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Recently, a new approach based on the features of the Toeplitz matrix was introduced for reactive
scattering problems. So far these features were used only along the reagents translational coordinate
(either for Eckart-type models or for collinear scattejirig this work, we show how to employ the
Toeplitz features for the two asymptotic regions of the collinear systen19@6 American Institute

of Physics[S0021-96066)02102-9

I. INTRODUCTION partly overcome with the introduction of the infinite order
grid point representatiohSince the infinite order grid point

In the last few years the application of finite-range representation uses the values of the wave function at the
square-integrablé.?) functions has become one of the more asymptotic region, as well as at the interaction region, it
popular methods of handling multiarrangement channel scatannot be efficiently applied unless one handles the wave
tering processes.® The expansion of the wave function in function at the asymptotic region properly. One way of doing
terms ofL2 functions enables one to convert the Schrodinges; is to employ the NIP and to force the wave function to
equation(SE) into a set of algebraic equations, whose nu-yanish at some finite poifitA different way is to let the
merical solution has many advantages over the propagatiig«pansion of the derivative operators to am infinitumand
methods originally used to solve the differential SE. HOW-{raat the infinite matrix that follows analytically, employing
ever, employing_? functions for scattering problems cannot methods applicable to Toeplitz matrice$:® The DVRTM
be done in a way as straightforward as bound-state problemgas applied to a reactive-single-coordinate Eckart-type po-
since scattering states are, in natueafendedstates, and tentjal, and more recently to a realisticollineay reactive
therefore aninfinite number of finite-range functions is system. For the Eckart potential, reactive transition prob-
needed to expand these states. abilities were calculated as a function of energy as well as a

Several approaches were suggested in recent years {@nction of the number of grid points per wavelengtA.
overcome this difficulty. The most common one uses thesmilar study was carried out by Seideman and Mfiléut
explicit asymptotic form of the wave function, and matches,hereas within their approademploying the NIPsthe (av-
these asymptotes to the wave function in the interaction réarage minimal number of points per wavelength required to
gion, which, in turn, can be expanded in terms of the localyptain converged results was3.5, we found it to be~2.5.
ized L? functions® Another approach is based on applying For the collinear system, a mixed NIP—Toeplitz approach
negative imaginary potential®IP), which absorb the wave a5 used; namely, the Toeplitz behavior was used in the
function in the asymptotic region and at the same time do Nofeagents(translational asymptotic region, and an NIP was
cause any reflection back into the interaction redidrhis substituted along the vibrational coordinfte.
unaffected part of the wave function is again solved usifg In this work we extend this approach by eliminating the
basis setd?™ A third method which was considered most Nip altogether, and employing the Toeplitz method for the

recently involves expanding the wave function in terms of anyg asymptotes. This, in turn, requires a new representation
infinite set of localized Gaussiai$.It has been shown that of the Hamiltonian.

the (infinite) matrix related to the resulting set of algebraic

equations hagin the asymptotic regionthe structure of a

Toeplitz matrix’ Using the analytical properties of the

Toeplitz matrix the infinite set of equations is reduced rigor-”- THEORY

ously, without any further assumptions, to a finftet too

large) one? This method was found to be more efficient, at

least for the single-coordinate reactive problem, than the NI

approactt. ; o (E-HIx=Ve, &
This new approach was recently modified by combining

it to another technique, namely, the discrete variable repreyhereE is the total energyy is the perturbation potentialy

sentation(DVR) of the HamiltoniaR (in what follows we s the unperturbed part of the wave functignjs the per-

term this combined approach as the DVRIMhe advan-  turbed part of the wave functiofi.e., the entire wave func-

tage of the DVR approach is well known; the solution for thetion is given byy+y), andH is the total Hamiltonian given

wave function does not require integrations to produce thén the form

matrix elements. The main difficulty with DVR is related to

the accuracy in expanding the derivatives. This was recently H=T+U. 2

The theoretical derivation is carried out in terms of the
Ig)erturbative form of the SE%?-dj e,
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The expression for the second derivative was taken from
Ref. 7, and the one for the first derivative is derived in Ap-
pendix A.

Note that we use the DVR expressions for the fully in-

SRS finite intervals (—«,») with respect to the two variables,
rather than the semi-infinite intervals. In fact, the incorpora-

P P :::ESToeplitzline ) - . -
r D1 forthe A tion of the negative range af,; a=A\,v is crucial for the
’ : * arangement implementation of the DVRTM. Such an extension is not
: justified physically since ,; a@=\,v are non-negative dis-
S AvBew) tances, but is consistent from the formal mathematical point
I IESEEEN of view. Since the wave function vanishes for negatiye
symptote

~~~~~ (because of the infinite positive potential barrierrg&0),

----- the sums in Eq(5) are effectively taken only for positivp

~~~~~ Using the above expressions, Ef) takes the form

FIG. 1. The grid used for the DVR formulation. The solid lines present 2 Aq p.a’.p' Xq’ p,:zg’%' )
equal-potential lines, and the dotted lines are the “Toeplitz lines"—the lim- q’.p’ R ' ’
its of the asymptotic regions for theand\ AC.

where
Here U is the full potential of the system and is the 2

h
kinetic-energy operator that will be written, for the collinear A p.q',p =[E—U(r\ 4.7 1.p)18q,q' Op,p' — = t
three-atom case, in terms of the interatomic distantes:

141
a’—ap'-p

72 72
h? & R 92 g2 el
T—_ - = ) + N ty—q%.p' o t —pSaq’ s (8
ZMAB (9rAB ZMBC (9ch mB (?rAB r?I’BC
HereA, B, andC are the three atom® is the central atory; Y
e R ZW V(I ) 0T g T ) ©

tag and ug are the reduced masses for thendB atoms,
and for theB andC atoms, respectively; g andr g are the
respective interatomic distances amg is the mass of the In the v asymptotic region(r, 4,r, ;) depends solely on
central atom. In order to simplify our notation, we denote the'gc=",p i-€.,

two arrangement channel8C) of the system by, », such

that thex AC corresponds to thAB+ C configuration(with im U g Fp) =0T p), (10)
the asymptote gc—), and ther AC corresponds to the Mg

A+ BC configuration(with the asymptote ,g—). In what

follows — we replace iag.Fec.ias:48c:M8)  BY  \whereo, is the vibrational potential in the asymptote. Con-
(rx Ty pen sy, M) Wherer ,(a=\,v) is the vibrational coor-  sequently, the Ths of Eq(7) depends only on the indices
dinate in thea AC andrﬁ(,B;ta) is the translational coordi- q—9q',p.p’, and has a block-Toeplitz structure. Moreover, in
nate of thew AC. Equation(3) then becomes this region the perturbatiol, and therefore the rhs of Eq.

K2 92 B2 92 K2 2 (1), vanishes. It thus follows that the solution space is
(4  spanned by solutions with the asymptotic behavior

We now transform the differential equatidf) into an
infinite set of algebraic equations using two-dimensional grid
points ( 4.",.p)=(do,po) (see Fig. 1, and replacing the ) ]
differential operators by theifone-dimensionalinfinite or- ~ Whered, and ¢, are constants yet to be determined.
der grid point representation Substituting Eq.(11) in Eq. (7) and multiplying by

exp(—if,q) one obtains the equatiqwherel=q’ —q)

Xap=€Xpi0,0) ¢y, gq—o, (12)

f’(xi)=j:2_mtjl_if(xj), f"(xi)=j12_mt,-2_if(xj), (5)

A2 72
1 2
here % [E=0u(Tup)10100p,p = 1 tityr o+ 5 —
_772 ﬁZ )
0 ~j=0, 3.7 j=0, t5— tp,_p5,,0] exg(il 6,) 1) =0. (12
1] —(—1)] 2_0 %7 6 Bov
=y =% y —2(—1)i (6)
- . 2(-1) .
jo ] #0, ——— 1#0. i ) i
jo The sum ovet can be done analyticafiy? and yields
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Using Eq.(5), we can transform this equation back into

the differential equation

- h26? h2 9% k%0, 9
_Z,u)\oj_v”(r) Z,u,,_z_ mo dr,

(14)

The 6,=0 case is the equation for the vibrational states

Eisenberg et al.: Toeplitz matrices within DVR formulation

which has to be fulfilled for each,. Consequently, the ex-
pression in the square brackets must vanish, thus yielding a
solution for ¢, for eachn,

o
% \Y (E vn m M MV
g
% V2/~LA BC(E €y, n) = 0-kv,n ) (21)
where
ma(mg+mc)
/-LA,BC_—mA+ Mg+ me (22

of the diatomic molecul®C. The solutions of this equation andk, , is the wave number associated with the translational

are given, i.e.,

2 2

(19

(v,n)
&r } (r,)=0,

[ey, DT+

wheree, , and ¢{""(r,) are the eigenenergies and eigen-

states of the diatomic moleculC, respectively. In order to
treat thed,#0 case we define

(v.1) () 10,00y
$(r,) = (ry)eXp< e )

and show that these are the solutions of B¢}). From Eq.
(16) it follows by direct differentiation that

(16)

2 Pgg () h? —if,u,r,\[ &
2u, o2 2u, ex mo or?
20, d [0,
mo Jr, mo
X ¢M(r,). 17
On the other hand, from E@15) we obtain
12 Py ()
—_——= (v,n)
o gt Lo el ()
_IeVMV 14
=eXp(—)[ Ar) =€, n]
X (1), (18)

where the second equality follows from EG6). Comparing
the rhs of Eqs(17) and (18) we get

h? [ 9* 2i6,u, 9 (0VMV)2
2w, o'?_rf mo Jr, mo

2,
- S >}¢<”'“><rv>=—ey,m("“)(r».

(19
Substituting Eq(19) in Eq. (14), one sees thap*"™ indeed
solves this equation under the condition

h2¢>
2,07

E—e,nt oV(r,)=0, (20

m

N
2

energy of thenth vibrational state in the asymptote, at total
energyE. Collecting the results of Eq$11), (16), (20), and
(21), and after transforming back to DVR form, we find that
the space of solutiong, , in the v asymptote can be spanned
by the functiondsee Eq(11)]

Xa.p~— expio, nQ)¢(V'n)
=exp(i 6,,n0) don™ expli 6, ou,p/m),

r)\—>00,
(23

where ¢{"" and ¢{;" are the values of these functions at
the DVR pointsr, ,

The same considerations can be applied to the asymp-
totic A AC, and the solution space in that region can be
spanned by solutions of the form

Xaq,p~— expi Gx,np)%)"n)

=exp(i 6y op) pby" exXpli Oy aupa/m), 1,—c,
(24)

where ¢3" are the asymptotic vibrational states of the di-
atomic moleculeAB.

We now introduce two integergg,pg, such that the
v-asymptotic region is reached for all grid poinf> qg, and
the A-asymptotic region is reached for all grid poimgs pg
(see Fig. 1. Consequentlyy, , will be written in this regions
as a superposition of the solutions given by Er). Thus

Xq,p:; Cun exr(i av,nQ)(ﬁEoV'n)u d>do, (25

Xap= 2 Cnn OXHi6)1P)bG" . P>Po, (26)
where ¢(*V=¢*V(r_ ) (a=\v and I=p,q, respec-
tively), and the coefficients,, , andc, , will be determined
later. Thec, , (a=\,v) are closely related to th&-matrix
elements through the relation

[Ka
Ca,n: k'n T(avr“_)\!no)n
n

0

(27)

Wherekno,ka’n are the wave numbers of the incoming wave
and outgoing wave in the asymptote, respectively.
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Eisenberg et al.: Toeplitz matrices within DVR formulation 1889

Note that the application of interatomic distances as ind",* which correspond to the highly excited vibrational
dependent variables is essential for the above derivatiorstates, i.e., the high rows, are practically zero. This is due
since it yields at each asymptote a Toeplitz situation. This ido the fact that for a closed statg is pure imaginary, and
not the case, for instance, if one employs the ordinary Jacolthus the matrix elements are exponentially damped. This in-
(R,,r,) coordinates. volves a severe numerical instability related to the existence

We now use the above results to reduce the infinite set obf many eigenvalues of the matrik, which are very close to
algebraic equation$?) for the wave-function values at the zero. From a physical point of view, the way to bypass this
grid points, to a finite set, only for the points in the interac-obstacle is to consider only a few low states and not all the
tion region(see also Ref.)3 states given by the DVR solution to the vibrational problem

The sum on the |hs of Eq7) can be broken into three (whose number is the same as the number of ppifisis
subsummations; two of them correspond to the two asympean be done in two ways. The first is to restrict the index of
totic regions and the third to the interaction region. The firstthe states to the lower states. Thus, in order to obtain a
term, which corresponds to theasymptote, is obtained from square matriXsuch that it could be invert¢done does not
the sum oven’>qy, and can be simplified using E®5) as  use for the matriX", all the points, but rather a selected set

follows: of points whose number is equal to the number of states
taken. A more general way is to use an SVD-like method

E AqparpXarp' which projects the statg,, | onto the subspace spanned by
q'>do.p’ the low vibrational states. We note that in this way, the ma-

trix A% which relatesy,| to x4, m is Not the identity ma-
= 2 X Agpa.pCon €XPi 6,9 )qS("”). (28)  trix even for q=qq but is rather anidempotentmatrix (a

a'>qo.p" " projection operatgr which eliminates the components of
The coefficientss, , can be calculated by using the val- Xdg,m corresponding to the high-energy states.
ues ofxq, p in the following way: Substitutingj=q, in Eg. A similar relation can be derived for th AB+C) as-
(25), we get ymptote, i.e.,
v _ A,
qu,p=§n: b, ey, (29 Xq,p_EI: Ac(q,lp)Xl,po’ (36)
where where
bv, :Cv, exqiav, qO) (30) .
o T . AQP' =2 (T)n1 exili 6y n(P—Po)ldg",  (37)
We define the transformation matrix through its inverse n
whose elements are given b
ensy (T3 1= 60 = By expti 0y /). (38)
(T, Hpn=1P'=dor” expli 6, pe,n/m). (31)

Using the result$34), (36), the algebraic systerv) is
Accordingly, reduced to the finite system

q p

o
o

0, 0)= 20 (1 abyn=2 by =xq, 1 ;
v )I ;( v )I,n ,n ; ,n¥| Xqu Aq,p,q’,p’Xq’,p’

(32) q'=0p’'=0

and thus the matrif’, gives the relation =V(rq.fop)¥o(rg.fup), 0<0<do, Osp=po,
(39
bv,n:EI (Fu)n,IXqO,I . (33 where
Using the result$25) and (33) one obtaingfor q>qg) Agp.q’p’
. 2 u_ Eps " ”A !I) q’qu,
Xq,pzz (Fv)n,IXqO,I exp(i 0v,n(q_q0))¢(pv’n) do =0 qp,q P
n,l = Aq p.q’,p’ q <q01 p <p01 (40)
E //7 qu q pyq"’p/'A(éyp:’r) p, = po .
=2 A X (34) Poa"=0 4

where Ill. ANALYSIS AND RESULTS

We now turn to the problem of calculating the state-to-
ALY=2 (T,)n; expli 6, 0(a—qo))ph" . (35  state probabilities out from the solutiop obtained by the
" method described in the previous section. Usually, when the
We note here that while one employs the above procedurerave function is evaluated employiig methods, one has
numerically, the matrix elements in the rows of the matrixto perform integrations in order to calculate tBematrix
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1890 Eisenberg et al.: Toeplitz matrices within DVR formulation

TABLE |. Reactive transition probabilities for the colinear reactiopti—H+H, in the low-energy domain, where the vibrational ground state is the only
one open in both reactants and products. The results are shown to converge as a furidtitmeaiumber of grid points.

N Ejo=0.50 0.55 0.60 0.65 0.70 0.75 0.80
95 0.079 0.715 1.052 1.034 1.043 0.984 1.074
106 0.080 0.746 1.003 1.039 0.998 1.005 1.006
116 0.078 0.737 0.996 1.014 0.997 0.995 0.965
128 0.084 0.717 1.005 1.007 0.999 0.984 0.949
140 0.083 0.702 1.007 1.013 0.995 0.980 0.950
169 0.081 0.709 1.002 0.998 0.991 0.973 0.946
exact 0.084 0.721 1.000 0.992 0.980 0.967 0.938
3See Ref. 14.

elements’'® These methods are preferred since they apply
the values of the wave function in the whole configurationconvergence. The results are compared with those obtained
space and not just at a limited region. by Bondi et al!* In Table Il are presented the high-energy
The DVR method yields wave-function values at a givenc@ses, up to energies which allow three open vibrational
set of discrete grid points. We have shown befdrat the States. The state-to-state and total state-selected reactive tran-
DVRTM approach requires a relatively small number of Sition probabilities are shown for two different grids. The
points to get converged results 2.5 points per wavelength ~ results for the more dense grid show a good agreement with
Such a low density of points is far from enough for any those of Ref. 15.
accurate numerical integration. Consequently, obtaining
S-matrix elements following an integration may not be com-
patible with the DVRTM approach if one wants to keep theIV' CONCLUSION
number of points as small as possible. This difficulty can be  |n this work, we extended the recently introduced
overcome using the sampling theorem, which will be dis-pvRTM approach to a system with two coordinates and ac-
cussed elsewhere. cordingly two nonlinear asymptotes. This method employs
An alternative way is to apply a matching procedure tothe discrete grid representation of SE to geteact but
obtain theS-matrix elements. Usually matching methods in- infinite, set of algebraic equations. The asymptotic part of the
volve a solution of an algebraic system for the coefficients ofnatrix obtained has the structure of a Toeplitz matrix. The
the different vibrational states. However, we show now thatfeatures of Toeplitz matrices are then employed in order to
employing the formalism derived in the previous section, thisreduce theinfinite set of equations to #nite one, whose
difficulty is easily overcome. solution is equivalent to a solution of the original SE. We
The initial state is determined by the boundary condi-have shown that for a two-coordinate reactive system, the
tions for ¢, and is therefore known. For each final reactive matrix obtained has a block-Toeplitz rather than a single-
staten, the coefficient,,, @=\,v presented in Eq29) is,  element Toeplitz form, and consequently extended the
in fact, closely related to the requiréstmatrix elements. DVRTM approach for this case. The reduced finite set of
These coefficients can be obtained using €3), once Eq.  equations is employed to calculate the reactive state-to-state
(39) is solved. Consequently, the reactive transition prob+ransition probabilities. We are now in the process of extend-

abilities are[see Eqs(27) and (30)] ing the approach to 3D, and hope to be able to report on
P(A—,n)=[T(a,n—X,np)|? results in the near future.
kn0 2
“Kon |5 (T's)n,pXao.p (41  ACKNOWLEDGMENT
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A similar expression can be obtained for the nonreactive o
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In order to check the applicability and efficiency of the
abO\{f method, we have tested it with respect to the collineaf ppenpIX: DVR FOR THE EIRST DERIVATIVE
reaction
In this Appendix, we derive the DVR expression for the
H+Ha(vi) = Ha(vg) +H. 4D st derivati\?e? which we need in order to gept the DVR form
We calculated state-to-state and state-selected reactive prabit the kinetic-energy operator in terms of the interatomic
abilities for three initial vibrational states, i.ev,=0,1,2.  distances. For this purpose, we consitie Ref. Ythe (2N
Table | presents the results in the low-energy domain, where-1)-order Lagrangian interpolation formula:
only one vibrational state is open. The results are shown as a N N
function ofN, the number of grid points. One can see that,in  y_ S ¢ ] '( X~X
general, as the energy is lower, less points are needed for K2 e

: (A1)
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Eisenberg et al.: Toeplitz matrices within DVR formulation 1891

TABLE II. State-to-state and total state-selected reactive transition probabilites for the colinear reaction
Hy(v;) +H—H-+Hy(v¢). A comparison between present resufisst row N=162; second rowN=209 and
those due to Ref. 18ast row).

Eot 0—-0 0-1 0-2 Totaa 1-0 1-1 1-2 Total 2-0 2—1 2-2 Total

0.85 0.845 0.010 --- 0.855 0.010 0.001 - 0.011
0.828 0.014 - 0.841 0.010 0.002 -- 0.012
0.834 0.013 --- 0.847 0.012 0.003 - 0.016
09 0401 0.290 - 0.691 0.281 0.286 - 0.567
0.394 0290 - 0.686 0.285 0.297 -- 0.576
0.380 0.290 - 0.670 0.289 0.298 - 0.586
1.0 0581 0.290 - 0.871 0.268 0.432 - 0.701
0.565 0.268 --- 0.830 0.268 0.455 - 0.720
0.537 0.283 - 0.820 0.275 0.468 - 0.744
11 033 0378 - 0.713 0373 0331 - 0.704
0.306 0.373 - 0.673 0.377 0.355 - 0.729
0.289 0.393 - 0.682 0.371 0.363 - 0.734
1.2 0.163 0.369 - 0.532 0.367 0.245 - 0.611
0.147 0376 - 0.523 0.366 0.238 - 0.604
0.133 0371 - 0.504 0.386 0.238 - 0.625

1.3 0527 0.067 0.114 0.708 0.040 0.401 0.105 0.546 0.075 0.063 0.032 0.170
0.515 0.052 0.093 0.659 0.047 0463 0.059 0.568 0.089 0.063 0.026 0.178
0.513 0.059 0.065 0.637 0.063 0.489 0.045 0.597 0.105 0.071 0.021 0.197

14 0.050 0.227 0.070 0.347 0.206 0.353 0.195 0.754 0.106 0.116 0.576 0.798
0.061 0.233 0.097 0.391 0.219 0.333 0.143 0.694 0.117 0.109 0.510 0.737
0.059 0.231 0.106 0.396 0.223 0.302 0.122 0.648 0.112 0.136 0.512 0.759

15 0.056 0.199 0.125 0.380 0.149 0.320 0.329 0.798 0.123 0.218 0.552 0.893
0.058 0.155 0.146 0.359 0.139 0.273 0.218 0.630 0.132 0.209 0.441 0.783
0.064 0.147 0.138 0.350 0.137 0.263 0.206 0.606 0.136 0.210 0.396 0.742

1.6 0.039 0.053 0.187 0.278 0.051 0.199 0.259 0.509 0.135 0.397 0.375 0.907
0.045 0.065 0.141 0.250 0.061 0.223 0.248 0.532 0.155 0.271 0.215 0.641
0.049 0.078 0.169 0.296 0.070 0.248 0.288 0.605 0.140 0.242 0.214 0.596

wheref,=f(x,) and the prime on the product means that thewhere the prime on the sum means that the té&ra0 is
factor |=k is omitted. We consider the case of equally omitted, and the double prime on the product means that

spaced grid points both thel =k and thel =0 terms are omitted. The sum ovjer
in the first term vanishes due to the cancellation of the terms
xx=ok, k=0,=1,..,.=N. (A2) j and —j, and grouping together the terrhsand —I in the

In what follows we evaluate the first derivative f(ix) at the product, one obtains

central grid pointx,=0. 1N N2
Differentiating Eq.(A1) and settingc=0 gives f (0=~ kgl 2K (fk—f—k)lﬂl (m) (AS5)
1 N=1 andN=2, for example, give the three- and five-point
LG :2, k;k j ,_HN ( - ) (A3) results, respectively,
The product on the right hand side vanishes unless either ¢/ g zi f.—f A6
: SRS (0) (fa—f_1), (A6)
k=0 or j=0. Thus the above expression is simplified to be- 20
come 1
f'(O)ZE(—f2+8f1—8f_1+f_2) (A7)
N
f’(0)=—l fo l H ( ) Applying the identity
a 70 ] 1= 2 )
) X X
N N | I|mH Ilm(l —2> sm( x) —2(—=1)%
+ 'f — A4 Nl = x—k
RN (' k)] A (8)
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one obtains folN—co that f'(0) is given by

(_

1o 1)k
Fo=-=2 k) (Fe= ).

(A9)
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