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abstract:

Theories of a mathematically real quantum function are discussed. The analysis,

which relies on fundamental elements of quantum theories, proves the existence of a

new type of contradictions in mathematically real quantum theories. The results cast

doubt on merits of the following theories: The Yukawa theory of the nuclear force,

the theories of the Z and the Higgs bosons, and the Majorana neutrino theory.
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Mathematically complex wave functions were the first choice of the founders of

Quantum Mechanics (QM). This type of functions is mandatory for the Schroedinger

and the Dirac equations, whose form is

i
∂ψ

∂t
= Hψ. (1)

Here the Hamiltonian H is a Hermitian operator which has real eigenvalues. Further-

more, the equation holds for a massive particle and each side of (1) represents the

system’s energy, which means that it is a nonvanishing quantity. So, if ψ is real then

the left hand side of (1) is pure imaginary whereas its right hand side is real. It follows

that a real wave function cannot satisfy the Schroedinger and the Dirac equations.

For this reason complex wave functions are intensively treated in QM textbooks. A

different course was taken few years later, when two mathematically real quantum

equations were published. They are the real version of the Klein-Gordon (KG) equa-

tion which was used by Yukawa in 1935 for a theoretical interpretation of the nuclear

force (see e.g. [1], p. 211). Soon after, Majorana published a pure imaginary version

of the Dirac γ matrices which cast the Dirac equation into a mathematically real form

(see [2], p. 486).

The quantum equations of Yukawa and Majorana have a relativistic covariant

structure. The same property holds for other real quantum equations, like those of

the Higgs and the Z bosons (see e.g. [3]). General properties of real quantum wave

functions are analyzed below and it is proved that they suffer from new contradictions.

This work uses standard notation of relativistic expressions. Greek indices run from

0 to 3 and Latin indices run from 1 to 3. The metric is diag(1,-1,-1,-1). Units where

h̄ = c = 1 are used.

The analysis relies on basic properties of a quantum particle which are briefly

presented in the following lines. The wave nature of such a particle is considered as

a primary attribute of a quantum theory. Here the de Broglie formula for the wave
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length of a massive particle is related to its momentum (see [4], p. 3 or [5], pp. 48,

49)

λ = 2πh̄/p. (2)

For the simplicity of the discussion, let us examine a free massive quantum particle.

The phase of its wave takes the form

ϕ = k · x− ωt. (3)

The de Broglie relationship means that the particle’s energy and momentum appear

as elements of its phase where (h̄ = 1)

k = p, ω = E. (4)

It is interesting to note that (3) and (4) prove that the phase ϕ is a Lorentz scalar

obtained from the contraction of the energy-momentum 4-vector (E,p) and the space-

time coordinates (t,x) (multiplied by −1). Consequently, it takes the same form in

nonrelativistic and relativistic quantum theories.

A quantum theory of a given particle must describe the time evolution of its

state. This objective takes the form of a differential equation. Relying on the fore-

going expressions, one finds that appropriate differential operators are related to the

particle’s energy and momentum. These operators take the form

E → i∂/∂t, px → −i∂/∂x. (5)

These relationships show the connection between dynamical quantities and differential

operators.

As stated above, the quantum equation (1) proves the well known complex form

of the Schroedinger and the Dirac wave function. Let us examine the possibility of

describing a massive quantum particle by means of a real wave function. A simple

case is that of a free particle moving along the positive x-direction. The form of the
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phase-dependent factor of its wave function can be written in terms of the following

expressions (see [4], p. 18)

cos(kx− ωt), sin(kx− ωt), exp(±i(kx− ωt)). (6)

The last expression of (6) is a complex function which depends on the energy and the

momentum. Therefore, it is unsuitable for a real wave function. Evidently, the first

and the second functions of (6) can be combined in this form sin(kx−ωt− δ), where

δ is a constant number. Hence, a real wave function of a free massive particle moving

along the positive x-direction is

ψ(t, x) = A sin(kx− ωt− δ), (7)

where A is a normalization factor.

The free quantum particle that is analyzed here is massive and it has a rest frame.

In this frame the linear momentum k = p = 0 and the particle’s wave function reduces

to the form

ψRest(t, x) = A sin(−ωt− δ). (8)

It follows that for every integer n, the real wave function (8) vanishes identically

throughout the entire 3-dimensional space at every instant t when ωt+ δ = nπ.

The null value of a real wave function means that at the corresponding instant

the particle disappears. Hence, the following results are obtained:

1. A conserved density cannot be consistently defined for a particle described by

a mathematically real wave function.

2. The lack of a consistent expression for density means that a Hilbert space of

quantum mechanics and its associated Fock space of quantum field theories

cannot be constructed. Indeed, in quantum theories the inner product of a

Hilbert space is based on a consistent expression for density.
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3. Obviously, due to the absence of these spaces, operators used in mathematically

real quantum theories become meaningless.

These findings prove the existence of inherent contradictions in quantum theories

of a mathematically real wave function. Note that the proof takes a general form

which is independent of the specific structure of any given mathematically real quan-

tum theory. Here the following question arises: Why the Noether theorem does not

provide a consistent expression for density of a particle whose quantum equation of

motion takes a mathematically real form?

In the case of a Majorana particle the answer depends on the absence of an

appropriate eigenfunction. Indeed, the Majorana Lagrangian density is (see [2], eq.

(105))

LMajorana =
1

2
ψ̄[γµi∂µ −m]ψ, (9)

where the four γ matrices are pure imaginary. Moreover, like the Dirac equation,

the Majorana equation is a first order partial differential equation. For this reason,

(7) does not solve the Majorana equation because the first derivative of the sin(x)

function is the cos(x) function. Obviously, the Noether theorem applies only to cases

where the function ψ of the Lagrangian density solves the quantum equation.

Another argument that disproves the Majorana theory stems from the definition

of the following function of (9)

ψ̄ ≡ ψ†γ0 (10)

(see [1], p. 24). So, if all the four Majorana γ matrices are pure imaginary then the

quantum equation

[γµi∂µ −m]ψ = 0. (11)

is real and so is its solution ψ. However, due to the definition of (10), there is an

additional γ0 factor in the Majorana Lagrangian density. Therefore, the following

contradictions hold for the Majorana theory.
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The Lagrangian density and its action

S =

∫
LMajoranad

4x =

∫
1

2
ψ†γ0[γµi∂µ −m]ψ d4x (12)

are pure imaginary due to the additional γ0. The same contradiction is found in the

Majorana Hamiltonian, because if the Lagrangian density is pure imaginary then also

the associated Hamiltonian is pure imaginary. (The mass term mψ†γ0ψ provides a

simple illustration of this conclusion. Thus, if γ0 is pure imaginary then the mass term

is pure imaginary.) This is a contradiction, because energy, which is an eigenvalue of

the Hamiltonian, is a real quantity.

The following argument explains the origin of the problem. The Majorana γ

matrices (see [2], eq. (12)) satisfy the Dirac condition where γ0 is Hermitian and the

three γi are anti-Hermitian. Therefore, one expects that the Majorana equation has

real eigenvalues for its Hamiltonian. The pure imaginary result which is found above

for the Hamiltonian eigenvalues means that eigenvalues of the Majorana Hamiltonian

should be zero. This property is inconsistent with the assumed positive mass of the

Majorana particle.

As far as this work is concerned, the case of a real KG equation is much simpler,

because the absence of density and of a conserved 4-current for this quantum field is

proved in a textbook (see [6], p. 42, eq. (12.8)).

A search of the literature provides an indirect support for the claim that there

is no self-consistent expression for density of a mathematically real quantum theory.

Indeed, an expression for density and its associated conserved 4-current can be found

for the Schroedinger equation (see e.g. [5], pp. 53, 54) and for the Dirac equation

of the electron (see e.g. [7], p. 56). By contrast, although quantum theories of a

mathematically real wave function are known for eight decades, one cannot find a

self-consistent expression for density in textbooks that discuss these theories.

This work analyzes a class of quantum theories whose wave function takes a
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mathematically real form. It proves that the corresponding parts of presently accepted

physical theories contain errors. The analysis relies on well documented physical

properties of quantum theories that can be found in standard textbooks. The results

cast doubt on the Yukawa theory of the nuclear force, on current theories of the Z

and the Higgs bosons as well as on the Majorana neutrino theory.

Error correction is an important task of every human community. This work

points out several errors of presently accepted physical theories. In doing so, it aims

to launch a debate about the veracity of the results obtained above. Such a debate

can certainly improve the understanding of several topics of theoretical physics.
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