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Summary. The equations of motion of a classical system of electric
charges, magnetic monopoles and electromagnetic waves are derived
by using five axioms. The work answers the question: what are the
equations of motion of this system which can be derived from a regular
Lagrangian density?

PACS. 03.30, — Special relativity.

1. — Introduction.

The formulation of classical electrodynamics of electric charges (hence-
forth called charges), magnetic monopoles (henceforth called monopoles) and
electromagnetic waves (henceforth called waves) will use potentials, fields
and currents. Subscripts ), , and ., will denote quantities associated with
charges, monopoles and waves, respectively. Units in which the velocity of
light ¢ = 1 are used. Greek indices run from 0 to 3 and Latin indices run from 1
to 3. All calculations will be carried out for the vacuum and, therefore, D
and H will not be usged.

The work iz divided into seven sections. This first section is the introduc-
tion. The second and the third sections present the theory for systems of
charges and waves and for systems of monopoles and waves, respectively.

(*) To speed up publication, the author of this paper has agreed to not receive the
proofs for correction.
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The fourth section classifies the different types of fields. The five axioms upon
which the work is based are presented in the fifth section. In the sixth section,
the Lagrangian, the equations of motion and the energy-momentum tensor
for systems of charges, monopoles and waves are derived. The last section
contains some concluding remarks.

2. — Systems without menopoles.

A theory of classical systems of charges, monopoles and waves should
include classical electrodynamics of charges and waves as a subtheory. This
subtheory can be neatly written in relativistic notation ((), pp. 66-95, or (),
Pp. 95-121). The electromagnetic fields are components of the tensor

0O E E &
—E, 0 B, —B,
—E, —B, 0 B
—B, B,—B, 0/

(l) F(e,w)‘w:

The fields are derived from a 4-potential A«:

@) By = 0,4 9,4

(e, wur — (e,w)¥ — Y (e,wlp ?
The current of the charges is a 4-vector
(3) (o = 0015 D1y Vay V5) .

The fields satisfy the four Maxwell equations

(4) azF(e,w}“ ‘j+ auF(e,w)M'l‘ avF(e,W)/\,u: 0,

W

(5) o, B = 4w

where (4) is a compact form of the two homogeneous Maxwell equations and (5)
represents the two inhomogeneous ones. The Lorentz law of force is

dpPu

(6) P

- F(e,w)’wJ(e)V )

(*} L.D. Laxpav and E.M. Lirsmitz: The Classical Theory of Fields (Pergamon
Press, London, 1962).

(*) D.E. Sorer: Olassical Field Theory (John Wiley and Sons, New York, N. Y.,
1976).
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where P# is the 4-vector of energy-momentum and v i$ the invariant time.

The antisymmetry of F, . *, together with the assumption that the po-
tentials are regular functions of the co-ordinates, guarantees that (4) will be
satisfied. Equations (5) are the Euler-Lagrange equations derived from the
electromagnetic part of the Lagrangian density of the system. This quantity is

1
(7) Loy = — 167 Fo o™ Bioypn + S ey Aoy -

It is seen that this Lagrangian density is a funetion of the potentials, their
derivatives and the currents. A useful quantity is the energy-momentum
tensor of the system. Its electromagnetic part is derived from (7):

1 1
(8) O(e,w)lw - EE (F(e,w)” 0417,(e,w)Mc - Z gHVF(e,w)ZXﬁ F(e,w)lxﬁ) .

For the sake of brevity, this quantity will sometimes be written by using
the shorthand notation Ou (R, F).

0% is the energy density of the system and 6 is its momentum density,
The 3-dimensional spatial integral of thege quantities is the 4-vector of energy
momentum of the system. The change in the énergy-momentum density of
the system is
9 0, e(e,w)’” =—F (o™ s -
This result can be compared with (6). It shows that the sum of the energy

momentum of the mechanical part and the electromagnetic part is a con-
served quantity.

3. — Systems without charges.

Assume that there exists in Nature another type of source of electromag-
netic fields. Particles having this type of source will behave, together with
waves, analogously to our known world of charges and waves. The only dif-
ference between this world (the dual world) and our world is that charges at
rest which encounter a wave accelerate in the direction of the electric field
of this wave, while particles at rest having the other type of source of fields
accelerate in the direction of the magnetic field of the wave. This property
of particles having the other type of source justifies the term magnetic mono-
poles. The question of particles having both types of sources of fields is beyond
the scope of this paper.

The definition of physical quantities of the dual world and their equations
of motion are analogous to those of charges and waves. The following nine
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expressions correspond to the ones written above:

0 B, B, B,
B, 0 —E, E,

(10) Fow? =
. B, B 0 —m]
—B, —5, B 0/ wuww
(11) F(m,w)[w — a/zA(m,w)v - av*4(m,w),u y
(12) S == 0Ly U1y Vo V3)
(13) alF(m,w)Av+ auF(m,w)VA+ av F(m.w)A/_‘:: 0 ’
(14) Oy iy = 40
dP#
(15) 4 = F(m,w)qu(m)v []
dr
1
(16) L(m,w) —_ TG—.’II F(m,w)ﬂvlﬂ(m,wmv + J(m)” A(m,w)ﬂ ’
1 1
(17) . e(m,w)uy == Z;E F(m,w)“ ocF(m,w)Wx - —4 gqu(m,w)aﬂF(m,w)zxﬁ ]
(18) ave(m,w)ﬂv = -Zﬂ(m,w)pwJ(m)v .

Fields of the type discussed in this section will be called magnetoelectric
fields.

4. — Electromagnetic and magnetoelectric fields.

There is an apparent correspondence between (1) and (10). In both tensors
the polar vectors E,, and B, have the same indices and so do the axial vec-
tors B, and E_,. However, while the polar fields have the same sign, the axial
fields of (1) and (10) have opposite signs. Using this definition causes Max-
well’s equations for the world of charges to correspond to those for the world
of monopoles in two different ways. The duality of the worlds of charges and
monopoles means that the homogeneous equations (4) correspond to (13) and
- the inhomogeneous equations (b) correspond to (14). Definition (10) makes
also the left-hand sides of (4) and (14) identical and so do the left-hand sides
of (5) and (13).

An important result of (10) is that all components of the energy-momentum
tensor (17) are the same function of the fields as those of (8). This is essential,
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since the same waves are parts of the two worlds. The above-mentioned
property of (8) and (17) means that energy and momentum have the same
definition in the two worlds. This enables a theory that incorporates the two
worlds to add the two tensors without encountering contradietion.

Charges and monopoles have different types of fields. The magnetoelectric
fields of the monopoles are not the same as the clectromagnetic fields of the
charges. Indeed it is known that the respective fields of the two types of
sources differ in parity. The magnetic field of charges is an axial vector, while
the magnetic field of monopoles is a vector, and in analogous fashion for the
two types of electric fields.

The electromagnetic and magnetoelectric fields satisfy four Maxwell equa-
tions. These equations can be paired so that one member of the Pair is an equa-
tion for charges and the other is an equation for monopoles, and both have
the same left-hand side. However, the right-hand sides of the equations are
not the same in any case. Where one type satisfies a homogeneous equation,
the second type satisfies an inhomogeneous one. Only the waves of the two
systems are the same. They satisfy four homogeneous Maxwell equations.
Therefore, the assumption that the waves emitted from charges are the same
a8 those emitted from monopoles is self-consistent.

The fields can be eclassified in three distinet types: a) fields which satisfy
four homogeneous equations in all space, b) fields which satisfy (4) and (5)
and do not belong to the first type, ¢) fields which satisfy (13) and (14) and
do not belong to the first type. Each of these types of fields is related to a dif-
ferent physical entity, namely the photon, the charge and the monopole, re-
speetively.

This discussion shows that the fields of monopoles and the corresponding
fields of charges have different mathematical properties. They differ in parity
and they satisfy different equations, homogeneous and inhomogeneouns re-
spectively. Therefore, one cannot be sure that the fields associated with
monopoles have the same properties as the respective fields of charges. The
term magnetoelectric fields is introduced here in order to facilitate the analysis
Presented in the remainder of the paper.

The reader should realize that the notation « magnetoelectric fields » is
not an introduction of an artificial entity. As an example, let us take the world
of electric charges. One may denote the fields of the positive charges and those
of the negative oneg differently. No error has been done, since the equations
of motion are linear in the fields. The expressions derived in this process will
be a somewhat more complicated presentation of our known theory. By con-
frast, the distinction between the fields of charges and those of monopoles
will prove useful and important.

Formally, if one does not distinguish between the two types of electric
fields and similarly for the two types of magnetic fields, an electromagnetic-
field tensor whose components are the combined electric and the combined
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magnetic fields can be defined. The following relation holds in this case:
(19) Fiv = LewoB Fyp,

where the components of F' are as those of (1) and those of F are as those of (10).
ema8 iy the complete antisymmetric tensor of four indices. This definition enables
us to write the extension of Maxwell equations for a world of charges, monopoles
and waves in a eompact form. Indeed, (4) and (13), (5) and (12) can be written
as follows:

(20) o, F, . = da] ¢,

(e,m,w)u

(21) o F

uy
»™ {e,m,w)

= dmd .

It will be shown that these equations are the equations of motion of the
fields in a combined world of charges, monopoles and fields.

5. — Five axioms.

This work attempts to find the equations of motion of a system of charges,
monopoles and electromagnetic waves which satisty the following requirements:

a) It will reduce to the known theory of charges and waves for systems
where monopoles are absent.

b) It will reduce to the dual theory for systems where charges are absent.

¢) It will be derived from a Lagrangian density whose terms are regular
funections of the potentials, their derivatives and the currents of the charges
and of the monopoles. The terms of the Lagrangian density should be Lorentz
scalars and invariant under space-time translations.

d) The equations of motion of the fields are linear (i.e. the principle of
superposition continues to hold). ’

e) It is assumed that a system of one charge and one monopole, where
the two particles do not move, does not change in time.

6. — Equations of motion of combined systems.

The Lagrangian density of the system will be written as a sum of terms.
These terms belong to one of three groups: pure charge-wave terms, pure
monopole-wave terms and charge-monopole terms. By using a), it is found
that the first group is the expression written in (7). By using b), it is found
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that the second group is that which is written in (16). Therefore, the Liagrangian
density can be put in the following form:

(22) L= L(a,w) + L(m,w) + L' ’

where L, ,, L, are defined in (7) and (16), respectively. Using d) and the
fact that Euler-Lagrange equations contain first-order derivatives with respect
to the potentials or the fields, we see that L' should be a quadratic expression
in the fields and the potentials. Therefore, it can be put in the following form:

(23) L'=aF »F + bJ p A, dJ(m)ﬂA(e)” +fd. rA4

(m)p» (m)p (m)p ?

where a, b, d, f are coefficients to be determined. Notice that the term J »J,,
is omitted. This term, when the two currents represent the same particle, is
rélabed to the mechanical term of the particle in the Lagrangian density.
This term is not discussed in this work., When the two currents represent two
different particles, the term is omitted, since it is assumed that the particles
interact only through fields. In order to define the coefficients, let us look at
a system of one charge and one monopole where both particles are at rest.

In this configuration, the currents and the potentials are

(24) Jo* = 0,1, 0,0,0),
(25) S = 001, 0,0, 0),
(26) A= (D, 0, 0,0),
@27 At = (D, 0,0,0).

The Lagrangian density of this system is
(28) L= L,(SP) + L, (SP) + L',

where SP denotes a Lagrangian density of a single particle and its own fields.

By using ¢), a variation of (28) with respect to the co-ordinates of the charge
should vanish. This quantity is related to the change of the mechanical energy-
momentum of the particle. The charge continues to stay at rest and, there-
fore, its energy momentum does not change. The single-particle term of (28)
satisfies this requirement. Therefore, the variation of L’ should vanish too.
It follows that

(29) be grad @, or =0.
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Since grad @, does not vanish at the location of the charge, we have
(30) b=0.

Similarly, a variation of the co-ordinates of the monopole yields
(31) d=0.

A variation of the potential 4 yields, in an way analogous to that which
shows that (5) is derived from (7),

(32) div E ) — 8na div B, = 4xg,,, + 4nfD,,, .

Testing (32) where there are no charges and no monopoles, we find that f
vanishes. Testing (32) at the location of the monopole, we find that @ vanishes.
Therefore,

(33) a=f=0.
It follows that the electromagnetic part of the Lagrangian density is

1
(34) L=— EF(e,w)u”F(e,w)uv + J(e)”A(e,W)/u -

1 1
——F WMVFH]W v JmﬂAmw —quylﬂw v
167 2 ™ Fwmu T J o+ T Eoo Py

where the last term is introduced in order that (34) reduces to (7} if there
are no monopoles and to (16) if there are no charges. This term yields homo-
geneous equations which do not affect the results obtained. Therefore, it is
ignored in the next two paragraphs.

The Lagrangian density (34) is the sum of the terms of (7) and (16), where (w)
represent the combined waves. It is clear that (5) and (14) are obtained from (34).
Furthermore, (4) and (13) are derived from the antisymmetry of (2) and (11)
and from the regularity of the potentials. It was mentioned already that these
equations can be arranged in pairs, so that the left-hand sides of the two members
of a pair are identical. It follows that (20) and (21) are derived from (34).

Since (34) is a formal sum of (7) and (16), there is no change in the Lorentz
law of force for charges and for monopoles. These laws are (6) and (15). In
other words, the magnetoelectric ficlds of monopoles do not accelerate charges
and the electromagnetic fields associated with charges do not aceelerate mo-
nopoles. Charges and monopoles interact only through the exchange of waves,.

The electromagnetic part of the energy-momentum tensor of the system
is obtained from (34) in an analogous manner to that of standard textbooks
((*), pp. 120, 121), where this quantity is derived for charges and waves alone.
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The result is
(35) 6(e,m,w)uv = Guy(F(e,w)’ F(e,w)) + Bﬂv(F(m,WH F(m,w)) - GHV(F(W)’ 'F(w)) b4

where 6w(F, F') is defined after formula (8).

Expression (35) is obtained as follows. Using the first and second terms
of (34),we have the first term of (35). Repeating the process for the third and
fourth terms of (34), we have the second term of (35). At this point, the con-
tribution of the fields of the waves was counted twice. This can easily be seen
a8 follows:

(36) QMV(F(e’W), F(e,w)) = ww(F(e) + -F(wn F(e) + F(w)) -
= GHV(F(eH F(e)) + GNV(F(W)’ ‘F(w)) + ZBN”(‘F(eH F(w)) ’

(37) 0MV(F([{|’W)’ F(m,w)) = al‘“’(F(m) —]_ F(W)’ F(m) + F(W)) =
= 00(F ), Fo) + 0w(F L F Y+ 26w F ).

{m)?

It is seen that the combination of (36) and (37) indeed counts the wave

term twice. The last term of (35) gunarantees the balance of the expression.

Performing the operation analogous to that of (9) and (18), it is found that

the change of the energy momentum of the fields balances the mechanical

energy momentum transmitted to the particles by the Lorentz force. The
Lorentz force derived above and the following expression

—F__wJ

(e)w (m)»

. (38) av 6(e m,w)m} = - F(e,w)m'J

(m,w)

show that the system conserves energy and momentum.

7. — Concluding remarks.

The main result of this work is that, if one takes the five assumptions a)-
¢), then the extension of the equations of motion is already determined. In
this case there is no freedom of choice.

The presently accepted formulation of the problem (?) extends the equations
of motion of the fields in the same way as was obtained here, namely (20)
and (21). However, the Lorentz law of force is extended differently ((3), for-
mula (7), and (2), formula (9.7.10)). It assumes that there is no difference
between the electromagnetic fields of charges and the magnetoelectric fields
of monopoles and that both accelerate charges (and monopoles) in the same

() P.A.M. Dirac: Phys. Rev., 74, 817 (1948).
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way. It arrives at

dPs

(39) (g = F(e,m,w)‘wJ(e)v [
dps o
(40) d_'b' - F(e,m,w)uyJ(m)v .

The presently accepted equations satisfy the axioms a), b), d) and e) of sect. 3.
It follows that they cannot satisfy ¢). In other words, there is no regular La-
grangian density whose Euler-Lagrange equations are the presently accepted
equations of motion. This result is not new (4).

The approach of this work presents an answer to the following question:
what are the equations of motion of a system of charges, monopoles and waves
which are compatible with the simple requirements a), b), d) and e) of sect. 5
and which can be obtained from a regular Lagrangian density ?
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(*) F. RomrricH: Phys. Rev., 150, 1104 (1966).

RIASSUNTO (%

Si derivano le equazioni di moto di un sistema classico di cariche elettricke, mono-
poli magnetici ed onde elettromagnetiche usando cinque assiomi. Questo lavoro risponde
alla domanda: quali sono le equazioni di moto di questo sistema che possono essere
derivate da una regolare densith lagrangiana?

(") Traduzione a cura della Redazione.

AxcHoMATHUECKHI BBHIBOJA YpaBHeHMil ABICKEHHS B KJIACCHYCCKOM JIEKTPOIHHAMMBKE.

Pesiome (*). -— Vcnone3ys ISTh aKCHOM, BEIBOISTCS YDaBHEHHS IBMKCHUS KIIACCHIECKON
CHCTEMEL JICKTPHICCKHX 3apAf0OB, MarHATHbIX MOHOLOJICH M BIEKTPOMATHHTHBIX BOJIH.
IlokaszaHo, 4TO HpencraBisrOT COOOH YpPABHEHMS OBIHXXCHHS 3TOM CHCTEMBI, KOTOpEIE
MOTYT OBITh BBIBEZEHHI U3 PErYIAPHON NMHOTHOCTH Jlarpanxwuana.

(*) Hepesedeno pedaryueil.



