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Super-Poissonian shot noise as a measure of dephasing in closed quantum dots
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Electron-electron interactions play a major role in determining the low-temperature rate of phase loss of

electrons in mesoscopic systems. The study of the dephasing rate is expected to contribute to the understanding
of the many-body nature of such systems. Closed quantum dots are of special interest in this respect, due to
theoretical predictions suggesting a possible transition temperature below which the dephasing rate vanishes.
This prediction has attracted much attention, since closed quantum dots are prime candidates for storage units
in quantum computers, and thus their phase coherence properties are of great importance. However, an effec-

tive method for measuring the dephasing rate within a closed quantum dot is still lacking. Here, we study
two-level systems and show that the Fano factor has a sharp peak as a function of the chemical potential, the
location of which can be simply related to the dephasing rate. We thus suggest to use the properties of the Fano
factor peak in the super-Poissonian regime as a probe for the dephasing rate.
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I. INTRODUCTION

The study of electrons’ phase coherence in mesoscopic
systems has been an active field in the past few years. One of
the main contributions to the loss of quasiparticle phase co-
herence (or dephasing) at low temperatures are electron-
electron interactions. Thus, measurements of the low tem-
peratures dephasing rate provide us with a valuable probe to
gauge our understanding of the structure of the many-
electron ground state. In particular, the nature of the many-
body wave function in confined geometries was predicted to
change sharply at low excitation energies, where the wave
function is expected to be localized in Fock space.! Conse-
quently, one expects the dephasing rate to vanish at some
finite temperature, which scales like Avgy/In g7, where A is
the mean-level spacing and g is the dimensionless Thouless
conductance of the system. The prediction of vanishing
dephasing rate in isolated dots is of great importance in light
of the search for systems with long coherence times to be
used as storage units in quantum computers. However, it was
claimed that the logarithmic correction, and maybe even the
existence of the transition are artifacts of various approxima-
tions done in the process of mapping the many-body Hamil-
tonian onto the localization problem.? Thus, an experimental
verification of this localization transition, through measure-
ments of the dephasing rate in closed (i.e, weakly coupled to
the leads) quantum dots, is desirable for both theoretical and
applicative reasons.

Whereas there are a number of ways to measure the
dephasing times of thermalized states in open quantum dots,
the situation is much more complicated in closed dots. Most
experiments studying dephasing in closed quantum dots have
focused on the relaxation of highly excited states.®> Some
signatures of dephasing in thermalized states were ob-
served in Coulomb blockade conductance maxima* and
magnetoconductance.’ The latter was later suggested as a
probe for dephasing times in closed dots. Subsequent theo-
retical analysis®’ has yielded some numerical estimates of
the dephasing times, and a clear A dependence was observed.
However, it turns out that the magnetoconductance is not
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sensitive enough in the low-temperature regime. Although
the results of Folk et al. are certainly consistent with vanish-
ing dephasing rates at low temperatures, they do not exclude
other scenarios.

A renewed interest in charge and current fluctuations and
their full counting statistics has arisen recently. These quan-
tities provide additional insight into transport phenomena in
mesoscopic systems (see Ref. 8 and references therein). For
example, it has been pointed out that the noise of the trans-
ferred charge is suppressed in noninteracting conductors and
simple quantum dots, as compared to the classical Poisson
statistics.>” On the other hand, the shot noise is strongly
enhanced in interacting quantum dots.!%'* The full counting
statistics of currents in such mesoscopic systems thus yields
a great deal of information on the underlying electronic pro-
cesses, much beyond what is revealed by the averaged cur-
rent alone.

In this work, we suggest to use the current fluctuations as
a probe of electron dephasing in closed quantum dots. For
simplicity, we focus on a two-level model, where dephasing
is manifested through the change of the energy state of the
dot. We use the noise-to-mean ratio, known as the Fano fac-
tor (F), as a convenient measure of the shot noise. The clas-
sical shot-noise problem, with independent and uncorrelated
events, has Poisson statistics, where the Fano factor equals 1.
As mentioned above, a single-level quantum dot exhibits
suppressed noise, i.e., F<1. The two-level system, on the
other hand, may display super-Poissonian noise, due to dy-
namical channel blockade."> Here, we examine how this
noise enhancement depends on the dephasing rate, i.e., the
coupling between the channels.

This paper is organized as follows. In Sec. II we present
the model describing the closed two-level quantum dot and
arrive at a general expression for the Fano factor. In Sec. III,
we proceed to discuss charge transport in the zero bias limit.
It is shown that the Fano factor exhibits a sharp peak as a
function of the leads’ chemical potential, the characteristics
of which can be related to the dephasing rate. In Sec. IV, we
provide a qualitative description of the random transport pro-
cess, and in Sec. V, we show that the effect survives en-
semble averaging.
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II. FULL COUNTING STATISTICS IN A TWO-LEVEL
QUANTUM DOT

We describe the closed quantum dot (QD) as a double-
barrier potential well with two energy levels in the transport
window (e, and &,), neglecting the influence of all other
energy states of the dot. Electrons can transport through the
dot by means of tunneling through the barriers. An electron
in the excited state, with energy &,, can decay to the ground
state &, with the rate 7y, while an electron in the ground
state can be scattered to the excited state with the rate
yexp(—6/kgT), where d=ge,—g, is the energy spacing be-
tween the two states, 7 is the electron temperature, and kj is
Boltzmann’s constant. This relation between the excitation
and decay rates is dictated by detailed balance.

The dot is in the Coulomb blockade degenerate regime,
where the charge on the dot can fluctuate between Ne and
(N+1)e. Therefore, the dot can be found in one of three
possible states: |0) where the dot is empty and [i), with i
=1,2, where one of the two energy levels is occupied. The
simultaneous occupation of both energy levels is forbidden
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by Coulomb blockade. The transition rates between the
occupied states |i) and the empty state [0) are I,
=(1=fOTE+(1=fHTF and To_ =2 TE+2fTF, where I'?
is the tunneling rate between the state |i) and lead « (left or
right), f* is the Fermi occupation function in the lead, f;*
=1/{1+exp[(e;—p,)/kT]}, and w, is the chemical potential
in the lead. The factor 2 accounts for the two spin states in
each energy level in the dot.

The Master equation formalism!” describes the tunneling
of electrons through the dot to lowest order in dot-leads cou-
pling (sequential tunneling limit). In order to find the full
counting statistics, we follow Bagrets and Nazarov® and add
counting fields exp(iy) to the rates involving the change of
the dot’s excess charge from 0 to le (“incoming” events).
The cumulant generating function is then proportional to
the smallest eigenvalue of the modified rates matrix, S(y)
=—to\,in(x), as long as 1, the duration of a single experi-
ment, is longer than the typical dwell time in the dot. The
cumulants are given by C,= (—i)"d"S(x)/dx"|,=0- Applying
this approach to the general two level case, one obtains the
Fano factor

Lol oo+ Tl

F=1+2
{ FO—)IF2—>0 + FO—>2F1_>() + r]_,orz_@ + fyl_‘m(l + e—b‘/kT) + 7(F1—>0 + e_(s/kTFZ_,())
l_‘inl:l_‘l—>01—‘2—>() + 7(F1—>() + 6_6/kTF2_>0)][Fm[ + ’)’(1 + e‘ﬁ/kT)]

_ , 1
[ToiTao+ Tomal o+ Ty ol + (14 ) + AT o+ e_é/kTrzao)]z} )

where rmzro_,l +F0_,2 and le: FO—)I +F|_>0+F0_>2+F2_>0.
The Fano factor depends on the dephasing rate vy, so in prin-
ciple it can be used to determine this rate experimentally,
provided all the other parameters are known. However, the
dependence on the various parameters is much too complex
to allow for a practical use of this formula. In the next sec-
tion, we focus on the zero bias regime and present a setup
where the expression for F' can be greatly simplified.

II1. ZERO-BIAS REGIME

Within the zero bias limit, the average current through the
dot vanishes. However, transfer of charge between the leads
and the island persists. The statistics of this random process
can be conveniently studied by examination of those events
when electrons enter the dot. The tunneling rates now take
the form

Lio=(1-f)T7+TH=1-£)I,

2
Fo_”‘ = 2fl(1_‘lL + rf) = 2flrl

Alternatively, one can study the setup where one of the con-
tacts is pinched off, leaving the dot in contact with a single
lead, as illustrated in Figs. 3(a) and 3(b).

In Fig. 1, the zero-bias Fano factor (1) is plotted as a
function of the chemical potential in the low-temperature

limit, kzT<< 6. Two distinct regimes are observed. When the
chemical potential in the leads u is within the range of kgT
near the ground level, noise is suppressed below the Poisson
value, in agreement with previous observations and predic-
tions in single-level dots.”!® In this case the excited level
doesn’t effect the transport, as its energy is far above the
chemical potential. Accordingly, no dephasing effects are ob-
served. However, when both energy levels are below the
chemical potential, u~¢&,, and the two transport channels
are distinguishable (i.e., the tunneling rates through them are
different), the role of dephasing is revealed.

For p in the vicinity of the excited level, strong noise
enhancement is observed at low dephasing rates, y<I'|, and
a peak appears in the Fano factor as a function of chemical
potential. The height of the peak, as well as its location,
clearly depend on the dephasing rate, as seen in Fig. 1(a). As
dephasing grows stronger, the noise is suppressed, reaching
the limit of F~1 when dephasing rates are high. Strong
coupling between the two states causes them to become in-
distinguishable, so that the system becomes effectively a
single energy level. In Fig. 1(b), the role of the ratio between
the two tunneling rates I'; and I', is demonstrated; the noise
enhancement is stronger when the excited level has stronger
coupling with the leads. As this coupling becomes weaker,
the influence of the second level can be neglected, leading to
the Poissonian noise of a single level dot.
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FIG. 1. (Color online) (a) The Fano factor is plotted for several
values of dephasing rates at a very low temperature (kg7/o
=1/20). In the super-Poissonian region the Fano factor shows a
clear peak, the height of which depends on dephasing. Note the
shift in the location of the peak with the changing of . Inset: F'
reaches a minimum value of 1/2, when I';_y=I'¢_;. (b) The Fano
factor for various values of the ratio I'/I',, and very weak dephas-
ing. F' is dramatically increased when the coupling of the ground
level &, with the lead is considerably weaker than that of the excited
level &,.

Following these findings, we now look for a more conve-
nient expression for the Fano factor, in order to characterize
the dependence of the peak’s location on the parameter 7.
Expanding Eq. (1) to the leading order in ¢~?*" in the super-

Poissonian regime, where u~ &,, leads to

1_‘2<—()1_‘()~—2
F=1+2 : 3)
Foolgn+ Ao+ 15 )

In order to determine the location of the peak .., We use
the fact that the Fermi occupation function f; is almost con-
stant in the super-Poissonian regime, and so the line shape of
F is determined predominantly by the change of the function
f>. Using this approximation, one obtains

R (1/r1+1/1“2> @
Mmax — €2 = 23 0g 1/y+1/F2 .
When (I';,y) <T',, a further simplification is possible,
1
Mmax —€2=— EkBT log(y/l"l). (5)

Figure 2 demonstrates the quality of this zero temperature
approximation for both the Fano factor and the peak’s loca-
tion. It should be noted that the logarithmic dependence of
the peaks’ location on vy persists at higher temperatures [Fig.
2(e)], where approximation (3) breaks down.

IV. QUALITATIVE DESCRIPTION

The super-Poissonian behavior in the zero-bias regime
can be intuitively understood within the dynamical channel
blockade picture of Ref. 15. The super-Poissonian statistics
is most pronounced at low temperatures, stronger coupling of
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FIG. 2. (Color online) A sample calculation of the cumulants C;
and C, using experimentally relevant parameters (Ref. 12). Tunnel-
ing widths are I')=1.6 kHz and I",=23 kHz. The electron tempera-
ture is 7,;=230 mK (kgT~22 ueV). Panels (a)—(c) present the low-
temperature limit, 6=5kpT. We set the energy of the lower state g;
as zero, while the excited state has energy &,=110 ueV. (a) The
Fano factor, evaluated from the general solution [Eq. (1)], compared
with the zero temperature approximation [Eq. (3)], dashed and solid
lines, respectively. (b) Peak’s location for various dephasing rate
values. The dashed line was obtained by an explicit calculation of
the full expression [Eq. (1)] at different values of . The solid line
is expression (4). (¢) The first two cumulants. For the conditions
above and decay rate y~0.09 kHz, the peak is at u~ 1.8 ueV,
where the cumulants are C; ~ 30 Hz and C, ~ 600 Hz. (d) The Fano
factor and (e) the location of peak are calculated at a higher
temperature to energy spacing ratio, 6=0.63kzT (g,=0 and &,
=14 ueV). Note the logarithmic behavior of the peak’s location.

the excited state to the lead (I'; <I',) and weak dephasing
v~0, as seen in Fig. 1. In this case, the Fano factor reaches
its maximum value at ., above the excited resonant level
&,, and the transport is dominated by the two processes illus-
trated in Figs. 3(a) and 3(b), where an empty dot is occupied
quickly, entering one of the two allowed states. Due to the
weak coupling between the states, an electron is most likely
to remain in the same state until it exits the dot. The entry
rate is considerably faster than the exit rate, so one can ig-
nore the time it takes an electron to enter the dot, and thus in
both processes (a) and (b), the time intervals between entries
are distributed exponentially. Most of the states in the lead at
the energy e, are occupied, and therefore, an electron in the
ground level has a lower exit rate than one in the excited
state. Thus, the process is a combination of two exponen-
tially distributed random processes, one of them faster than
the other.

Within this picture, the time evolution of the dot’s occu-
pation is as follows: an empty dot is occupied immediately.
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FIG. 3. (Color online) Transitions in a single-lead dot. (a) a
“slow” process, involving the occupation of the ground level. (b) a
“fast” process, involving the excited state. (c) and (d) present typi-
cal time traces, obtained from a numerical experiment, with param-
eters similar to those used in Fig. 2. In (c), the entire experiment is
shown, where the stems represent entries of electrons into the dot.
In the finer resolution (d), the fast processes can be seen.

If the electron enters the ground state, transport is blocked
for the longer time scale 1/1";_; until the electron leaves the
dot [process (a)]. If the excited state is entered, transport is
blocked for a much shorter period [process (b)]. A series of
such “fast” transitions would seem as a bunch of electrons
tunneling into the dot and out of it at practically the same
time.

Figure 3 presents typical results from a time-dependent
simulation of the occupation of a two level dot, where the
transition rates are as described above. Each time an electron
enters the dot is registered as an “event” on the time-trace
plotted in Figs. 3(c) and 3(d). These results demonstrate how
events are clustered into groups of random size, which are
separated by exponentially distributed time intervals of the
longer time scale 1/T",._;. The individual fast events within a
cluster are separated by the much shorter time scale 1/T_,.
Each cluster is terminated by an electron entering the ground
state.

The resulting statistics display positive correlation be-
tween events, giving rise to a super-Poissonian distribution.
Now the role of dephasing can be easily interpreted: inelastic
scattering events bring about a finite probability for an ex-
cited dot to decay into the ground state, thus increasing the
probability of terminating a cycle of fast events. As a result,
the clusters become shorter and the correlation weaker. At
high dephasing rates the transport is effectively governed by
a single exponential process, just like the classical shot noise,
resulting in a Poissonian distribution.

Following the above description, one looks at two trans-
port channels with different “conductances,” one signifi-
cantly larger than the other. It is possible to derive the full
counting statistics of the transport process in this case, which
leads to the Fano factor,

Fo14-22 (©)

I-p
where p is the probability to tunnel through the open
channel.’ In a QD with a single contact and I'; <T,, the
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open channel corresponds to the fastest countable process in
Fig. 3(b), and its probability is given by

1—‘2470 l-‘0<—2

- Fio+ T g Ton+y) '

p (7)
Plugging this into the expression for the Fano factor [Eq.
(6)], one arrives at Eq. (3). Note, however, that this reasoning
can be applied at low temperatures and low dephasing rates
only, where it is reasonable to assume exponentially distrib-
uted processes in both channels. When either temperature or
dephasing are higher a sequence of several transitions could
occur between two subsequent counts, such as |0)=|2)
—|1)—[0)=2), where only the two transitions marked by
a double arrow are registered. The time intervals in this sce-
nario have a much more complicated distribution.

V. ENSEMBLE AVERAGING OF THE FANO FACTOR

In the previous sections, a dephasing-sensitive super-
Poissonian noise peak was demonstrated for the two-level
QD with a single contact, where particular parameters were
used, such as I'; <T',, and temperature was low. In an at-
tempt to attack the more general setup, we show here that
this effect is significant not only in some specifically chosen
systems but also for the ensemble averaged Fano factor.
Within random matrix theory,!” the tunneling rates are ran-
dom variables with the Porter-Thomas distribution.

1

e—r/zf GOE
PT) =9 V2#lT ( ) (8)
1/Te™™  (GUE),

where the tunneling rates through a given barrier average to

the value T regardless of energy. GOE stands for Gaussian
orthogonal ensemble and GUE for Gaussian unitary en-
semble.

The inelastic scattering rate between two states is propor-
tional to the squared matrix element of the interaction V,

Yij < [GIVIHP, ©)

where ;=[i) is an eigenstate of the dot’s Hamiltonian H,.
Whenever random-matrix theory is applicable, the spatial
correlations of the electron wave function decay over a range
of order of the Fermi wavelength \j'7 which is much
smaller than the typical size of the dot (Ap<<L). Assuming
the interaction potential V varies slowly over a scale of Ap,
the integration in Eq. (9) can be approximated by a sum over
small volume elements of linear size A,

f V(P o~ 2 VU (R 07, (10)
0 Qk

where V(7,) is constant within each volume element ). The
wave functions are distributed randomly, and the dot’s linear
size is typically much larger than \p. Therefore, the matrix
elgment, given by the weighted sum of many product terms
; (r);(ry), is normally distributed. Accordingly, the
dephasing rate vy is proportional to the square of this matrix
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FIG. 4. (Color online) (a) The averaged Fano factor as a func-
tion of the leads’ chemical potential at a low temperature. A peak in
the noise to mean ratio is observed. Here, £,=0, &,=100, and
kpT=20 (arbitrary units). (b) The peak height for varying values of
7T and kT/A. Strong enhancement is observed when average
dephasing rate is much lower than the average tunneling rate, and
temperature is lower than the energy spacing. The Poisson value
(Fy=1 1is reproduced for either large dephasing rate or high
temperature.

element; hence, it is also distributed according to the Porter-
Thomas distribution with an average value of %.

Figure 4 presents the results of the GUE ensemble aver-
aging over I'}, I',, and vy. The averaged Fano factor is plotted
as a function of the chemical potential and, similar to the
particular cases discussed above, exhibits a clear peak. The

dependence of the peak’s height on ¥/T" and kzT/A is also
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given. The peak height decreases with temperatures and
dephasing rates, but should be clearly seen for kz7~ A and
low dephasing rates. Thus, the Fano factor seems to be a
proper probe for observing the phase transition predicted in
Ref. 1.

In summary, we study the peak in the Fano factor in the
super-Poissonian regime and its dependence on the inelastic
scattering rate and other relevant parameters. A convenient
and simple analytical expression is developed for the peak
location. Using experimentally relevant parameters, we esti-
mate that the effect can be easily observed, as the average
rate of events at the Fano factor peak (u~ 140 ueV) is of
the order of 30 Hz [see Fig. 2(c)], where experiments of this
kind were reported to last for as long as several minutes.'8
We thus propose to use the dephasing rate dependence as a
probe for dephasing rates in closed quantum dots. This will
enable measurements which are of great importance for any
likely use of quantum dots as quantum computer memory
units. The effect is still pronounced even after ensemble av-
eraging. Further work is needed to extend the above analysis
to the general multilevel dot.
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