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Dynamical Localization near Quantum Antiresonance: Exact Results and a Solvable Case
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Dynamical localization in general two-sided kicked rotors, which are classically nonintegrable, is
shown to occur in the immediate vicinity of quantum antiresonance (periodic recurrences). A complete
and exact solution of the quasienergy eigenvalue problem is obtained for the standard potential.
Numerical evidence is given that this solution is an excellent approximation to the quantum dynamics
and quasienergy states even not very close to antiresonance. The dynamical problem is mapped into a
tight-binding model of a two-channel strip with pseudorandom disorder. One then has strong evidence
for Anderson localization in this model near antiresonance.
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The quantum dynamics of classically nonintegrable sys-
tems has been extensively investigated during the last two
decades [1]. A favorite class of model systems has been
the periodically kicked rotors (KR) [2-9], which, while
relatively simple, already exhibit the variety and com-
plexity of classical structures and motions (regular and
chaotic) present in generic Hamiltonian systems. In par-
ticular, by increasing the nonintegrability (kicking) pa-
rameter in KR systems, one observes the typical gradual
destruction of isolating Kol’mogorov-Arnol’d-Moser tori
in phase space. This leads to the well-known transition
from bounded to global chaos, featuring unbounded diffu-
sion in the angular momentum L [10].

As strongly indicated by extensive numerical and
analytical studies, this diffusion is generically suppressed
in the quantum case [2,3] and is replaced by bounded
variation of (L?) with quasiperiodic recurrences. This
phenomenon can be attributed to a pure-point quasienergy
(QE) spectrum (i.e., the spectrum of the one-period
evolution operator) [3]. An understanding of the generic
occurrence of such a spectrum was achieved by showing
that the QE eigenvalue problem is formally equivalent,
in the L representation, to a 1D tight-binding model
[4]. For generic (irrational) values of a dimensionless 7,
denoted here by 7, the on-site potential in this model
is pseudorandom. Several arguments have been given
[4,11] that the effect of such a potential is quite similar
to that of a truly random one, which causes Anderson
exponential localization of all the electronic eigenstates
[12]. Assuming this, the QE states feature a similar
“dynamical” localization in L space, and the QE spectrum
is pure point.

In order to get a better understanding of the nature
of quantum suppression of diffusion and its relation
to Anderson localization in disordered solids, rigorous
results and/or exactly solvable models are most desired.
The existence of a pure-point QE spectrum was proven
in some special variants of the original KR system [13].
However, in the case that these variants have a classical
counterpart, the nonintegrability parameter assumed in the
proof is usually too small for unbounded diffusion to take
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place. Exact solutions of the QE eigenvalue problem for
the KR can be found for rational values of 7, the so-
called quantum resonances [14]. In this nongeneric case,
however, the corresponding on-site potential is periodic,
and the QE states are extended Bloch states leading to a
ballistic (quadratic) increase of (L?) with time. An exactly
solvable variant of the KR is obtained after replacing the
kinetic energy of the rotor by a linear function of L [15].
The resulting system can be mapped into a tight-binding
model whose on-site potential is incommensurate with the
lattice for irrational 7. While such potential is not even
pseudorandom (it is quasiperiodic) [11], it can lead to the
same exponential localization of eigenstates as in random
Anderson models. Unfortunately, however, this system
is classically integrable [16], so that the localization has
nothing to do with the suppression of chaotic diffusion,
but it is rather associated with regular motion.

In this Letter, we show that dynamical localization
occurs in a class of nonintegrable systems, for arbitrary
values of a nonintegrability parameter and for 7 in
the immediate vicinity of values 7, associated with a
distinctive quantum phenomenon. For a standard system
in this class, we obtain a complete and exact solution
of the QE eigenvalue problem in terms of transcendental
functions. We give strong numerical evidence that this
solution is an excellent approximation to the quantum
dynamics and QE states even for | — no| not very small.
The dynamical problem is mapped into a tight-binding
model of a two-channel strip [17] with pseudorandom
disorder. One then has strong evidence for Anderson
localization in this model for small values of | — 7gl.

The class of systems considered are the two-sided
kicked rotors (TKRs) [9], defined by the Hamiltonian

L? A - R sT
H =2 +kv(o) Z(—])ﬁ(w;), (1

§=—00

where I is the moment of inertia, & is the kicking parame-
ter, 7 is the time period, and V() is a general periodic and
analytic function of the angle #. Two-sided kicking per-
turbations such as in (1) were considered in several physi-
cal contexts [18] as approximations of sinusoidal driving
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potentials corresponding to ac electromagnetic fields. By
increasing k in the classical TKR, one observes the typical
transition from bounded to global chaos [9], as in the KR

case. The quantum dynamics is governed, as usual, by
the evolution operator U in one period, e.g., from ¢t = —0
tor=T—0,

U = e*i‘rﬁzeikv(ﬂ)efirﬁzefikv(())’ (2)

where 7 = L/ki = —id/d®, v = hT/4l, and k = k/h.
Evidence for dynamical localization is provided by a lo-
calized “steady-state” probability distribution f, over the
angular momentum n# [S—7]. We observed numerically
that this indeed occurs in the TKR; see an example in
Fig. 1. As we shall show below, this localization is to
be expected for generic irrational values of n = 7/27, as
in the KR case [4—7]. For rational values of n = m/p,
where m and p are relatively prime integers and p > 1,
one can show [19] that the QE spectrum of (2) consists
of p bands of Bloch states, leading to a ballistic increase
of (L?) with time. This is again analogous to the KR
case [14].

But a most distinctive feature of the quantum TKR
is that U becomes the identity operator for n = m,
an integer [since the operator exp(—i7iA?) in (2) is
clearly the identity in this case]. This implies exactly
periodic recurrences (with period 1) of an arbitrary wave
packet [9], a phenomenon diametrically opposite to that
occurring in the KR for 7 = m, namely, the fundamental
quantum resonance [14]. We shall therefore refer to
this phenomenon as quantum antiresonance (QAR). In
a broad sense, the QAR appears to arise in several
quantum-dynamical problems [19,20]. Since U = 1, the
QE spectrum consists just of a single, infinitely degenerate
level. The natural question is then precisely how this
infinite degeneracy is removed by slightly perturbing
n near n = m. As we now show, this degeneracy is
removed quite abruptly: The QE spectrum of U for
7 =27mn =2mm + € and infinitesimal € # 0 is pure
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FIG. 1. Example of a localized steady-state probability distri-

bution f, in the TKR for the standard potential V(6) = cos(6),
and for k = 2.0 and 7 = 1.0. Here f, is obtained from an ini-
tial wave packet |¢o) = |n = 0) by averaging [{(n|U*|¢o)|?> over
20000 iterations in the interval 190000 < s < 210 000.

point, and the QE states are exponentially localized in L
space. For the standard potential V(8) = cos(8), the QE
eigenvalue problem will be solved exactly.

Using the operator identity

|
¢"Be ™ = B + [A,B] + 5[A,[A,B]]

b A TATA BT + o 3)

and expanding the operator exp(—i7i?) = exp(—iei?) in
powers of €, it is easy to see that U in (2) can be
formally written as exp(—iG), G = >/_, €/G; [21]. Here
the Hermitian operators G; are polynomials in 4 and
derivatives of V(@) of order not larger than 2j. For
analytic V(6), these operators are all well defined. It is
now clear that in the limit of infinitesimal € # 0, the QE
states are precisely the eigenstates of the leading operator
G, = G/e [21]. A tedious but straightforward calculation
gives

G, =2[a — (k/QVOT + K2/2)V2(O), ()

where V/(0) = dV(0)/d6. If the eigenvalue problem for
G, is Gi¢ = gy, we perform the gauge transformation

@ = exp[—ikV(0)/2]y, (5)
and obtain for ¢, using (4), the eigenvalue equation

¢ kK . g
—=r 4 = =24,
702 a V= (0)e X (6)

The problem has thus been reduced to that of a
Schrodinger equation with a periodic potential. The
spectrum g then has a band structure, but because of the
periodic boundary condition ¢(27) = ¢(0), only the level
with zero quasimomentum is picked out from each band.
This gives, in general, a point spectrum. Now, being the
solution of the linear differential equation (6), ¢(6) is
analytic at least in the domain of analyticity of V/(9) [22].
Let v be the smallest distance of a singularity of V/(6)
from the real 6 axis. Then the Fourier-series expansion
of ¢(#) will converge at least within an infinite horizontal
strip of width 2vy, symmetrically positioned around the
real 6 axis [22]. It follows that the Fourier coefficients
of ¢ and ¢ in (5) decay at least as exp(—vy|nl|), and the
localization length is not larger than 1/y (see example
later).

For the standard potential V(8) = cos(8), Eq. (6) be-
comes the Mathieu equation [22,23]

y" + [a — 2gcos(20)]y = 0, )

where y = ¢, a = g/2 — k?/8, and ¢ = —k?/16. The
problem is then exactly solved in terms of the periodic
Mathieu functions y = ce,(6,q) (symmetric) and y =
se, (6, g) (antisymmetric), with corresponding eigenvalues
a = a,(q) and a = b,(g). Explicit expressions for these
functions and eigenvalues, as well as a detailed discussion
of their properties, can be found in Refs. [22,23]. From
Eq. (5) the Fourier coefficients ¢, and y, of ¢y andy = ¢,
respectively, are related by ¢, = Z,— i1 J;(k/2)yn—;, where
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J;(k/2) is a Bessel function. Since the dominant decay
rate of both J, and y, with n is like n™" [23], this is also
the dominant decay rate of i,. This strong localization in
L space, faster than exponential, could be expected from
the fact that V(8) = cos(@) is an entire function, so that
the localization length 1/y = 0.

When €/27r is not infinitesimal but sufficiently small
and irrational, we expect this exact solution to be a good
approximation to QE states which are localized within an
interval of length 1/,/€ around » = 0. This is because the
derivation above was based on an expansion in powers
of ea?. To check this, we investigated numerically the
quantum dynamics of a wave packet initially equal to
[n = 0). A basis of up to 512 angular-momentum states
around n = 0 was used. In Fig. 2, we plot the kinetic-
energy expectation value, Eg = (L2/2I), as a function of
the “real time” ¢ = es (s is the number of applications
of U), for several values of e. We observe that all
the data fall quite accurately on the same curve, even
for values of € as large as e = 0.33. This is evidence
that, even for € not very small, the quantum dynamics
is very well described by the evolution operator U* =
exp(—iesG|) = exp(—itG,), generated by the operator G,
upon which the exact solution is based (see above). In
Fig. 3, we plot the Fourier transform Ey(v) of Ey(z) for
€ = 0.05 and several values of k. The positions of the
various peaks in Eo(v) must correspond the values of ev
equal to the spacings between QE levels. A comparison
with the level spacings corresponding to eigenvalues of
the Mathieu equation shows excellent agreement. This
is strong additional evidence that the quantum dynamics
and QE states near QAR are very well described by
the approximate evolution operator U = exp(—ieG;) with
generator Gj.

The general dynamical problem will now be mapped
into a tight-binding model. Let uf(&), j =0, 1, denote a
QE state with quasienergy w at time r = j7/2 = 0. The
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FIG. 2. Expectation value of the kinetic energy, E;, as a
function of the “real time” t = es, for V(8) = cos(8), k = 2,
and several values of €. The continuous curve corresponds to
e = 0.013, the circles to € = 0.12, the triangles to € = 0.17,
and the filled diamonds to € = 0.33.
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FIG. 3. Fourier transform Ey(») of Ey(t) for V() = cos(6),
€ = 0.05, and several values of k (see legend). The symbols at
the bottom are the theoretical predictions for the peak positions,
based on the eigenvalues of the Mathieu equation (7). The
single peak for k = 0.01 has been rescaled by a factor of 50 000
for visibility.

following relations hold:

u (0) = exp[—i(—1)/kV(0)]u; (6), (8)
ulin — e*ifnzuar,n, u(;’n _ ei(w*-rn2)ul+’n , (9)

where uﬁ,, is the L representation of uf(f)). We define, in
some analogy with Ref. [4],

u;j(0) = eijw/zM

> ,
) (10)
PN 14 ()
1 —iw(o)’
so that W(#) = — tan[kV (60)/2]. Simple manipulations of

Egs. (8), (9), and (10) yield then the system of equations

Tn“(],n + Snul,n + Z Wn—ru(),r = EuO,n B
r#0
(1D
_Tnul,n - SnMO,n + Z anrul,r = E“l,n’
r#0

where T, = cot(a,), S, = —1/sin(a,), a, =
thm* — w/2, W, are the Fourier coefficients of W(#),
and E = —W,. Equations (11) describe a tight-binding
model of a two-channel strip [17]. The on-site potential
and hopping constants within each channel are, respec-
tively, T, and W,, while the coupling constants between
the channels are S,. For irrational n = 7/27, both T,
and S, are pseudorandom sequences [4,11] which, by
arguments similar to those used in the KR case [4], may
lead to Anderson-like localization of the eigenstates of
(11) (see Fig. 1). In the neighborhood of the QAR,
i.e., for small values of € = 7mod2, the quasienergy
w is given approximately by w = e€g, where g is an
eigenvalue of the leading operator G, (see above). Then
a, mod27 = e(n*> — g/2), so that both 7, and S, can
be much larger than W, for n not too large. Moreover,
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when approaching the limit of infinitesimal e, the pseudo-
randomness of T, and S, is guaranteed by choosing € /2
in a sequence of “strong” irrationals €;/27, [ = 1,2,...,
converging to O [e.g., ¢, = 27 /(I + A), where A is the
golden mean]. It is then very likely that for € = ¢; the
model (11) will have eigenstates exponentially localized
near n = 0. This is also supported by the numerical
results presented above, which strongly indicate that the
solution of Eq. (6), in particular the explicit exact solution
of the Mathieu equation (7), is an excellent approximation
to these eigenstates even for / not too large. The accu-
racy of this approximation can be arbitrarily increased
by increasing /. Using Egs. (5), (8), and (10), it is easy
to show that the accurate relation expected between the
solutions of Egs. (6) and (11) for small € reads simply
uo(0) = cos[kV(0)/2]¢(0). Besides the exactly solvable
case of V(0) = cos(#), another interesting case is that
of V(0) = —(2/k)arctan[« cos(@) — E], for which only
nearest-neighbor hopping appears in (11) (W, = 0 except
of W.; = k). In this case, the localization length 1/y
is determined from y = |[Im(6o)|, where 6, is a pole of
V/(0), satisfying the equation kcos(fp) — E =i. It is
easily verified that 1/ is precisely the localization length
for the Lloyd model [12] and the linear model [15].

In conclusion, we have shown the occurrence of dy-
namical localization in a class of nonintegrable systems
(the TKRs with arbitrary analytic potential), exhibiting
unbounded chaotic diffusion. This localization takes
place in the infinitesimal neighborhood of QAR, where a
pure-point QE spectrum replaces the infinitely degenerate
level at QAR. The QE problem has been expressed as a
Schrédinger equation with a periodic potential. From the
analytic properties of this potential one can then determine
exactly, apparently for the first time, the localization length
in a nonintegrable system. Moreover, in the case of the
standard potential, the entire QE problem can be solved
exactly in terms of Mathieu and Bessel functions. Strong
numerical evidence has been given that this solution is
an excellent approximation to the quantum dynamics
and QE states even not very close to QAR. By mapping
the dynamical problem into a tight-binding model of a
two-channel strip with pseudorandom disorder, one has
then strong evidence for Anderson localization in this
model near QAR.
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