Entering Gaussian System, Link 0=g98
Initial command:
/ual/usr/local/g98/l1.exe /ual/airk/lab/h2o/Gau-12349.inp -
scdir=/ual/airk/lab/h2o/
Entering Link 1 = /ual/usr/local/g98/l1.exe PID= 12352.

All Rights Reserved.

This is part of the Gaussian(R) 98 program. It is based on
the Gaussian 94(TM) system (copyright 1995 Gaussian, Inc,).
the Gaussian 92(TM) system (copyright 1992 Gaussian, Inc,).
the Gaussian 90(TM) system (copyright 1990 Gaussian, Inc,).
the Gaussian 88(TM) system (copyright 1988 Gaussian, Inc,).
the Gaussian 86(TM) system (copyright 1986 Carnegie Mellon
University), and the Gaussian 82(TM) system (copyright 1983
Carnegie Mellon University). Gaussian is a federally registered
trademark of Gaussian, Inc.

This software contains proprietary and confidential information,
including trade secrets, belonging to Gaussian, Inc.

This software is provided under written license and may be
used, copied, transmitted, or stored only in accord with that
written license.

The following legend is applicable only to US Government
contracts under DFARS:

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the US Government is subject
to restrictions as set forth in subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS
.7013-252.227

Gaussian, Inc.
Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA

The following legend is applicable only to US Government
contracts under FAR:

RESTRICTED RIGHTS LEGEND

Use, reproduction and disclosure by the US Government is subject
to restrictions as set forth in subparagraph (c) of the
Commercial Computer Software - Restricted Rights clause at FAR
.19-52.227

Gaussian, Inc.
Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA

Warning -- This program may not be used in any manner that
competes with the business of Gaussian, Inc. or will provide
assistance to any competitor of Gaussian, Inc. The licensee
of this program is prohibited from giving any competitor of
Gaussian, Inc. access to this program. By using this program,
the user acknowledges that Gaussian, Inc. is engaged in the
business of creating and licensing software in the field of
computational chemistry and represents and warrants to the
licensee that it is not a competitor of Gaussian, Inc. and that
it will not use this program in any manner prohibited above.

Cite this work as:
Gaussian 98, Revision A.4,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr.,
R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam,
A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi,
V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo,
S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui,
K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari,
J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu,
A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin,
D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,
C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,
M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon,
E. S. Replogle, and J. A. Pople,
Gaussian, Inc., Pittsburgh PA.1998,

-18 Feb-2004

p RHF/STO-3G SCF=Tight freq

H2O
Symbolic Z-matrix:
Charge = 0 Multiplicity = 1
O
H 1 R
H 1 R 2 A
Variables:
R 1.09894
A 100.0284
Leaves Link 1 at Wed Feb 18 15:57:59 2004, MaxMem= 0 cpu: 0.2
Enter /ua1/usr/local/g98/l101.exe(---

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Initialization pass.

Initial Parameters!

!) Name Value Derivative information (Atomic Units! { (Angstroms and Degrees! (!

! R 0.9994 calculate D2E/DX2 analytically!

! A 100.0284 calculate D2E/DX2 analytically!

Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07
Number of steps in this run= 20 maximum allowed number of steps= 100.
Grad

Leave Link 103 at Wed Feb 18 15:58:00 2004, MaxMem= 6291456 cpu: 0.1

) Enter /ua1/usr/local/g98/l301.exe

Z-MATRIX (ANGSTROMS AND DEGREES)

CD Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J

1 1 O 2 2 H 1 0.989400(1)

3 3 H 1 0.989400(2) 2 100.028(3)

Z-Matrix orientation :

Center Atomic Atomic Coordinates (Angstroms(Number Number Type X Y Z

0.000000 0.000000 0.000000 0 8 1

0.989400 0.000000 0.000000 0 1 2

0.172290- 0.000000 0.974284 0 1 3

Distance matrix (angstroms):

3 2 1

1 0 0.000000

2 H 0.989400 0.000000

3 H 0.989400 1.516164 0.000000

Interatomic angles:

H2-O1-H3=100.0284

Stoichiometry H2O

Framework group C2V(C2(O),SGV(H2){

Deg. of freedom 2

Full point group C2V NOp 4

Largest Abelian subgroup C2V NOp 4

Largest concise Abelian subgroup C2 NOp 2

Standard orientation :

Center Atomic Atomic Coordinates (Angstroms(Number Number Type X Y Z

0.127157 0.000000 0.000000 0 8 1

0.508629- 0.758082 0.000000 0 1 2

0.508629- 0.758082- 0.000000 0 1 3

Rotational constants (GHz): 698.4339218 436.2844998 268.5387744

Isotopes: O-16,H-1,H-1

Leave Link 202 at Wed Feb 18 15:58:00 2004, MaxMem= 6291456 cpu: 0.2

) Enter /ua1/usr/local/g98/1301.exe

Standard basis: STO-3G (5D, 7F)

There are 4 symmetry adapted basis functions of A1 symmetry.
There are 0 symmetry adapted basis functions of A2 symmetry.
There are 1 symmetry adapted basis functions of B1 symmetry.
There are 2 symmetry adapted basis functions of B2 symmetry.
Crude estimate of integral set expansion from redundant integrals=1.296.
Integral buffers will be 131072 words long.
Two-electron integral symmetry is turned on.
7 basis functions 21 primitive gaussians
5 alpha electrons 5 beta electrons
nuclear repulsion energy 8.9065697394 Hartrees.
Leave Link 301 at Wed Feb 18 15:58:00 2004, MaxMem= 6291456 cpu: 0.2
) Enter /ual/usr/local/g98/l302.exe
One-electron integrals computed using PRISM.
One-electron integral symmetry used in STVInt
NBasis= 7 RedAO= T NBF= 4 0 1 2
NbsUse= 7 1.00D-04 NBFU= 4 0 1 2
Leave Link 302 at Wed Feb 18 15:58:01 2004, MaxMem= 6291456 cpu: 0.5
) Enter /ual/usr/local/g98/l303.exe
DipDrv: MaxL=1.
Leave Link 303 at Wed Feb 18 15:58:01 2004, MaxMem= 6291456 cpu: 0.2
) Enter /ual/usr/local/g98/l401.exe
Projected INDO Guess.
Initial guess orbital symmetries:
Virtual (A1) (B2)
Leave Link 401 at Wed Feb 18 15:58:02 2004, MaxMem= 6291456 cpu: 0.4
) Enter /ual/usr/local/g98/l502.exe
IExCor= 0 DFT=F Ex=HF Corr=None ScaHFX= 1.0000
ScaDFX= 0.0000 0.0000 0.0000 0.0000
IRadAn= 0 IRanWt= -1 IRanGd= 0 ICorTp=0
Using DIIS extrapolation.
Closed shell SCF:
Requested convergence on RMS density matrix=1.00D-08 within 64 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Integral symmetry usage will be decided dynamically.
Keep RI integrals in memory in canonical form, NReq= 806476.
IEnd= 6056 IEndB= 6056 NGot= 6291456 MDV= 6289667
LenX= 6289667
Symmetry not used in FoFDir.
MinBra= 0 MaxBra= 1 Meth= 1.
IRaf= 0 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0 JSym2E=0.
Cycle 1 Pass 1 IDiag 1:
E=-0.838073586097085D+02
DIIS: error= 3.56D-01 at cycle 1.
T= 1000. NK=0 NO(<0.9)= 0 NV(>0.1)= 0 5.00e < EF 0.00e >EF Err=0.0D+00
RMSDP=1.76D-02 MaxDP=3.69D-02
Cycle 2 Pass 1 IDiag 1:
E=-0.838720725422508D+02 Delta-E= -0.064713932542
DIIS: error= 1.23D-02 at cycle 2.
T= 927. NK=0 NO(<0.9)= 0 NV(>0.1)= 0 5.00e < EF 0.00e >EF Err=0.0D+00
RMSDP=3.63D-03 MaxDP=1.25D-02
Cycle 3 Pass 1 IDiag 1:
E=-0.838724369328D+02 Delta-E= -0.00354992387
DIIS: error= 1.40D-03 at cycle 3.
Coeff: 0.8760-01-0.108D+01
T= 800. NK=0 NO(<0.9)= 0 NV(>0.1)= 0 5.00e < EF 0.00e >EF Err=0.0D+00
RMSDP=1.27D-03 MaxDP=4.64D-03
Cycle 4 Pass 1 IDiag 1:

E=-0.838724649658831D+02 Delta-E= -0.000037431245
DIIS: error= 5.20D-04 at cycle 4.
Coeff: -0.197D-01 0.472D+00-0.145D+01
RMSDP=6.37D-04 MaxDP=2.01D-03

Cycle 5 Pass 1 IDiag 1:

E=-0.838724707818147D+02 Delta-E= -0.000005815932
DIIS: error= 9.11D-05 at cycle 5.
Coeff: -0.191D-03-0.219D-01 0.373D-01 0.161D+00-0.118D+01
RMSDP=1.05D-04 MaxDP=3.09D-04

Cycle 6 Pass 1 IDiag 1:

E=-0.838724709538061D+02 Delta-E= -0.000000171991
DIIS: error= 1.16D-05 at cycle 6.
Coeff: 0.833D-03-0.212D-01 0.373D-01 0.161D+00-0.118D+01
RMSDP=9.84D-06 MaxDP=3.16D-05

Cycle 7 Pass 1 IDiag 1:

E=-0.838724709562590D+02 Delta-E= -0.000000002453
DIIS: error= 3.37D-08 at cycle 7.
Coeff: -0.115D-06 0.489D-05-0.124D-03 0.917D-03-0.274D-02-0.998D+00
RMSDP=1.58D-08 MaxDP=3.16D-05

Cycle 8 Pass 1 IDiag 1:

E=-0.838724709562590D+02 Delta-E= -0.000000000000
DIIS: error= 3.37D-11 at cycle 8.
Coeff: -0.100D+01
RMSDP=1.84D-11 MaxDP=5.75D-11

SCF Done: E(RHF) = -74.9659012168 A.U. after 8 cycles
Convg = 0.1836D-10 -V/T = 2.0060
S**2 = 0.0000

KE= 7.451862833339D+01 PE= 1.963529057548D+02 EE= 3.796180646517D+01
Leave Link 502 at Wed Feb 18 15:58:02 2004, MaxMem=6291456 cpu: 0.2
)
Enter /ual/usr/local/g98/l801.exe(

Range of M.O.s used for correlation: 1 7
NBasis= 7 NAE= 5 NBE= 5 NFC= 0 NFV= 0
NRorb= 7 NOA= 5 NOB= 5 NVA= 2 NVB= 2
Leave Link 801 at Wed Feb 18 15:58:02 2004, MaxMem=6291456 cpu: 0.0
)
Enter /ual/usr/local/g98/l1002.exe(

Minotr: Closed-shell wavefunction.
Direct CPHF calculation.
Solving linear equations simultaneously.
Using symmetry in CPHF.
Requested convergence is 1.0D-08 RMS, and 1.0D-07 maximum.
Secondary convergence is 1.0D-12 RMS, and 1.0D-12 maximum.
Differentiating once with respect to electric field.
with respect to dipole field.
NewPWx=F KeepS1=T KeepFl=T KeepIn=T MapXYZ=F.
MDV= 6291456
Using IRadAn= 2.
Store integrals in memory, NReq= 820522.
Symmetry not used in FoFDir.
MinBr= 0 MaxBr= 1 Meth= 1.
IRaf= 0 NMat= 1 IRCut= 1 DoRegI=T DoRafI=F ISym2E= 0 JSym2E= 0.
There are 3 degrees of freedom in the 1st order CPHF.
3 vectors were produced by pass 0.
AX will form 3 AO Fock derivatives at one time.
2 vectors were produced by pass 1.
vectors were produced by pass 2.
vectors were produced by pass 3.
Inv2: IOpt= 1 Iter= 1 AM= 3.21D-16 Conv= 1.00D-12.
Inverted reduced A of dimension 9 with in-core refinement.
Leave Link 1002 at Wed Feb 18 15:58:02 2004, MaxMem= 6291456 cpu: 0.1
) Enter /ual/usr/local/g98/l1101.exe(
Using compressed storage.
Will process 3 atoms per pass.
Leave Link 1101 at Wed Feb 18 15:58:03 2004, MaxMem= 6291456 cpu: 0.5
) Enter /ual/usr/local/g98/l1102.exe(
Use density number 0.
Leave Link 1102 at Wed Feb 18 15:58:03 2004, MaxMem= 6291456 cpu: 0.2
) Enter /ual/usr/local/g98/l1110.exe(
Forming Gx(P) for the SCF density.
Integral derivatives from FoFDir, PRISM(SPDF).
Do as many integral derivatives as possible in FoFDir.
G2DrvN: MDV= 6291456.
G2DrvN: will do 3 atoms at a time, making 1 passes doing MaxLOS=1.
Petite list used in FoFDir.
MinBra= 0 MaxBra= 1 Meth= 1.
IRaf= 0 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 1 JSym2E=1.
FoFDir used for L=0 through L=1.
Leave Link 1110 at Wed Feb 18 15:58:03 2004, MaxMem= 6291456 cpu: 0.2
) Enter /ual/usr/local/g98/l1102.exe(
Minotr: Closed-shell wavefunction.
Direct CPHF calculation.
Solving linear equations simultaneously.
Using symmetry in CPHF.
Requested convergence is 1.0D-08 RMS, and 1.0D-07 maximum.
Secondary convergence is 1.0D-12 RMS, and 1.0D-12 maximum.
Differentiating once with respect to electric field.
with respect to dipole field.
Differentiating once with respect to nuclear coordinates.
NewPWx=T KeepS1=F KeepF1=F KeepIn=F MapXYZ=F.
MDV= 6291456
Using IRadAn= 2.
Store integrals in memory, NReq= 820579.
Symmetry not used in FoFDir.
MinBra= 0 MaxBra= 1 Meth= 1.
IRaf= 0 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0 JSym2E=0.
There are 9 degrees of freedom in the 1st order CPHF.
8 vectors were produced by pass 0.
AX will form 8 AO Fock derivatives at one time.
2 vectors were produced by pass 1.
Inv2: IOpt= 1 Iter= 1 AM= 1.87D-16 Conv= 1.00D-12.
Inverted reduced A of dimension 10 with in-core refinement.
Leave Link 1002 at Wed Feb 18 15:58:04 2004, MaxMem= 6291456 cpu: 0.3
) Enter /ual/usr/local/g98/1601.exe(
Copying SCF densities to generalized density rwf, ISCF=0 IROHF=0.

**
Population analysis using the SCF density.

**

Orbital Symmetries:
Virtual (A1) (B2)
The electronic state is 1-A1.
Alpha occ. eigenvalues -- -20.25157 -1.25755 -0.59386 -0.45973 -0.39262
Alpha virt. eigenvalues -- 0.58180 0.69269
Condensed to atoms (all electrons):

\[
\begin{align*}
3 & \quad 2 \quad 1 \\
1 & \quad 0 \quad 7.822771 \quad 0.253884 \quad 0.253884 \\
2 & \quad H \quad 0.253884 \quad 0.626246 \quad -0.045400 \\
3 & \quad H \quad 0.253884 \quad -0.045400 \quad 0.626246 \\
\end{align*}
\]

Total atomic charges:

\[
\begin{align*}
1 & \quad 0 \quad -0.330540 \\
2 & \quad H \quad 0.165270 \\
3 & \quad H \quad 0.165270 \\
\end{align*}
\]

Sum of Mulliken charges= 0.00000

Atomic charges with hydrogens summed into heavy atoms:

\[
\begin{align*}
1 & \quad 0 \quad 0.000000 \\
2 & \quad H \quad 0.000000 \\
3 & \quad H \quad 0.000000 \\
\end{align*}
\]

Sum of Mulliken charges= 0.00000

Electronic spatial extent (au): \(<R^2>= 18.2684\)

Charge= 0.0000 electrons

Dipole moment (Debye):

\[
X = 0.0000 \\
Y = 0.0000 \\
Z = -1.7092 \\
\text{Tot}= 1.7092
\]

Quadrupole moment (Debye-Ang):

\[
\begin{align*}
XX &= -6.1257 \\
YY &= -4.4856 \\
ZZ &= -5.3333 \\
XY &= 0.0000 \\
XZ &= 0.0000 \\
YZ &= 0.0000
\end{align*}
\]

Octapole moment (Debye-Ang**2):

\[
\begin{align*}
XXX &= 0.0000 \\
YYY &= 0.0000 \\
ZZZ &= 0.0000 \\
XYZ &= 0.0000 \\
XXZ &= 0.0000 \\
YZZ &= 0.0000 \\
XYZ &= 0.0000
\end{align*}
\]

Hexadecapole moment (Debye-Ang**3):

\[
\begin{align*}
XXXX &= -3.2653 \\
YYYY &= -6.7334 \\
ZZZZ &= -5.2196 \\
XXXXY &= 0.0000 \\
XXXY &= 0.0000 \\
XXZZ &= 0.0000 \\
YYZZ &= 0.0000 \\
XYZ &= 0.0000
\end{align*}
\]

N-N= 8.906569739431D+00 E-N=-1.963529057543D+02 KE= 7.451862833339D+01

Symmetry A1 KE= 6.651704420488D+01
Symmetry A2 KE= 0.000000000000D+00
Symmetry B1 KE= 5057462452019.D+00
Symmetry B2 KE= 2.944121676499D+00

Exact polarizability: 0.040 0.000 5.508 0.000 0.000 2.566
Approx polarizability: 0.040 0.000 5.508 0.000 0.000 2.606

Leave Link 601 at Wed Feb 18 15:58:04 2004, MaxMem= 6291456 cpu: 0.3

Enter /ua1/usr/local/g98/l701.exe

Compute integral second derivatives.

... and contract with generalized density number 0.

Leave Link 701 at Wed Feb 18 15:58:05 2004, MaxMem= 6291456 cpu: 0.6

Enter /ua1/usr/local/g98/l702.exe

L702 exits ... SP integral derivatives will be done elsewhere.

Leave Link 702 at Wed Feb 18 15:58:05 2004, MaxMem= 6291456 cpu: 0.0

Enter /ua1/usr/local/g98/l703.exe

Integral derivatives from FoFDir, PRISM(SPD) Scalar Rys(F).

Petite list used in FoFDir.

MinBra= 0 MaxBra= 2 Meth= 1.
IRaf= 0 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 1 JSym2E=1.

Leave Link 703 at Wed Feb 18 15:58:06 2004, MaxMem= 6291456 cpu: 1.1

Enter /ua1/usr/local/g98/l716.exe

Dipole =-3.44485441D-17 0.00000000D+00-6.72455877D-01
Polarizability= 4.00614661D-02 3.18275704D-16 5.50797998D+00
1.58798725 D-16-2.22044605D-16 2.56576708D+00
HyperPolar =-3.59205161D-17 8.82132963D-17-2.96841989D-16
H₂O is a linear molecule with 3 atoms; we have 3 normal modes. There are five normal modes with a minus sign (here the sign jumped to the end of the number due to WORD) representing kinetic and rotation modes.

Thermochemistry

Temperature 298.150 Kelvin. Pressure 1.00000 Atm.
Atom 1 has atomic number 8 and mass 15.99491
Atom 2 has atomic number 1 and mass 1.00783
Atom 3 has atomic number 1 and mass 1.00783
Molecular mass: 18.01056 amu.

Principal axes and moments of inertia in atomic units:

<table>
<thead>
<tr>
<th>EIGENVALUES</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.58398</td>
<td>4.13662</td>
<td>6.72060</td>
<td></td>
</tr>
</tbody>
</table>

This molecule is an asymmetric top.

Rotational Symmetry Number 2.

Rotational Temperatures (Kelvin): 33.51935 20.93823 12.88775
Rotational Constants (GHz): 698.43392 436.28450 268.53877

Zero-point vibrational energy: 64008.0 Joules/Mol

Vibrational Temperatures: 3122.15 5956.64 6317.89 K

Zero-point correction = 0.024379 (Hartree/Particle)
Thermal correction to Energy = 0.027212
Thermal correction to Enthalpy = 0.028156
Thermal correction to Gibbs Free Energy = 0.006642

Sum of electronic and zero-point Energies = -74.941522
Sum of electronic and thermal Energies = -74.938689
Sum of electronic and thermal Enthalpies = -74.937745
Sum of electronic and thermal Free Energies = -74.959260

<table>
<thead>
<tr>
<th>E (Thermal)</th>
<th>CV</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>kcal/mol</td>
<td>cal/mol-Kelvin</td>
<td>cal/mol-Kelvin</td>
</tr>
<tr>
<td>TOTAL</td>
<td>17.076</td>
<td>5.968</td>
</tr>
<tr>
<td>ELECTRONIC</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>TRANSLATIONAL</td>
<td>0.889</td>
<td>2.981</td>
</tr>
<tr>
<td>ROTATIONAL</td>
<td>0.889</td>
<td>2.981</td>
</tr>
<tr>
<td>VIBRATIONAL</td>
<td>15.298</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Note: there are other properties like Raman freq, IR intensity, Thermochemistry, etc.
<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>LOG10(Q)</th>
<th>LN(Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL BOT</td>
<td>0.881269D-03</td>
<td>-3.054892</td>
<td>-7.034148</td>
</tr>
<tr>
<td>TOTAL V=0</td>
<td>0.144130D+09</td>
<td>8.158754</td>
<td>18.785226</td>
</tr>
<tr>
<td>VIB (BOT)</td>
<td>0.611457D-11</td>
<td>-11.213634</td>
<td>-25.820346</td>
</tr>
<tr>
<td>VIB (V=0)</td>
<td>0.100003D+01</td>
<td>0.000012</td>
<td>0.000028</td>
</tr>
<tr>
<td>ELECTRONIC</td>
<td>0.100000D+01</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>TRANSLATIONAL</td>
<td>0.300436D+07</td>
<td>6.477751</td>
<td>14.915574</td>
</tr>
<tr>
<td>ROTATIONAL</td>
<td>0.479723D+02</td>
<td>1.680991</td>
<td>3.870624</td>
</tr>
</tbody>
</table>

Illustration of the IR spectrum, frequencies and intensities.
Cartesian Forces: Max 0.00014019 RMS 0.00007901

Internal Coordinate Forces (Hartree/Bohr or radian):

<table>
<thead>
<tr>
<th>Cent</th>
<th>Atom</th>
<th>N1</th>
<th>Length/X</th>
<th>N2</th>
<th>Alpha/Y</th>
<th>N3</th>
<th>Beta/Z</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O</td>
<td>1</td>
<td>0.000010(1)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>1</td>
<td>0.000010(2)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Internal Forces: Max 0.00010065 RMS 0.00009044

Force constants in Cartesian coordinates:

<table>
<thead>
<tr>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.704733</td>
<td>1</td>
<td>D+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.000000</td>
<td>2</td>
<td>D+00</td>
<td>-0152289, D-04</td>
<td></td>
</tr>
<tr>
<td>0.832544</td>
<td>3</td>
<td>D-01</td>
<td>0.000000D+00</td>
<td>0.734178D+00</td>
</tr>
<tr>
<td>0.798532</td>
<td>4</td>
<td>D-01</td>
<td>0.000000D+00</td>
<td>-0.669774D-01</td>
</tr>
<tr>
<td>0.000000</td>
<td>5</td>
<td>D+00</td>
<td>0.761447D-05</td>
<td>0.000000D+00</td>
</tr>
<tr>
<td>0.538504</td>
<td>6</td>
<td>D-01</td>
<td>0.000000D+00</td>
<td>-0.639602D+00</td>
</tr>
<tr>
<td>0.624880</td>
<td>7</td>
<td>D+00</td>
<td>0.000000D+00</td>
<td>0.150232D+00</td>
</tr>
<tr>
<td>0.000000</td>
<td>8</td>
<td>D+00</td>
<td>0.761447D-05</td>
<td>0.000000D+00</td>
</tr>
<tr>
<td>0.294040</td>
<td>9</td>
<td>D-01</td>
<td>0.000000D+00</td>
<td>-0.945757D-01</td>
</tr>
</tbody>
</table>

Force constants in internal coordinates:

<table>
<thead>
<tr>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.654122</td>
<td>6</td>
<td>D+00</td>
</tr>
<tr>
<td>0.336883</td>
<td>7</td>
<td>D-01</td>
</tr>
<tr>
<td>0.000000</td>
<td>8</td>
<td>D+00</td>
</tr>
<tr>
<td>0.145195</td>
<td>9</td>
<td>D-01</td>
</tr>
</tbody>
</table>

Search for a local minimum.
Step number 1 out of a maximum of 20
All quantities printed in internal units (Hartrees-Bohrs-Radians)
Second derivative matrix not updated -- analytic derivatives used.
The second derivative matrix:

R A
R 1.24695
A 0.07540 0.29688

Eigenvalues --- 0.29093 1.25290

Angle between quadratic step and forces = 38.23 degrees.
Linear search not attempted -- first point.

Variable Old X -DE/DX Delta X Delta X Delta X New X
<table>
<thead>
<tr>
<th>Linear</th>
<th>(Quad)</th>
<th>(Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>1.86969</td>
<td>0.00002</td>
</tr>
<tr>
<td>A</td>
<td>1.74582</td>
<td>-0.00001</td>
</tr>
</tbody>
</table>

Item Value Threshold Converged?
Maximum Force	0.000020	0.000450	YES
RMS Force	0.000015	0.000300	YES
Maximum Displacement	0.000027	0.001800	YES
RMS Displacement	0.000023	0.001200	YES

Predicted change in Energy = -2.654501D-10
Optimization completed.
Stationary point found.

Optimized Parameters!

Angstroms and Degrees!

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Derivative information (Atomic Units!)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0.9894</td>
<td>-DE/DX = 0!</td>
</tr>
<tr>
<td>A</td>
<td>100.028</td>
<td>-DE/DX = 0!</td>
</tr>
</tbody>
</table>

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Leave Link 103 at Wed Feb 18 15:58:08 2004, MaxMem= 6291456 cpu: 0.2

Enter /u/b/local/g98/19999.exe

\1\ GINC-ATTO\Freq\RHF\STO-3G\H2O\ARIK\18-Feb-2004\1\#/P RHF/STO-3G S
CF=TIGHT FREQ\H2O\0,1\O\H,1,R\H,1,R,2,A\R=0.9894\A=100.0284\Versio
n=DEC-AXP-OSF/1-G98RevA.4\State=1-A1\HF=-74.9659012\RMSD=1.836e-11\RMS
F=7.901e-06\Dipole=0.5152382,0.,0.4321186\DipoleDeriv=0.036166,0.,0.05
.0.0934912,0.,0.0161967,0.1683745,0.,0.056462,0.,0.5596981,0.,-0.6462,0
0.27,0.0370292,0.,0.2045404,0.,-0.1945558,0.,0.0289163,0.,-0.2798491,0
0.1783591,0.0275457,0.,-0.98491,0 Polar=3.7807005,0.,0.0406156,-1.44863
4.2930466,02,0 PolarDeriv=-4.991107,0.,0.0139236,-0.3327678,0.,-1.145
0.9281,-0.0116774,0.5154286,0.,-1.3508651,0.,-1.16107089,0.,-0.9654,0
0.,0.5198693,0.,0.0270535,1.8029034,0.,-0.440508,0.,-4.6315952,0.,-691,0
5.7879,0.884405,0.,0.0181178,0.3496552,0.,-2.1376814,0.,0.421006,0
0.,0.2.0317095,0.,0.6260691,0.,1.4701356,0.,-0.0131299,78,5.431615,0
1.1563828,-0.0297952,1.8125741,0.,-0.1657734,0.,7868163,0. HyperPolar
9.02,0.0489901,0.0186431,0.,1.8779942,0.,-0.0584135,0.,-8.5063201,0=
7688 PG=C02V [C2 (01), SGV (H2)] \Nimag=0\0.0.70473285,0.,-0.00001523,-0.08
0.000007,-0.06697742,0.08492041,0.,-0.07985315,0.,-0.73417797,0.325445,0
0.654121,0.02016213,0.63960226,0.,0.00000571,0.05385040,0.,-0.61,0
0.03368827,0.62994696,0.,-0.00506726,0.,-0.15023186,0.62487970,0.,-74
0.094575,-0.00000571,0.02940405,0.,-0.00000190,0.,-0.00000761,0
0.00001402,0\0.10909519,0.11654359,0.,-0.01451948,0.,-0.08713955,0
0\0.00000169,0.00001052,0.,-0.0001007,0.,0.00000350,0.,-0.0001176

--

CHARLES DARWIN

--

Normal termination of Gaussian 98.