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The decomposition of electromagnetic fields for a system of elementary classical point charges into
velocity fields and acceleration fields is suggested by the appropriate terms in the Lienard–Wiechert
formulas. This paper introduces ‘‘bound’’ fields and ‘‘radiation’’ fields which are related butnot
identical to velocity and acceleration fields, respectively. It is shown how this approach can be used
in the construction of an energy–momentum tensor that is free of infinite quantities and settles the
4/3 problem in the Lorentz transformation of momentum. ©1997 American Association of Physics
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I. INTRODUCTION

The purpose of the present work is to discuss the struc
of classical electrodynamics for systems of elementary c
sical point charges. As is well known, nature obeys the la
of classical electrodynamics only in circumstances where
classical limit of quantum mechanics holds. This requi
ment is not satisfied in cases where charges are too c
together. Hence the discussion is restricted to themathemati-
cal properties of the theory. In this sense, the notions
experiment and measurability hereafter refer to thought
periments and not to actual ones. Here, thought experim
denote hypothetical experiments with a device that is
sumed to follow exactly the mathematical laws of classi
electrodynamics.

Theoretical properties of classical electrodynamics dep
on the structure of its charge constituents. Thus one m
construct a theory for particles whose charge density
bounded. A simple example is a system which consists
particles whose charge density varies continuously wit
their volume and vanishes elsewhere. Particles having
property are hereafter called small charged objects, wh
the word ‘‘small’’ describes the object’sspatial dimensions.
Analyzing the mathematical structure of a hypothetical s
tem of this kind, one can consider an infinitesimal volum
element DV which contains aninfinitesimal amount of
chargeDQ. In so doing, one finds that the interaction ofDQ
with itself can be ignored because it depends on the sec
power ofDQ whereas the interaction ofDQ with the rest of
the system is linear inDQ. Another important feature of a
theory of small charged objects is that it is free of infin
quantities. Thus the solutions of Maxwell equations yie
retarded potentials1,2 from which regular fields and their en
ergy momentum tensor are derived~see Ref. 1, pp. 80–83
Ref. 2, pp. 601–608!.

The phenomenon of charge quantization and the disco
of particles whose volume looks like a point motivate t
introduction of elementary point charges into classical el
trodynamics. One can also find theoretical reasons for do
that. Thus Landau and Lifshitz use special relativity and
plain why anelementaryclassical particle should be poin
like ~see Ref. 1, pp. 43–44!. Rohrlich uses quantum mecha
ics and arrives at analogous conclusions.3 Systems of point
charges are the main topic of the present work. These
ticles are treated as unique entities andnot as a limit of a
862 Am. J. Phys.65 ~9!, September 1997
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sequence of small charged objects, where each of them
the same amount of charge and their spatial dimensions
to zero.

In a system of this kind, one cannot divide space into
sum of infinitesimal volume elementsDV, each of which
contains aninfinitesimalamount of charge. This feature en
tails several analytical differences between systems of sm
charged objects and those of point charges. In the pre
work it is shown how pure radiation fields can be used in
classical theory of point charges which is free of expressi
yielding infinite energy and momentum.

The electromagnetic fields of a point chargeqi are ob-
tained from the Lienard–Wiechert formulas~see Ref. 1, p.
162 or Ref. 2, p. 657!

E5qiF ~12v2/c2!~R2Rv/c!

~R2R–v/c!3 1
R3$~R2Rv/c!3a%

c2~R2R–v/c!3 G ,
~1!

B5R3E/R. ~2!

Here R denotes the displacement vector from the retard
position of the chargeqi to the point where the fields ar
calculated;v and a denote the retarded velocity and acce
eration ofqi , respectively.

Formula~1! serves as a basis for the decomposition of
electric field into a sum of two quantities. The first term o
the right-hand side of~1! is independent of acceleratio
whereas the second term of this equation is linear in it. F
mula ~2! indicates that the same properties hold for the m
netic field. For this reason, the first terms of~1! and of~2! are
called velocity fields and the second ones are called ac
eration fields.

Velocity fields differ from acceleration ones in several r
spects, one of which is their behavior at a very large d
tances fromqi . Here one finds that velocity fields decrea
like R22 whereas acceleration ones decrease likeR21. This
property is related to the electromagnetic energy radiated
the system.

In order to find the radiation energy, let us examine t
standard expression for the energy–momentum tensor a
ciated with these fields~see Ref. 1, p. 81; Ref. 2, p. 605!.

Tmn5
1

4p S FmaFbngab1
1

4
FabFabgmnD . ~3!

Here, the field tensor is
862© 1997 American Association of Physics Teachers
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Fmn5S 0 2Ex 2Ey 2Ez

Ex 0 2Bz By

Ey Bz 0 2Bx

Ez 2By Bx 0

D . ~4!

In the present work Greek indices range from 0 to 3 a
Latin ones take the values 1, 2, and 3. The metricgmn is
diagonal and its entries are (1,2 1, 2 1, 2 1). The symbol

,n denotes the partial differentiation with respect toxn. An
upper dot denotes differentiation with respect to the pa
cle’s proper time.vm denotes its dimensionless 4-veloci
vm 5 g(1,v/c) whereg 5 (1 2 v2/c2)21/2. These defini-
tions determine the quantitiesam 5 v̇m and ȧm. The term
‘‘energy–momentum tensor’’ refers to the tensor depend
on electromagnetic fields and not on other elements of
system.

Since the energy–momentum tensor~3! is a homogeneous
quadratic function of the fields, only acceleration fields co
tribute to the energy and momentum emitted from a cha
in the form of radiation. Indeed, at large distances from
system, the intensity of radiation must decrease likeR22,
whereas other terms of~3! decrease faster and their cont
bution can be ignored if one integrates the energy pas
through a large enough spherical shellR2dV. Thus, in a
closed system which contains onlyonecharged particle, ac
celeration fields and radiation fields represent the same q
tity ~at least in regions which are far enough from t
charge!. Similarly, velocity fields cannot contribute to radia
tion. For this reason velocity fields of a point charge a
associated with bound energy. Note that bilinear terms of
energy–momentum tensor~3! which depend on velocity
fields and acceleration fields decrease likeR23 at large dis-
tances from the system. Hence, this part of the ener
momentum tensor also represents bound energy.

Acceleration is evidently a necessary condition for rad
tion. However, there are systems whose charges accel
and yet no radiation is emitted.4,5 This feature is illustrated in
current-carrying superconducting rings. Here charges ac
erate centripetally but no radiation is emitted.

Maxwell’s equations illuminate another property of acc
eration fields. Acceleration fields by themselves do not s
isfy Maxwell’s equations.6 Only the sum of velocity fields
and acceleration fields satisfies Maxwell’s equations. As
plained later, this property of acceleration fields makes th
unsuitable for an important application. Hence it is desira
to define radiation fields which are consistent with Ma
well’s equations. In the present work it is shown that a
definition of the notion of radiation fields and bound fiel
can be applied usefully. Pure radiation fields are used
defining an energy–momentum tensor which is nonsingu

The paper is organized as follows. In Sec. II it is sho
how radiation and bound fields of a system of point char
can be defined. A nonsingular energy–momentum tenso
such a system is constructed in Sec. III. In Sec. IV it
shown how two problems are settled: the problem of
infinite energy of a point charge and that of the 4/3 fac
appearing in a Lorentz transformation of the field mome
tum. Concluding remarks are the contents of the last sec

II. RADIATION FIELDS OF A CLOSED SYSTEM

Consider a system which consists of a finite number
point charges. The system is examined from a frame wh
863 Am. J. Phys., Vol. 65, No. 9, September 1997
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its center of energy is at rest. Given the motion of charg
one can use the Lienard–Wiechert formulas~1! and~2!, cal-
culate how the fields of the point charges interfere in
wave zone and find the radiation emitted from the en
system. In the present section it is shown how one can
these values and decompose the system’s fields into radia
and bound components.

Radiation fields are described here as spherical wa
emitted from the origin. For convenience, the origin is ch
sen at a point which is free of charge at all times and is
too far from the system’s center of energy. Such a spa
point can always be found in a system which consists o
finite number of point charges. As a matter of fact, the ma
ematical formalism which yields the required fields can
readily taken from the literature~Ref. 2, pp. 739–747!. The
following lines explain briefly how the contents of thes
pages of Jackson can be adapted for the outgoing fields
cussed here. The reader who wishes to find further de
may consult the relevant parts of Jackson’s book and
references mentioned therein.

In free space Maxwell’s equations yield the homogene
wave equation for the electric field

S ¹22
1

c2

d2

dt2DE~r ,u,f,t !50, ~5!

and similarly for the magnetic field. The time dependence
the fields is given as a Fourier integral

E~r ,u,f,t !5E
2`

`

E~r ,u,f,v!e2 ivtdv, ~6!

and similarly for the magnetic field. Performing the appr
priate inverse Fourier transform, one obtains the fields sp
tral resolutionE(r ,u,f,v) and B(r ,u,f,v). The applica-
tion of the wave equation~5! to the right-hand side of~6!
yields the Helmholtz wave equation

~¹21k2!E~r ,u,f,v!50, ~7!

wherek 5 v/c.
Define the angular momentum operator

L52 i r3“ ~8!

and the vector spherical harmonics

X lm~u,f!5
1

@ l ~ l 11!#1/2 LYlm~u,f!, ~9!

whereYlm(u,f) are the ordinary spherical harmonics. Usin
these quantities, one finds a solution of Maxwell equation
free space which takes the form

Erad5(
lm

F i

k
aE~ l ,m!“3hl

~1!~kr !X lm

1aM~ l ,m!hl
~1!~kr !X lmG , ~10!

Brad5(
lm

FaE~ l ,m!hl
~1!~kr !X lm

2
i

k
aM~ l ,m!“3hl

~1!~kr !X lmG , ~11!

wherehl
(1)(kr) denotes the spherical Hankel function of th

first kind, which is associated with theoutgoing spherical
863E. Comay
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waves discussed here. The coefficientsaE( l ,m) and
aM( l ,m) are defined as follows~see Ref. 2, pp. 745–747!:

aE~ l ,m!hl
~1!~kr !

5
k

Al ~ l 11!
E Ylm* ~u,f!r–E~r ,u,f,v!dV, ~12!

aM~ l ,m!hl
~1!~kr !

5
k

Al ~ l 11!
E Ylm* ~u,f!r–B~r ,u,f,v!dV. ~13!

The integrals~12! and~13! are performed on a spherical she
located in the wave zone. Carrying out the Fourier transfo
~6!, one obtains the radiation fields as functions of (t,x,y,z).
The fields ~10! and ~11! are hereafter called ‘‘radiation
fields.’’

This definition of radiation fields entails the correspondi
definition of bound fields which satisfy the obvious requir
ment: The electromagnetic fields of the system is a sum
bound fields and radiation ones. Thus we have

Ebound5Etotal2Erad, ~14!

Bbound5Btotal2Brad. ~15!

As can be seen from the construction of radiation fields
the wave zone bound fields of~14! and ~15! decrease faste
thanR21.

It is interesting to compare the radiation fields with t
acceleration fields:

~1! Radiation fields describe the actual radiation emit
from the entire system. Acceleration fields pertain t
single particles; they are related to radiation in an in
rect way which involves interference. A current loop o
superconducting material is an example of a nonrad
ing system whose charges accelerate.

~2! Radiation fields are referred to a specific point, whi
acts like a single fixed source~in the appropriate frame!
whereas the number of distinct sources of accelera
fields equals the number of point charges that comp
the system. Moreover, due to their acceleration, each
these sources is not fixed in space, but moves with
corresponding point charge.

~3! Radiation fields satisfy the homogeneous Maxwe
equations at all points except the origin, where t
spherical Hankel functions diverge. On the other ha
as pointed out in the Introduction, acceleration fields
not satisfy by themselves Maxwell’s equations. Only t
sum of velocity fields and acceleration fields satisfi
Maxwell’s equations.6

The last property of radiation fields is useful in the co
struction of the electromagnetic part of the system’s ener
momentum tensor. In the following section it is shown how
natural modification of this tensor yields finite expressio
for energy and momentum.

III. ENERGY –MOMENTUM TENSOR OF
ELECTROMAGNETIC FIELDS

The energy–momentum tensorTmn is associated with en
ergy, momentum and stress in the fields. The entriesTm0

represent the energy and momentum density~up to a factor
864 Am. J. Phys., Vol. 65, No. 9, September 1997
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of c! whereas elements of the formTm i describe energy and
momentum currents. In the present section it is shown h
the mathematical structure of~3! and the procedure tha
yields radiation fields can be used in the construction o
nonsingular energy–momentum tensor for a system of p
charges.

The energy–momentum tensor is constructed here i
form that satisfies two crucial requirements:

~A! It should represent correctly the energy and moment
exchanged between charges that comprise the sys

~B! It should described correctly the radiation emitted fro
the system.

These requirements are hereafter denoted as~A! and ~B!,
respectively.

For simplicity, consider a system of two point chargesq(1)

andq(2) . Relying on the Lienard–Wiechert formulas~1! and
~2!, one can write the electromagnetic fields of this system
a sum of fields associated withq(1) andq(2) , respectively,

F total
mn 5F ~1!

mn1F ~2!
mn . ~16!

Considering the energy–momentum tensor~3!, let us in-
troduce the notation

Tmn~F ~ i !
lr ,F ~ j !

hu![
1

4p S F ~ i !
maF ~ j !

bngab1
1

4
F ~ i !

abF ~ j !abgmnD .

~17!

Substituting the right-hand side of~16! into ~3!, noting
that this tensor is a second-order homogeneous functio
the fields and using the notation~17!, one obtains

Tmn~F ~1!
lr 1F ~2!

lr ,F ~1!
hu 1F ~2!

hu !

5Tmn~F ~1!
lr ,F ~1!

hu !1Tmn~F ~1!
lr ,F ~2!

hu !

1Tmn~F ~2!
lr ,F ~1!

hu !1Tmn~F ~2!
lr ,F ~2!

hu !. ~18!

Note that the first and the last terms of~18! depend on fields
of one and the same point charge whereas the other term
bilinear functions of fields of two distinct charges.

It can be shown that there is a problem with the first a
the last terms of~18!. Consider for example the first term
Tmn(F (1)

lr ,F (1)
hu ). As mentioned above, the entrie

Tm i(F (1)
lr ,F (1)

hu ) represent energy and momentum current
q(1) itself. In the corresponding system of small charged o
jects, these currents are associated with the internal st
This is reasonable for small charged objects but is unacc
able for anelementaryclassical point charge, because,
principle, for such a particle an internal stress isunmeasur-
able. ~Here, measurability is construed in the sense poin
out in the first paragraph of the Introduction.! Stress is asso
ciated with the entriesTkl(F (1)

lr ,F (1)
hu ). Covariance require-

ments indicate that the entire tensorTmn(F (1)
lr ,F (1)

hu ) of a
single point charge is meaningless. On the basis of this
gument it is concluded that the first and the last terms of~18!
should be deleted from an expression for the energ
momentum tensor of fields of two point charges.

The deletion of the first and the last terms on the rig
hand side of~18! does not affect the description of the inte
action betweenq(1) andq(2) , because this quantity is bilin
ear in q(1) and q(2) whereas each of the deleted terms is
quadratic homogeneous function of fields of a single po
charge. For this reason, requirement~A! continues to hold.
On the other hand, requirement~B! is violated because the
864E. Comay
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remaining terms represent only quantities which are bilin
in q(1) andq(2) . Thus, since the actual radiation depends
single-particle quantities as well as on interference terms,
deletion of the first and the last terms of~18! yields an
energy–momentum tensor which represents radiation in
rectly. These arguments prove that the following express
is not the required energy–momentum tensor:

TmnÞTmn~F ~1!
lr ,F ~2!

hu !1Tmn~F ~2!
lr ,F ~1!

hu !. ~19!

The procedure described in the previous section can
used for curing the tensor~19! of its defects. This is done by
means of pure radiation terms that are added to~19! in order
to represent those of the missing single-particle radiat
Thus the acceleration fieldsF (1)accel

mn of q(1) are determined
by means of the Lienard–Wiechert formulas~1! and~2!. Ex-
amining the wave zone, one can use the acceleration field
q(1) and construct the appropriate radiation fieldsF (1)rad

mn by
means of the procedure described in the previous sec
This process is repeated for the radiation fields ofq(2) . Thus
the following energy–momentum tensor satisfies the ra
tion requirement~B!:

Tfields
mn 5Tmn~F ~1!

lr ,F ~2!
hu !1Tmn~F ~2!

lr ,F ~1!
hu !

1Tmn~F ~1!rad
lr ,F ~1!rad

hu !1Tmn~F ~2!rad
lr ,F ~2!rad

hu !.

~20!

The generalization of~20! to a system ofN point charges
is straightforward:

Tfields
mn 5(

i 51

N

(
j Þ i

N

Tmn~F ~ i !
lr ,F ~ j !

hu!1(
i 51

N

Tmn~F ~ i !rad
lr ,F ~ i !rad

hu !.

~21!

It remains to prove that~20! and ~21! have the required
physical properties. To this end, let us compare the ten
~20! with the ordinary expression~18! ~where the latter holds
for small charged objects!. In ~20! the full self-interaction of
each chargeTmn(F ( i )

lr ,F ( i )
hu) ~wherei P $1,2%! is replaced by

the corresponding tensor of pureradiation fields
Tmn(F ( i )rad

lr ,F ( i )rad
hu ). Hence the additional terms of~20! as

well as the missing ones should be examined.
The additional terms of~20! are divergenceless at a

points except the origin. This property emerges from item~3!
of Sec. II, where it is pointed out that radiation fields a
constructed so that they satisfy the homogeneous Maxw
equations everywhere except the origin. Hence, carrying
a straightforward calculation~Ref. 1, pp. 82–83! one finds a
vanishing 4-divergence of terms of~20! depending on radia
tion fields

T~F ~ i !rad
lr ,F ~ i !rad

hu ! ,n
mn5Fmn‘ ‘ j ’ ’ n50. ~22!

Here ‘‘ j ’ ’ n is a null 4-current because radiation fields sati
the homogeneousMaxwell’s equations. It follows that the
radiation terms added to the energy–momentum tensor~20!
are divergenceless and exchange neither energy nor mo
tum with charges of the system. Hence radiation fields do
affect the motion of charges that belong to the syste
~These fields, however, interact with other charges locate
the wave zone.! Note that~22! depends on the fact that ra
diation fields satisfy the homogeneous Maxwell’s equatio
that is why acceleration fields cannot be used consistently
this purpose.
865 Am. J. Phys., Vol. 65, No. 9, September 1997
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The origin of coordinates is the sole singular point whe
radiation fields diverge. This point acts like a vacuum poi
which is a source of radiated energy and momentum. Ho
ever, this property of~20! does not lead to a contradiction
Indeed, as pointed out in the second paragraph of Sec. II
position of each of the system’s charges never coincides w
the origin. External charges, which might be affected by
emitted radiation are far away from the system and from
origin of coordinates as well. Hence, the additional terms
~20! do not yield contradictions.

Let us turn to the two single-particle terms of~18! which
are omitted from~20!. As is well known, these terms lead t
the following features:

~a! The self-energy and momentum of the fields diverg
~b! A self-force is exerted on a charge by its own fields

The removal of~a! is accepted favorably because it is o
of the motivations for the present work. However, result~b!
should be corrected in order to restore the corresponde
between a point charge and limit of a small charged obje
The present work discusses the fields’ sector of a system
classical point charges, whereas result~b! pertains to the par-
ticles’ sector. Therefore the correction of~b! is mentioned
very briefly. As shown in the literature, property~b! is ac-
counted for if the Lorentz–Dirac~LD! equation~see Ref. 1,
pp. 210–211; Ref. 3, p. 141!

q2

c2 ȧm51.5Mcam21.5qFext
mnvn2

q2

c2 ~aaaa!vm ~23!

is adopted as the equation of motion of point charges. T
equation is regarded as a fundamental element of the th
and not as a result that can be deduced from the syste
equations of motion. Here the terms proportional toq2 are
analogues of the self-force exerted on a small charged ob
by its own fields.

The interaction terms of the energy–momentum ten
~20! yield at the locationx(1)

m of the first charge

T,n
mn52F ~2!

mn j n~1! . ~24!

This result is obtained straightforwardly from a calculati
like the one presented on pp. 82 and 83 of Ref. 1. T
property is easily generalized for the case of a many-part
system. Considering thei th charge, one finds that the tens
~21! yields theexternal force Fext

mn associated with all othe
charges, except thei th one. This outcome is consistent wit
the LD equation~23!, where the external fieldFext

mn is used.

IV. PROPERTIES OF THE ENERGY –MOMENTUM
TENSOR OF THE FIELDS

The new energy–momentum tensor~21! was constructed
in two steps. First, it is recognized that, in principle, stre
effects Tm i(F ( j )

lr ,F ( j )
hu) of the j th point charge on itself are

unmeasurable even in a thought experiment. Hence, to m
tain covariance, the entire tensorTmn(F ( j )

lr ,F ( j )
hu) is removed.

The second step is the addition of tensors depending on
diation fields representing single-particle radiation in t
wave zone. This step is needed in order to balance
energy–momentum of the system. Thus the principles u
are measurability, covariance and energy–momentum c
servation.

It is very pleasing to find that the energy–momentum~21!
derived from these principles settles two problems that h
865E. Comay
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haunted classical electrodynamics for a long time. One
these problems is the infinite energy associated with
fields of a single point charge. This problem simply does
arise if the tensor~21! is used. Indeed, the infinite energ
emerges from terms depending on single-particle velo
fields. As explained above, single-particle terms are not
cluded in the energy–momentum tensor~21!.

Another problem is the 4/3 factor associated with the L
entz transformation of the field momentum of a sing
charge. This problem is settled for small charged objects
means of a Poincare´ stress required for stabilizing them~see,
e.g., Ref. 7!. However, this procedure cannot be applied to
point charge, because, as mentioned in the Introduction,
existence of internal stress is inconsistent with its elemen
nature.

In the case of a point charge, the 4/3 problem is settle
a different way. Examining the energy–momentum ten
~21!, it is realized that itvanishesfor a system of a single
motionless point charge. Therefore, the system’s ener
momentum is just the particle’s mechanical part

pm5mcvm, ~25!

wherem is the particle’s rest mass. Evidently,pm of ~25! is
a 4-vector and all its entries transform as required. It follo
that for the tensor~21!, the 4/3 problem does not arise. Th
the solution of the 4/3 problem for a point charge is co
pletely different from that of a small charged object, whi
involves the introduction of Poincare´ stress.

V. CONCLUDING REMARKS

Radiation and bound fields are introduced here as not
that are not identical to acceleration and velocity fields,
spectively. Here, radiation fields are based on an appro
which regards the system as a whole. Thus all radiation fie
are seen as emitted from one fixed point~in a frame where
the system’s center of energy is motionless!, which is chosen
as the origin of spatial coordinates. There is just one sing
point of the theory and that is the origin. However, no dif
culty arises from this singularity, because the origin is ch
sen so that the position of each point charge never coinc
with it. Hence, all interaction quantities are regular.

The energy–momentum tensor~21! contains interaction
terms and additional terms representing the contribution
single-particle radiation fields. Its construction is based
three simple and self-evident assumptions: measurabilit
thought experiments, covariance and energy–momen
conservation. The outcome settles the problems of infi
energy in the fields of an elementary classical point cha
and of the 4/3 factor of Lorentz transformation of mome
tum.

As explained in Sec. III, the LD equation~23! is an essen-
tial element required for a balance of the single-parti
terms which are omitted from the energy momentum ten
~21!. Hence, the formulation presented here contains
problematic aspects of this equation. A serious problem
this equation is the one-dimensional motion of a chargeat-
tracted to the origin by a Coulomb force. It can be show
that if this charge obeys the LD equation then the mov
charge reverses its motion and recedes to infinity with a
locity that approaches the speed of light.8,9 ~In the literature
discussing the LD equation, such a solution is called a r
away solution.! However, the problem of the repulsive forc
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exerted between two charges obeying the LD equation yie
physically acceptable solutions.10 Furthermore, Rutherford
scattering problems of the LD equation of a point char
attracted to the origin by a Coulomb force also yield app
priate results.11 These calculations show that the scatter
charge moves inertially ast→`, and the entire process con
serves energy. Thus these important problems provide
amples illustrating the self-consistency of the theory form
lated here. On the other hand, it is not clear ho
instantaneousenergy balance can be defined because the
terms of the LD equation which are proportional toq2 are
omitted here from energy consideration.

It can be concluded that in the case of a repulsive fo
and that of Rutherford scattering, energy balance is resto
in the final state. Indeed, in the present interpretation,
charges do not interact in the final state; their motion is
ertial and their self-energy is of a purely mechanical natu
At this time, the radiated energy has already left the inter
tion region. Therefore, it is represented appropriately by
radiation fields described in Sec. II.

Another example illustrating the validity of the LD equa
tion is uniform rotation of charges. For example, let exter
nonelectromagnetic forces maintain the uniform rotation
an insulating disk;n charges are distributed evenly on th
circumference of this disk. Calculations show that the th
forces involved ~the external nonelectromagnetic forc
which is exerted by the disk on the charges, the electrom
netic force exerted on each charge by all other charges,
the LD force of each charge on itself! are consistent with the
multipole radiation emitted from the system.12

The objective of the present work is to find a formulatio
of classical electrodynamics for point charges which is f
of infinite quantities. This assignment has also been und
taken earlier~Ref. 3, Chap. 7; Ref. 13!. The results of the
earlier approach are not the same as those described a
The main differences are as follows.

The earlier approach uses an action principle which
pends on retardedand advanced potentials and fields. Th
LD equation does not enter explicitly into the fundamen
equations of the theory and is derived from an appropr
combination of retarded and advanced fields. In system
more than one point charge, the interactions are not medi
by fields, but by the Wheeler/Feynman action at a dista
prescription.14 The present work refrains from using ad
vanced potentials and fields. Hence, the LD equation~23! is
used explicitly. Charges interact with each other via the
dinary retarded fields. The price paid is the lack of actio
Thus the energy–momentum tensor is constructed in an
ternative way, as described in Sec. III. This tensor takes
nite values at all points except one. As explained, charges
not affected by this singularity.

Some elements of the present work have been publis
earlier, where an analog of the energy–momentum ten
~21! is constructed from acceleration fields.15 The earlier ver-
sion, however, is unsatisfactory because acceleration fi
do not obey the homogeneous Maxwell equations, ther
yielding an energy–momentum tensor whose 4-diverge
does not vanish in the vacuum.
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