by &(Gi/zj Gj) for some 
concave function fi. This subject is dealt with separately by the authors 

[lOI* 
This work is an extension of two separate lines of research: capital 

accumulation and differential games. 
The capital accumulation equation which is used in this paper was 

originally investigated by Nerlove and Arrow [20]. Arrow [I, 21 has 
generalized his original findings by considering two extensions: the first 
considers a general decay which is not necessarily exponential, and the 
second considered a nonstationary economic environment. Gould [ 131, by 
considering the model of Nerlove-Arrow with strictly convex cost has found 
that for any initial value of the stock of capital, there exists an initial 
investment such that the induced capital path converges to a stationary 
point. 

At the same time a whole stream of related research began investigating 
the stability properties of capital accumulation growth models. In particular, 
the interest was in finding conditions under which a capital growth system 
would converge to a particular stationary point regardless of the initial 
conditions. Such a system was defined as having the global asymptotic 
stability property. See, for example, the special issue of J. Economic Theory 
(February 1976) and in particular Cass and Shell [6] and Brock and 
Scheinkman [5 1. The common type of condition that relates these works is 
that more than strict convexity (concavity) is needed. ’ 

We are interested in extending the issue posed by Gould. His type of 
stability can be denoted by conditional global asymptotic stability which is 
weaker than global asymptotic stability since the path converges just for a 
particular initial condition of investment. In our game global asymptotic 
stability is ruled out since it can be shown that the game does not even 

’ A function f is more ccmvex than g if f - g is convex. The functions that are needed in 
these cases are functions which are more convex than quadratic function. 
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possess local stability. We do, however, investigate the issue of conditional 
local and global stability. 

In terms of differential games, we choose to formulate an open loop 
solution although it is known to have some limitations; see Spence [24] or 
Kydland [I?‘].’ The closed loop solutions, however, are known to exist only 
with severe limitations on the structure and duration of the game, for 
example, Reinganum [21]. The existence issue for zero sum differential 
games has been extensively investigated. For a review and summary of this 
line of research, see Friedman [ 121. 

For open loop, nonzero sum, differential games, Scalzo [22] first proved 
existence for any finite duration. Proofs of existence prior to his work were 
known only for “small” duration. Scalzo’s work has been extended by 
Wilson [26] and Williams 125) to games with incomplete information and 
by Scalzo and Williams [23] to games with nonlinear state equations. All 
three extensions dealt with the finite horizon case. 

The issue of conditional local and global asymptotic stability of 
differential games has been recently investigated in three interesting papers: 
Brock [4], Flaherty [ 111, and Haurie and Leitmann [ 141. These works 
assumed the existence of a solution to the particular differential game 
investigated.2 Flaherty showed conditions for local stability of a linear-- 
quadratic game. Brock and Haurie and Leitmann studied a family of games 
that is richer than the one studied in our work. Using the Lyapunov function 
they showed sufficient conditions for conditional global asymptotic stability 
for bounded solutions. The interesting point to observe is that in our setting, 
the same conditions that assure us of the existence of a solution and the 
existence of a unique stationary point are also sufficient for the existence of a 
solution that converges to the stationary point regardless of the initial 
conditions, i.e., they guarantee that the stationary point is conditionally 
globally asymptotically stable. 

Thus, in terms of contribution to differential games we first provide a 
simpler proof for a setting similar to Scalzo. Then we extend this result by 
proving existence to the infinite horizon case. Third, because of our method 
of proof we are able to show the convergence to a stationary equilibrium 
regardless of the initial stocks of capital. 

2 Flaherty claims existence to her problem which is linearquadratic. Her proof, however, is 
incomplete. The theorem in Pontryagin’s book on which her existence claim is based is indeed 
fhe elementary theorem of differential equations that guarantees a solution in a small 
neighborhood around the initial conditions. An additional argument is needed to show 
continuation of the solution for the interval (0, co). 
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2. FORMULATION 

We consider a game G with two players where the payoff for each player 
is its total discounted profits. Instantaneous profits depend on the firm’s own 
capital stock as well as the capital stocks of its rivals. Capital stock Ki 
accumulates according to the Nerlove-Arrow capital accumulation equation 

I&=Ii-diKi, K,(O) = Ki,,, i = 1, 2. (1) 

Where Zi is the investment in the capital stock Ki of firm i, and ai is the 
depreciation constant. The planning horizon is denoted by T. 

To define a game we have to specify the strategy spaces S,, S, and the 
payoffs. 

Player i’s strategy is assumed to belong to the following set: 

Si = (Ii(t): [0, T] + (0, Ii] ] Zi(t) is piecewise continuous on (0, T]), 

where Zi is given in Assumption 1. 
The payoff for firm i is defined by 

Ji = 
I 
-’ eP”{q(K,, KJ - C,(Z,)} dt, 
0 

(2) 

where r is the discount rate, T might be finite or infinite, and C,(Z,) is the 
cost of investing Ii units. 

ASSUMPTION 1. The control Ii(t) takes its value in a compact set [0, fi]. 
For example, a cost function C,(I,) that is convex and satisfies that 
lim Ci -+ co as Ii + 4. will induce a control function satisfying Assumption 1. 

The instantaneous profit function ni(K,, K2) and cost function Ci(Zi) 
satisfy 

ASSUMPTION 2. r+(K,, K,) E C*, is increasing and strictly concave 
function of Ki, decreasing in Kj (for i # j, i, j = 1, 2), C,(Z,) E C*, is strictly 
increasing strictly convex, and C;(O) = 0 (for i = 1, 2). 

It can be checked that the two examples given earlier can satisfy 
Assumption 2 (with respect to the revenue function). In Example 2 note that 
the revenue function will be increasing and concave in Gi if f is increasing 
and concave in its argument; see Fershtman [9]. 

We consider an open loop differential game, i.e., the problem of player i is 
to maximize (.Zi) subject to his capital constraint given in (l), given Kj(t) for 
(j # i). 

Define the game G(K,,, K,,, T) as the game with strategy spaces Si, 



326 FERSHTMAN AND MULLER 

payoff functions as in (2), time horizon T, and at t = 0, the game starts at 
the initial stocks of K,(O) = K, (i = 1, 2) and satisfies Assumptions 1 and 2. 
Finally, let K, = (K,, , K,,). 

A Nash Equilibrium for the game G(KO, ?“) (for T E [0, co)) is a pair of 
functions Z:(t), Z:(t) such that Z:(t) maximizes (2) subject to (1) given Z?(t) 
(i # j). 

A Stationary Nash Equilibrium for G(K,, T) is a pair of values (I:, K:), 
(I,*, K?) such that ZT = s,KT and the pair (IF, I$) is a Nash equilibrium for 
the game G(KP, Kf, a). 

We shall call a stationary equilibrium point (Kf, Kt) conditionally locally 
asymptotically stable if there exists a two-dimensional manifold S, containing 
(Kf, K:, ZT, If) such that for every (K,, K,, I,, I,) E S the solution of the 
game G which starts at (K,, K,, I,, I,) converges to the stationary 
equilibrium point. 

We shall call a stationary equilibrium point (K,*, Kc) conditionally 
globally asymptotically stable if there exists a two dimensional manifold S, 
containing (K,*, Kf, ZT, Z,*) such that for every initial conditions KlO, K,, 
there exists a pair of initial investment I,,,, I,,, such that 
(KlO, K2,,,Z1,,,Z20) E S and the solution of the game G(K,,, K,,, a~) 
converges to the stationary equilibrium point (Kf, Kz). 

3. FINITE TIME HORIZON 

In this section we consider the game G(K,,, KzO, 7’) for finite time horizon 
T. 

We prove that for any K,, and any T, there exists a path (Ii(t), Z,(t)), 
such that this pair of functions is a Nash equilibrium for the game G. 

Define the following family of functions 

BLi([O, T])= (fE C([O, T])l O<f(t)<&/~i 

and /f(t) - f(s)1 < fi I(t - s)l for all t, s E [0, T] }, 

where C([O, T]) is the family of continuous, bounded function on [O, T]. 
Thus the family BLi is bounded by a common bound and is “equiLipschitz,” 
i.e., all the functions of the family share the same Lipschitz constant. 

LEMMA 3.1. BLi( [0, T]) is a convex, compact subset of C( [0, T]). 

Proof: We make use of Arzela Ascoli theorem (see Dunford and 
Schwartz, [8, Chap. 41 that states that if M is compact then a set in C(M) is 
conditionally compact if and only if it is bounded and equicontinuous. 

Let M = [0, T] and let C(M) be BLi. Since equiLipschitz implies equicon- 
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tinuity of BLi, Arzela Ascoli theorem can be applied and so B,i is 
conditionally compact for i = 1, 2. 

Furthermore, by applying the triangle inequality it is clear that BLi is 
closed since a converging sequence of equiLipschitz functions converges to a 
Lipschitz function with the same constant. Convexity can be shown in the 
same fashion. 

For each strategy I,(t) E Sj define the induced capital path as K,(t) which 
is the solution of Eq. (1). Assumption (1) guarantees that Ii(t) is bounded by 
4. Equation (1) guarantees that K,(t) is continuous and bounded by 
Ki = fi/si and that its Lipschitz coefficient is 6. Thus every induced capital 
path K,(t) is a member of BJ[O, T]). For every K,(t) E BLj ([0, T]) consider 
the problem of maximizing (2) subject to (1) as a regular control problem 
for player i. Under Assumptions 1 and 2 (which guarantee sufficiency) there 
exists a unique J(t) that solves this control problem (see, e.g., Lee and 
Markus, [ 16, Chap. 4] for finite time horizon and Baum [3] for the infinite 
case). Clearly c induces a unique path of Ei E BLi([O, T]). 

ASSUMPTION 3. zj = &ri/k?Ki is bounded, i.e., 1 xi I< L for some L > 0. 

LEMMA 3.2. Consider a function #i : BLj( [0, 7’1) + BLi( [0, T]) such that 
#i(Kj(t)) = gi(t). Under Assumptions 1-3, the function is continuous with 
respect to the supremum metric Ilf - gll = supt If(t) - g(t)l. 

ProoJ We first consider the unconstrained maximization in which Zi(t) is 
allowed to have negative values. What we show later on is that the optimal 
control is strictly positive for any t and thus the constrained and 
unconstrained maximization problems are equivalent. Consider the 
maximization problems for firm 1 in which the stock of player 2 is given by 
K,(t). The problem can be solved by using standard control theory. 

Define the current value Hamiltonian to be 

Under Assumptions 1 and 2 the necessary conditions for optimality are 
sufficient as well since the Hamiltonian is concave in K, and I,. The 
necessary conditions are 

;2,-r~,=-aH,/i-)K,=-an,/aK,+~,6,, (3) 

aH,/aZ, = 0 = -C;(z,) + I,. (4) 

The solution of Eq. (3) for 2 is given by 

A(t) = (‘ni(K,(s), K,(s)) e-(r+61)‘s-1) ds. 
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Since rci > 0, A is strictly positive. Therefore our assumption on the cost 
function C and Eq. (4) guarantee that Z(t) > 0. Solving Eq. (3) for A, (4) for 
Ii(t), substituting into (1) and solving for K,(t) yields 

ni(Kl(t), K2(r)) e-(rtS1)(r-s) dt 
I 

ds, (5) 

where < = K,, e-Sf, and rr: denotes &r, /aK, . 
We need to show that given a converging sequence K;(t)+ K;(t), the 

corresponding sequence K:(t) = #,(Ki(t)) satisfies K:(t) + KY(t), where 
K;(t) = $ww)). 

Assume a contrario that K:(t) does not tend to KY(t). Without loss of 
generality (taking subsequence if necessary), we can assume that K:(t) + Z(t) 
but Z(t) #KY(t). From the fact that BLi is equilipschitz, it follows that the 
convergence of KY is uniform and thus this and the continuity of Cl and x: 
imply that Z(t) satisfies 

J(t) = < + I,’ e-sl(f-s)(C;)-l 

n:(J(r), K;(s)) e-(rtG1)(r-S)dz ds. 
i 

Since the solution of (5) is unique, it follows that Z(t) = KY(t). The fact that 
every converging sequence of KY converges to KY implies that K’f tends to 
KY. 

Note that the functions #i are not reaction functions since they are not 
defined on the strategy space but rather on the state path space. If firm 2 
chooses a path of investment Z,(t) which induces a path of capital K*(t) then 
the optimal response of firm 1 will be to choose a path of investment such 
that the induced path of capital is gi(K,(t)). 

THEOREM 1. The differential game G(K,,, K2,,, T) associated with Eqs. 
(1) and (2), and satisfies Assumptions l-3 has a Nash equilibrium solution 
for any initial conditions K,, and K,,. 

Proof. Define the function 4 from B,, x B,, into itself as follows: For 
every x E B,,, y E B,, let 

Q(-% Y> = @4(Y), h(x))* (6) 

We make use of the Schauder-Tychonoff theorem which states that if A is a 
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compact convex subset of a locally convex linear topological space then 
every continuous mapping from A into itself has a fixed point. 

Since C( [0, T]) is a Banach space, from Lemma 2, B,, x B,, is a compact 
convex subset of a locally convex space, from Lemma 1 the function 4 is a 
continuous mapping and thus 4 has a fixed point. This fixed point is a Nash 
equilibrium solution for the game G(K,, T). Q.E.D. 

The economic interpretation of Theorem 1 is that for every initial 
conditions K,, and K2,,, there exists a pair of strategies (IT(t), 1;(t)) such 
that: first, l:(t) is the best response for IT(t) and second, the induced capital 
paths K,*(t) start at Kio, for i = 1, 2. 

In any such equilibrium, the assumptions of this model guarantee that 
both firms will be active. This can be seen by noting that 7ci(O, K,) > 
(r + 6,) Cl(O) and using Gould’s argument. Moreover, the firm will find it 
optimal to invest at any time t. The formal argument is given in Lemma 3.2. 
The intuitive argument is as follows. Zero investment level cannot be optimal 
since the cost of investment C’(O) is zero and the benefit from investing in 
capital is always positive, i.e., nj(Ki. Kj) > 0. 

4. INFINITE TIME HORIZON 

In this section we prove the existence of a Nash solution to the game 
G(K,,, K,,, co) for every K,, and K,,. Replication of the finite time horizon 
proof is not possible. To see this note that we have defined a family of 
Lischitz functions BLi([O, T]). Then we defined mappings oi which, we were 
able to show, were continuous. Using this continuity and the compactness of 
BLi( [0, T]) we were able to make use of the Tychonov theorem. In the 
infinite case, BLi([O, cc))) is not compact. We therefore modify BLi in a way 
to achieve compactness, and retain continuity. 

Define the following family of functions 

Q,i([O, m))= {fE C([O, ~>>If=e-“g and gEB,i([O, a))}, 

where C([O, co)) is the family of continuous, bounded functions on [0, co). 

LEMMA 4.1. L’J[O, m)) is a convex, compact subset of C([O, a)). 

Prooj We make use of an extension of the Arzela Ascoli theorem which 
states the following: 

Let M be an arbitrary topological space and A a bounded subset of C(M). 
Then A is conditionally compact if and only if for every E > 0 there is a 
finite collection E = (El,..., E,} of sets with union M and points m, E Ei 
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i = l,..., n, such that for i = l,..., n, Supf,, Sup,,,/f(m,) -f(m)1 < E (see 
Dunford and Schwartz [8], Chap. 4.) 

From the definition of BLi([O, T]) ( see Section 3) it is evident that due to 
the fact that B,, is equilipschitz, for every finite T there exists a collection E 
as required. Since the functions in BLi([O, co)) are bounded by Ki, for every 
given E > 0, let T be such that e -‘r2Ki < E. For this T define the collection 
E’ as {E, ,..., E,, E,+I}, where E,+l = [T, co). It is clear that, for 
i = l,..., 12 + 1, and mi E Ei, 

and thus .R,, is conditionally compact. It is cumbersome but straightforward 
to check that QLi is closed and thus it is compact. 

Define a function #i : BLj( [0, co)) + Bri( [0, co)) as the best induced capital 
path of player i for a given capital path of j as in Section 3. Define a 
function Bi : QLj -+ fiLi such that for every f E QLj 

19,(f) = ecr’q5,(er’f). (7) 

The function 19~ is well defined since by definition of QLj, e’!f E BLj. In order 
to prove its continuity we need the following definition and lemma: 

DEFINITION. Let XnyX~, E BLi([O, a>>. x, -+* x0 iff for every finite T 
Sup,<, ]xn(t) - x,(t)1 + 0 as n + co. 

LEMMA 4.2. e-“x, + e-“x0 @TX,, -+* x0. 

Proof. Clearly if e-“x, --t e -‘lx0 then for every finite T suptGr le-“x, - 
e -% +n+c 0 and thus supoGIGr Ix,(t) - x,(t)1 +n+m 0. Conversely, 
since x, are bounded for every given E > 0, there is T, sufficiently large 
such that sup,> rI (e-“x, - e-“x0 I < s/2. For sufficiently large IZ, 

Sup,,,, lepr’xn --e -“*xoI < ~/2. Therefore for every E > 0, there is T, and 
sufficiently large N such that for every II > N, suptca: le-“x, - e-“x,1 < E. 

ASSUMPTION 4. I # / is bounded, i.e., I $ < Li for some Li > 0 and C; 
is bounded from below, i.e., Cl’ > q for some &i > 0. 

LEMMA 4.3.3 Under Assumptions l-4 the functions 19~ as defined in (7) 
are continuous with respect to the metric II f - gl/ = Sup, If(t) - g(t)l. 

Proof. Using Lemma 4.2 we need to show that given a converging 
sequence K; +* Ki, the corresponding sequence KY = e*‘e,(e-“KY) satisfies 
K: + * KY, where KY = erfel(e -“Kt). 

’ We are thankful to Dov Samet for pointing out this method of proof to us. 
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Without loss of generality, taking subsequences if necessary, we can 
assume that KY -+* J. We wish to show that J = KY. 

The solution of KY(t) following the procedure outlined in Lemma 2 is 

(9) 

Note that the inner infinite integral is bounded by L/(r t S), where L is 
defined in Assumption 3. 

Step 1. Observe the following expressions: 

where J(r) is the value of the function J (the limit of Kf) at time r. For a 
given t, the difference between (10) and (lOa) tends to zero as n -+ co. 

This is true since, by Assumption 4, [(Cl)- ’ ] ’ and rci’ are bounded and so 
asn+co, 

I m 1 ni(J(s), K;(z)) - 7r:(J(7), K!j(t))l e-(rtsl)(T-s) dz + 0. 
s 

Step 2. Define the following expressions: 

J-f e -S1(f-s)(C;)-l 11: 71:(J(7),K~(7))e-“tSL”‘-S’ d7/ ds, (11) 
0 

K” _ ’ e-S~‘f-S’ C’ 1 I ( ,)-I 
0 

11: x:(K:(T), K;(s)) e-(r+dl)(r-s) d7! ds. (1 la) 

The difference between (11) and (1 la) tends to zero as n + co. This is true 
since KY -+* J and by Assumption 4, [(Ci))‘]’ and nil are bounded. Since 
(1 la) is identically zero, for a given t, by definition of KY, it follows that 
expression (11) tends to zero when n + 00. 

Step 3. The second term in expression (11) tends to J and to expression 
(lOa) as n --t co. Thus 

J= 
s 

fe-d,(t-S) C' ( 1)-’ 
0 

11: n:(J(r), K:(t)) e-(r+dl)(r-s) d7/ ds 

since the solution of (9) is unique, it follows that J = KY. 
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THEOREM 2. The dlgerential game W~ovKm ao> satisfying 
Assumptions 3 and 4 has a Nash equilibrium solution for any initial 
conditions K,, and K,,. 

Proof. The proof follows the proof of Theorem 1, where RLi, 
Lemmas 4.1 and 4.3 replace BLi, Lemma 3.1 and 3.2, respectively. Q.E.D. 

5. STATIONARY EQUILIBRIUM AND ITS PROPERTIES 

In this section we show the existence of a stationary equilibrium, discuss 
the concept of a Nash equilibrium manifold and investigate the properties of 
the stationary equilibrium. 

PROPOSITION 5.1 (Existence). Under Assumptions 1 and 2 there exists a 
stationary Nash equilibrium point (K,*, Kz). 

Proof. Consider the maximization problem for firm in which the stock 
Kj of firm j is constant, i.e., K,(t) = xj. This problem can be solved using 
standard control theory as follows: 

The necessary conditions are 

Ai - r& = -8Hi/aKi = -&ri/aKi + &Si, (12) 

aHi/Zi = 0 = -C;(Ii) + Li. (13) 

Differentiating Eq. (13) with respect to time, and substituting Ai and li from 
(12) and (13) yields the following equation 

c~i, = (r + Si) Ci - nj(Ki, Ej), 

where rtj denotes &ri/aKi. 

Ri - 1 

(14) 

FIG. 1. ii = 0 is given by Ii = aiKi and ii = 0 is given by (r + hi) C((ZJ = nj(Ki, gj). 
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The solution to Eqs. (14) and (1) can be depicted on the (Ki, Ii) phase 
diagram. It is straightforward to check that the phase diagram is as in Fig. 1. 

LEMMA 5.1. There exists a unique intersection point between pi = 0 and 
ii = 0, and this intersection is a saddle point. 

Proof. The proof is straightforward. See, for example, Gould (131. 

It follows that given Kj(t) = gj for any initial point Ki(O) there exists a 
unique optimal path for firm i which converges to Ki. ii is thus the 
stationary optimal stock for firm i given K,(t) = gj. 

The point at which both Eqs. (1) and (14) vanish yields an implicit 
equation for xi as a function of kj. This equation is given by 

(r + Si) C;(Siki) = zj(k,, Kj). (15) 

Figure 1 depicts a case in which fj > Kj and z;’ = 8*zi/aK, 8K, > 0, or the 
case where both inequalities are reversed. 

Assumption 1 and Eq. (1) guarantee that K,(t) is bounded from above by 
Ki = Fi/di. 

Define a function #i : [0, Kj] -+ [0, Ki] (for i # j, i, j = 1, 2) such that 

qlqkj) = Bi, (16) 

where @i is the solution of Eq. (15). Thus pi assigns for each constant level of 
Rj the stationary solution of firm i. The continuity of Ci and rci implies the 
continuity of the functions #i. Define a function 4 from [O,K,] X [O,K,] to 
itself such that 

W, ,K2) = k4W2h 42(KJ); (17) 

4 is a continuous function from a compact convex set into itself, thus using 
Brouwer fixed point theorem there exists K,*, Kz such that 

(K:, K2*) = QW,*,K:) = @~VW~ 42KY). 

Thus K* = (K,*, Kz) satisfies the condition for a stationary Nash 
equilibrium point for the game G. Q.E.D. 

Note that tii is not a best response or “reaction function.” The function #i 
is not defined on the strategy space but rather on the state space. If firm 1 is 
at K,* for the rest of the game, only then the best strategy for player 2 is to 
converge to #*(Kf). 

Let xii denote a2z/8KiaKj. The following assumption, in addition to 
Assumptions 1 and 2, are sufficient for uniqueness of the stationary 
equilibrium. 
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ASSUMPTION 5. Ttt(K1, K2), i = 1, 2, satisfy the following inequality for 
all K, and K,, 

n:‘n:’ > n:‘n;’ 

and zf ’ # 0 for i = 1,2, and all K, and K,. Note that in the symmetric case 
when z1 = x2 = 7c, the assumption is a concavity assumption on 71. 

PROPOSITION 5.2 (Uniqueness). Under Assumptions 1, 2, and 5 the 
stationary equilibrium point is unique. 

Proof. Since xii < 0, the sign of $[ is the same as the sign of rrf’. If rt:’ 
and 7~:~ have opposite signs, the equilibrium point whose existence is 
guaranteed by Proposition 2 is necessarily unique. 

If zi* > 0 for i = 1,2, then it is sufficient to prove that at any equilibrium 
point (4; I)’ > 4;. Since d is the solution of (15), this last condition is 
equivalent to the following condition: 

(6,(r + 6,) Cl’ - n:‘)(d,(r + 6,) Cy - 7~:~) > 7c:‘n:‘. (18) 

If, however, 7ri’ < 0 for i = 1,2, then it suffices to show that (4;‘)’ < 4;. As 
before, this is equivalent to condition (18). Since Assumption 5 holds, then 
necessary (18) holds and the equilibrium point is unique. Q.E.D. 

PROPOSITION 5.3 (Conditional local stability). Under assumption 1, 2, 
and 5 the stationary equilibrium point is conditionally locally asymptotically 
stable. 

Proof: What we need to show is that the Jacobian matrix of the 
following system has two positive and two negative (real parts of the) eigen- 
values at the equilibrium point. 

k, = I, - 6, K,, (19) 

K2=12-&K2, Pa> 

Cri, = (r + 6,) C; - z:(K,, K2), (lgb) 

C;i, = (r + 8,) C; - n:(K,, K2). (19c) 

If A is an eigenvalue, it is straightforward to check that A has to satisfy the 
following condition: 

f(A) = +T;~/C;‘C;. (20) 

Where f(A) = f,(A)f *(A) and ft(A) is given by 

h(A) = (r + 6, - A)(S, + A) - #/CF. (21) 
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It is clear that lim,,,, &(A) = -co and thus lim, +* o. f(d) = co. In 
addition f(d) achieves a local maximum at A = r/2, and the equation 
fi(A) = 0 has two real roots, one positive and one negative. The function f(A) 
has one maximum at positive A and two minima, one at positive A and 
another negative. A necessary and sufftcient condition for Eq. (20) to have 
two positive and two negative roots is that f(0) > x:‘~~:‘/C~C~. This 
condition is exactly Eq. (18) which holds if Assumption 5 is valid. 

From a well-known theorem of differential equations there exists a two- 
dimensional manifold S such that the solution of Eqs. (1) and (14) starting 
on the manifold, converges to the equilibrium point. See, for example, 
Coddington and Levinson [7, Chap. 131. Q.E.D. 

Define the set of R(S) as the following projection of S, i.e., 

K(S) = (R f ([O, 1(,] x [0, K,]) ] there exists Z = (I,, I,) 

such that (K, I) E S}. 

We now have the following corollary: For every initial condition K, E K(S), 
the game G(K,, co) has a solution which converges to the stationary 
equilibrium point. To see this, note that by definition of K(S), for K, there 
exists a pair I,, = (Z,(O), Z,(O)) such that (KO, I,,) E S and therefore there 
exists a unique path which starts at (K,,Z,) and ends at (K*,Z*). Since 
along this path conditions (1) and (14) are satisfied for i = 1, 2 we only have 
to show that the transversality conditions are satisfied. It will then follow 
that Zi(t) is the best response for Zi(t) since Assumptions 1 and 2 guarantee 
the sufficiency of the necessary conditions. 

The transversality condition for control problems with infinite horizons 
that were proven by Michel [ 181 are that the discounted Hamiltonian 
vanishes as t approaches infinity. This is satisfied in our case since the 
instantaneous profit function is bounded and at the stationary equilibrium 
ZT = aiKT and A is bounded. 

Thus the manifold S can be described as a Nash equilibrium manifold 
since for any initial condition K,, in its projection there exist I, such that 
there exists a Nash solution to the game that lies on the manifold and 
converges to a steady state. 

In the next section, we investigate the spanning range of this manifold (or 
its continuation). 

6. CHARACTERIZATION AND CONVERGENCE OF THE NASH SOLUTION 

In this section we investigate the properties of the Nash solution. In 
particular we examine its convergence properties. 

The analysis involves phase diagrams where the boundaries are 
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nonstationary. For the pioneering work on this subject see Kamien and 
Schwartz [ 151. For further work on this subject see Muller [ 191. 

Consider Fig. 1 which depicts=the (Ki, Ii) phase diagram. Define the 
movement of ii = 0 from Kj to Kj as “up.” Whether the ii = 0 boundary 
moves up or its reverse (down) depends on the cross partial derivative of the 
revenue function, and on the sign of ij. 

LEMMA 6.1. Consider the game G(K,,, K2,,, CO) satisfying Assumptions 
3-5 and the function $i as defined in Section 4. If lim,,, K,(t) = Kj* and 
K,(t) = #i(Kj(t)) then lim,,, K,(t) = KF, where (Kr, Kf) is the unique 
stationary equilibrium point. 

ProoJ What we have to show is that if one player converges to the 
stationary equilibrium point then the induced capital path of the best 
response of the second player will converge as well. 

Step 1. Assume there exists a finite T such that K,(t) is monotonic on 
[T, co). We first claim that Ki(t) is either monotonic or single peaked on 
[T, a~). Consider Fig. 2. For the path K,(t) to have an extremum point, it 
has to cross the ki = 0 line. Without loss of generality, we assume that the 
path is currently in region 2. Crossing from region 2 to region 1 is 
impossible. The only way to cross the Eii = 0 line is for the ii = 0 boundary 
to move “down” and to catch up with the path. Once it crosses the path, the 
latter is in region 3 and it can now cross the ii = 0 line to region 4. The 
path is now depicted in Fig. 3. We now have to show that the path cannot 
have another extremum unless kj changes sign which cannot happen by our 
monotonicity assumption of step 1. The path cannot cross from region 4 to 
region 3, therefore the ii = 0 boundary which has moved down has to change 
its direction, catch up with the path so that the path will be again in region 1 

FIGURE 2 
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Ii 

FIGURE 3 

and the intersection with ki = 0 will be made possible. The boundary ii = 0 
is given by (Y + si) C,!(l) = rci(Ki, Kj). It can change direction only if ~j 
changes sign. Since our assumptions rule out going out of business (see our 
discussion in Secton 3) the path Ki does not tend to zero. By standard 
arguments (see, e.g., Gould) the path Ki does not tend to infinity. Thus it 
converges to a stationary equilibrium point. Its uniquenes guarantees that 
Ki(t) will converge to KP. 

Step 2. Assume that there does not exist a finite T such that K,(t) is 
monotonic on [T, 00). Thus for any t, there exists r > T such that Kj(t) is an 
extremum point. 

For a given path Kj(t), j = 1,2, define a cycle as the path of Kj(t) between 
two consecutive extremal points. Let the amplitude of a cycle be the 
difference between the maximum and the minimum of Kj(t) in the cycle. 
Note that the arguments in step 1 can now be applied to any cycle of Ki, i.e., 
ki cannot change sign more than once without kj changing sign at least 
once. Since Kj(t) tends to K,*, the amplitude of its cycles tend to zero as time 
tends to infinity. Using the phase diagram of Fig. 3, let ki be the level of 
capital at the intersection of the curve ii = 0 and the line ki = 0. Changes in 
Kj will induce changes in the ii = 0 and therefore in ii. Define the cycles 
and amplitude of ki as before. From Eq. (15) which describes pi as a 
function of Kj and the assumption that (,jjj is bounded, we conclude that 
since the amplitudes of the cycles of Kj tends to zero, so do the amplitudes 
of ki as time tends to infinity. In Fig. 3, let xi denote the level of capital 
when Ki achieves a minimum as depicted. Observe that necessarily Ri is 
smaller than Bi, since intersection cannot occur between zones two and one. 
Thus the ii = 0 curve has to be below the path for intersection to occur. 
Thus, the amplitudes of the cycles of Ki can be bounded using the 
amplitudes of the cycles of ii, which tend to zero. Thus, the amplitudes of 
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the cycles of K,(t) tend to zero as well. The uniqueness of the stationary 
point guarantees that Ki(t) tends to K,+. 

THEOREM 3. The difJ’erentia1 game W,,-Km, a> satisfying 
Assumptions 3-5 has a Nash equilibrium solution that converges to the 
stationary equilibrium point for every initial codition K,, and K,, . 

Proof. Let 

Lemma 6.1 assures us that the range of the function #i is Bzi. In the same 
fashion we can define Qp (as in Section 4). It can be verified that Qjr is 
conditionally compact (since it is a subset of a conditionally compact set) is 
closed and convex. Thus we can make use of the Schauder-Tychonov lixed- 
point theorem. Q.E.D. 

The existence of the stationary manifold S guarantees that the only 
convergence to K,* and K$ is through the manifold. Thus a corollary of 
Theorem 3 is that if S’ is the continuation of S on the (K,, KJ plane, S’ 
spans the entire (K,, KJ plane. We thus have 

COROLLARY. The stationary equilibrium point (Kc, K,*) is conditionally 
globally asymptotically stable. 

The proofs of existence and global stability can be extended to the 
multifirm case. The extension to the multicapital case is considerably more 
difficult. In addition, we have shown existence only. Thus, it is possible that 
other Nash equilibria which are not globally stable exist as well. 
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