
PHYSICAL REVIEW B 1 DECEMBER 1999-IIVOLUME 60, NUMBER 22
Disorder-induced spin polarization in restricted geometries
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We study the influence of disorder on the magnetic properties of the ground state for restricted geometries.
We find that for two-dimensional systems disorder enhances the spin polarization of the system. The tendency
of disorder to enhance magnetism in the ground state may be relevant to recent experimental observations of
spin polarized ground states in quantum dots and small metal grains.@S0163-1829~99!05145-0#
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The interplay between disorder and interactions1 and the
possibility that it leads to ground-state ferromagnetism
been the subject of much interest.2 In several experiments in
restricted geometries, such as zero-temperature trans
measurements of the conductance through semicondu
quantum dots,3 carbon nanotubes,4 and small metal grains,5

tantalizing hints of a weakly ferromagnetic ground state~GS!
of small systems with a few hundreds of electrons have
peared. The ground-state spin polarization may be dire
measured by coupling the dot or tube to external leads
measuring the differential conductance. Recent mean-fi
treatment of electron-electron interactions in disordered e
tronic systems,6 a Hartree-Fock approximation of a rando
matrix theory model,7 and geometrically confined many
electron systems,8 as well as the study of circular and esp
cially elliptical dots,9 suggest the possibility of polarize
GS’s. In addition, a partially magnetized GS seems proba
from a numerical study of such systems.10 In this work, we
suggest that the presence of disorder might enhance the
sibility of magnetic GS’s.

The GS spin polarization of small clean clusters is kno
to be highly fluctuating as a function of the number of ele
trons, and boundary conditions.11 We wish to show that in
some sense the situation in the disordered case is sim
Two competing effects lead to this complex dependence
the GS spin polarization. There is a singlet favoring effe
which stems from the antisymmetric nature of the fermio
wave function. By rearranging the spin background in or
to transfer some of the nodes from the spatial part of
wave function to the spin part energy is lowered.12 On the
other hand, full polarization is favored for lowering the k
netic energy of the independent holes.13 Disorder reduces the
sensitivity of the single-particle wave functions to the boun
ary conditions which suppress the singlet favoring effe
while the polarization favoring effect is less sensitive to d
order. Therefore, one might expect a transition from a sin
state to a polarized state, as a function of disorder. A num
cal study of theU5` Hubbard model with a nearly half
filled band supports the existence of such a transition.

In the high-density limit,e-e interactions contribute only
a small correction to the single-particle kinetic energy, a
the GS is obtained by a consecutive filling of the lowe
single-particle levels possible. Thus, the GS is a sing
However, in the low-density limit, where the Coulomb e
ergy dominates the kinetic energy, the weight of doubly
PRB 600163-1829/99/60~22!/15261~5!/$15.00
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cupied states is reduced, and the possibility of a magnetic
arises. We start by considering the simplest case of a ho
a full band. The spin comes into play since the hopping
the hole around the lattice induces permutations in the s
ordering. The hopping term is then effectively reduced b
factor proportional to the overlap of the permuted spin fun
tion with the original one, averaged with respect to the d
ferent permutations. In order to maximize the hopping te
thus minimizing the kinetic energy, this overlap should
maximal. This is achieved in the fully polarized state f
which the spin wave function is unchanged by permutatio
of different spins. This consideration is not changed by
presence of disorder. Since the on-site potential energy is
influenced by the spin configuration, the minimization of t
kinetic energy leads to a polarized GS. An exact manifes
tion of this argument was given by Nagaoka,13 who showed
that the GS of one hole in an otherwise half-filled band of
U5` Hubbard model is a fully saturated ferromagne
state, for any realization of the on-site disordered poten
Nagaoka’s theorem holds for most lattices with neare
neighbor hopping. The situation is more complicated wh
more than one hole exists. Although the above argument
preferring a ferromagnetic order equally applies for the c
of several holes, it is known that Nagaoka’s theorem can
be extended even to the case of two holes. In fact, it w
shown that the two-hole GS of the orderedU5` Hubbard
model is a singlet.12 In order to understand the reason for th
complexity, we first describe the situation in one dimens
~1D!.

Lieb and Mattis have proven for the 1D Hubbard mod
with an even number of electrons, interaction strengthU
,`, and open boundary conditions~BC’s!, that the GS is a
singlet.14 In the limit of U5`, the GS is degenerate wit
respect to all possible spin values. This is plausible in ter
of the above argument, since in this limit the electrons c
not bypass each other, and therefore no spin permutatio
induced, thus there is no preference to the spin polarized
However, when periodic BC’s are imposed in 1D, electro
can change their ordering by hopping through the bou
aries. It was shown15 that the problem ofm interacting elec-
trons ~at U5`) can be mapped onto a system ofm nonin-
teracting spinless fermions on a 1D ring, where the effec
the spin is replaced by a fictitious fluxF j , F j /F0
52p j /m ( j 50,1, . . . ,m21), where the fully spin polar-
ized state corresponds toF j 5050. The GS energy is ob
tained by minimization of the GS energies with respect to
possible ‘‘flux’’ valuesj. A detailed analysis of thej values
15 261 ©1999 The American Physical Society
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15 262 PRB 60E. EISENBERG AND R. BERKOVITS
which can be generated by the spin background can be d
using group representation theory. The flux value wh
minimizes the GS energy of two spinless particles on a r
is F5p. This is so even in the presence of disorder15

Therefore, the 1D two-hole GS is minimized when a no
trivial spin background is formed, such that a fictitious fl
p is generated. The one-hole energy, in turn, is minimized
the absence of flux. Therefore, a trivial spin backgrou
such as the one generated by the fully polarized state
preferred. On the other hand, when a~real! flux p is applied
to the ring, the situation is the opposite. The two-hole GS
accompanied by a trivial spin background, while the on
hole GS is obtained by creating a spin background wh
forms a fictitious flux2p, which masks the real flux.

In terms of this picture, we now suggest an explanation
the 2D behavior. In 2D particles can bypass each other,
change their ordering, in many ways~even for hard wall, or
open, BC’s!. For each couple of holes, the hopping of o
hole around the other one is equivalent to a hopping of
hole around a fluxp, since a phasep accompanies winding
of each fermion around another. Since it might be energ
cally favorable to screen these fluxes, a nontrivial spin ba
ground may be generated. The situation is even more c
plex, since there are many paths in which each hole
circulate its neighbors, and there are, in general, many s
couples. In short, we can say that the spin background in
2D GS is due to the need to optimally mask the fermio
BC’s between the holes. One should remember, howe
that while in the 1D case, the Nagaoka effect was not
evant, as explained above, in the 2D case there is a com
tition between these effects. For the case of two holes, it
shown using a special variational wave function, that
energy gain resulting from a complex spin background,
persedes the energy increase at the bottom of the band,
ing from the reduction of the hopping amplitude due to t
Nagaoka effect.12 However, in general, one obtains a com
plex dependence on the details of small clean clusters,11 due
to these competing effects. On the other hand, for bosons
above consideration is not relevant, resulting in the fact t
the Nagaoka effect wins for any number of holes and the
is always ferromagnetic.

Let us now consider the effect of disorder on the tende
towards a complex spin background. As disorder increa
the single-particle functions become less sensitive to
boundary conditions, and thus the fermionic BC constra
becomes less important. Therefore, one may expect tha
incentive for reordering of the spin background decreas
while, as in the one-hole case, there still is a contribut
from the hopping amplitude leading to a Nagaoka state.
note that while one might expect the effects of disorder in
to be smaller than in 1D, this is not the case here. The
sensitivity of the 1D GS spin structure to disorder is a
counted for by the fact that the spin permutation subgro
induced by the 1D hopping terms is cyclic.15 Hence, spin
background effects in 1D are not major. On the other ha
the permutation subgroup induced by the 2D hopping te
is non-Abelian, and therefore the spin background has n
trivial effects on the dynamics of the holes. Thus we mig
expect an interplay between disorder and the behavior of
spin background in 2D.
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A numerical study of this effect was done in the fram
work of theU5` Hubbard model, a canonical model for th
study of itinerant ferromagnetism.16 This model is described
by the Hamiltonian

H5(
is

« inis2t (
^ i j &s

ais
† aj s1c.c.1U(

i
ni↑ni↓ , ~1!

whereais
† is the fermionic creation operator on sitei with

spin s, ni↑5ai↑
† ai↑ , and the on-site energies« i are drawn

randomly according to a uniform distribution betwee
2W/2 andW/2. The largeU regime of the model has at
tracted much interest due to its relevance to the theory
high-Tc superconductivity.17

Although the model clearly does not contain many of t
physical attributes of the typical experimental system such
a quantum dot~especially at the infiniteU limit !, neverthe-
less, it is important to gain insight into the complicated pro
lem of the influence of disorder on the spin structure of
teracting electrons in restricted geometries by study
simplified models. Moreover, the infiniteU limit has the at-
tractive feature of suppressing antiferromagnetic correlati
which are clearly not relevant to quantum dots, even in
clean limit.9

Exact diagonalization for the full many-particle Hami
tonian of Eq.~1! was used to test the above arguments.
though we have used small systems one may expect tha
to the chaotic nature of the dots10 the dependence on th
number of electrons or the BC’s will play a less importa
role for disordered systems than in clean ones.11 Thus, the
study of a small number of electrons is still useful in und
standing the properties of dots which are populated by
order of magnitude more electrons. We have used up to
electrons on up to 434 lattices. The size of the Hilbert spac
is then 471 435 600, which is far beyond exact diagonali
tion capabilities. Fortunately one can omit the double oc
pied states forU5` and use the spin symmetry of th
Hamiltonian to reduce this number considerably. The nu
ber of spatial functions in this case is 120, and the numbe
total spin configurations in theSz50 sector is 3432, yielding
a total of 411 840 states. We have used group theory to c
struct the definiteS states, and to decompose the space i
subspaces of definiteS and Sz . The largest sectors (S
51,2) consisted of 1001 spin functions and a total
120 120 basis functions. Group theory was used for c
structing the matrices describing the effect of hopping on
different spin functions. We then employed the Lanczos
gorithm to find the exact GS for 600 realizations at eve
disorder value. In the ordered case, the GS was a single
accordance with Ref. 12.

Figure 1 presents the GS-spin distributions as a func
of W, for 14 electrons on a hard-wall 434 lattice. The av-
erage spin̂S& is also plotted againstW, and one can see tha
it increases significantly withW. In the presence of disorde
one gets a distribution of GS-spin values. For weak disord
the main effect is smearing the peak atS50 to low Svalues.
Thus, a tendency towards weak ferromagnetism is cle
demonstrated even for weak disorder (W53t), which corre-
sponds to a ballistic~mean free path larger than the syste
size! regime. Moreover, as disorder increases, highS values
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dominate the distribution. ForW56t corresponding to a dif-
fusive regime a clear dominance of the high spin state
pears.

Similar behavior was obtained for smaller lattices and
riodic BC’s. Figure 2 presents the results for the same c
ditions as in Fig. 1 employing periodic BC’s. Clearly, th
tendency towards ferromagnetic behavior persists, altho
higher values ofW are needed to obtain similar values
spin polarization. This is the result of the fact that for pe
odic BC’s, higher values ofW are needed to generate th
same value of dimensionless conductance. One sees th
contrast with the situation in the ordered case, the qualita
behavior of the system is not sensitive to the lattice size
the BC’s. This manifests the chaotic nature of the dot, wh
suppress dependencies on the details of the system. A
manifestation of this point is presented by the results for
electrons on a 533 lattice. In the ordered case, the behav
of this cluster depends dramatically on the BC’s. For ha
wall BC’s, the GS is fully polarized~i.e., S5 13

2 ), while for
periodic BC’s, the GS has the minimal spinS5 1

2 . On the
other hand, once the system is diffusive the GS-spin po
ization distributions become closer and when the dimens
less conductance is of order 1, both distributions are q
similar, where^S&55.90 for hard-wall BC’s and̂S&53.96
for periodic BC’s.

FIG. 1. The spin distributions as a function of disorderW for a
434 lattice with 14 electrons. For eachW, the bar chart represent
the probability of finding the GS of the system at a particular va
of S. The inset presents the average spin^S& as a function ofW.

FIG. 2. Same as Fig. 1 for periodic BC’s.
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Exact diagonalization also confirms the tendency towa
nonzero ground-state spin values even for a higher num
of holes. In Fig. 3 we depict the spin distribution for 1
electrons on a hard-wall 533 lattice~3 holes!. The GS spin
is significantly enhanced as function of disorder, althou
the most probable spin state is not fully ferromagnetic. T
tendency towards partial polarization of the ground state p
sists in higher hole ratios.

The method of exact diagonalization is restricted to sm
lattices. In order to learn whether the tendency towards
romagnetism persists for larger systems we turn to a va
tional method. Many authors have considered various va
tional wave functions to study the instability of the Nagao
state of theU5` model for a thermodynamic concentratio
of holes.18–22 Since the reliability of these functions for a
accurate calculation of the phase boundary of ferrom
netism is doubtful, we only use this method to get a h
about disorder influence of the stability. For this purpose,
use the most simple of these functions,18 which is one of a
single-particle excitation. An up-spin electron is remov
from the occupied states and placed with flipped spin i
another state. The explicit wave function is given by

uc&5Ns
21/2(

m
eiqr mam↓

† ~12nm↓!CkF↑uF&, ~2!

whereCk
† is the fermionic creation operator with momentu

k, anduF& is the ferromagnetic Nagaoka state

uF&5 )
0<uku<kF

Ck↑
† uvac&. ~3!

Direct calculation of the excitation energy yields18

l~q!5^cuH2E0uc&/^cuc&5~m̂2eF!1eqd~12m̂2/z2t2!,
~4!

where E0 is the energy of the Nagaoka state,m̂
52E0 /(Nd), andz is the coordination number. The excita
tion energy is thus the energy of the new state, corrected
the reduction in the hopping of the down electron due to
neighboring up electrons, plus the energy gain of the up e
trons which have to avoid the down electron, minus the
ergy on the flipped electron.

e

FIG. 3. The spin distributions as a function of disorderW for a
533 lattice with 12 electrons.
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Clearly the lowest value ofl(q) is obtained by settingeq
as the bottom of the band energy. This excitation energ
an upper bound to the lowest excitation of the Nagaoka st
Whenever this energy becomes negative, the Nagaoka
is unstable. It was shown in Ref. 18 that this happens fod
50.49 ~for a square lattice!, while for smaller hole concen
tration, the Nagaoka state remains stable with respect to
excitation. More complicated variational functions were us
to further improve this bound.

In order to estimate the effect of disorder on the stabi
of the ferromagnetic phase, we look into the behavior of
single-flip excitation energy in disordered systems. A natu
way to incorporate disorder would have been to replace
plane waves expansion in Eq.~2! with the random vector
~RVM! single-particle wave functions of the disorder
system.23 Such a naive replacement results in

ldis~q!5^cuH2E0uc&/^cuc&5~m̂2eF!1eqd, ~5!

i.e., the same as Eq.~4!, except for the last term which van
ishes in the RVM limit ~here q denotes the state index!.
SinceeF and m̂ are not influenced by the disorder and t
lowest single-electron energy is lowered by disorder,
RVM prediction leads to a destabilization of the ferroma
netic state, in contrast with our above arguments.

However, the results of the actual calculation were diff
ent. We have taken different realizations of disorder o
24324 system, diagonalizing the single-particle~noninter-
acting! Hamiltonian to find its eigenvalues and eigenvecto
then calculating directly the excitation energy of the sin
flip variational wave function. Figure 4 shows the stabil
regime in thed-W plane, as follows from this excitation
calculation. For an ordered system we get the result of R

FIG. 4. Stability curve for the single flip excitation: the critic
hole densityd vs the disorder distribution widthW.
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18 that the ferromagnetic state is stable ford<0.49. How-
ever, as disorder increases, the stability regime grows
contradiction with RVM predictions. This stems from th
fact that RVM ignores correlations between the wave fu
tions and the eigenvalues which are important in this cas
therefore seems that the exact results for small systems c
acterize the behavior in larger systems as well.

An extensive work was done in order to find wheth
Nagaoka’s theorem can be extended to higher hole den
or to finite U. Various variational wave functions were su
gested to test the stability of the Nagaoka state in the th
modynamic limit ~see Refs. 18–22 and 24, and referenc
therein!. Bounds were given to the holes density for whi
stability may remain. The best bound to date isdcr
<0.2514~Ref. 20! ~whered is the number of holes per site!.
Still, the stability of the Nagaoka state, and the possibility
explaining ferromagnetism by it, is an unresolved problem24

As we have seen, the behavior of the disordered model m
be simpler. Regardless of the behavior of the ordered mo
it might be expected that the Nagaoka effect will certain
dominate in the strongly localized regime where the aver
distance between holes is more thenj, i.e., d21/d@j/L,
whereL is the system linear size.

We would like to add a remark about theU5` limit. The
Nagaoka effect and the decrease in the singlet favoring ef
described here, are not unique to theU5` limit. However,
for the Hubbard model, ferromagnetism arises~even for one
hole! only for U@t, since due to the perfect nesting proper
of the lattice model, the GS of the almost half-filled ca
tends to be antiferromagnetic~AFM!. In order to wash out
this tendency, the limitU5` is taken. However, real quan
tum dots do not show AFM behavior, since they are n
described by a perfect lattice. One then might expect form
tion of larger magnetic moments due to disorder to show
real quantum dots even for moderate values ofU.

In conclusion, the influence of disorder on the magne
properties of the GS was studied. For an ordered syst
large magnetic moments are generally suppressed, and
spin structure of the GS, if any, is very complicated. On t
other hand, we have shown that disorder plays an impor
role in determining the spin polarization of 2D systems d
scribed by the infiniteU Hubbard model. Weak disorde
tends to create a partially polarized ground state, while str
ger disorder tends to stabilize a fully ferromagnetic GS. T
behavior clearly indicates that there is a basis to expect
for more realistic descriptions of the experimental syste
(UÞ`) disorder will play an important role in creating
spin polarized ground state.
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chdev, and R. N. Bhatt, Phys. Rev. Lett.63, 82 ~1989!; D. Belitz
and T. R. Kirkpatrick, Rev. Mod. Phys.66, 261 ~1994!.

3U. Sivan, R. Berkovits, Y. Aloni, O. Prus, A. Auerbach, and G



M
C

ot-

e

et
-

ra
,

ys.

tter

.

.

PRB 60 15 265DISORDER-INDUCED SPIN POLARIZATION IN . . .
Ben-Yoseph, Phys. Rev. Lett.77, 1123 ~1996!; F. Simmel, T.
Heinzel, and D. A. Wharam, Europhys. Lett.38, 123 ~1997!; S.
R. Patel, S. M. Cronenwett, D. R. Stewart, A. G. Huibers, C.
Marcus, C. I. Duruoz, J. S. Harris, K. Campman, and A.
Gossard, Phys. Rev. Lett.80, 4522 ~1998!; F. Simmel, D.
Abusch-Magder, D. A. Wharam, M. A. Kastner, and J. P. K
thaus, Phys. Rev. B59, R10 441~1999!.

4S. J. Tans, M. H. Devoret, R. J. A. Groeneveld, and C. Dekk
Nature~London! 394, 761 ~1998!.
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