PHYSICAL REVIEW B VOLUME 60, NUMBER 22 1 DECEMBER 1999-I

Disorder-induced spin polarization in restricted geometries
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We study the influence of disorder on the magnetic properties of the ground state for restricted geometries.
We find that for two-dimensional systems disorder enhances the spin polarization of the system. The tendency
of disorder to enhance magnetism in the ground state may be relevant to recent experimental observations of
spin polarized ground states in quantum dots and small metal gf8i0$63-18209)05145-0

The interplay between disorder and interactioasd the  cupied states is reduced, and the possibility of a magnetic GS
possibility that it leads to ground-state ferromagnetism hagrises. We start by _considerin_g the simp_lest case of a _hole in
been the subject of much interédn several experiments in @ full band. The spin comes into play since the hopping of
restricted geometries, such as zero-temperature transpdf€ hole around the lattice induces permutations in the spin
measurements of the conductance through semiconducti dering. The. hopping term is then effectively reducﬁd by a
quantum dot$, carbon nanotubésand small metal grairfs, 'actor proportional to the overlap of the permuted spin func-
tantalizing hints of a weakly ferromagnetic ground st@) ~ UoN With the original one, averaged with respect to the dif-

ferent permutations. In order to maximize the hopping term,

of small systems with a few hundreds of electrons have abfhus minimizing the kinetic energy, this overlap should be

peared. The grounq-state spin polarization may be direct aximal. This is achieved in the fully polarized state for
measured by coupling the dot or tube to external leads ang o, the spin wave function is unchanged by permutations
measuring the differential conductance. Recent mean-fieldt yitterent spins. This consideration is not changed by the
treatment of electron-electron interactions in disordered elecpresence of disorder. Since the on-site potential energy is not
tronic system$,a Hartree-Fock approximation of a random influenced by the spin configuration, the minimization of the
matrix theory modef, and geometrically confined many- kinetic energy leads to a polarized GS. An exact manifesta-
electron system$as well as the study of circular and espe-tion of this argument was given by Nagao®ayho showed
cially elliptical dots? suggest the possibility of polarized that the GS of one hole in an otherwise half-filled band of the
GS’s. In addition, a partially magnetized GS seems probable)=« Hubbard model is a fully saturated ferromagnetic
from a numerical study of such systefidn this work, we  state, for any realization of the on-site disordered potential.
suggest that the presence of disorder might enhance the pddagaoka’s theorem holds for most lattices with nearest-
sibility of magnetic GS'’s. neighbor hopping. The situation is more complicated when

The GS spin polarization of small clean clusters is knownmore than one hole exists. Although the above argument for
to be highly fluctuating as a function of the number of elec-preferring a ferromagnetic order equally applies for the case
trons, and boundary conditiohsWe wish to show that in  Of several holes, it is known that Nagaoka’s theorem cannot
some sense the situation in the disordered case is simpldte extended even to the case of two holes. In fact, it was
Two competing effects lead to this complex dependence ofhown that the two-hole GS of the ordergd== Hubbard
the GS spin polarization. There is a singlet favoring effectmodel is a smgld. In order to understand the reason for this
which stems from the antisymmetric nature of the fermioniccf[')“plex'ty' we first describe the situation in one dimension
wave function. By rearranging the spin background in orde N .
to transfer some of the nodes from the spatial part of the . Ir‘]'eb and Mattis Eave fprolven for the 1D Hubbard mohdel
wave function to the spin part energy is lowefédn the with an deven nbum 3r 0 eeé:_tr_ons, |,nterﬁct|or:1 strengt
other hand, full polarization is favored for lowering the ki- <=, a?4 open bounaary Eon itio8C S?' that the GS is a
netic energy of the independent holé®isorder reduces the singlet.” In the I|m_|t of U=cs, the GS is degengrate_: with

o ; . . respect to all possible spin values. This is plausible in terms

sensitivity of the single-particle wave functions to the bound-

- . . . of the above argument, since in this limit the electrons can-
ary conditions which suppress the singlet favoring effecty, pynass each other, and therefore no spin permutation is

while the polarization favoring effect is less sensitive to dis'induced, thus there is no preference to the spin polarized GS.
order. Therefore, one might expect a transition from a singlefjo\wever, when periodic BC’s are imposed in 1D, electrons
state to a polarized state, as a function of disorder. A numerican change their ordering by hopping through the bound-
cal study of theU =2 Hubbard model with a nearly half- aries. It was showhi that the problem ofn interacting elec-
filled band supports the existence of such a transition. trons (at U=) can be mapped onto a systemrfnonin-

In the high-density limite-e interactions contribute only teracting spinless fermions on a 1D ring, where the effect of
a small correction to the single-particle kinetic energy, andhe spin is replaced by a fictitious flud;, @;/d,
the GS is obtained by a consecutive filling of the lowest=27xj/m (j=0,1,... m—1), where the fully spin polar-
single-particle levels possible. Thus, the GS is a singletized state corresponds th;j_,=0. The GS energy is ob-
However, in the low-density limit, where the Coulomb en- tained by minimization of the GS energies with respect to the
ergy dominates the kinetic energy, the weight of doubly ocpossible “flux” valuesj. A detailed analysis of thgvalues
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which can be generated by the spin background can be done A numerical study of this effect was done in the frame-

using group representation theory. The flux value whichwork of theU =2 Hubbard model, a canonical model for the

minimizes the GS energy of two spinless particles on a ringtudy of itinerant ferromagnetisf.This model is described

is ®=7. This is so even in the presence of disortfer. by the Hamiltonian

Therefore, the 1D two-hole GS is minimized when a non-

trivial spin background is formed, such that a fictitious flux

m is generated. The one-hole energy, in turn, is minimized in H=2> ein,—t > ala,+cctU> nyn, (1)

the absence of flux. Therefore, a trivial spin background, 7 {he '

such as the one generated by the fully polarized state, is i o . L

preferred. On the other hand, wherfraa) flux  is applied Where a;, Is tr]re fermionic Creathn operatpr on sitevith

to the ring, the situation is the opposite. The two-hole GS iSPIN @, Niy=a;;;;, and the on-site energies are drawn

accompanied by a trivial spin background, while the onefandomly according to a unlf_orm distribution between

hole GS is obtained by creating a spin background whichi W/2 andW/2. The largeU regime of the model has at-

forms a fictitious flux— 7, which masks the real flux. tracted much interest QUs o its relevance to the theory of
In terms of this picture, we now suggest an explanation t(p'gh:rC superconductivity- .

the 2D behavior. In 2D particles can bypass each other, and AIFhOUQh _the madel clear_ly does not contain many of the

change their ordering, in many wageven for hard wall, or physical attributes of the typical experimental system such as

\ _ a quantum dotespecially at the infinitdJ limit), neverthe-
open, BC'3. For each couple of holes, the hopping of ON€legs, it is important to gain insight into the complicated prob-

hole around the other one is equivalent to a hopping of thaje, of the influence of disorder on the spin structure of in-
hole around a flux, since a phaser accompanies winding  teracting electrons in restricted geometries by studying
of each fermion around another. Since it might be energetisimpjified models. Moreover, the infinitg limit has the at-
cally favorable to screen these fluxes, a nontrivial spin backractive feature of suppressing antiferromagnetic correlations
ground may be generated. The situation is even more conwhich are clearly not relevant to quantum dots, even in the
plex, since there are many paths in which each hole caglean limit®
circulate its neighbors, and there are, in general, many such Exact diagonalization for the full many-particle Hamil-
couples. In short, we can say that the spin background in thsnian of Eq.(1) was used to test the above arguments. Al-
2D GS is due to the need to optimally mask the fermionicthough we have used small systems one may expect that due
BC’s between the holes. One should remember, howevetp the chaotic nature of the ddfsthe dependence on the
that while in the 1D case, the Nagaoka effect was not relhumber of electrons or the BC’s will play a less important
evant, as explained above, in the 2D case there is a comptole for disordered systems than in clean oheShus, the
tition between these effects. For the case of two holes, it wastudy of a small number of electrons is still useful in under-
shown using a special variational wave function, that thestanding the properties of dots which are populated by an
energy gain resulting from a complex spin background, suorder of magnitude more electrons. We have used up to 14
persedes the energy increase at the bottom of the band, coectrons on up to %4 lattices. The size of the Hilbert space
ing from the reduction of the hopping amplitude due to theiS then 471435600, which is far beyond exact diagonaliza-
Nagaoka effect? However, in general, one obtains a com- tion capabilities. Fortunately one can omit the double occu-
plex dependence on the details of small clean cludtedse  pied states forlU=c and use the spin symmetry of the
to these competing effects. On the other hand, for bosons tHdamiltonian to reduce this number considerably. The num-
above consideration is not relevant, resulting in the fact thaer of spatial functions in this case is 120, and the number of
the Nagaoka effect wins for any number of holes and the G$otal spin configurations in thg,= 0 sector is 3432, yielding
is always ferromagnetic. a total of 411 840 states. We have used group theory to con-
Let us now consider the effect of disorder on the tendencytruct the definites states, and to decompose the space into
towards a complex spin background. As disorder increasesubspaces of definit& and S,. The largest sectors§(
the single-particle functions become less sensitive to the=1,2) consisted of 1001 spin functions and a total of
boundary conditions, and thus the fermionic BC constrainfl20 120 basis functions. Group theory was used for con-
becomes less important. Therefore, one may expect that tragructing the matrices describing the effect of hopping on the
incentive for reordering of the spin background decreasedifferent spin functions. We then employed the Lanczos al-
while, as in the one-hole case, there still is a contributiongorithm to find the exact GS for 600 realizations at every
from the hopping amplitude leading to a Nagaoka state. Welisorder value. In the ordered case, the GS was a singlet, in
note that while one might expect the effects of disorder in 2Daccordance with Ref. 12.
to be smaller than in 1D, this is not the case here. The in- Figure 1 presents the GS-spin distributions as a function
sensitivity of the 1D GS spin structure to disorder is ac-of W, for 14 electrons on a hard-wall>44 lattice. The av-
counted for by the fact that the spin permutation subgrougrage spiRS) is also plotted againd¥/, and one can see that
induced by the 1D hopping terms is cyclitHence, spin it increases significantly witkV. In the presence of disorder,
background effects in 1D are not major. On the other handone gets a distribution of GS-spin values. For weak disorder,
the permutation subgroup induced by the 2D hopping termghe main effect is smearing the peakSat 0 to low Svalues.
is non-Abelian, and therefore the spin background has nonfhus, a tendency towards weak ferromagnetism is clearly
trivial effects on the dynamics of the holes. Thus we mightdemonstrated even for weak disordgv< 3t), which corre-
expect an interplay between disorder and the behavior of theponds to a ballistiémean free path larger than the system
spin background in 2D. size regime. Moreover, as disorder increases, tigralues
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FIG. 1. The spin distributions as a function of disoraféfor a FIG. 3. The spin distributions as a function of disordférfor a
4X 4 lattice with 14 electrons. For eadl, the bar chart represents g5y 3 |attice with 12 electrons.

the probability of finding the GS of the system at a particular value

of S The inset presents the average (@ as a function oW. Exact diagonalization also confirms the tendency towards

dominate the distribution. FaN=6t corresponding to a dif- NOnzero ground-state spin values even for a higher number
fusive regime a clear dominance of the high spin state apOf holes. In Fig. 3 we depict the spin distribution for 12
pears. electrons on a hard-wall>83 lattice (3 holeg. The GS spin
Similar behavior was obtained for smaller lattices and peis significantly enhanced as function of disorder, although
riodic BC’s. Figure 2 presents the results for the same conthe€ most probable spin state is not fully ferromagnetic. This
ditions as in Fig. 1 employing periodic BC'’s. Clearly, the tendency towards partial polarization of the ground state per-
tendency towards ferromagnetic behavior persists, althoughists in higher hole ratios.
higher values ofW are needed to obtain similar values of The method of exact diagonalization is restricted to small
spin polarization. This is the result of the fact that for peri-lattices. In order to learn whether the tendency towards fer-
odic BC'’s, higher values ofV are needed to generate the fomagnetism persists for larger systems we turn to a varia-
same value of dimensionless conductance. One sees that, tianal method. Many authors have considered various varia-
contrast with the situation in the ordered case, the qualitativéional wave functions to study the instability of the Nagaoka
behavior of the system is not sensitive to the lattice size optate of theJ =« model for a thermodynamic concentration
the BC's. This manifests the chaotic nature of the dot, whictPf holes!®~?? Since the reliability of these functions for an
suppress dependencies on the details of the system. A cle@gcurate calculation of the phase boundary of ferromag-
manifestation of this point is presented by the results for 131etism is doubtful, we only use this method to get a hint
electrons on a %3 lattice. In the ordered case, the behaviorabout disorder influence of the stability. For this purpose, we
of this cluster depends dramatically on the BC’s. For harduse the most simple of these functidfisyhich is one of a
wall BC's, the GS is fully polarizedi.e., S= %), while for ~ Single-particle excitation. An up-spin electron is removed
periodic BC’s, the GS has the minimal spg¥ . On the from the occupied states and placed with flipped spin into
other hand, once the system is diffusive the GS-spin polar@nother state. The explicit wave function is given by
ization distributions become closer and when the dimension-
less conductance is of order 1, both distributions are quite
similar, where(S)=5.90 for hard-wall BC’s andS)=23.96
for periodic BC's.

|9)=N; 22 emag, (1-nm)Cy [F), ()

whereC] is the fermionic creation operator with momentum

1

k, and|F) is the ferromagnetic Nagaoka state
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where E, is the energy of the Nagaoka statg,
o2 b =—Ey/(NJ), andzis the coordination number. The excita-
tion energy is thus the energy of the new state, corrected for
|FL I,ﬂ& the reduction in the hopping of the down electron due to its
-
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FIG. 2. Same as Fig. 1 for periodic BC's.
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neighboring up electrons, plus the energy gain of the up elec-
trons which have to avoid the down electron, minus the en-
ergy on the flipped electron.
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L0 - - 18 that the ferromagnetic state is stable #5£0.49. How-
ever, as disorder increases, the stability regime grows, in
contradiction with RVM predictions. This stems from the
fact that RVM ignores correlations between the wave func-
tions and the eigenvalues which are important in this case. It
therefore seems that the exact results for small systems char-
acterize the behavior in larger systems as well.

An extensive work was done in order to find whether

Unstable FM

0.4 - Nagaoka’'s theorem can be extended to higher hole density,
Stable FM (?) | or to finite U. Various variational wave functions were sug-

gested to test the stability of the Nagaoka state in the ther-

02 y modynamic limit(see Refs. 18—22 and 24, and references

therein. Bounds were given to the holes density for which
stability may remain. The best bound to date &,

00,5 o >0 3 <0.2514(Ref. 20 (whereé is the number of holes per sjte
W Still, the stability of the Nagaoka state, and the possibility of
FIG. 4. Stability curve for the single flip excitation: the critical €Xplaining ferromagnetism by it, is an unresolved prob?ém.
hole densitys vs the disorder distribution widti. As we have seen, the behavior of the disordered model might

be simpler. Regardless of the behavior of the ordered model,
Clearly the lowest value of(q) is obtained by setting, it might be expected that the Nagaoka effect will certainly
as the bottom of the band energy. This excitation energy islominate in the strongly localized regime where the average
an upper bound to the lowest excitation of the Nagaoka statglistance between holes is more théni.e., 5 "> ¢/L,
Whenever this energy becomes negative, the Nagaoka stathereL is the system linear size.
is unstable. It was shown in Ref. 18 that this happenssfor ~ We would like to add a remark about the=c limit. The
=0.49 (for a square lattice while for smaller hole concen- Nagaoka effect and the decrease in the singlet favoring effect
tration, the Nagaoka state remains stable with respect to thigescribed here, are not unique to tle= limit. However,
excitation. More complicated variational functions were usedor the Hubbard model, ferromagnetism arigegen for one
to further improve this bound. hole) only for Us>t, since due to the perfect nesting property
In order to estimate the effect of disorder on the stabilityof the lattice model, the GS of the almost half-filled case
of the ferromagnetic phase, we look into the behavior of théends to be antiferromagneti&FM). In order to wash out
single-flip excitation energy in disordered systems. A naturathis tendency, the limity = is taken. However, real quan-
way to incorporate disorder would have been to replace th&dm dots do not show AFM behavior, since they are not
plane waves expansion in E¢R) with the random vector described by a perfect lattice. One then might expect forma-
(RVM) single-particle wave functions of the disorderedtion of larger magnetic moments due to disorder to show in
systen?® Such a naive replacement results in real quantum dots even for moderate value&)of
_ R In conclusion, the influence of disorder on the magnetic
NIS(Q) =(|H—Eqo| )/ )=(n—e€r)+ €40, (5)  properties of the GS was studied. For an ordered system,

i.e., the same as E¢4), except for the last term which van- large magnetic moments are generally suppressed, and the

ishes in the RVM limit (here q denotes the state index spin structure of the GS, if any, is very complicated. On the
other hand, we have shown that disorder plays an important

Since ep and,& are not influenced by the disorder and the . - . o
. : . role in determining the spin polarization of 2D systems de-
lowest single-electron energy is lowered by disorder, the

RVM prediction leads to a destabilization of the ferroma _Scribed by the infinitel Hubbard model. Weak disorder
M P . . 9 tends to create a partially polarized ground state, while stron-
netic state, in contrast with our above arguments.

However, the results of the actual calculation were differ-¢" disprder tenqs to stabilize a fully ferromagnetic GS. This
ent. We ha,ve taken different realizations of disorder of behavior clearly indicates that there is a basis to expect that

) C : . . or more realistic descriptions of the experimental systems
24>.< 24 syst_em,.d|agor?al|z.|ng .the smgle—parn(ﬁ@onlnter— (U#0) disorder will play an important role in creating a
acting Hamiltonian to find its eigenvalues and eigenvectors,’ . :

; : o . spin polarized ground state.

then calculating directly the excitation energy of the single
flip variational wave function. Figure 4 shows the stability = We would like to thank The Israel Science Foundation
regime in the5-W plane, as follows from this excitation Centers of Excellence Program and the Clore Foundation for
calculation. For an ordered system we get the result of Refinancial support.
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