Electron Correlation
Levels of QM Theory

\[H\Psi = E\Psi \]

Born-Oppenheimer approximation

Electronic equation: \[H_e \Psi_e = E_e \Psi_e \]

Single determinant SCF

Semi-empirical methods

Correlation approaches:
1. WF based. Multi-determinantal methods
 - variational (MCSCF, CI)
 - non-variational (MBPT, CC)
2. DFT: “orbital free” (\(\rho \) - based)
 - Single determinantal (Kohn-Sham)

Nuclear equation: \[H_n \Psi_n = E_n \Psi_n \]
Why “correlation”?

The Hartree Product

\[\Phi^{HP}(x_1; x_2; \ldots; x_n) = \varphi_1(x_1) \varphi_2(x_2) \ldots \varphi_n(x_n) \]

is completely uncorrelated, in the sense that the probability of simultaneously finding electron 1 at \(x_1\), electron 2 at \(x_2\), etc., is given by:

\[|\Phi^{HP}(x_1; x_2; \ldots; x_n)|^2 dx_1 dx_2 \ldots dx_n = |\varphi_1(x_1)|^2 |\varphi_2(x_2)|^2 \ldots |\varphi_n(x_n)|^2 dx_1 dx_2 \ldots dx_n \]

which is the probability of finding electron 1 at \(x_1\) times the probability of finding electron 2 at \(x_2\), etc... the product of the probabilities. This makes the Hartree Product an independent particle model. Electrons move independently; their motion is uncorrelated.
The Hartree-Fock approximation

- The n-electronic wave function ψ in the case of Hartree-Fock (HF) approximation:

$$
\Psi_{HF}(1, 2, ... n) = \det \begin{pmatrix}
\phi_1(1) & \phi_2(1) & ... & \phi_n(1) \\
\phi_1(2) & \phi_2(2) & ... & \phi_n(2) \\
... & ... & ... & ...
\end{pmatrix}

- One-electron density:

$$
\rho_{HF}(x, y, z) = \sum n_j |\phi_j|^2
$$

- n_j is the “occupation number” ($n_j = 0, 1, 2$)
Hartree-Fock Energy

\[E = \sum_{i=1}^{n} h_i + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (J_{ij} - K_{ij}) \]

Sums run over occupied orbitals. \(h_i \) is the one-electron integral, \(J_{ij} \) is the Coulomb integral, and \(K_{ij} \) is the exchange integral.

\[h_i = \int dr \phi_i^*(r) \left[-\frac{1}{2} \Delta - \sum_l \frac{Z_l e^2}{R_{l-e}} \right] \phi_i(r) = -(\int dr \left[\frac{1}{2} \phi_i^*(r) \Delta \phi_i(r) + \frac{Z_l e^2}{R_{l-e}} \rho_i(r) \right] \]

\[J_{ij} = \int \int dr_1 dr_2 \phi_i^*(r_1) \phi_i(r_1) \frac{1}{r_{12}} \phi_j^*(r_2) \phi_j(r_2) = \int \int dr_1 dr_2 \rho_i(r_1) \frac{1}{r_{12}} \rho_j(r_2) \]

\[K_{ij} = \int \int dr_1 dr_2 \phi_i^*(r_1) \phi_j(r_1) \frac{1}{r_{12}} \phi_j^*(r_2) \phi_i(r_2) \]
 WF approaches beyond the SCF.

Correlated Methods (CM)

• Include more explicit interaction of electrons than HF: \(E_{\text{corr}} = E - E_{\text{HF}} \), where \(E\Psi = H\Psi \)

• Most CMs begin with HF wavefunction, then incorporate varying amounts of electron-electron interaction by mixing in excited state determinants with ground state HF determinant

• The limit of infinite basis set & complete electron correlation is the exact solution of Schrödinger equation (which is still an approximation)
The N-electron Basis

- A collection of atom-centered Gaussian functions can be used as a basis set for expanding one-electron functions (molecular orbitals).

\[
\phi_j = \sum_{s=1}^{b} c_{sj} \chi_s = c_{1j} \chi_1 + c_{2j} \chi_2 + \ldots + c_{bj} \chi_b
\]

- We need to solve the electronic Schrodinger equation to get \(\Psi_e(r_1; r_2; \ldots; r_n) \), a function of \(n \) electrons.

What can we use as a basis for expanding \(\Psi_e \)?
- Slater determinants are proper \(n \)-electron basis functions: they are functions which can be used to expand any antisymmetric \(n \)-electron function.
- In the limit of an infinite number of Slater determinants, any \(n \)-electron function can be expanded exactly.
Configuration Interaction (CI) and other correlation methods

- CI method for many-electron WF

\[\Psi_e (r_1, r_2, ..., r_n) = c_0 \Phi_0^{HF} (r_1, r_2, ..., r_n) + \sum_{I=1}^{N} c_I \Phi_I (r_1, r_2, ..., r_n) \]

where \(N \) is the number of “excited” determinants

Ways of Coefficients \(c_I \) definition:

1. Variations - CI
2. Perturbation expansions - MBPT
3. SCF-like iterations - Coupled Cluster
Classification of CI methods

- The Hartree-Fock "reference" determinant Φ_0 should be the leading term. Expect the importance of other configurations to drop off rapidly as they substitute more orbitals.

Let denote a determinant $\Phi_{ij \ldots k}^{ab \ldots c}$ which differs from Φ_0 by replacing occupied orbitals $ij \ldots k$ with virtual orbitals $ab \ldots c$.

$$\Psi = c_0 \Phi_0^{HF} + \sum c_i^a \Phi_i^a + \sum c_{ij}^{ab} \Phi_{ij}^{ab} + \sum c_{ijk}^{abc} \Phi_{ijk}^{abc} + \ldots$$

Reference	Singles	Doubles	Triples
CIS | CISD | CISDT
Example of CI calculation: H_2 molecule

\[\Psi_{CI} = c_0 \ket{\psi_{\sigma g} \psi_{\sigma g}} + c_1 \ket{\psi_{\sigma u} \psi_{\sigma u}} + c_2 \ket{\psi_{3\sigma} \psi_{3\sigma}} + c_3 \ket{\psi_{\pi} \psi_{\pi}} + \ldots \]
WF methodology:

- Infinite basis set
- 6-311++G**
- 6-311G**
- 6-311G*
- 3-21G*
- 3-21G
- STO-3G
- STO

Increasing size of basis set:
- Increasing level of theory:
 - HF
 - CI
 - QCISD
 - QCISDT
 - MP2
 - MP3
 - MP4
 - ... full e⁻ correlation

Increasing accuracy, increasing cpu time:
- Schrödinger
Density Functional Theory

- 1998 Nobel Prize in Chemistry (Kohn and Pople) recognized work in this area.
- **Main idea:** Use the density instead of complicated many electron wavefunctions.
- **Basic approach:** minimize the energy with respect to the density.

 Relationship of energy to density is the “functional” $E[\rho]$ (true form of this functional is unknown: use approx.)
One-electronic density

The probability density ρ of finding an electron (ANY!!!) in the neighborhood of point (x,y,z) is

$$\rho(x, y, z) = n \sum_{m_s} \int \cdots \int |\psi(x, y, z, x_2, \ldots, z_n, m_{s_1}, \ldots, m_{s_n})|^2 \, dx_2 \ldots dz_n$$

In most cases - knowing the ρ is knowing the system!

$$\langle \hat{A} \rangle = \iiint A(x, y, z) \rho(x, y, z) \, dxdydz$$

$$Z = \sum_{m_s} \iiint e \rho(x, y, z) \, dxdydz = en$$

Main question – How does ρ look like?
The energy functional = density functional (W. Kohn)

• Model Hamiltonian: \(H_\lambda = T + (1-\lambda)V_{\text{ext}}(\lambda) + \lambda V_{\text{ee}} \)
 \(0 \leq \lambda \leq 1 \); \(\rho_{\lambda=1} = \rho_{\lambda=0} = \rho \)

• \(H_{\lambda=1} = H \quad H_{\lambda=0} = T + V_{\text{ext}}(0) \) - single-e-H

• Kohn - Sham : \(E = E[\Psi] = \int \Psi^* \hat{H} \Psi \, dV = E[\rho] = ? \)

• HF: \(E^{HF}[\rho] = T[\rho(\phi)] + E_{\text{ne}}[\rho] + (J[\rho] + K[\rho(\phi)]) \)

• DFT: \(E[\rho] = T[\rho] + E_{\text{ne}}[\rho] + (J[\rho] + K[\rho] + E_{\text{cor}}[\rho]) \) - single-electron theory including correlation!

\[\rho(x, y, z) = \sum_j n_j |\phi_j|^2 \]

Alternatives:

I \hspace{2cm} II
Orbital-free DFT

- In the HF method \(E_{corr}[\rho] \) is missed

- General case:
 \[
 E_{ne}[\rho] = - \sum_{a}^{N_{\text{nuclei}}} \int \frac{Z_{a}(R_{a})\rho(r)}{|R_{a} - r|} \, dr
 \]
 \[
 J[\rho] = \frac{1}{2} \iint \frac{\rho(r)\rho(r')}{|r - r'|} \, dr \, dr'
 \]

- Homogenous e-gas (Tomas-Fermi-Dirac) - simplest case:
 \[
 \]
 \[
 T_{TF}[\rho] = C_{F} \int \rho^{5/3}(r) \, dr
 \]
 \[
 K_{D}[\rho] = -C_{x} \int \rho^{4/3}(r) \, dr
 \]
Kinetic and exchange functionals' corrections

• Kinetic functional:

\[T[\rho] = T_{TF}[\rho] + T_2[\rho] + T_4[\rho] + T_6[\rho] + \ldots \]

\[T_2[\rho] = \lambda \tau_w[\rho]; \quad \tau_w[\rho] = \int \frac{[\nabla \rho(\mathbf{r})]^2}{8 \rho(\mathbf{r})} d\mathbf{r} \]

\[T_4[\rho] = \left(\frac{540 (3\pi)^{2/3}}{5} \right)^{-1} \int \rho^{1/3}(\mathbf{r}) \left\{ \left(\frac{\nabla^2 \rho(\mathbf{r})}{\rho(\mathbf{r})} \right)^2 - \frac{9}{8} \left(\frac{\nabla^2 \rho(\mathbf{r})}{\rho(\mathbf{r})} \right) \left(\frac{\nabla \rho(\mathbf{r})}{\rho(\mathbf{r})} \right)^2 + \frac{1}{3} \left(\frac{\nabla \rho(\mathbf{r})}{\rho(\mathbf{r})} \right)^4 \right\} d\mathbf{r} \]

• Exchange functional:

\[K[\rho] = K_D[\rho] + K_2[\rho] + K_4[\rho] + \ldots \]

\[K_2[\rho] = -\frac{5}{216} (3\pi^5)^{-1/3} \int \frac{[\nabla \rho(\mathbf{r})]^2}{\rho^{4/3}(\mathbf{r})} d\mathbf{r} \]
Correlation functionals

- An example Lee, Parr, Yang (LYP) $E_{\text{corr}}[\rho])$:

$$
E_{\text{LYP}}^{\text{LYP}} = -4a \frac{\rho_\alpha \rho_\beta}{\rho^2(1 + d\rho^{-1/3})} - \\
abla \omega \left[\frac{\rho_\alpha \rho_\beta}{18} \left[144(2^{2/3})C_F(\rho_\alpha^{8/3} + \rho_\beta^{8/3}) + (47 - 7\delta)|\nabla \rho|^2 - \\
(45 - \delta)|\nabla \rho_\sigma|^2 + |\nabla \rho_\beta|^2 \right] + 2\rho^{-1}(11 - \delta)(\rho_\sigma|\nabla \rho_\sigma|^2 + \rho_\beta|\nabla \rho_\beta|^2) \right] \\
+ \frac{2}{3} \rho^2 \left(|\nabla \rho_\sigma|^2 + |\nabla \rho_\beta|^2 - |\nabla \rho|^2 \right) - (\rho_\alpha^2|\nabla \rho_\beta|^2 + \rho_\beta^2|\nabla \rho_\alpha|^2)
\right] \\
\omega = \frac{e^{-c\rho^{-1/3}}}{\rho^{14/3}(1 + d\rho^{-1/3})}
$$

$$
\delta = c\rho^{-1/3} + \frac{d\rho^{-1/3}}{1 + d\rho^{-1/3}}
$$
Kohn-Sham theory (DFT with orbitals)

- **Exact WF:**
 \[\rho(x, y, z) = \sum_j n_j |\phi_j|^2 \]

 - \(n_j \) is the “generalized occupation number” \((n_j \equiv 0 \text{ or } 1)\);
 - \(\phi_j \) - natural orbitals \(j=1,\ldots,\infty \)

- **Kohn-Sham (KS) WF:**
 \[\Psi_{KS}(1, 2, \ldots n) = \det \begin{pmatrix}
 \phi_1(1) & \phi_2(1) & \cdots & \phi_n(1) \\
 \phi_1(2) & \phi_2(2) & \cdots & \phi_n(2) \\
 \vdots & \vdots & \ddots & \vdots \\
 \phi_1(n) & \phi_2(n) & \cdots & \phi_n(n)
\end{pmatrix} \]

- **Exact exchange + KS kinetic functional** - very precise
 \[T_S = \sum_{i=1}^{N_{\text{elec}}} \langle \phi_i \mid -\frac{1}{2} \nabla^2 \mid \phi_i \rangle \]

 \[T[\rho_{\text{exact}}] = \sum_{i=1}^{\infty} n_i \langle \phi_i^{\text{NO}} \mid -\frac{1}{2} \nabla^2 \mid \phi_i^{\text{NO}} \rangle \]
Jacob's Ladder

<table>
<thead>
<tr>
<th>Level</th>
<th>Name</th>
<th>Variables</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Local density</td>
<td>ρ</td>
<td>LDA, LSDA, X_α</td>
</tr>
<tr>
<td>2</td>
<td>GGA</td>
<td>$\rho, \nabla \rho$</td>
<td>BLYP, OPTX, OLYP, PW86, PW91, PBE, HCTH</td>
</tr>
<tr>
<td>3</td>
<td>Meta-GGA</td>
<td>$\rho, \nabla \rho, \nabla^2 \rho$ or τ</td>
<td>BR, B95, VSXC, PKZB, TPSS, τ-HCTH</td>
</tr>
<tr>
<td>4</td>
<td>Hyper-GGA</td>
<td>$\rho, \nabla \rho, \nabla^2 \rho$ or τ</td>
<td>H+H, ACM, B3LYP, B3PW91, O3LYP, PBE0, TPSSh, τ-HCTH-hybrid</td>
</tr>
<tr>
<td>5</td>
<td>Generalized RPA</td>
<td>$\rho, \nabla \rho, \nabla^2 \rho$ or τ</td>
<td>OEP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HF exchange</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Virtual orbitals</td>
<td></td>
</tr>
</tbody>
</table>