
Toeplitz matrices within discrete variable representation formulation:
Application to collinear reactive scattering problems

Eli Eisenberg, David M. Charutz, Shlomo Ron, and Michael Baer
Department of Physics and Applied Mathematics, Soreq NRC, Yavne 81800, Israel

~Received 28 July 1995; accepted 5 October 1995!

Recently, a new approach based on the features of the Toeplitz matrix was introduced for reactive
scattering problems. So far these features were used only along the reagents translational coordinate
~either for Eckart-type models or for collinear scattering!. In this work, we show how to employ the
Toeplitz features for the two asymptotic regions of the collinear system. ©1996 American Institute
of Physics.@S0021-9606~96!02102-8#

I. INTRODUCTION

In the last few years the application of finite-range
square-integrable~L2! functions has become one of the more
popular methods of handling multiarrangement channel scat-
tering processes.1–8 The expansion of the wave function in
terms ofL2 functions enables one to convert the Schrodinger
equation~SE! into a set of algebraic equations, whose nu-
merical solution has many advantages over the propagative
methods originally used to solve the differential SE. How-
ever, employingL2 functions for scattering problems cannot
be done in a way as straightforward as bound-state problems
since scattering states are, in nature,extendedstates, and
therefore aninfinite number of finite-range functions is
needed to expand these states.

Several approaches were suggested in recent years to
overcome this difficulty. The most common one uses the
explicit asymptotic form of the wave function, and matches
these asymptotes to the wave function in the interaction re-
gion, which, in turn, can be expanded in terms of the local-
ized L2 functions.1 Another approach is based on applying
negative imaginary potentials~NIP!, which absorb the wave
function in the asymptotic region and at the same time do not
cause any reflection back into the interaction region.2 This
unaffected part of the wave function is again solved usingL2

basis sets.2b–d A third method which was considered most
recently involves expanding the wave function in terms of an
infinite set of localized Gaussians.3,4 It has been shown that
the ~infinite! matrix related to the resulting set of algebraic
equations has~in the asymptotic region! the structure of a
Toeplitz matrix.9 Using the analytical properties of the
Toeplitz matrix the infinite set of equations is reduced rigor-
ously, without any further assumptions, to a finite~not too
large! one.3 This method was found to be more efficient, at
least for the single-coordinate reactive problem, than the NIP
approach.4

This new approach was recently modified by combining
it to another technique, namely, the discrete variable repre-
sentation~DVR! of the Hamiltonian5 ~in what follows we
term this combined approach as the DVRTM!. The advan-
tage of the DVR approach is well known; the solution for the
wave function does not require integrations to produce the
matrix elements. The main difficulty with DVR is related to
the accuracy in expanding the derivatives. This was recently

partly overcome with the introduction of the infinite order
grid point representation.7 Since the infinite order grid point
representation uses the values of the wave function at the
asymptotic region, as well as at the interaction region, it
cannot be efficiently applied unless one handles the wave
function at the asymptotic region properly. One way of doing
it is to employ the NIP and to force the wave function to
vanish at some finite point.8 A different way is to let the
expansion of the derivative operators to goad infinitumand
treat the infinite matrix that follows analytically, employing
methods applicable to Toeplitz matrices.3–6,9 The DVRTM
was applied to a reactive-single-coordinate Eckart-type po-
tential, and more recently to a realistic~collinear! reactive
system. For the Eckart potential, reactive transition prob-
abilities were calculated as a function of energy as well as a
function of the number of grid points per wavelength.5 A
similar study was carried out by Seideman and Miller,8 but
whereas within their approach~employing the NIPs! the ~av-
erage! minimal number of points per wavelength required to
obtain converged results was;3.5, we found it to be;2.5.
For the collinear system, a mixed NIP–Toeplitz approach
was used; namely, the Toeplitz behavior was used in the
reagents~translational! asymptotic region, and an NIP was
substituted along the vibrational coordinate.6

In this work we extend this approach by eliminating the
NIP altogether, and employing the Toeplitz method for the
two asymptotes. This, in turn, requires a new representation
of the Hamiltonian.

II. THEORY

The theoretical derivation is carried out in terms of the
perturbative form of the SE,10,2b–di.e.,

~E2H !x5Vc, ~1!

whereE is the total energy,V is the perturbation potential,c
is the unperturbed part of the wave function,x is the per-
turbed part of the wave function~i.e., the entire wave func-
tion is given byc1x!, andH is the total Hamiltonian given
in the form

H5T1U. ~2!
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Here U is the full potential of the system andT is the
kinetic-energy operator that will be written, for the collinear
three-atom case, in terms of the interatomic distances:11

T52
\2

2mAB

]2

]r AB
2 2

\2

2mBC

]2

]r BC
2 1

\2

mB

]2

]r AB ]r BC
. ~3!

HereA, B, andC are the three atoms~B is the central atom!,
mAB andmBC are the reduced masses for theA andB atoms,
and for theB andC atoms, respectively;r AB andr BC are the
respective interatomic distances andmB is the mass of the
central atom. In order to simplify our notation, we denote the
two arrangement channels~AC! of the system byl, n, such
that thel AC corresponds to theAB1C configuration~with
the asymptoter BC→`!, and then AC corresponds to the
A1BC configuration~with the asymptoter AB→`!. In what
follows we replace (r AB ,r BC ,mAB ,mBC ,mB) by
(r l ,r n ,ml ,mn ,m) wherer a~a5l,n! is the vibrational coor-
dinate in thea AC and r b~bÞa! is the translational coordi-
nate of thea AC. Equation~3! then becomes

T52
\2

2ml

]2

]r l
22

\2

2mn

]2

]r n
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\2

m

]2

]r l ]r n
. ~4!

We now transform the differential equation~1! into an
infinite set of algebraic equations using two-dimensional grid
points (r l,q ,r n,p)5(qs,ps) ~see Fig. 1!, and replacing the
differential operators by their~one-dimensional! infinite or-
der grid point representation

f 8~xi !5 (
j52`

`

t j2 i
1 f ~xj !, f 9~xi !5 (

j52`

`

t j2 i
2 f ~xj !, ~5!

where

t j
15H 02~21! j

js

j50,

jÞ0,
t j
25H 2p2

3s2

22~21! j

j 2s2

j50,

jÞ0.
~6!

The expression for the second derivative was taken from
Ref. 7, and the one for the first derivative is derived in Ap-
pendix A.

Note that we use the DVR expressions for the fully in-
finite intervals ~2`,`! with respect to the two variables,
rather than the semi-infinite intervals. In fact, the incorpora-
tion of the negative range ofr a ; a5l,n is crucial for the
implementation of the DVRTM. Such an extension is not
justified physically sincer a ; a5l,n are non-negative dis-
tances, but is consistent from the formal mathematical point
of view. Since the wave function vanishes for negativer a

~because of the infinite positive potential barrier atr a<0!,
the sums in Eq.~5! are effectively taken only for positivej .

Using the above expressions, Eq.~1! takes the form

(
q8,p8

Aq,p,q8,p8xq8,p85Zq,p
~n! , ~7!

where

Aq,p,q8,p85@E2U~r l,q ,r n,p!#dq,q8dp,p82
\2

m
tq82q
1 tp82p

1

1
\2

2ml
tq82q
2 dp,p81

\2

2mn
tp82p
2 dq,q8 , ~8!

Zq,p
~n! 5V~r l,q ,r n,p!c0n~r l,q ,r n,p!. ~9!

In the n asymptotic region,U(r l,q ,r n,p) depends solely on
r BC5r n,p , i.e.,

lim
rl,q→`

U~r l,q ,r n,p!5vn~r n,p!, ~10!

wherevn is the vibrational potential in then asymptote. Con-
sequently, the lhs of Eq.~7! depends only on the indices
q2q8,p,p8, and has a block-Toeplitz structure. Moreover, in
this region the perturbationV, and therefore the rhs of Eq.
~1!, vanishes. It thus follows that the solution space is
spanned by solutions with the asymptotic behavior

xq,p5exp~ iunq!fp
~v ! , q→`, ~11!

whereun andfp
(n) are constants yet to be determined.

Substituting Eq.~11! in Eq. ~7! and multiplying by
exp(2 iunq) one obtains the equation~wherel5q82q!

(
l ,p8

H @E2vn~r n,p!#d l ,0dp,p82
\2

m
tl
1tp82p
1

1
\2

2ml
t l
2dp,p8

1
\2

2mn
tp82p
2 d l ,0J exp~ i l un!fp8

~n!
50. ~12!

The sum overl can be done analytically5,12 and yields

FIG. 1. The grid used for the DVR formulation. The solid lines present
equal-potential lines, and the dotted lines are the ‘‘Toeplitz lines’’—the lim-
its of the asymptotic regions for then andl AC.
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Using Eq.~5!, we can transform this equation back into
the differential equation

HE2
\2un

2

2mls22vn~r n!1
\2

2mn

]2

]r n
22

i\2un

ms

]

]r n
J f~n!~r n!50.

~14!

The un50 case is the equation for the vibrational states
of the diatomic moleculeBC. The solutions of this equation
are given, i.e.,

H en,n2vn~r n!1
\2

2mn

]2

]r n
2 J f0

~n,n!~r n!50, ~15!

whereen,n andf0
(n,n)(r n) are the eigenenergies and eigen-

states of the diatomic moleculeBC, respectively. In order to
treat theunÞ0 case we define

f~n,n!~r n!5f0
~n,n!~r n!expS iunmnr n

ms D , ~16!

and show that these are the solutions of Eq.~14!. From Eq.
~16! it follows by direct differentiation that
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ms D 2J
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On the other hand, from Eq.~15! we obtain

\2

2mn

]2f0
~n,n!~r n!

]r n
2 5@vn~r n!2en,n#f0

~n,n!~r n!

5expS 2 iunmnr n

ms D @vn~r n!2en,n#

3f~n,n!~r n!, ~18!

where the second equality follows from Eq.~16!. Comparing
the rhs of Eqs.~17! and ~18! we get

\2

2mn
H ]2

]r n
22

2iunmn

ms

]

]r n
2S unmn

ms D 2
2
2mn

\2 vn~r n!J f~n,n!~r n!52en,nf
~n,n!~r n!. ~19!

Substituting Eq.~19! in Eq. ~14!, one sees thatf(n,n) indeed
solves this equation under the condition

FE2en,n1
\2un

2

2mls2 S mlmn2m2

m2 D Gf~n,n!~r n!50, ~20!

which has to be fulfilled for eachr n . Consequently, the ex-
pression in the square brackets must vanish, thus yielding a
solution forun for eachn,

un,n5
s

\
A2~E2en,n!A mlm

2

m22mlmn

5
s

\
A2mA,BC~E2en,n!5skn,n , ~21!

where

mA,BC5
mA~mB1mC!

mA1mB1mC
~22!

andkn,n is the wave number associated with the translational
energy of thenth vibrational state in then asymptote, at total
energyE. Collecting the results of Eqs.~11!, ~16!, ~20!, and
~21!, and after transforming back to DVR form, we find that
the space of solutionsxq,p in then asymptote can be spanned
by the functions@see Eq.~11!#

xq,p5exp~ iun,nq!fp
~n,n!

5exp~ iun,nq!f0p
~n,n! exp~ iun,nmnp/m!, r l→`,

~23!

wherefp
(n,n) andf0p

(n,n) are the values of these functions at
the DVR pointsr n,p .

The same considerations can be applied to the asymp-
totic l AC, and the solution space in that region can be
spanned by solutions of the form

xq,p5exp~ iul,np!fq
~l,n!

5exp~ iul,np!f0q
~l,n! exp~ iul,nmlq/m!, r n→`,

~24!

wheref0
l,n are the asymptotic vibrational states of the di-

atomic moleculeAB.
We now introduce two integersq0 ,p0 , such that the

n-asymptotic region is reached for all grid pointsq.q0, and
the l-asymptotic region is reached for all grid pointsp.p0
~see Fig. 1!. Consequently,xq,p will be written in this regions
as a superposition of the solutions given by Eq.~11!. Thus

xq,p5(
n

cn,n exp~ iun,nq!fp
~n,n! , q.q0 , ~25!

xq,p5(
n

cl,n exp~ iul,np!fq
~l,n! , p.p0 , ~26!

where f l
(a,n)5f (a,n)(r a,l) ~a5l,n and l5p,q, respec-

tively!, and the coefficientscn,n andcl,n will be determined
later. Theca,n ~a5l,n! are closely related to theT-matrix
elements through the relation

ca,n5Aka,n

kn0
T~a,n←l,n0!, ~27!

wherekn0,ka,n are the wave numbers of the incoming wave
and outgoing wave in thea asymptote, respectively.
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Note that the application of interatomic distances as in-
dependent variables is essential for the above derivation,
since it yields at each asymptote a Toeplitz situation. This is
not the case, for instance, if one employs the ordinary Jacobi
(Ra ,r a) coordinates.

We now use the above results to reduce the infinite set of
algebraic equations~7! for the wave-function values at the
grid points, to a finite set, only for the points in the interac-
tion region~see also Ref. 3!.

The sum on the lhs of Eq.~7! can be broken into three
subsummations; two of them correspond to the two asymp-
totic regions and the third to the interaction region. The first
term, which corresponds to then asymptote, is obtained from
the sum overq8.q0 , and can be simplified using Eq.~25! as
follows:

(
q8.q0 ,p8

Aq,p,q8,p8xq8,p8

5 (
q8.q0 ,p8

(
n

Aq,p,q8,p8cn,n exp~ iun,nq8!fp8
~n,n! . ~28!

The coefficientscn,n can be calculated by using the val-
ues ofxq0 ,p

in the following way: Substitutingq5q0 in Eq.
~25!, we get

xq0 ,p
5(

n
bn,nfp

~n,n! , ~29!

where

bn,n5cn,n exp~ iun,nq0!. ~30!

We define the transformation matrixG through its inverse
whose elements are given by

~Gn
21!p,n5fn

~n,p!5f0n
~n,p! exp~ iun,pmnn/m!. ~31!

Accordingly,

~Gn
21b! l5(

n
~Gn

21! l ,nbn,n5(
n

bn,nf l
~n,n!5xq0 ,l

,

~32!

and thus the matrixGn gives the relation

bn,n5(
l

~Gn!n,lxq0 ,l
. ~33!

Using the results~25! and ~33! one obtains~for q.q0!

xq,p5(
n,l

~Gn!n,lxq0 ,l
exp„iun,n~q2q0!…fp

~n,n!

5(
l

Lp,l
~n,q!xq0 ,l

, ~34!

where

Lp,l
~n,q!5(

n
~Gn!n,l exp„iun,n~q2q0!…fp

~n,n! . ~35!

We note here that while one employs the above procedure
numerically, the matrix elements in the rows of the matrix

Gn
21 which correspond to the highly excited vibrational

states, i.e., the highp rows, are practically zero. This is due
to the fact that for a closed stateun is pure imaginary, and
thus the matrix elements are exponentially damped. This in-
volves a severe numerical instability related to the existence
of many eigenvalues of the matrixGn which are very close to
zero. From a physical point of view, the way to bypass this
obstacle is to consider only a few low states and not all the
states given by the DVR solution to the vibrational problem
~whose number is the same as the number of points!. This
can be done in two ways. The first is to restrict the index of
the states to the lower states. Thus, in order to obtain a
square matrix~such that it could be inverted!, one does not
use for the matrixGn all the points, but rather a selected set
of points whose number is equal to the number of states
taken. A more general way is to use an SVD-like method
which projects the statexq0 ,l

onto the subspace spanned by
the low vibrational states. We note that in this way, the ma-
trix L(n,q) which relatesxq,l to xq0 ,m

is not the identity ma-
trix even for q5q0 but is rather anidempotentmatrix ~a
projection operator! which eliminates the components of
xq0 ,m

corresponding to the high-energy states.
A similar relation can be derived for thel(AB1C) as-

ymptote, i.e.,

xq,p5(
l

Lq,l
~l,p!x l ,p0

, ~36!

where

Lq,l
~l,p!5(

n
~Gl!n,l exp@ iul,n~p2p0!#fq

~l,n! , ~37!

~Gl
21! lq5fq

~l,l !5f0q
~l,l ! exp~ iul,lmlq/m!. ~38!

Using the results~34!, ~36!, the algebraic system~7! is
reduced to the finite system

(
q850

q0

(
p850

p0

Ãq,p,q8,p8xq8,p8

5V~r l,q ,r n,p!c0~r l,q ,r n,p!, 0<q<q0 , 0<p<p0 ,
~39!

where

Ãq,p,q8,p8

5H Sq95q0

` S
p950

p0 Aq,p,q9,p9Lp8,p9
~n,q9! q85q0 ,

Aq,p,q8,p8 q8,q0 , p8,p0 ,

Sp95p0

` S
q950

q0 Aq,p,q9,p9Lq8,q9
~l,p9! p85p0 .

~40!

III. ANALYSIS AND RESULTS

We now turn to the problem of calculating the state-to-
state probabilities out from the solutionx obtained by the
method described in the previous section. Usually, when the
wave function is evaluated employingL2 methods, one has
to perform integrations in order to calculate theS-matrix

1889Eisenberg et al.: Toeplitz matrices within DVR formulation

J. Chem. Phys., Vol. 104, No. 5, 1 February 1996

Downloaded¬03¬Nov¬2004¬to¬132.66.16.12.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp



elements.7,13 These methods are preferred since they apply
the values of the wave function in the whole configuration
space and not just at a limited region.

The DVR method yields wave-function values at a given
set of discrete grid points. We have shown before5 that the
DVRTM approach requires a relatively small number of
points to get converged results~;2.5 points per wavelength!.
Such a low density of points is far from enough for any
accurate numerical integration. Consequently, obtaining
S-matrix elements following an integration may not be com-
patible with the DVRTM approach if one wants to keep the
number of points as small as possible. This difficulty can be
overcome using the sampling theorem, which will be dis-
cussed elsewhere.

An alternative way is to apply a matching procedure to
obtain theS-matrix elements. Usually matching methods in-
volve a solution of an algebraic system for the coefficients of
the different vibrational states. However, we show now that,
employing the formalism derived in the previous section, this
difficulty is easily overcome.

The initial state is determined by the boundary condi-
tions for c0 and is therefore known. For each final reactive
staten, the coefficientban , a5l,n presented in Eq.~29! is,
in fact, closely related to the requiredS-matrix elements.
These coefficients can be obtained using Eq.~33!, once Eq.
~39! is solved. Consequently, the reactive transition prob-
abilities are@see Eqs.~27! and ~30!#

P~l→n,n!5 uT~a,n←l,n0!u2

5
kn0
kn,n

U(
p

~Gn!n,pxq0 ,pU2. ~41!

A similar expression can be obtained for the nonreactive
probabilities.

In order to check the applicability and efficiency of the
above method, we have tested it with respect to the collinear
reaction

H1H2~v i !→H2~v f !1H. ~42!

We calculated state-to-state and state-selected reactive prob-
abilities for three initial vibrational states, i.e.,v50,1,2.
Table I presents the results in the low-energy domain, where
only one vibrational state is open. The results are shown as a
function ofN, the number of grid points. One can see that, in
general, as the energy is lower, less points are needed for

convergence. The results are compared with those obtained
by Bondi et al.14 In Table II are presented the high-energy
cases, up to energies which allow three open vibrational
states. The state-to-state and total state-selected reactive tran-
sition probabilities are shown for two different grids. The
results for the more dense grid show a good agreement with
those of Ref. 15.

IV. CONCLUSION

In this work, we extended the recently introduced
DVRTM approach to a system with two coordinates and ac-
cordingly two nonlinear asymptotes. This method employs
the discrete grid representation of SE to get anexact, but
infinite, set of algebraic equations. The asymptotic part of the
matrix obtained has the structure of a Toeplitz matrix. The
features of Toeplitz matrices are then employed in order to
reduce theinfinite set of equations to afinite one, whose
solution is equivalent to a solution of the original SE. We
have shown that for a two-coordinate reactive system, the
matrix obtained has a block-Toeplitz rather than a single-
element Toeplitz form, and consequently extended the
DVRTM approach for this case. The reduced finite set of
equations is employed to calculate the reactive state-to-state
transition probabilities. We are now in the process of extend-
ing the approach to 3D, and hope to be able to report on
results in the near future.
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APPENDIX: DVR FOR THE FIRST DERIVATIVE

In this Appendix, we derive the DVR expression for the
first derivative, which we need in order to get the DVR form
of the kinetic-energy operator in terms of the interatomic
distances. For this purpose, we consider~see Ref. 7! the ~2N
11!-order Lagrangian interpolation formula:

f ~x!5 (
k52N

N

f k )
l52N

N

8S x2xl
xk2xl

D , ~A1!

TABLE I. Reactive transition probabilities for the colinear reaction H21H→H1H2 in the low-energy domain, where the vibrational ground state is the only
one open in both reactants and products. The results are shown to converge as a function ofN, the number of grid points.

N Etot50.50 0.55 0.60 0.65 0.70 0.75 0.80

95 0.079 0.715 1.052 1.034 1.043 0.984 1.074
106 0.080 0.746 1.003 1.039 0.998 1.005 1.006
116 0.078 0.737 0.996 1.014 0.997 0.995 0.965
128 0.084 0.717 1.005 1.007 0.999 0.984 0.949
140 0.083 0.702 1.007 1.013 0.995 0.980 0.950
169 0.081 0.709 1.002 0.998 0.991 0.973 0.946

exacta 0.084 0.721 1.000 0.992 0.980 0.967 0.938

aSee Ref. 14.
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wheref k5 f (xk) and the prime on the product means that the
factor l5k is omitted. We consider the case of equally
spaced grid points

xk5sk, k50,61,...,6N. ~A2!

In what follows we evaluate the first derivative off (x) at the
central grid pointx050.

Differentiating Eq.~A1! and settingx50 gives

f 8~0!52
1

s (
k52N

N

f k(
jÞk

1

j )
l52N

N

8S l

l2kD . ~A3!

The product on the right hand side vanishes unless either
k50 or j50. Thus the above expression is simplified to be-
come

f 8~0!52
1

s H f 0(
jÞ0

1

j )
l52N

N

8S l

l2kD
1 (

k52N

N

8 f k )
l52N

N

9S l

l2kD J , ~A4!

where the prime on the sum means that the termk50 is
omitted, and the double prime on the product means that
both thel5k and thel50 terms are omitted. The sum overj
in the first term vanishes due to the cancellation of the terms
j and2j , and grouping together the termsl and2l in the
product, one obtains

f 8~0!5
1

s (
k51

N
1

2k
~ f k2 f2k!)

l51

N

8S l 2

l 22k2D . ~A5!

N51 andN52, for example, give the three- and five-point
results, respectively,

f 8~0!.
1

2s
~ f 12 f21!, ~A6!

f 8~0!.
1

12s
~2 f 218 f 128 f211 f22!. ~A7!

Applying the identity

lim
N→`

)
l51

N

8
l 2

l 22k2
5 lim

x→k
S 12

x2

k2D px

sin~px!
522~21!k,

~A8!

TABLE II. State-to-state and total state-selected reactive transition probabilites for the colinear reaction
H2(v i)1H→H1H2(v f). A comparison between present results~first row N5162; second rowN5209! and
those due to Ref. 15~last row!.

Etot 0→0 0→1 0→2 Total 1→0 1→1 1→2 Total 2→0 2→1 2→2 Total

0.85 0.845 0.010 ••• 0.855 0.010 0.001 ••• 0.011
0.828 0.014 ••• 0.841 0.010 0.002 ••• 0.012
0.834 0.013 ••• 0.847 0.012 0.003 ••• 0.016

0.9 0.401 0.290 ••• 0.691 0.281 0.286 ••• 0.567
0.394 0.290 ••• 0.686 0.285 0.297 ••• 0.576
0.380 0.290 ••• 0.670 0.289 0.298 ••• 0.586

1.0 0.581 0.290 ••• 0.871 0.268 0.432 ••• 0.701
0.565 0.268 ••• 0.830 0.268 0.455 ••• 0.720
0.537 0.283 ••• 0.820 0.275 0.468 ••• 0.744

1.1 0.335 0.378 ••• 0.713 0.373 0.331 ••• 0.704
0.306 0.373 ••• 0.673 0.377 0.355 ••• 0.729
0.289 0.393 ••• 0.682 0.371 0.363 ••• 0.734

1.2 0.163 0.369 ••• 0.532 0.367 0.245 ••• 0.611
0.147 0.376 ••• 0.523 0.366 0.238 ••• 0.604
0.133 0.371 ••• 0.504 0.386 0.238 ••• 0.625

1.3 0.527 0.067 0.114 0.708 0.040 0.401 0.105 0.546 0.075 0.063 0.032 0.170
0.515 0.052 0.093 0.659 0.047 0.463 0.059 0.568 0.089 0.063 0.026 0.178
0.513 0.059 0.065 0.637 0.063 0.489 0.045 0.597 0.105 0.071 0.021 0.197

1.4 0.050 0.227 0.070 0.347 0.206 0.353 0.195 0.754 0.106 0.116 0.576 0.798
0.061 0.233 0.097 0.391 0.219 0.333 0.143 0.694 0.117 0.109 0.510 0.737
0.059 0.231 0.106 0.396 0.223 0.302 0.122 0.648 0.112 0.136 0.512 0.759

1.5 0.056 0.199 0.125 0.380 0.149 0.320 0.329 0.798 0.123 0.218 0.552 0.893
0.058 0.155 0.146 0.359 0.139 0.273 0.218 0.630 0.132 0.209 0.441 0.783
0.064 0.147 0.138 0.350 0.137 0.263 0.206 0.606 0.136 0.210 0.396 0.742

1.6 0.039 0.053 0.187 0.278 0.051 0.199 0.259 0.509 0.135 0.397 0.375 0.907
0.045 0.065 0.141 0.250 0.061 0.223 0.248 0.532 0.155 0.271 0.215 0.641
0.049 0.078 0.169 0.296 0.070 0.248 0.288 0.605 0.140 0.242 0.214 0.596
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one obtains forN→` that f 8~0! is given by

f 8~0!52
1

s (
k51

`
~21!k

k
~ f k2 f2k!. ~A9!
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