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The decomposition of electromagnetic fields for a system of elementary classical point charges into
velocity fields and acceleration fields is suggested by the appropriate terms in the Lienard—Wiechert
formulas. This paper introduces “bound” fields and “radiation” fields which are relatednbut
identicalto velocity and acceleration fields, respectively. It is shown how this approach can be used
in the construction of an energy—momentum tensor that is free of infinite quantities and settles the
4/3 problem in the Lorentz transformation of momentum. 1®7 American Association of Physics
Teachers.

[. INTRODUCTION sequence of small charged objects, where each of them has
the same amount of charge and their spatial dimensions tend

The purpose of the present work is to discuss the structurl® Zero. o o )
of classical electrodynamics for systems of elementary clas- In @ system of this kind, one cannot divide space into a
sical point charges. As is well known, nature obeys the law$um of infinitesimal volume elementsV, each of which
of classical electrodynamics only in circumstances where th€ontains arinfinitesimalamount of charge. This feature en-
classical limit of quantum mechanics holds. This require-tails several analytical differences between systems of small
ment is not satisfied in cases where charges are too clog&arged objects and those of point charges. In the present
together. Hence the discussion is restricted tonlathemati- ~ WOrk it is shown how pure radiation fields can be used in a
cal properties of the theory. In this sense, the notions oflassical theory of point charges which is free of expressions
experiment and measurability hereafter refer to thought exyielding infinite energy and momentum.
periments and not to actual ones. Here, thought experiments The electromagnetic fields of a point chargeare ob-
denote hypothetical experiments with a device that is astained from the Lienard—Wiechert formulésee Ref. 1, p.
sumed to follow exactly the mathematical laws of classicall62 or Ref. 2, p. 657
electrodynamics. 22D _

Theoretical properties of classical electrodynamics depend E=q; (1~v7/c")(R~Rvic) + Rx{(R—Rvic) xa) ,

: : ! (R—R-v/c)® c’(R—R-v/c)®

on the structure of its charge constituents. Thus one may
construct a theory for particles whose charge density is @
bounded. A simple example i_s a system which consis'gs pf B=RXE/R. )
particles whose charge density varies continuously within
their volume and vanishes elsewhere. Particles having thiglere R denotes the displacement vector from the retarded
property are hereafter called small charged objects, whergosition of the charge; to the point where the fields are
the word “small” describes the object'spatial dimensions calculated;v and a denote the retarded velocity and accel-
Analyzing the mathematical structure of a hypothetical syseration ofq;, respectively.
tem of this kind, one can consider an infinitesimal volume Formula(l) serves as a basis for the decomposition of the
element AV which contains aninfinitesimal amount of electric field into a sum of two quantities. The first term on
chargeAQ. In so doing, one finds that the interactiondo®  the right-hand side of1) is independent of acceleration
with itself can be ignored because it depends on the secorifhereas the second term of this equation is linear in it. For-
power of AQ whereas the interaction &fQ with the rest of M2 (2) indicates that the e hold fo (rzt)haergnag-
the system is linear iM Q. Another important feature of a T '
theory of small charged objects is that it is free of infinite called velocity fields and the second ones are called accel-

guantities. Thus the solutions of Maxwell equations yieldera’[Ion fields.

; . . - Velocity fields differ from acceleration ones in several re-
retarded potential$ from which regular fields and their en- Y

. spects, one of which is their behavior at a very large dis-
ergy momentum tensor are derivésee Ref. 1, pp. 80-83; _ : L
Ref. 2, pp. 601-608 tances fromg; . Here one finds that velocity fields decrease

. 72 . .
The phenomenon of charge quantization and the discove&e R™# whereas acceleration ones decreaseRke. This

of particles whose volume looks like a point motivate thethrgpsege'; related to the electromagnetic energy radiated by
introduction of elementary point charges into classical elec- In )c/)rder .to find the radiation enerav. let us examine the
trodynamics. One can also find theoretical reasons for domgtandard exoression for the ener —gr]%/(,)mentum {ensor asso-
that. Thus Landau and Lifshitz use special relativity and &Xiated with tFr)lese fieldssee Ref 1gy 81: Ref. 2. p. 605

plain why anelementaryclassical particle should be point- - P- oL &P

like (see Ref. 1, pp. 43—44Rohrlich uses quantum mechan-
ics and arrives at analogous conclusidr&ystems of point
charges are the main topic of the present work. These par-
ticles are treated as unique entities amat as a limit of a  Here, the field tensor is

1 a B 1 afl v
Tor= o | FRoRBrgaat 7 FOPF 00m" . 3
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0 -E, —E, —E its center of energy is at rest. Given the motion of charges,
one can use the Lienard—Wiechert formulasand(2), cal-

FAv— B 0 —-B, By 4) culate how the fields of the point charges interfere in the

y B 0 —-By|’ wave zone and find the radiation emitted from the entire

E. _B B 0 system. In the present section it is shown how one can use
z y x these values and decompose the system'’s fields into radiation

In the present work Greek indices range from 0 to 3 andand bound components.

Latin ones take the values 1, 2, and 3. The megj; is Radiation fields are described here as spherical waves

diagonal and its entries are (4,1, — 1, — 1). The symbol ~ €mitted from the origin. For convenience, the origin is cho-
, denotes the partial differentiation with respectxto An ~ S€n at a point which is free of charge at all times and is not

upper dot denotes differentiation with respect to the parti{00 far from the system’s center of energy. Such a spatial
cle’s proper time.w* denotes its dimensionless 4-velocity POINt can always be found in a system which consists of a
v# = y(1vic) wherey = (1 — v%/c?)~ Y2 These defini- finite number of point charges. As a matter of fact, the math-

! : N C . ematical formalism which yields the required fields can be
‘tllons determine the quant|t|?53“ f_ v” ar?d a®. Thg termd_ readily taken from the literaturRef. 2, pp. 739—747 The
enelrgy—momentyn}telgsor dre ers to t ﬁtenlsor epenf'm%llowing lines explain briefly how the contents of these
on electromagnetic fields and not on other elements of thg,jeq of Jackson can be adapted for the outgoing fields dis-

sy;t_em. " um <ah cussed here. The reader who wishes to find further details
|c?ce. fe engrgy—fn;]on;g?dum eln(;bllsla o.mo%_e?;ous may consult the relevant parts of Jackson's book and the
quadratic function of the fields, only acceleration fields coNatarences mentioned therein.

tribute to the energy and momentum emitted from a charge |, free space Maxwell’'s equations yield the homogeneous
in the form of radiation. Indeed, at large distances from tthave equation for the electric field
system, the intensity of radiation must decrease RK&, )
whereas other terms @B) decrease faster and their contri-
232
¢ dt

bution can be ignored if one integrates the energy passing
through a large enough spherical shefldQ). Thus, in a . L .

g g gh sp and similarly for the magnetic field. The time dependence of
fhe fields is given as a Fourier integral

V2 E(r,6,¢,t)=0, (5)

closed system which contains ordye charged patrticle, ac-
celeration fields and radiation fields represent the same qua
tity (at least in regions which are far enough from the o _
charge. Similarly, velocity fields cannot contribute to radia- E(r,e,d),t):f E(r.0,¢,0)e™"“'do, (6)

tion. For this reason velocity fields of a point charge are ’°°

associated with bound energy. Note that bilinear terms of thend similarly for the magnetic field. Performing the appro-
energy—momentum tensdB) which depend on velocity priate inverse Fourier transform, one obtains the fields spec-
fields and acceleration fields decrease Be® at large dis-  tral resolutionE(r, 0, ¢,w) and B(r,6,¢,w). The applica-
tances from the system. Hence, this part of the energytion of the wave equatioi5) to the right-hand side of6)
momentum tensor also represents bound energy. yields the Helmholtz wave equation

Acceleration is evidently a necessary condition for radia- 5 1o
tion. However, there are systems whose charges accelerate (VE+KkE(r,0,¢,0)=0, @)
and yet no radiation is emitté This feature is illustrated in  \yherek = w/c
current-carrying superconducting rings. Here charges accel- pefine the aﬁgular momentum operator
erate centripetally but no radiation is emitted.

Maxwell’s equations illuminate another property of accel- L=—irxVv (8
eration fields. Acceleration fields by themselves do not sat: : :
isfy Maxwell's equationg. Only the sum of velocity fields and the vector spherical harmonics
and acceleration fields satisfies Maxwell's equations. As ex- 1
plained later, this property of acceleration fields makes them  Xim(6,¢)= TN LY \m(6,6), ()
unsuitable for an important application. Hence it is desirable
to define radiation fields which are consistent with Max-whereY (6, ¢) are the ordinary spherical harmonics. Using
well’s equations. In the present work it is shown that a re-these quantities, one finds a solution of Maxwell equations in
definition of the notion of radiation fields and bound fields free space which takes the form
can be applied usefully. Pure radiation fields are used in
defining an energy—momentum tensor which is nonsingular. g :Z

The paper is organized as follows. In Sec. Il it is shown fad
how radiation and bound fields of a system of point charges
can be defined. A nonsingular energy—momentum tensor for (1)
such a system is constructed in Sec. lll. In Sec. IV it is Fam(lmhy (kr)X,m}, (10
shown how two problems are settled: the problem of the
infinite energy of a point charge and that of the 4/3 factor g ZE
appearing in a Lorentz transformation of the field momen- rad
tum. Concluding remarks are the contents of the last section.

i
< ae(l.mv xh{M(kr)Xm

ag(l,mh{(kr) X

i
— —ay(l,mVxhYkr)X } 11
Il. RADIATION FIELDS OF A CLOSED SYSTEM ic am(l.m (KO Xim (D

Consider a system which consists of a finite number o1whereh|(1)(kr) denotes the spherical Hankel function of the
point charges. The system is examined from a frame wherfrst kind, which is associated with theutgoing spherical
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waves discussed here. The coefficieras(l,m) and of c) whereas elements of the forft"' describe energy and
ay(l,m) are defined as followssee Ref. 2, pp. 745-747 momentum currents. In the present section it is shown how
the mathematical structure dB) and the procedure that

1) . L . - -
aE(I,m)hf (kr) yields radiation fields can be used in the construction of a
K nonsingular energy—momentum tensor for a system of point
=———— | YE(6,8)r-E(r,0,¢,0)dQ, 12)  charges.
VI(I+1) f im( 0, )1 E( ) 12 The energy—momentum tensor is constructed here in a

form that satisfies two crucial requirements:

(1)
(1, mhyi=(kr) (A) It should represent correctly the energy and momentum

k f exchanged between charges that comprise the system.
=—— | Y;,(6,0)r-B(r,0,¢,0)dQ. (13  (B) Itshould described correctly the radiation emitted from
vI(1+1) " the system.

The integralg12) and(13) are performed on a spherical shell These requirements are hereafter denotedAgsand (B),
located in the wave zone. Carrying out the Fourier transformrespectively.

(6), one obtains the radiation fields as functionstok(y,z). For simplicity, consider a system of two point charges
T_he fields (10) and (11) are hereafter called “radiation andqy). Relying on the Lienard—Wiechert formulél and
fields.” (2), one can write the electromagnetic fields of this system as

This definition of radiation fields entails the correspondingg sum of fields associated withy) andq,), respectively,
definition of bound fields which satisfy the obvious require-

ment: The electromagnetic fields of the system is a sum of Figa=F{1) T F(3)- (16)

bound fields and radiation ones. Thus we have Considering the energy—momentum tenéd; let us in-

Epound™ Etota— Erad: (14)  troduce the notation
Bb a B 1~ B d- (15) v 1 a 12 1 a v
e o . e TR = g | FEFG9ast 5 FETFG)as0”” |
As can be seen from the construction of radiation fields, in ™
the wave zone bound fields ¢f4) and (15) decrease faster (17)
than.Rfl. _ o _ Substituting the right-hand side @16) into (3), noting
It is interesting to compare the radiation fields with thethat this tensor is a second-order homogeneous function of

acceleration fields: the fields and using the notatidh?7), one obtains

(1) Radiation fields describe the actual radiation emittedyur pe 4 grAo 79
: o : (FiTFe . Fh)
from the entire system. Acceleration fields pertain to
single patrticles; they are related to radiation in an indi- :T“V(F(”ﬂ ,F(”l")
rect way which involves interference. A current loop of a A 6 vk b
superconducting material is an example of a nonradiat- +TEY(FG) F) FTH(F S F ). (18)
ing system whose charges accelerate.
(2) Radiation fields are referred to a specific point, which

acts like a single fixed sourden the appropriate frame  piinear functions of fields of two distinct charges.

whereas the number of distinct sources of acceleration It can be shown that there is a problem with the first and

fields equals the number of point.charges th_at compris e last terms 0f18). Consider for example the first term
the system. Moreover, due to their acceleration, each af,, FAp 70 A tioned ab th i
N GrRLE s mentioned above, e entries

these sources is not fixed in space, but moves with the . ( 0
corresponding point charge. T™* (F(f) ,F(”l)) represent energy and momentum current of
(3) Radiation fields satisfy the homogeneous Maxwell'sq) itself. In the corresponding system of small charged ob-
equations at all points except the origin, where thejects, these currents are associated with the internal stress.
spherical Hankel functions diverge. On the other handThis is reasonable for small charged objects but is unaccept-
as pointed out in the Introduction, acceleration fields doable for anelementaryclassical point charge, because, in
not satisfy by themselves Maxwell’s equations. Only theprinciple, for such a particle an internal stressirsneasur-
sum of velocity fields and acceleration fields satisfiesable (Here, measurability is construed in the sense pointed
Maxwell’s equation$. out in the first paragraph of the Introductipistress is asso-

. . . Kl =A\p 76 . AL
The last property of radiation fields is useful in the con-ciated \,N'th the entrieg (F(l_) F)- Ccy)va)tlpancge require

struction of the electromagnetic part of the system’s energyents indicate that the entire tensot”(F 1),F (1)) of a

momentum tensor. In the following section it is shown how asingle point charge is meaningless. On the basis of this ar-

natural modification of this tensor yields finite expressionsgument it is concluded that the first and the last termc.8f
for energy and momentum. should be deleted from an expression for the energy—

momentum tensor of fields of two point charges.
The deletion of the first and the last terms on the right-
IIl. ENERGY —=MOMENTUM TENSOR OF hand side 0f18) does not affect the description of the inter-
ELECTROMAGNETIC FIELDS action betweert;) andq,, because this quantity is bilin-
. _ _ ear inq;y and ¢,y whereas each of the deleted terms is a
The energy—momentum tens®” is associated with en- quadratic homogeneous function of fields of a single point
ergy, momentum and stress in the fields. The entfi€$  charge. For this reason, requireméAd continues to hold.
represent the energy and momentum den@ifyto a factor On the other hand, requireme(®) is violated because the

0
+F5%)

PHTERLDFE)

Note that the first and the last terms(@B) depend on fields
of one and the same point charge whereas the other terms are
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remaining terms represent only quantities which are bilinear The origin of coordinates is the sole singular point where
in g(1y andq(y). Thus, since the actual radiation depends orradiation fields diverge. This point acts like a vacuum point,
single-particle quantities as well as on interference terms, thehich is a source of radiated energy and momentum. How-
deletion of the first and the last terms (f8) yields an  ever, this property 0f20) does not lead to a contradiction.
energy—momentum tensor which represents radiation incothdeed, as pointed out in the second paragraph of Sec. Il, the
rectly. These arguments prove that the following expressiomosition of each of the system’s charges never coincides with

is not the required energy—momentum tensor: the origin. External charges, which might be affected by the
\ ) \ ) emitted radiation are far away from the system and from the
THYETH(E L) R L)+ THI(FS L FE)- (19 origin of coordinates as well. Hence, the additional terms in

0) do not yield contradictions.

. . . . 2
The procedure described in the previous section can bge Let us turn to the two single-particle terms (@) which

used for curing the tenseL9) of its defects. This is done by ;0 s mitted fron(20). As is well known, these terms lead to
means of pure radiation terms that are addeaqj) in ordgr __the following features: '

to represent those of the missing single-particle radiation.
Thus the acceleration fields{; .., of q) are determined (& The self-energy and momentum of the fields diverge.
by means of the Lienard—Wiechert formuld3 and(2). Ex-  (b) A self-force is exerted on a charge by its own fields.

amining the wave zone, one can use the acceleration fields of The removal ofa) is accepted favorably because it is one
Q) and construct the appropriate radiation fief$),qby  of the motivations for the present work. However, resbjt
means of the procedure described in the previous sectioshould be corrected in order to restore the correspondence
This process is repeated for the radiation fieldg@f. Thus  between a point charge and limit of a small charged object.
the following energy—momentum tensor satisfies the radiaThe present work discusses the fields’ sector of a system of

tion requirementB): classical point charges, whereas resgbitpertains to the par-
v viehp 8 yiehp £8 ticles’ sector. Therefore the correction @f) is mentioned
Thetas= T (F (1) . F %) + TH(F (5 . F (1) very briefly. As shown in the literature, propertly) is ac-

counted for if the Lorentz—Dira_D) equation(see Ref. 1,
pp. 210-211; Ref. 3, p. 141

q2 q2
2 at=L15Mca'~ L5F4,~ 5 (@“a)v” (23

+ T#V(F?ﬁrad' F(nla)rad> + T'U'V(F?Zp)rad' F(nza)rad)'
(20)

The generalization 0f20) to a system ofN point charges

i ightf : . . . . .
Is straightforward is adopted as the equation of motion of point charges. This

NN N equation is regarded as a fundamental element of the theory

T 2 2 TE(FY FIN+ 2 TH(F a0 Flhad-  and not as a result that can be deduced from the system’s
=17 =1 equations of motion. Here the terms proportionaljfoare

(21) analogues of the self-force exerted on a small charged object

It remains to prove that20) and (21) have the required by its own fields.
physical properties. To this end, let us compare the tensor The interaction terms of the energy—momentum tensor
(20) with the ordinary expressiof18) (where the latter holds (20) yield at the locatiorx(;, of the first charge
for small charged objecksin (20) the full self-interaction of THY— _ Ry (24)
each charg@**(F ,F (i) (wherei e {1,2) is replaced by PARRCIIECOE
the corresponding tensor of pureadiation fields This result is obtained straightforwardly from a calculation
TMV(FE\i’)JrawFW ). Hence the additional terms ¢20) as like the one presented on pp. 82 and 83 of Ref. 1. This

well as the rr({i)srasing ones should be examined. property is easily generalized for the case of a many-particle
The additional terms of20) are divergenceless at all System. Considering thi¢h charge, one finds that the tensor

points except the origin. This property emerges from it8in  (21) yields theexternalforce F£4;; associated with all other

of Sec. Il, where it is pointed out that radiation fields arecharges, except thigh one. This outcome is consistent with

constructed so that they satisfy the homogeneous Maxwell'the LD equation23), where the external fiele~” is used.

equations everywhere except the origin. Hence, carrying out

a straightforward calculatiofRef. 1, pp. 82—8Bone finds a IV. PROPERTIES OF THE ENERGY —MOMENTUM
vanishing 4-divergence of terms (#0) depending on radia- TENSOR OF THE FIELDS
tion fields
The new energy—momentum teng@d) was constructed
in two steps. First, it is recognized that, in principle, stress

Here “j" , is a null 4-current because radiation fields satisfyeffects T“!(F¢f§ ,F ) of the jth point charge on itself are
the homogeneousMaxwell’'s equations. It follows that the unmeasurable even in a thought experiment. Hence, to main-
radiation terms added to the energy—momentum te(@@r tain covariance, the entire tens‘ﬁ’r"’(FE‘j’; ,Fg‘;)) is removed.

are divergenceless and exchange neither energy nor momenhe second step is the addition of tensors depending on ra-
tum with charges of the system. Hence radiation fields do nadiation fields representing single-particle radiation in the
affect the motion of charges that belong to the systemwave zone. This step is needed in order to balance the
(These fields, however, interact with other charges located iBnergy—momentum of the system. Thus the principles used
the wave zone.Note that(22) depends on the fact that ra- are measurability, covariance and energy—momentum con-
diation fields satisfy the homogeneous Maxwell's equationsservation.

that is why acceleration fields cannot be used consistently for It is very pleasing to find that the energy—moment{2t)

this purpose. derived from these principles settles two problems that have

T(F?i’;rad'Fg)erad)vav:F#w j”",=0. (22
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haunted classical electrodynamics for a long time. One oéxerted between two charges obeying the LD equation yields
these problems is the infinite energy associated with th@hysically acceptable solutiod$.Furthermore, Rutherford
fields of a single point charge. This problem simply does noscattering problems of the LD equation of a point charge
arise if the tensof21) is used. Indeed, the infinite energy attracted to the origin by a Coulomb force also yield appro-
emerges from terms depending on single-particle velocitypriate result! These calculations show that the scattered
fields. As explained above, single-particle terms are not ineharge moves inertially as—<0, and the entire process con-
cluded in the energy—momentum tensat). serves energy. Thus these important problems provide ex-

Another problem is the 4/3 factor associated with the Lor-amples illustrating the self-consistency of the theory formu-
entz transformation of the field momentum of a singlelated here. On the other hand, it is not clear how
charge. This problem is settled for small charged objects bynstantaneougnergy balance can be defined because the two
means of a Poincargress required for stabilizing thefsee, terms of the LD equation which are proportionaldd are
e.g., Ref. 7. However, this procedure cannot be applied to aomitted here from energy consideration.
point charge, because, as mentioned in the Introduction, the It can be concluded that in the case of a repulsive force
existence of internal stress is inconsistent with its elementargnd that of Rutherford scattering, energy balance is restored
nature. in the final state. Indeed, in the present interpretation, the

In the case of a point charge, the 4/3 problem is settled itharges do not interact in the final state; their motion is in-
a different way. Examining the energy—momentum tensoertial and their self-energy is of a purely mechanical nature.
(22), it is realized that itvanishesfor a system of a single At this time, the radiated energy has already left the interac-
motionless point charge. Therefore, the system’s energytion region. Therefore, it is represented appropriately by the
momentum is just the particle’s mechanical part radiation fields described in Sec. Il.

ph=meph (25) _ Anothe_r example_ illustrating the validity of the LD equa-

' tion is uniform rotation of charges. For example, let external
wherem is the particle’s rest mass. Evidently” of (25) is  nonelectromagnetic forces maintain the uniform rotation of
a 4-vector and all its entries transform as required. It followsan insulating diskn charges are distributed evenly on the
that for the tensof21), the 4/3 problem does not arise. Thus circumference of this disk. Calculations show that the three
the solution of the 4/3 problem for a point charge is com-forces involved (the external nonelectromagnetic force

pletely different from that of a small charged object, whichWhich is exerted by the disk on the charges, the electromag-
involves the introduction of Poincastress. netic force exerted on each charge by all other charges, and

the LD force of each charge on itseHfre consistent with the
multipole radiation emitted from the systefn.
The objective of the present work is to find a formulation
V. CONCLUDING REMARKS of classical electrodynamics for point charges which is free

Radiation and bound fields are introduced here as notion@f infinite quantities. This assignment has also been under-
that are not identical to acceleration and velocity fields, relaken earlier(Ref. 3, Chap. 7; Ref. 13The results of the
spectively. Here, radiation fields are based on an approadffrier approach are not the same as those described above.
which regards the system as a whole. Thus all radiation fielddh® main differences are as follows. . _
are seen as emitted from one fixed pdiint a frame where ~ 1he earlier approach uses an action principle which de-
the system’s center of energy is motionlesghich is chosen pends on retardednd advanced potentials and fields. The

as the origin of spatial coordinates. There is just one singuldyD €quation does not enter explicitly into the fundamental
point of the theory and that is the origin. However, no diffi- €quations of the theory and is derived from an appropriate
culty arises from this singularity, because the origin is cho-combination of retarded and advanced fields. In systems of

sen so that the position of each point charge never coinciddg0r€ than one point charge, the interactions are not mediated
with it. Hence, all interaction quantities are regular. by fields, but by the Wheeler/Feynman action at a distance

The energy—momentum tens@®1) contains interaction prescription-* The present work refrains from using ad-
terms and additional terms representing the contribution o¥@nced potentials and fields. Hence, the LD equati8) is
single-particle radiation fields. Its construction is based or}!S€d explicitly. Charges interact with each other via the or-
three simple and self-evident assumptions: measurability igfinary retarded fields. The price paid is the lack of action.
thought experiments, covariance and energy—momentunhhUs the energy—momentum tensor is constructed in an al-
conservation. The outcome settles the problems of infinité€rnative way, as described in Sec. Ill. This tensor takes fi-
energy in the fields of an elementary classical point chargé“te values at all points except one. As explained, charges are

and of the 4/3 factor of Lorentz transformation of momen-"Ot affected by this singularity. .
tum. Some elements of the present work have been published

As explained in Sec. Ill, the LD equatig@3) is an essen- carlier, where an analog of the energy—momentum tensor
tial element required for a balance of the single-particle(21) is constructed from acceleration fieldsThe earlier ver-

terms which are omitted from the energy momentum tenso?ion' however, is unsatisfactory because acceleration fields
(21). Hence, the formulation presented here contains alij.0 not obey the homogeneous Maxwell equations, thereby

problematic aspects of this equation. A serious problem Oyleldmg an energy-momentum tensor whose 4-divergence
this equation is the one-dimensional motion of a chafze does not vanish in the vacuum.

tracted to the origin by a Coulomb force. It can be shown

that if this charge obeys the LD equation then the moving

charge reverses its motion and recedes to infinity with a veACKNOWLEDGMENTS

locity that approaches the speed of li§fit(In the literature

discussing the LD equation, such a solution is called a run- | wish to thank two referees whose remarks made an im-
away solution. However, the problem of the repulsive force portant contribution to the final form of this work.
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