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MECHANICS

Domenico Bertoloni Mel:

This chaprer is devoted to mechanics in the sixteenth and seventeenth cen-
turies. Following a distinction traceable at least to Hero of Alexandria (first
century) and Pappus of Alexandria (third century), mechanics can be divided
inro rational and practical (or applied). The former is a mathematical science
normally proceeding by demonstration, the latter a manual art wich practical
aims. Here I privilege rational over practical mechanics, which is discussed
elsewhere in this volume (see Bennetr, Chapter 27).!

A major problem with writing a history of mechanics during this period
concerns the changing disciplinary boundaries and meaning of the term
“mechanics.” Traditionally, mechanics had dealt with the mathemarical sci-
ence of simple machines and the equilibrium of bodies. In the second half
of the seventeenth century, however, mechanics became increasingly associ-
ared with the science of motion. Therefore, in dealing with an carlier period,
it is useful to chart not simply the transformations of mechanics as it was
understood before the second half of the seventeenth century but also the
relevant transformations in the science of motion that belong more propetly
to natural philosophy.

Mechanics and natural philosophy differed widely intellectually, institu-
tonally, and socially in the period covered by this chapter. Even rational
mechanics retained a practical and engineering component but it was also
progressively gaining a higher intellectual status with the editions of major
works from antiquity and with a renewed emphasis on its utility; inidally its
role in the universities was at best marginal, however. By contrast, natural

Pappus, Marhematicae colletiones, translated by Paul ver Eecke as La collection mathématique (Paris:
Desclée de Brouwer, 1933), p. 810. See also Isaac Newton, Principia, new translation by I. Bemxrd.
(;«;hen and Anne Whirman (Berkeley: University of California Press, 1999), pp. 381~2. On this distinc-
tion, sce G. A. Perrari, “La meccanica ‘allargata’,” in La scienza ellenistica, ed. Gabriele Giannantoni
and Mario Vegerti ([Naples]: Bibliopolis, 1984}, pp. 225-96.

Ihv'vish ui(thank Karin Eckholm and Allen Shoewell for their helpful comments on an earlier draft of
this work.
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philosophy had been a major academic discipline tor centuries and had closer
links to theology than to the practical arts. It is therefore necessary to chare
the changing contours and domains of mechanics by paying actention to
how scholars at the time understood it, lest one write a history of a fictitious
discipline by projecting a modern vision of thart discipline anto the past.”

This chapter starts by examining the impact of the recovery of ancient
and medieval learning both in what was understood to belong to mechanics
proper and in those portions of natural philosophy dealing with motion. The
critical editions and the assimilation of those sources in the sixteenth century
led to a transformation of mechanics on many levels.? I then move to a brief
characterization of some of the leading scholars on motion and mechanics in
the sixteenth century that culminates with the work of Galileo Galilei (1564
1642). The interplay among mechanics, the philosophical study of motion,
and quanritative experiment is at the center of my reading of Galileo’s groping
toward a new marthematical science of local motion. ‘

The work of Galileo marks a turning point that organizes the chaprer.
Although disciplinary contours did not change overnight, a shift occurred
between the first and second parts of the seventeenth century. [ shall use the
debates and controversies triggered by Galileo's major works as a guide to
later developments. Moreover, more recent studies have emphasized that in
his effort to formulate a new science of motion, Galileo remained enmeshed
in portions of the old worldview. By relying on his work, the generation after
him could more easily free itself from the past. This is an additional reason
thar justifies my partition.*

Philosophers who studied motion were almost invariably professors at a
university or Jesuir college. Practitioners of mechanics, however, had a more
varied professional profile. Niccold Tartaglia (1506-1557) was a teacher of
mathematics at the University of Venice who never attained high social stand-
ing. The Urbino mathematician Federico Commandino (1509-1575) was a
refined humanist scholar, held a medical degree, and moved around papal
and princely courts, especially the Farnese. His pupil Guidobaldo dal Monte
(1545-1607) was the brother of a cardinal and a marquis himself, with close
ties to the della Rovere in Urbino and the Medici in Florence. In his youth, dal
Monte had been a military man and in the late 1580s became superintendent

For an example of such an anachronistic projection, see Marshall Clagett, The Science of Mechanics
in the Middle Ages (Madison: University of Wisconsin Press, 1959). An excellent account thart is
sensitive to*these concerns is John E. Murdoch and Edith D. Sylla, “The Science of Motion,” in
Science in the Middle Ages, ed. David C. Lindberg (Chicago: Universicy of Chicago Press, 1978),
pp. 206—64.

A useful source is Mechanics in Sixteenth-Century Iraly, translated and annotated by Stillman Drake
and L. E. Drabkin (Madison: University of Wisconsin Press, 1969) on which the following two sections
rely. See also the essay review by Charles B. Schmiit, “A Fresh Look at Mechanics in (6th-Century
[caly,” Studies in the History and Philosophy of Science, 1 (1970), 161-75.

For details, see Peter Damerow, Gideon Freudenthal, Peter McLaughlin, and Jiirgen Renn, Exploring
the Limits of Preclassical Mechanics (New York: Springer, 2004).
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of Tuscan fortifications. The Venetian Giovanni Ba[tis.ta- Ber;‘ledct'tl g%o;
1590), a student of Tartaglia, became court mathematlafaxl st ;11( ‘,iﬁi_
under the Farnese and then at Turin under .the Savoy. The Dutch ma 1h
matician Simon Stevin (1548-1620) was 2 military man anfi an engmce;\ryl 0
was made quartermaster of the army qi‘ the Low Countries m i O/j‘. m:/1
of these men had an interest in practical as well as theoretical martters i

mechanics.’
MECHANICAL TRADITIONS

The main works on mechanics can be associz}ted with a nurTl‘befr of te'x.ts
and traditions beginning shortly after Aristot?e s death. 1 1dent1‘fy our rr'l.d;ln
traditions — those of pseudo‘Aristodc, Archimedes, Alexandria (especially
» _ and the science of weights. .
Pa?}::)ﬁrsin:f these traditions g1s associated with Quﬂestiones mechanicae
(Mechanical Problems), traditionally ateributed to Aristotle (384—322 lf;:zl)
but now considered to be an early producF of his school'. The wo(r1 eals
mostly with applications of the doctrines of th.c lever, which depe'n s gpoxm
the b:ilance, and of the balance, whose properties are a.nalyzed by 1malg1r.1mgf
that it rotates around its fulcrum so as to describe a circle; hence the u.se‘of
motion in the study of equilibrium and the strange idea that the propern}els o
the balance depend on the circle. The agthor claimed that ncz.icr{lydall mecfoir;
ical problems depend on the lever a.nd in some cases he.pfﬁw ef somlem "
of explanation of how some machines, such as the win .‘ass, ‘or c?(‘tl.c Emi
operate and relate to che circle. One cannot say that there is ;;systefma 1r0 d
rigorous attempt in this direction, however,'but only a m.1m er o ‘:'{pp ‘p
are remarks. A few passages deal with seafaring, others with the resxstanc‘e }(:
beams or the force exerted by a moving body on awedge (later knowx;1 ast E
force of percussion). In the age of the pr.mtmg press, the text wem throug
many editions and cranslations, often with valuable commentaries, starting
6 |
" X?ciximedes (287-212 B.C.E.) wWrote two major works on Tnechzmcs, De
centyis graviuim (On the Equilibrium .of Planes) and De. znszder.ztz ‘usdazvzzz
{On Floating Bodies). Both survived in 5§Veral‘r1januscr1pt copies Zn v
first published in 1543 by Tartaglia.” Superior editions were later produced by
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ioli, Social S  Teali : aticians, 1450-1600." Histary of Science, 27
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?’[:L:]li l; iﬁsi)raizgi};tglh‘?;fSfr':iiz07'1"??;2,ez(;,s—l;\(rﬁ?;itjirjr?néwr:;:;}‘IWec'hun;gﬁ ‘in Renaissance
- i‘:cl:;ﬁ_rz‘:ad;ﬁ;”e;he lg;:rl:ﬁz:c;iii32378/‘62;3110 {‘;cr Venturinum l’I‘Kuff("mellurz‘} [::;)\; C’}I:T;Ezil;:;
editon contins onl B s Boiiﬁ(;:;ti)frj;?;f:d?;ni; 23‘1{;[?;422 Ages, 5 vols. (vol. L
Philadelphia: American Philosophical Soci-

corpus through to the Renaissance is Marsk
Madison: University of Wisconsin Press, 1964; vols. 2—3,
ety 1976-84).
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Commandino and his student dal Monte.® In On the Equilibrium of Planes
Archimedes produced an axiomatic theory of the balance, thus introducing
into mechanics a style based on pure mathematics that constiruted a model for
many later works. He also determined the centers of gravity of several plane
figures.”? In the sixteenth century, Commandino and Galileo, among others,
extended those investigations. On Floating Bodies deals with hydrostatics and
contains the celebrated statement that a body in a fluid receives an upward
thrust equal to the weight of the volume of the displaced fluid, known
as Archimedes’ principle. The treatise provides equilibrium conditions for
bodies with different shapes in a fluid. Archimedean mechanics, whether
dealing with the balance or with bodies in a fluid, was based on equilibrium
rather than motion.

Hero wrote Spiritalia (Pneumatics)'® and a treatise on mechanics that was
known only in part through references in Pappus’s Collectiones mathematicae
(Mathematical Collections), whose eighth book is devoted to mechanics.
Following Hero, Pappus argued that all machines could be reduced to the
five simple machines (balance or lever, pulley, wheel and axle, wedge, and
screw), and the last four in turn could be reduced to the balance. In some
instances, Pappus tried to show by means of a geometrical construction
how a machine could be reduced to the balance. He sought to determine
in this way the equilibrium conditions for a weight on an inclined plane,
for example. Although his solution was problematic, it was an attempt to
establish mechanics on a solid basis and clear first principles. In 1588, dal
Monte supervised a printing of a Latin translation by Commandino from an
imperfect manuscript of Pappus’s text.”

Lastly, during the thirteenth century, several Larin authors contributed
treatises in the tradition known as Scientia de ponderibus (Science of Weights)
dealing with the equilibrium of bodies. The names of many of those authors
have not survived, the main exception being Jordanus of Nemore (fl. early
thirteenth century), who wrote a Liber de ponderibus (Book on Weights).
After the Nuremberg editio princeps by the German cosmographer Petrus
Apianus (Apian, 1495-1552), a new edition was published in Venice in 1565
from the papers of Tartaglia, who had already included some results in his
own previous publications. Although works of this tradition generally lack
the rigor and elegance found in Archimedean treatises, they contain original
notions and valuable results. For example, the treatise De ratione ponderis (On
the Theory of Weight) did not attempt to rely systematically on the lever

¥ Frederico Commandino, Archimedis de its quae vebuntur in agua libri duo (Bologna: Ex officina A.
Benacii, 1565); and Guidobaldo dal Monte, /n duos Archimedis aequiponderantium libros paraphrasis
(Pesaro: Apud Hieronymum Concordiam, 1588).

? Archimedes did not define the expression “center of gravity.” Later scholars defined it as that point
such that a body suspended froru it remains in equilibrium.

© Marie Boas, “Hero’s Prewmatica: A Study of Its Transmission and Influence,” Isis, 40 (1949), 38—48.

" Pappus, Collectiones mathematicae (Pesaro: Concordia, 1588); and L. Passalacqua, “Le Collezioni di

Pappo,” Bollettino di Storia delle Scienze Matemariche, 14 (1994), 91-156.
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but provided a more satisfactory solution to the problem of equilibrium of a
weight on an inclined plane than that of Pappus.*

STUDIES ON MOTION

Texts dealing with the problem of motion go back to Aristotle and the host
of commentartors from antiquity to the Middle Ages. My chief concern here
is not with all the topics pertinent to the study of motion in Aristotle and
his commentators but only with those aspects relevant to the sixreenth-
century development of the science of motion. Even within this limitation,
my account remains highly selective.

The analysis of motion occupies a central position in Aristotle’s study of
nature, especially in Physica and De caelo (On the Heavens). By “motion” Aris-
totle understood virtually all change occurring in nature, whereas by “local
motion” he meant something closer to our understanding of the term. Here
and throughout I shall simply refer to “motion,” meaning “local motion.”
Aristotelians drew a basic distinction between natural and violent motions.
The former is the downward motion of heavy bodies, endowed with gravity,
or the upward motion of light bodies, endowed with levity.” The latter is
exemplified by the motion of projectiles. With regard to narural morion,
Aristotle argued that the speed of a falling body is proportional to its weight
and is the inverse of the resistance of the medium.™ As a consequence, when
the resistance tends to zero, as in a void, the velocity becomes infinite, a para-
doxical result used by Aristotle to refute the existence of a void. With regard
to violent motion, Aristotle argued that after the moving body has left the
projector, the body is moved by the surrounding medium. This view derived
from his principles that everything that moves is moved by something else
and that the mover must be in contact with the moved body. These principles
imply that a body set in motion requires an external cause to continue its
motion, an opinion that was debated until the seventeenth century.

Starting in late antiquity, several commentators examined Aristotle’s views
on motion with a critical eye. Themistius (317-387), for example, argued that
all bodies would fall in a void with the same speed and that this speed would
be finite, not infinite, as Aristotle had claimed. Simplicius (d. after 533) often
defended Aristotle’s conclusions, such as the denial of the existence of a void,

'* Ernest A. Moody and Marshall Clagett, eds., The Medieval Science of Weights (Madison: University
of Wisconsin Press, 1960); J. E. Brown, “The Science of Weights,” in Lindberg, ed., Science in the
Middle Ages, pp. 179-205; Jordanus Nemorarius, Liber de ponderibus, «d. Petrus Apianus (Nuremberg:
lohannes Perreius, 1533); and Nemorarius, Opusculum de ponderositate (Venice: Curtius Troianus,
1565). On Tartaglia’s publications, see the section on “Motion and Mechanics” in this chapter.
Levity was understood by Aristotle as an independent quality, nor as being caused by extrusion of
a specifically lighter body in a specifically heavier medium, on an Archimedean model.

Murdoch and Sylla, “The Science of Motion,” p. 224.
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but he was critical of Aristotle’s proofs. Philoponus (d. ca. s70) was the most
thorough ancient critic of Aristotle’s physics and especially of his views on
motion. He admitted that motion in a void could occur and argued that a
medium would increase the time of fall of a body over the time of fall in a
void. Philoponus also argued against Aristotle that according to experience
the time of fall of two bodies differing greatly in weight is very small. Greek
and Latin editions of the works of Themistius, Simplicius, and Philoponus
appeared in print in the firsc half of the sixteenth century and contributed to
an erosion of confidence in Aristotle’s doctrines coming from a learned and
ancient tradirion of scholarship. Galileo was familiar with all three of them. ™

In the Islamic world, one author in particular needs to be singled out
here, the Spanish philosopher Avempace, or Ibn Bijja (d. 1138), who was
sympathetic to Philoponus. His views became known in the West through
the citations and criticisms of Averroes (Ibn Rushd, 1126-1198), whose works
were well known in the Latin West.”® '

In medieval Europe, Aristotle became the cornerstone of university educa-
tion, and the number of his commentators grew considerably. Here I wish to
mention the Parisian John Buridan (ca. 1295—ca. 1358) and a group of authors
known as calculatores. Buridan addressed the problem of projectile motion in
a fashion different from Aristotle’s. Instead of arguing that the medium had
a role in propelling the projectile, Buridan claimed that the projectile moved
because of a quality called 7mpetus transmitted by the projector. His notion
remained in vogue until the seventeenth century. The fourteenth-century
study of motion witnessed a remarkable increase in the use of logic and
mathematics, especially the theory of proportions. The protagonists of this
tradition included Thomas Bradwardine (d. 1349) and Richard Swineshead
(8. 1340-1355) at Oxford and Nicole Oresme (ca. 1325—1382) at Paris. [n addi-
tion to showing that motion could be treated mathematically, they devel-
oped sophisticated geometrical treatments, coined a refined terminology,
and attained important results, such as the mean-speed theorem."”

However, there are important qualifications. The methods of inquiry
developed by the calculatores were applied not only to local motion but
also to a wide range of topics spanning medicine, theology, and natural
philosophy. Secondly, with only one known exception, those methods of
inquiry were applied to ideal imaginary entities, not to nature, in the style of
a logical exercise.' Despite the heavy use of mathematics, the arrangement

-

% On the three Greck commentators, see Paolo Galluzzi, Momento: Studs galileiani (Rome: Edizioni
dell’Ateneo, 1979), pp. 98-106.

1 The classic work here is Ernest Moody, “Galileo and Avempace: The Dynamics of the Leaning
Tower Experiment,” Journal of the History of Ideas, 12 (1951), 163-93, 375—422.

7 The theorem states that the space traversed with 2 uniformly accelerated or decelerated motion is
the same as that traversed with a uniform speed equal to the mean degree of speed, namely the
degree of speed in the mean instant of time.

¥ The exception was the Spanish Dominican Domingo de Soto {1495-1560).
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of the surviving codices suggests that these works were considered part of
natural philosophy rather than the mathematical disciplines. Texts from this
tradition were published in about 1500."

MOTION AND MECHANICS IN THE SIXTEENTH
CENTURY

Despite their brevity, the previous sections show that in the sixteenth century
a number of key works on mechanics and mortion became available in print.
Never before had scholars been able to access such a wealth of intellectual
resources on these topics with such ease. This section presents the main works
by some of the leading figures in the sixteenth century. Whereas some, such
as Tartaglia and Benedett, sought to build bridges between mechanics and
motion, others, such as dal Monte and Stevin, conceived the two domains
as separate and saw litde hope for a rapprochement.®

Tartaglia was a major figure in more ways than one. Besides his editorial
work mentioned earlier, he published L4 nova scientia (The New Science,
1537) and Quesit et inventioni diverse (Various Questions and Inventions,
1546). These are composite works dealing largely with the mathematical dis-
ciplines, such as gunnery, the science of weights, and the pseudo-Aristotelian
Quaestiones, but they also include issues dealing with gunpowder and other
military matters. Tartaglia sought to determine the trajectory of a projec-
tle shot at different angles and claimed from dubious assumptions that the
longest range was shot at 45 above the horizon. Several treatises and manuals
on ballistics followed in the sixteenth and seventeenth centuries.”

In yet another work, La travagliata inventione (The Troubled Invention,
t551), Tartaglia hinted at a proportion applicable to bodies falling in water,
suggesting that bodies sink faster in proportion to how much they are specif-
ically heavier than warer.” The same idea of extending Archimedean hydro-
statics to account for motion was developed by Benedetti in a number of

' Christopher Lewis, The Merton Tradition and Kinematics in Late Sixteenth and Early Seventeenth
Century Jtaly (Padua: Editrice Antenore, 1980).

Other relevant figures include the Padua professor of mathematics Giuseppe Moletti (1531-1588), on
whom see Walter R, Laird, The Unfinished Mechanics of Giuseppe Molerti (Toronto: University of
Toronro Press, 2000), and the physician Girolamo Cardano (1551-1576), whose work in mechanics
still awaits systematic investigation. Important works on sixteenth-century mechanics include Walter
R. Laird, *The Scope of Renaissance Mechanics,” Osirds, 2nd ser., 2 (1986), 43-68; and Laird,
“Patronage of Mechanics and Theories of Impact in Sixteenth-Cenrtury ltaly,” in Patronage and
Instisutions: Science, Technology, and Medicine at the European Courr, 1500—1750, ed. Bruce Moran
(Rochester, N.Y.: Boydell Press, 1991), pp. S1-66.

A. Rupert Hall, Ballistics in the Seventeenth Century (New York: Harper, 1969); and Serafina Cuomo,
“Shooting by the Book: Notes on Niccolo Tartaglia’s Nova Scientia,” History of Science, 35 (1997),
155~88. Extensive rranslations from Tartaglia’s works can be found in Drake and Drabkin, Mechanics
in Sixreenth-Century [taly, pp. 63-143.

b Clagett, Archimedes in the Middle Ages, 3: 3, 574.
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works published in the 15505 dealing with falling bodies. One of them bears
the none too subtle title Demonstratio proportionum motuum localium contra
Aristotilem et omnes philosophos (Demonstration of the Proportions of Local
Motions, against Aristotle and All Philosophers, 1553).* Benedetti expanded
his reflection in his magnum opus, Diversarum speculationum mathemati-
carum et physicarum liber (Book of Different Speculations on Mathematical
and Physical Marrers, 1585), a composite work dealing with mechanics and the
pseudo-Aristotelian Quaestiones, criticisms of Aristotle’s views about motion,
and including excerpts from his (Benedetti’s) correspondence.

Archimedes was a major source for sixteenth-century scholars of mechan-
ics, but dal Monte had in addition a predilection for Pappus, whose work he
knew before 1588 through Commandino’s manuscripts. The marquis pub-
lished the main work of its time on mechanics, Mechanicorum liber (Book of
Mechanics, 1577), where he examined all the simple machines and, following
Pappus, tried to show that they work in accordance with the principle of the
balance, as if there were balances in disguise that had to be unmasked. He
was concerned not just with results but also with foundations and proofs;
being able to go back to the balance meant that he could rely on Archimedes®
work on the equilibrium of planes and therefore solve the problem of foun-
dations. The marquis loathed the medieval science of weights and those who
worked in that tradition, including Tartaglia, because their proofs lacked the
rigor found in the texts from antiquity. In some respects, dal Monte saw an
unbridgeable gap between equilibrium and modon. The science of equilib-
rium could be formulated in mathemarical fashion because of its regularity,
whereas motion was subject to so many vagaries that mathematics generally
remained out of the picture. In dealing with the wedge, however, dal Monte
hinted at a proportion that involved motion: He argued that a body hitting
a wedge produces a greater effect the greater the height from which it falls.
In this way, height and speed of fall were linked to the effect they produce.
This problem of determining the force of percussion was part of the classical
repertoire from the time of the pseudo-Aristotelian Quaestiones and was later
discussed by Galileo and other seventeenth-century mathematicians.™

Despite his geographical distance from Italian mechanicians, Stevin, oo,
relied on the editions of Commandino, much as did dal Monte and a host of
other contemporary mathemarticians. Stevin's main work in mechanics was a
collection of treatises with separate title pages that was published in Leiden by
Christoffel Plantijn in 1586. They include De Beghinseln der Weeghconst (The

S

B Carlo Maccagni, Le speculazioni giovanili “de motn” di Giovanni Battista Benedetti (Pisa: Domus
Galilaeana, 1967).

* Extensive translations can be found in Drake and Orabkin, Mechanics in Sixteenth-Century Italy,
pp. 166—237.

* Also in this case extended translations can be found in Drake and Drabkin, Mechanics in Sixteenth-
Century ltaly, pp. 241-328; and Domenico Bertolont Meli, “Guidobaldo dal Monte and the
Archimedean Revival,” Nuncius, 7, no. 1 (1992), 3-34.
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Elements of the Art ochighirig), De Weeghdaer (The Practice of\Wei’ghing),
and De Behinselen de Waterwichts (The Flements of Hydrostatics).** At the
end of the last work, there are two short additions, Preamble of the Practice
of Hydrostatics and Appendix to the Art of Weighing.”” Stevin also performcd
experiments by dropping heavy bodies trom high places, but his work focused
primarily on equilibrium, and his tame rests on his extension of Archimedean
hydrostatics and his brilliant solution to the problem of the inclined
plane.

GALILEO

Galileo’s contributions to the mathematical disciplines and philosophy range
from his telescopic findings to his onslaught on the Peripatetic school. Yet,
it was the science of motion that he considered to be his most treasured
investigation and that represents his most sustained and remarkable incel-
lectual effort. Galileo’s main work on motion and mechanics falls inco three
periods: at Pisa, Padua, and Florence. During his three years as professor
of mathematics at the University of Pisa (1589-92), he probably drafted a
dialogue, an essay, and a few fragments on motion, all collectively known as
De motu antiquiora (The Older [Manuscripts] on Motion). All of this mate-
rial remained unpublished at the time. As professor of mathematics at the
University of Padua (1592-1610), Galileo worked intensively on the science
of motion and the science of the resistance of materials, and he composed a
short tract for his university lectures called Le mecaniche (On Mechanics). In
this second period also, his works remained unpublished at the time. Lastly,
after his return to Florence in 1610, Galileo started publishing on mechani-
cal subjects, first with a treatise on hydrostatics, Discorso intorno alle cose, che
stanno in sit [ acqua, 0 che in quella si muouono {Discourse on Bodies on Water,
or that Move in It, 1612), then with his masterpieces, the Dialogo sopra i due
nassimi sistemi del mondo, Tolemaico ¢ Copernicano (Dialogue Concerning
the Two Chief World Systems, Ptolemaic and Copernican, 1632) and the
Discorsi e dimostrazioni matematiche intorno a due nuove scienze (Discourses
and Mathematical Demonstrations about Two New Sciences, 1638).%8

In De motu antiquiora, Galileo sought to formulate a science of motion
by extending Archimedean hydrostatics, arguing that the speed of a body
falling in a medium is proportional to the difference in specific density
between the body and the medium. This means that, apart from an inital

%6 Scevin, Warks, vol. 1, De Beghinselen der Weeghconst, pp. 35-285; De Weeghdaet, pp. 287-373 De
Behinselen des Waterwichts, pp. 375-483.

27 Stevin, Works, vol. 1, Anvang der Waterwichrdaet, pp. 484-50%; Anhang van de Weeghconst, pp- s03—52.1.

3 Several scholars have investigated Galileo's reflections on motion, from Alexandre Koyré and
Winifred Wisan to Paolo Galluzzi and Enrico Giusti. For an excellent bibliography, see Damerow
et al., Exploring the Limis.
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period, the speed of falling bodies is constant. Although there are some
similarities to Benedetti’s work, it is unclear whether Galileo knew it at that
time. In addition, following Pappus’s and dal Monte’s approach, Galileo
attempted to use the balance and, more successfully, the inclined plane to
account for hydrostarics. Even in this early work, Galileo showed familiarity
with a number of authors we have already encountered, from Themistius
and Philoponus to Avempace and Avicenna (Ibn Sina, 980-1037). Burt other
more recent and geographically closer sources require attention, too. The
University of Pisa professors of philosophy Girolamo Borro (x512-1592) and
Francesco Buonamici (1533-1603) engaged in a dispute about motion that
lasted for several years and covered the entire period beginning in 1580 from
Galileo’s education at Pisa to his teaching at the university. In De motu
gravium et levium (On the Motion of Heavy and Light Bodies, 1576}, Borro
sided with Averroes and referred to experiments where heavy bodies were
dropped from a high window. In his huge De motu (On Motion, completed in
1587 but first published in 1591), Buonamici defended Simplicius. Moreover,
Buonamici attacked the views of more recent mathematicians, who defended
an Archimedean approach. Their dispute was probably not a private affair
but rather spilled over into university life, including lectures and the annual
series of public disputations known as the cireuli. A few references point to
that dispute as the immediate context for De motu antiguiora.® Atabout this
time, Galileo embarked on an extended study of philosophy on the basis of
lecture notes originating from the chief Jesuit school, the Collegio Romano,
probably to strengthen his knowledge of philosophy as well as his dialectical
skills.°

In De motu antiquiora there are several references to experiments, including
oneof dropping weights from a high tower, probably the leaning tower at Pisa.
Overall, however, the experiments performed by Galileo did not conform to
his expectations. For example, Galileo investigated the inclined plane and
believed he had determined the relationship between its inclination and
the (constant!) speed of a body falling along it. By combining this result
with his buoyancy theory of fall, Galileo sought to find a plane with the

* Michele Camerota and Mario Helbing, “Galileo and Pisan Aristotelianism: Galileo’s De motu
antiquiora and the Quaestiones de motu elemenzorum of the Pisan Professors,” Early Science and
Medicine, s (2000), 319-65; Mario O. Helbing, La flosofia de Francesco Buonamici (Pisa: Nistri-
Lischi, 1989), chap. 6; and Charles B. Schmitt, “The Faculty of Arts at Pisa at the Time of Galileo,”
Physis, 14 (1972), 243~72.

William Wallace, Galileo and His Sources (Princeton, N.J.: Princeton University Press, 1984). At
pp. 91—2, Wallace suggests that the lecture notes were sent by Christophorus Clavius (1537-1612),
professor of mathematics at the Collegio Romano, to Galileo in connection with a dispute over
the center of gravity, but evidence for his claim is lacking. Lecture notes often circulated at the
time, and Galileo may have obtained them from a student at the Collegio. See Corrado Dollo,
“Gatilei e la fisica del Collegio Romano,” Giornale Critico della Filosofia Italiana, 71 (1992), 161-201.
For a comparison berween the Padua philosopher Jacopo Zabarella (1533-1589) and Galileo, see the
classic by Charles B. Schmite, “Experience and Experiment: A comparison of Zabarella’s views with
Galileo’s in De motu,” Studies in the Renaissance, 16 (1969), 80-138.
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appropriate inclination whereby a body would fall along it in the same time
as another body of different material falls along the vertical. His attempt
failed bur may have been at the root of his later findings both thar falling
bodies accelerate and that the acceleration is the same for all bodies.* By
exploring motion along inclined planes, Galileo came o appreciate thar a
body needs no force to be set in motion along a plane with zero inclination, by
which he meant the horizon. This thought remained one of the characteristic
teatures of his reflections on motion.”* About 1592 or slightly earlier, Galileo
performed some important experiments with his mentor dal Monte. They
threw inked balls across an inclined plane and found thar their trajectories
were symmetrical, resembling a hyperbola or parabola. A similar curve was
described by a chain hanging from two nails fixed in a wall. A reference to
that experiment can be found in the Discorsi, but it is unclear whart the two
mathematicians would have made of the result in 1592.3

Two differences spring to mind when comparing Galileo’s early specula-
tions with the works discussed in the previous section: the deep interplay
with philosophy and the role of experiments. His experiment of dropping
heavy bodies from high places was associated with the philosophical dispute
at Pisa, but it also went hand-in-hand with the practice of performing crials
that was typical of the mathematical disciplines, from weighing and survey-
ing to music. Those trials would have been familiar to Galileo, who had
started his career in mechanics with a short essay on accuracy in weighing
and whose father was a musician (see Mancosu, Chapter 25, this volume).>*
Other experiments, however, even if they were problematic and unsuccess-
ful, such as the one with spheres of different materials going down inclined
planes with different inclinations, show Galileo seeking regularities in nature
by means of contrived experiments, which revealed a sophistication that went
beyond contemporary standards.

Berween 1592 and 1620, Galileo taught mathematics at the University of
Padua, a position, like the previous one ar Pisa, he owed to dal Monte’s
support. At the university, he taught a number of subjects, including fortifi-
cation and mechanics: His lecture notes show that his course was modeled
on dal Monte’s Mechanicorum liber. Galileo worked on mechanical issues
having to do with oars and the size of galleys in collaboration with scholars

Galileo Galilei, On Motion and on Mechanics, translated with introductions by Israel E. Drabkin
and Stillman Drake (Madison: The University of Wisconsin Press, 1969). At p. 69, Galileo states
that “the ratios that we have ser down are not observed.”

Ac this stage, in all likelihood Galileo believed that a body ser in motion would come naturally o
rest. See Drake and Drabkin, Mechanics in Sixreenth-Century Itraly, p. 379; and Galileo, On Motion
and Mechanics, pp. 66—7.

Damerow et al., Exploring the Limits, pp. 158-64.

Galileo’s father was a musician. See Stillman Drake, Galilen at Work (Chicago: University of Chicago
Press, 1978), pp. 15-17; and Claude V. Palisca, Humanism in Italian Renaissance Musical Theory (New
Haven, Conn.: Yale University Press, 1985), pp. 265-79. For La Bilancetta, sce Galileo Galilei, Opere,
ed. A. Favaro, 20 vols. (Florence: Giunti Barbera, 1890-1909), 1: 215—20; Drake, Galileo ar Wark,
pp. 6-7; and Jim A. Bennett, “Practical Geometry and Operative Knowledge,” Configurations, 6
(1998), 195—222.
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and technicians at the Venice Arsenal, the city’s chief military and indus-
trial facility. It is partly from his work at the Arsenal that his science of the
resistance of materials and of scaling originates.’ At Padua, Galileo resumed
his experimental and mathemartical investigations on motion and realized
a number of important features about falling, oscillating, and projected
bodies. He seized on objects such as the inclined plane and the pendu-
lum to investigate motion and realized that constant speeds are unsuitable
for describing free fall because bodies accelerate. This finding led Galileo to
some results from the caleulatores tradition, which enabled him to treat accel-
eration in an elementary fashion. Both the terminology and the visual tools
of representations used by Galileo testify to his reliance on this tradition,
despite the fact that his itinerary started elsewhere and included a variety of
sources.?®

Galileo argued that a falling body goes through all the infinitely many
degrees of speed, a belief that put considerable strain on the limited math-
ematical resources of his time. He further believed thart, apart from small
perturbations caused by air resistance, all bodies accelerate in the same way
regardless of their weight or specific gravity. Morcover, Galileo realized that
the acceleration is uniform and the spaces traversed are proportional to the
squares of the times. He believed further thar the oscillations of a penduium
are very nearly isochronous, a claim that is quite accurate for small oscilla-
tions but whose inaccuracy increases with the amplitude of the oscillations.
Galileo also believed, quite erroneously, thar the circle arc described by the
bob was the curve of fastest descent. Several decades later, he still thought
he could produce a proof of this.”” Galileo further came to appreciate that a
body set in motion on a horizontal plane does not stop as long as ali acciden-
tal perturbations are removed. He finally realized that horizontal projection
and vertical fall are independent and that each can be composed as if the
other did not exist. This composition gives rise to parabolic trajectories, as
Galileo’s experiment with dal Monte (ca. 1592) had suggested. Although the
fragmentary manuscript record from this period does not allow a detailed
reconstruction of Galileo’s intellectual itinerary in all circumstances, in some
cases specific results have been achieved.?®

Galileo’s findings, remarkable as they were, did not constitute a science
based on evident principles and rigorous proofs. In other words, Galileo
had found a series of propositions and relations that needed to be given
order and structure. When he realized that the balance could not be used

¥ Jiirgen Renn and Matteo Valleriani, “Galileo and the Challenge of the Arsenal,” Nuncius, 16, no.2
(2001), 481-504.

3 Edith D. Sylla, “Galileo and the Oxford Calculatores: Analytical Languages and the Mean-Speed
Theorem for Accelerated Motion,” in Reinterpreting Galileo, ed. William A. Wallace (Washington,
D.C.: The Catholic University of America Press, 1986), pp. 53—108.

7 Galileo Galilei, Two New Sciences, trans. Stillman Drake (Madison: University of Wisconsin Press,
1974), pp. 212-3. o

3 A derailed analysis of this period can be found in Damerow et al., Exploring the Limis, chap. 3.
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to found a science of motion, he started to look for a suitable axiom or
principle to replace, in an Archimedean fashion, Archimedes’ axioms in
On the Equilibrium of Planes. Galileo was not seeking to establish his sci-
ence on contrived and elaborate experiments bur rather on axioms of the
same nature as those of Archimedes, who had postulated ac the outser of
On the Equilibrium of Planes that in a balance equal weights at equal dis-
tances are in equilibrium, whereas equal weights ar unequal distances are
not in equilibrium and incline toward the weight at the greater distance.
Letters from this period testify to Galileo’s long search for new self-evident
principles.®?

Following his spectacular astronomical discoveries concerning Jupiter’s
moons and other celestial objects Galileo was called to Florence in 1610 as
philosopher and mathematician to the Grand Duke of Tuscany, a highly
paid position created especially for him.*> The first area of mechanics on
which Galileo worked after his return to Florence was hydrostatics. As part
of a dispute with Aristotelian philosophers, Galileo published two editions
in 1612 of the Discorso intorno alle cose, che stanno in si lacqua, o che in
quella si muonono. The philosophers argued that shape was a decisive factor
in buoyancy, whereas Galileo followed Archimedes in identifying specific
gravity as the decisive factor. In the controversy, Galileo was aided by his
former student Benedetto Castelli (ca. 1577-1643), a Benedictine monk who
was then professor of mathemarics at the University of Pisa. [t was Castelli
who went to work on water flow and water management with a pioneering
mathematical treatise, Della misura dell’acque corventi (On the Measurement
of Running Waters, 1628). The problems associated with the motion of warers
were Castelli’s domain, but Galileo also worked on them. He had already
expressed views on river flow while at Padua and continued to do so until
the 1630s. There are obvious connections between the science of motion and
the cluster of issues linked to river flow and water management, commonly
referred to as the science of waters. Galileo considered water in a river o be like
a body moving down an inclined plane and tried to apply the corresponding
rules, with little success.

After a long period of gestation caused by intellectual as well as political
and religious matters, in 1632 Galileo published his scientific and literary
masterpiece, the Dialogo, wherein three interlocutors discuss over four days
the merits of the two chief world systems. Galileo’s clumsy artempts at cov-
ering his Copernican views allowed the book to make it past the censors but

7 The main letters are 1o Paolo Sarpi (1552-1623) in 1604 and Luca Valerio (1552-1618) in 1609. They
are discussed in Galluzzi, Momenzo, pp. 269—76, 303—7.

# The social and intellectual implications of this move are discussed in Mario Biagioli, Galileo Courtier

(Chicago: University of Chicago Press, 1993).

Richard S. Westfall, “Floods along the Bisenzio: Science and Technology in the Age of Galileo,”

4

Technology and Culrure, 30 (1989), 879-907; and Cesare S. Matholi, Out of Gulileo: The Science of

Waters, 16281718 (Rotterdam: Erasmus, 1994).
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did not prevent it from being banned by the Inquisition in 1633. Galileo was
put under arrest, which was later commuted to house arrest, for vehement
suspicion of heresy until the end of his days.** The Dialogo deals with cosmo-
logical marters, but Galileo’s defense of Copernicanism relied on the science
of motion for the study of the behavior of objects on a moving earth. An
important portion of Galileo’s strategy was to argue that the motion of the
earth would not produce any visible effects on falling or projected bodies on
the earth; therefore it would be impossible to derermine whether the earth
moves in thar fashion. His chief argument in favor of Copernicanism was
that of tides, which he thought were an effect of the double rotation of the
earth on its axis and around the sun. The Dialogo contains several passages
relevant to the science of motion, but it is primarily in the second day where
Galileo discusses relative motion and the effects of the earth’s motion. It is
in the Dialogo that Galileo stared for the first time a number of propositions
abour falling bodies, such as the odd-number rule or the proportionality
between speed and time. Galileo discussed many problems related to the
earth’s rotation, such as why projectiles, birds, and clouds are not left behind
by the earth’s rotation, or why bodies on the earth’s surface are not projected
into the air by its rotation. Moreover, the Dialogo contains the first references
to the isochronism of the pendulum’s oscillations, though not the relation
between period and length.#

Besides putting Galileo under arrest, the Inquisition prevented him from
publishing on any subject. Thercfore, the manuscript of his next and final
work had to be smuggled out of Italy and published in the Protestant Low
Countries by the Elzeviers. When the Discorsi appeared in 1638, Galileo was
seventy-four years of age and had been working on the problem of motion for
about half a century. The book is in the form of a dialogue among the same
three personages as the Dialogo, but whereas the Dialogo was written in a style
that imitated the open-ended discussions among the protagonists, the Discorsi
contained portions structured in a more formal way. The first two days con-
tain many digressions, notably on the nature of the continuum and the phys-
ical cause of cohesion, which Galileo believed was caused by infinitely many
interstitial vacua. The first new mathematical science is the resistance of mate-
rials, whose principles are discussed mainly in day two. Distant roots of these
problems can be found in some of the pseudo-Aristotelian Quaestiones,* but
the more immediate context was Galileo’s work at the Venice Arsenal. The
problem consists in determining the resistance to rupture of a loaded beam
of certain.dimensions, knowing the resistance to tupture of a similar beam

On the relationships berween Galileo and the Church, including the 1616 ban of Copernicanism,
see Annibale Fantolt, Galileo: For Copernicanism and for the Church, wrans. George V. Coyne, S.].
(Vatican City: Vatican Observarory Publications, 1994).

3 Peter Dear, Mersenne and the Learning of the Schools (Ithaca, N.Y.: Cornell University Press, 1988),
p. 165.

Quagestiones, numbers 14 and 16. I wish to thank Antonio Becchi for having pointed this out to me.
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with different dimensions. Obviously, if length is unchanged. a thicker beam
resists more than a thinner one, whereas if thickness is unchanged, a longer
beam resists less than a shorter one. The exact proportions depend on the
width, height, and length of the beam and on whether one considers. it to
be heavy or whether its weight is so much smaller than the loads th:at it can
be neglected. Galileo believed that the foundations of this science lie in the
doctrine of the lever; therefore the resistance of materials was seen as part of
mechanics. .
Days three and four of the Discorsi are devoted to the science of‘m.otlon
and are arranged in an unusual fashion: A formal treatise in Latin is inter-
spersed with elucidations and comments in [ralian by the three imerlo.c‘utors.
The Latin treatise consists of three parts: on uniform motion, uniformly
accelerated motion, and projectile motion. Uniform motion was well under-
stood, but Galileo needed to establish some basic proportions about it as
a basis for the following parts. This example highlights a major problem
in Galileo’s treatment of accelerated motion, namely his lack of suitable
mathematical tools, apart from some propositions derived by the calcula-
tores tradition. Galileo would often use the mean-speed theorem to move
from uniformly accelerated motion to an equivalent uniform one, and t.hen
apply the theorems about uniform motion from part one. He remaxx?ed
always doubtful of the theory of indivisibles, a remarkable mathematical
achievement by his follower Bonaventura Cavalieri (1598-1647) that wo.uld
have helped him in some respects.® It is in days two and three that Galileo
presented some of the results attained at Padua ar}d expanded on them.
Although Galileo struggled to find out that in free fall the speed is propor-
tional to time, in the published form he put this statement as a definjtion,
seeking to present it as natural and simple. Galileo thought that he could‘
found his new science on only one postulate, namely that the degrees of
speed acquired by a body in falling along planes with different inclinations
are equal whenever the heights of those planes are equal.*® He sought to
offer additional underpinning for this statement by claiming that a body
falling either along an inclined plane or atrached to the string OF% pen-
dulum acquires enough impetus to rise back to its original height. Galileo
discussed an experiment where a sphere rolls down an inclined plane about
wwelve bruccia (1 braccio = ss0—655 millimeters) long and raised at one
end by one or two braccia. Time was measured with a water clock, letting
water out of a large container through a tap and then weighir}g it. The
experiment showed that the distance traveled is as the square of the time.
Galileo artributed no role to this experiment in the formal establishment of
his science. Rather, he formulated the science of motion as a mathematical

+ A useful introduction is Kirsti Andersen, “The Method of Indivisibles: Changing Understanding,”
Studia Leibnitiana, Sonderhett 14 (1986), 14-25.
46 Galileo, Tiwo New Sciences, p. 162,
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construction and then used the experiment only at a later stage to show
that the science he had formulated corresponded to nature’s behavior. In
this rather contrived construction, his science would retain a role as a purely
mathematical exercise even if bodies fell according to a different rule. In the
fourth day, Galileo presented his theory of projectile motion, arguing that
trajectories are parabolic. In this case, too, Galileo claimed that his science
would remain valid as a purely mathematical exercise even if nature behaved
differently.

With regard to the role of experiment in his career, it seems helpful to
draw a distinction between private research and public presentation. Private
experiments, such as some of those found in De motu antiquiora and espe-
cially the Padua manuscripts, appear to have had a major heuristic role for
Galileo. He seems to have performed them in order to gather quantitative
information, especially in the form of proportions among variables, such as
time and distance. In some cases, Galileo probably had some ideas as to the
outcome and saw them confirmed, but in others the result probably came
as a surprise to him, such as the experiment with dal Monte on projectile
trajectories on an inclined plane. At times the manuscripts show Galileo cal-
culating and comparing data from experiments to predicted values, his main
aim being to determine proportions between variables rather than numerical
values for their own sake. Galileo often sought to separate the fundamental
features of a phenomenon from what he called accidental perrurbarions. It
was this strategy that often enabled him to provide mathematical formu-
lations of complex phenomena.*” In print, Galileo’s experimental reports
vary enormously in style and scope. We have already seen how contrived his
report of the inclined-plane experiment in the Discorsi was. In the Discorso
on bodies in water, his reports sometimes have a legalistic tone associated
with the nature of the dispute. In that case, Galileo knew from the start the
principles of hydrostatics and was seeking a powertul rhetorical presentation.
The Dialogo includes a large number of informal presentations of experi-
ments, with a dazzling range of rhetorical styles. It is extremely difficult to
pinpoint a general pattern, except to remark that Galileo was writing-a mas-
terpiece in scientific rthetoric wherein he was referring to experimental trials
as if in informal conversation. At times he would claim great accuracy for
an experiment, and in other instances he would say that the outcome was so
certain that there was no need to perform it, even when we know that Galileo
had in fact performed it. For example, Galileo discussed the experiment of
dropping a weight from the mast of a moving ship as part of his discussions
of motion on a moving earth, arguing that the weight falls at the foot of the
mast regardless of whether the ship is in motion. Although in the Dialogo he
claimed thar the outcome could be determined even without an experiment,

¥ Damerow ct al., Exploring the Limits, pp. 208-36; and Noretta Koerrge, “Galileo and the Problem
of Accidents,” Journal of the History of Ideas, 38 (1977), 389—408.
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we know from a previous letter that in fact he had performed this experiment
a few years before.*® This case highlights some of the problems in reading
and interpreting Galileo.

Although Galileo proudly proclaimed at the outset of the third day of
the Discorsi that he was putting forward a wholly new science about a most
ancient topic, scholarly opinions about his actual achievements differ. Some
see him as a key figure in careful experimentation, others in the application
of mathematics to the study of nature. For some he resolutely broke with
the past, whereas others detect long threads from classical and medieval
times still entangling his thought and preventing him from offering a full
formulation of a new science.*? Either way, Galileo represents a nodal point
in the history of mechanics and science. He had a major role in redefining
questions and research topics and in setting the agenda for the following
decades.

Several related processes took place in the science of mechanics during the
period berween the publication of the Discorsi in 1638 and the early eigh-
teenth century. Inidally, mechanics was situated among the mixed mathe-
matical disciplines and had close ties with engineering, but from the middle
of the century, it became progressively more integrated with natural philoso-
phy. During the first part of the century, its practitioners interacted through
correspondence networks, such as that centered on the French Minim Marin
Mersenne (1588—1648). The second half of the century brought major changes
to this landscape. Galileo died in 1642, followed in 1643 by his former stu-
dent and professor of mathematics at Rome, Benedetrto Castelli, and soon
after by Galileo’s successor at the Tuscan court, Evangelista Torricelli (1607
1647). Mersenne and René Descartes (1596-1650) died within a couple of
years of each other. In addition to individual scholars, communication net-
works disappeared and had to be rebuilt by the new generation. Informal
correspondence networks were replaced in the second half of the century
by more formal scientific academies, such as the Royal Society in London
and the Académie Royale des Sciences in Paris, which became major venues
of research and debate on mechanics.®® Lastly, the audience for works on
mechanics changed from mathematicians and engineers to a broader public
with philosophical and cosmological interests. The remainder of this chapter
addresses in particular how the key works in the discipline were read by other
practitioners and the broader intellectual public.

2 Drake, Galileo ar Work, pp- 84, 294.

# Classic interpretations include Drake, Gulileo atr Work; Galluzzi, Momento; and Damerow et al.,
Exploring the Limits, chap. 3.

* In the large fiterature on this theme, see Lorraine Daston, “Baconian Facts, Academic Civility,
and the Prehistory of Objectivity,” Annals of Scholarship, 8 (1991), 337-63; and Mario Biagioli,
“Etiquette. Interdependence, and Sociability in Seventeenth-Century Science,” Critical Inquiry,
22 {1996), 193—238.
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READING GALILEO: FROM TORRICELLI TO MERSENNE

A scholar of mechanics and the science of motion in about 1640 would have
found the field to be in one of its most creative and exciting periods. After
having discussed aspects of the science of motion in the Dialogo, in 1638
at age seventy-four, Galileo finally produced his masterpiece, the Discorsz.
The first two days contained, among many digressions, the principles of the
new science of the resistance of materials, which dealt especially with the
problem of scaling applied to the transition from models of machines to
real ones. Days three and four dealt with the science of motion, including
falling and projected bodies. The Dialogo had received a first Latin transla-
tion in 1635 that was often reprinted, and in 1639, Mersenne put forward a
free French translation of Galileo’s Discorsi. In 1639, Castelli had published
the second edition of his own work on water fow, Della misura dell’acque
correnti. Qutside Italy, Mersenne had published in 1636 the gigantic and
labyrinthine Harmonie universelle (Universal Harmony), a work devoted to
musical matters. Because sound is produced by motion, he included an exten-
sive discussion of motion that was largely based on Galileo’s Dialogo. All these
works announced the emergence of new relationships between mathematics
and the physical world: The science of motion was becoming an integral
part of the mathematical disciplines and was tied to mechanics in multiple
ways.”!

The three new mathemarical disciplines had technical and engineering
roots: The origins of the science of waters were tightly bound to the problem
of river flow in central Iraly, especially the areas between Bologna and Fer-
rara, and of the Venetian lagoon; the science of resistance of materials and
the problem of scaling were common concerns among engineers, so much
so that Galileo introduced them in the Discorsi with a discussion inspired
by a visit to the Venice Arsenal; and the science of motion had roots in
gunnery. Despite such links, the university mathemaricians and the philoso-
phers promoting and discussing those disciplines had a more philosophical
and learned audience in mind than that of rechnicians and engineers. On
the one hand, their works emphasized not just utility but the importance of
the reform of knowledge, especially natural philosophy; on the other hand,

5t Although it is problematic to include the science of motion within mechanics throughout the
seventeenth century, it is more problematic to exclude it. During the century, scholars increasingly
ook equiliBtium, or statics, and the science of motion as two sides of the same coin. Alan Gabbey has
produced several thoughtful articles on this issue: See Gabbey, “Newton'’s Mathemarical Principles of
Natural Philosophy: A Treatise on ‘Mechanics?” in The Investigation of Difficult Things, ed. Peter M.
Harman and Alan E. Shapiro. (Cambridge: Cambridge University Press, 1992), pp. 305-22; Gabbey,
“Descartes’s Physics and Descartes’s Mechanics: Chicken and Egg?” in Essays on the Philosophy and
Science of René Descartes, ed. Stephen Voss (Oxford: Oxford University Press, 1993), pp. 311-23; and
Gabbey “Between ars and philosophia naruralis: Reflections on the Historiography of Early Modern
Mechanics,” in Renaissance and Revolution, ed. Judith V. Field and Frank A. J. L. James (Cambridge:
Cambridge University Press, 1993), pp. 133—4S.
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during the seventeenth century, the world, or at least significant portions of
it, was seen more and more in mechanical terms, and therefore discussions
of machines became colored with cosmological implications and nartural
philosophy. Occasionally Galileo’s views were already being discussed and
criticized in university textbooks of natural philosophy around the middle
of the century.™*

For several reasons, the science of motion attracted the lion’s share of the
interest. Galileo thought that he had established the science of the resistance of
materials on the principle of the lever. Because it was thoughr to rely on math-
ematical and mechanical foundations, which were less problematic than the
science of motion,” the science of resistance of materials generated fewer con-
troversies and generally did not inspire broader philosophical debates. The
mathematical treatment of the resistance of materials actracted the atren-
tion of the engincer and mathematician Frangois Blondel (1618-1686), of
Galilean mathematicians Alessandro Marcherti (1633-1714) and Vincenzo
Viviani (1622-1703), of the Jesuit Honoré Fabri (1607-1688), of the experi-
mental philosopher at the Paris Académie Edme Mariotte (ca. 1620-1684),
and of mathematicians such as Gorttfried Wilhelm Leibniz (1646-1716) and
Jakob Bernoulli (1654-1705).%* Although the science of warters was exceed-
ingly complex, Castelli’s fundamental proposition on water fow was quite
straightforward. Descartes and Isaac Newton (1643-1727) implicitly used it
with cosmological implications, but the science of waters remained largely a
technical matter rooted in [raly.”

Let us now consider the science of motion. Galileo had provided different
presentations: piecemeal, so to speak, in the Dialogo, where the motion of
Ejodies on the earth was tied to Copernicanism, and structured in axiomatic
form with definitions and theorems in the Discorsi. Even waking this major
difference into account, it is striking to notice how differently his works
were read by scholars in the late 16305 and 1640s. For some, Galileo had
provided a series of propositions to be tested experimentally or examined in
their mathematical or mechanical deductions on a one-by-one basis. Part of
this process consisted in finding numerical values in which Galileo seemed

W
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to have no particular interest, such as the length of the seconds pendulum or
the distance traversed by a falling body in one second. Others were interested
in the axiomatic structure of the new science as a whole, in the choice of defi-
nitions and axioms, and in the ensuing proofs. Still others became concerned
with mathematico-philosophical aspects, such as the nature of the contin-
uum, with special regard to time and speed. Lastly, some scholars objected to
the very nature of Galileo's science, arguing that he had neglected physical
causes and built an abstract science with no bearings on the real world. Those
different readings provide valuable insights on the many perspectives from
which mechanics and motion were studied in the mid-seventeenth century.

Galileo and his disciples Torricelli and Viviani were mainly concerned
with the formulation of a science in imitation of Archimedes’ work on the
equilibrium of the balance. Generally, they were already convinced of the
truth of individual propositions, but they worried about the overall structure
and especially the choice of axioms. Ideally, in their opinion an axiom did
not have to be established by experiments but rather had to be chosen as a
principle of reason to which the mind naturally agrees. Soon after the pub-
lication of the Discorsi, Viviani pressed Galileo over the choice of his axiom,
and Galileo conceived a way to prove it on the basis of received mechanical
principles. The new proof appeared in the second edition of Discorsi in 1656,
published together with other works by Galileo, excluding the Dialogo.
Torricelli also moved along similar lines, and in his reformulation and exten-
sion of Galileo’s science in De moru (On Motion, 1644) he introduced a new
principle, namely that two joined bodies do not move unless their common
center of gravity descends. Although Torricelli instantiated it by mention-
ing bodies attached to a balance or pulley, it is clear that this principle was
not based on experiments and had general validity beyond the specific cases
mentioned.””

[t would be erroneous to generalize these concerns to other quarters. Several
readers questioned specific empirical claims and performed experiments that
challenged Galileo’s statements and results. For example, the Genoa patrician
Gianbatrista Baliani (1582-1666) and Mersenne in Paris expressed surprise
and incredulity at Galileo’s claim that in five seconds a body falls only one
hundred braccia, less than seventy yards. Quite rightly, both believed the real
distance to be far greater. We now know that Galileo had extrapolated results
from fall along inclined planes to bodies in free fall. Such extrapolations were
problematic for reasons unknown at the time, and when Mersenne tested
Galileo’s claims he found systemaric errors for virtually all inclinations. A
body falling along the inclined plane covered a distance noticeably shorter

% The axiom stated that the degrees of speed acquired by the same body over planes of different
inclinations are equal whenever the heights of those planes are equal. Galileo, Tiwo New Sciences,
pp. 206, 21418, includes the new proof in a footnote. ’

57 De motu was part of Torricelli’s Opera geomerrica (Florence: Typis Amatoris Masse and Laurentii de
Landis, 1644).
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than that predicted by Galileo.” Galileo had also claimed that as a body shot
upward falls back, it goes through the same degrees of speed as when it was
going up. In particular, the speed with which it reaches the ground would
be the same as that with which it was shot. Yet experiments based on the
force of percussion reported by Mersenne and the Paris mathematician Gilles
Personne de Roberval (1602-1675) showed the speed of the body after the fall
to be much smaller than that with which it was shot. Experiments performed
initially by gunners at Genoa and then at various locations in Europe tested
Galileo’s claims about parabolic trajectories. Were the trajectories parabolic?
Was it true that the longest shot occurred with an inclination of 45°? Could
one measure and predict the effect of air resistance? Lastly, probably the most
extensive and accurate set of experiments inspired by Galileo was performed
from many of the Bologna bell towers as well as civic towers under the
direction of Jesuit mathemartician Gianbattista Riccioli (1598-1671). Over
approximately a decade, Riccioli dropped spheres of lead, clay (empty and
full inside), wax, and different types of wood, finding that they followed
Galileo’s odd-number rule — namely that the distances traversed in successive
tme intervals are as 1, 3, 5, and so on — though it was not quite true that
all bodies fell with the same acceleration. Riccioli also experimented on the
length of the seconds pendulum, yer another common theme for Galileo’s
readers. At least some of these experiments were performed keeping in mind
the issue of Copernicanism and the behavior of bodies on 2 moving earth,
which was a major concern especially among Jesuit authors.”?

Additionally, several readers were concerned that embedded in Galileo’s
views about motion were both specific and general philosophical proposi-
tions. Prominent among the former was the problem of continuity. Galileo
had claimed on several occasions that a falling body goes through all the
degrees of speed. Because the degrees of speed are infinitely many and the
body falls in a finite time, it seems to follow that the body must go through
each of them in an instant and that a finite time is composed of infinitely
many instants. The composition of the continuum touched on many other
themes as well, notably condensation, rarefaction, the cohesion of bodies,
and their resistance to rupture — Galileo’s main theme in the first day of
the Discorsi. But even within the science of mouon, Galileo’s claim was

2 Marin Mersenne, Harmonie universelle contenant la théorie et la pratigue de la musique (Paris: Editions
du CNRS, 1986), bk. 2, prop. 7, esp. pp. 11112, The discrepancy was caused by the fact thara sphere
rolling down an inclined plane behaves like a rigid body, not a point mass, and follows more
complex laws because it rotates. A sphere rolling along an inclined plane covers only five-sevenths
of the distance Galileo and Mersenne had in mind.

Giovanni B. Riccioli, Almagestum novum (Bologna: Ex Typographia Haeredis Victorij Benatij, 1651),
pt. L, pp. 84—91 and pt. II, pp. 381-97. Classic studies by Alexandre Koyré are: “An experiment in
measurement,” Proceedings of the American Philosophical Society, 97(1953), 222—37; “A Documentary
History of the Problem of Fall trom Kepler to Newton,” Transactions of the American Philosophical
Sociery, 45 pt. 4 (1955). More recently, Peter Dear has studied the role of experiments in the mathe-
matical disciplines and the science of motion in Discipline and Experience: The Mathemarical Way
in the Scientific Revolution (Chicago: University of Chicago Press, 1995).
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controversial and was challenged by several scholars on several grounds. The
Society of Jesus was extremely cautious when it came to matters about the
composition of the continuum, potentially impinging on such crucial issues
as the dogma of transubstantiation of the Eucharist. They prohibited several
propositions, such as “An infinity in number and magnirude can be con-
tained between two unities or points,” and “The continuum is composed of
afinite number of indivisibles.” Two Jesuit scholars, Honoré Fabri and Pierre
le Cazre (1589-1664), were among those who became entangled in metaphys-
ical disputes on continuity and defended propositions against both Galileo
and surprisingly some of the views of their order. Fabri in particular argued
that time was not continuous but consisted of tiny but finite instants. At a
later stage, he also claimed that the instants were of variable size. Baliani also
argued in a similar vein, possibly inspired by Fabri. In their opinion, a time
interval would consist of a finite number of finite instants, and thus speed
would change not continuously but discretely at each new instant. Fabri
agreed that Galileo’s rule was empirically adequate but denied that Galileo
had provided a foundation for his science and that experience could serve this
purpose. The advantage of his view would be to provide a different and more
solid philosophico-metaphysical justification for the science of falling bodies.
Additionally, if the instants are very small, the difference between Galileo’s
odd-number rule and Fabri’s can become so small as to be empirically unde-
tectable. Therefore, one would save the experimental side of Galileo’s work
while providing it with a more solid foundation as to the composition of the
continuum. Not surprisingly, the reviver of ancient atomism, Pierre Gassendi
(1592~1655), was also involved in these debartes.®®

Other scholars had other fundamental objections concerning the very
nature of Galilean science. Descartes was the most prominent among those
readers concerned not simply with physical causes but with the architecture of
Galileo’s science. Whereas Galileo had modeled his sciences on Archimedes
and often emphasized his reliance on sensory experiences and mathematics
as the new sources of knowledge, Descartes aimed more broadly at a reform
of knowledge from its metaphysical foundations.

DESCARTES' MECHANICAL PHILOSOPHY
AND MECHANICS

One way to discuss some of the differences between Galileo’s and Descartes’
perspectives is to focus on their reading of Aristotle and their relation to the

% C. R. Palmerino, “Two Jesuit Responses to Galileo’s Science of Motion: Honoré Fabri and Pierre
Le Cazre,” in The New Science and Jesuit Science: Seventeenth Century Perspectives, ed. Mordechai
Feingold (Dordrecht: Kluwer, 2003, Archimedes, vol. 6}, pp. 187—227, at p. 187. See also Paclo
Galluzzi, “Gassendi and ['Affaire Galilée on the Laws of Motion,” in Galileo in Context, ed. Jiirgen
Renn (Cambridge: Cambridge University Press, 2001), pp. 239~75.
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Peripatetic tradition. Both rejected Aristotle and especially the Peripatetic
learning of the universities, but whereas Galileo offered a powerful but nar-
rower alternative that focued on motion, matter theory, and cosmology,
Descartes offered a broader alternative that included the nature and foun-
dations of our knowledge and aimed at replacing the Aristotelian worldview
among scholars as well as in university teaching. Galileo’s views on the rela-
tionship between mathematics and physical causes varied considerably even
within the same work. In the Discors, for example, he tried to account for the
resistance of bodies to rupture in terms of infinitely many interstitial vacua,
joining matter theory with the analysis of the continuum. With regard to
the science of moticn, however, Galileo claimed through his spokesperson
Filippo Salviati (1582—1614) that he did not wish to investigate causes and
presented a new science in the Archimedean tradition of the science of equi-
librium or starics.*

Descartes, by contrast, after a crucial collaboration with the Dutch scholar
Isaac Beeckman (1588—1637), aimed at creating a new wortldview where a
mathematical description of nature, and especially motion, was joined to
a physical causal explanation. The key to this link was the microworld of
corpuscles and subtle fluids responsible for physical phenomena. Through a
combination of his study of impacts among particles and of the behavior of
fluids, Descartes was able to produce a new physico-mathematics by which
he and Beeckman meant a science joining a mathematical description with
a physical causal account. The mixed mathematics dealt with the properties
of the lever, for example, without exploring the cause of graviry, whereas
Descartes made that exploration a major feature of his work.®* Descartes did
not think much of Galileo’s Discorsi and in a letter to Mersenne he disagreed
with the physical account of the resistance of materials and the analysis of the
continuum because he thoughrt that Galileo had built a science of motion
without foundations by failing to provide a deeper philosophical and causal
analysis. Descartes argued that Galileo had solved easy mathematical exercises
devoid of physical significance.’ Descartes’ view of gravity as caused by a
stream of particles made Galileo’s abstraction of the motion of falling bodies
in a void meaningless because he was removing the very cause of motion.

Both Galileo and Descartes were familiar with Quaestiones mechanicae,
a text then believed to be by Aristotle but now attributed to his school.
Quaestiones relies on the principle of the lever and presents a series of cases
and examples dealing with it. Whereas Galileo read it within the tradition of

5 Galileo, Two New Sciences, pp. 109, 158-9.

52 Stephen Gaukroger, Descartes (Oxtord: Oxford University Press, 1995), chap. 3. Descartes and Beeck-
man used the term “physico-mathematics” in this sense. The emergence of the same term among
Jesuit writers with a somewhar different meaning has been swudied in Dear, Discipline and Experi-
ence. See also Stephen Gaukroger and John Schuster, “The Hydrostatic Paradox and the Origins of
Cartestan Dynamics,” Studies in History and Philosophy of Science, 33 (2002), s35-72.

% The relevant portion of the letter is translated in Drake, Galsleo ar Work, pp. 386-93.
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mechanics, Descartes found in it and its interpretative tradition references to
slings, whirlpools of water, and pebbles rounded on the seashore, three key
clements of his worldview that we will encounter again in this secrion.®*

Descartes” work, together with some of Galileo’s passages on the constitu-
tion of matter and Gassendi’s Christianized atomism, constitute the pillars
of the so-called mechanical philosophy. In 7/ Saggiatore (The Assayer, 1623),
Galileo had drawn a distinction between properties of matter such as shape,
which is independent of human perceptions, and color, which resides only
in the human mind. They were later called primary and secondary qual-
ities, respectively. In a number of works, culminating with the imposing
Syntagma philosophicum (Philosophical Work, 1653), Gassendi atrempred to
revive the ancient philosophy whereby elementary constituents of matter or
aroms move through empty space. The mechanical philosophy was a het-
erogeneous collection of views with a common core based on the belief in
the fundamental role of the size and shape of particles in motion. Descartes
believed neither in the existence of empty space nor in the indivisibility of
matter or atoms, unlike Gassendi.

Descartes first outlined his system in Le monde (The World), bur this work
appeared posthumously in 1664. The main text known to his contemporaries
was Principia philosophiae (Principles of Philosophy), first published in Latin
in 1644 and then in 1647 in a French translation by the abbé Claude Picot
(d. 1668) partly under Descartes’ supervision. This work consists of four
parts, on the principles of human knowledge, the principles of marerial
things, the visible world, and the earth. Descartes dedicated it to his friend
and correspondent Princess Elizabeth of Pfalz (1596-1662). Descartes claimed
that she had a detailed knowledge of all the arts and sciences and therefore
was the only person to have understood all the books he had published. In
the letter to Picot prefaced to the French edition, Descartes suggested that
his book be read first as a novel to figure out what it was about. Only on a
second reading should one examine it in greater detail and grasp the order
of the whole. The letters to Elizabeth and Picot suggest that Descartes’ work
was extraordinarily ambitious in the range of marters it treated and in the
broad audience it intended to address.®

I focus here on Parts 2—4, outlining a world system based on relatively
simple laws but with a dazzlingly complex series of interactions among par-
ticles. In Part 2, Descartes argued that space could not be distinguished from
corporeal substance and that a vacuum and atoms did not exist. Descartes
also tried to define the motion of a body with respect to the bodies that touch
it, so that if the carth is carried by a vortex, one could say that truly it is at

¢ H. Hattab, “From Mechanics to Mechanism: The Quaestiones mechanicae and Descartes’ Physics,”
w0 appear in Australasian Studies in the History and Philosophy of Science. | am grateful to the author
tor having provided me with a draft of her work and for permission to refer 1o ir.

b Gaukroger, Descartes, chaps. 7 and 9.
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rest with respect to its surrounding bodies. Scholars disagree as to whether
his definition was genuinely part of his views or was intended ro protect his
system from the charge of Copernicanism by the Catholic Church.%

In the study of motion, Descartes formulated three laws, a significant
departure from the term “axiom” used in the mathematical disciplines. He
justificd them partly on physical and partly on theological grounds. He
considered motion and rest as modes of a body and, ar least to some extent,
equivalent ones, whereby every body perseveres in its state of motion or rest
indefinitely. This is his first law of motion. The second specifies that motion
in itself is rectilinear and that everything moving circularly tends to escape
from the center along the tangent. Descartes often talked of “determination,”
a notion close to that of direction. Later in the century, the ideas embodied in
the first two laws would become known as the law of inertia, despite the fact
that the term inertia had been initially employed by Johannes Kepler (1571—
1630) with quite a different meaning, namely of a body’s innate tendency to
come to rest. Descartes tried to provide examples for his first ewo laws from
objects of common experience, the motion of projectiles in the first case and
that of a sling in the second.®”

Traditionally, Descartes’ reconceptualization of motion and geometriza-
ton of space have been considered as the major event in the history
of seventeenth-century mechanics and natural philosophy.®® According to
Kepler and to traditional Aristotelian doctrines, a body in motion would
naturally come to rest. In the work of Galileo, horizontal motion often is
the limir of a motion along an inclined plane with zero inclination and is
truly horizontal in the sense that it coincides with the horizon. Thus, over
a short distance it may appear straight, but over a longer one it is circular
because of the earth’s curvarure. Galileo seemed to extend similar views to
orbital motions, implying that circular motion is natural. Descartes, by con-
trast, extended rectilinear uniform motion indefinitely in a Fuclidean space.
Despite the great significance of his and Gassendi’s views on this matter, the
transformations occurring in mechanics in mid-century were more broadly
based. Mechanics and the science of motion involved a richer set of notions,
practices, and problems than was suggested by Descartes’ first two laws, such
as falling bodies, the motions of strings and pendulums, the resistance of
materials, and water low.®?

Daniel Garber, Descartes’ Metaphysical Physics (Chicago: University of Chicago Press, 1992), especially
chap. 6.

7 Garber, Descartes' Metaphysical Physics, pp. 188—93; Damerow et al., Exploring the Limits, pp. 103-23;
Descartes, Principia, pt. 2. paras. 37--9; and Alan Gabbey, “Force and Inertia in Seventeenth-Century
Dynamics,” Studies in Histary and Philosophy of Science, 2 (1971), 1-67. See the entry on inertia by
Domenico Bertoloni Meli in Encyclopedia of the Sciennific Revolution from Copernicus o Newton, ed.
W. Applebaum (New York: Garland, 2000), pp. 326-8.

The most influential proponent of this view was Alexandre Koyré. Sce. for example, his From the
Closed Warld ta the Infinite Universe (Baltimore: Johns Hopkins University Press, 1957).

We lack a comprehensive study of mechanics in the seventeenth century. On the science of waters,
see Matholi. Out of Galilea. On the resistance of materials, see Benvenuto, Structural Mechanics,
vol. 1.
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Descartes’ third law of nature concerns collision and states that a body
hitting a stronger one loses no part of its motion, whereas a body hitting a less
strong one loses the same amount that it transmits to the othc:r'. Put another
way, the third law states the conservation of motion, by thch Descartes
meant the producr of the size of a body and its speed, taken‘wnh no regard to
direction. Clearly this law required justification and qualification. Dc‘scartes
claimed that quantity of motion is conserved not in individual bodies t‘>ut
in the universe as a whole because of God’s plan and action. In the ensuing
explanation, Descartes distinguished berween hard and soft. quies, so one
gets the impression that the strength of a body is associated W}th its hardness.
Later on, however, he defined a body’s strength in terms of its size, surface,
and speed, and the nature of the impact. These conditions arc quite complex,
and when it comes to providing specific rules for actual impacts, Descartes
introduced simplifications, such as that the bodies are perfectly hard and are
taken in isolation from all surrounding bodies.”® '

These simplifications are quite radical because they describe abstract sitga—
tions that cannot occur in the Cartesian world, which is a plenum. Even with
them, Descartes’ seven rules appear problematic, despite his claim that they
were self-evident and required no proof. Rules 1—3 deal with bodies movirnlg
in opposite directions, and rules 4—6 deal with collisions between a bo.d.y in
motion and one at rest. The last rule examines the various cases of collisions
between two bodies moving in the same direction. Descartes’ rules do not
lack surprising and unconvincing features. For example, in rule 4 he argued
that a body at rest could not be set in motion by a smaller one, regard!css of
its speed. Another example of the problems associated with D.escartes ru.les
emerges from those numbered 2 and 5. According to rule 2, if t\fvo bodies,
one slightly larger than the other, collide with equal and opposite ?peeds,
the smaller one rebounds and both move in the same direction with the
same speed. According to rule s, if a body in motion collides with a sma}ller
body at rest, after the impact both will move in the directign O_f the imping-
ing body with the same speed, a speed smaller than the impinging quy's
original speed. In both cases, their common final speed can be deterrr.lme.d
from the conservation of a Cartesian or scalar quantity of motion, which is
larger in rule 2 than in rule 5 for equal bulks. Thus it appears that a body
in motion is affected more by colliding with one at rest than with the same
body moving with an opposite speed, an unconvincing result or at least one
far from self-evident.”™

Part 3 of Descartes’ Principia deals with the sensible world and outlines a
cosmogony based on the size and shape of particles in motion. He prévxded an
account of the formation of the universe and of the motions of celestial bodies
such as planets and comets. The heavens are fluid, and there are three types of

" Descartes, lrincipia, pt. 2, paras. 40-55. ) ) ) v o
7 There is a vast body of literature on the rules of impact. See Damerow et al., Exploring the Limits,
pp. 91-102; and Garber, Descartes’ Metaphysical Physics, chap. 8.
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matter or elements depending on shape and size. Over time, the particles of
matter become rounded like pebbles on a beach, and their minute fragments
form different cypes of matter. The first element forms the sun and fixed

stars, and is fine-textured and moves very fast; the second element is coarser
and forms the fluid filling the heavens; and finally, the third element is racher
gross and forms planets and comets. Light is the pressure resulting from the
endeavor of small particles to escape from a rotating vortex. From his second
law of motion to his analysis of light, Descartes relied on motion being
rectilinear. Curvilinear motion is caused by an external agent and genecrates a
tendency to escape along the rangent. Descartes did not provide a quantitative
measure of this outward tendency but laid the conceprual foundations for
explaining it that remained in place for several decades. A body tending to
escape along rhe tangent also tends to escape from the center. Thus a rotating
stone pulls the sling retaining it and is counterbalanced by the hand holding
the sling. Similarly, in the universe, orbiting bodies have a tendency to escape
along the rangent, and those with a stronger tendency push the others roward
the center. Thus, bodies appearing to have a tendency toward the center are
in reality only the losing ones in the competition to move outward. In a
universe with no empty space, for every particle moving outward there must
be a corresponding one moving the opposite way. Descartes illustrated this
with the example of straws floating in a whirlpool of water and being pushed
by the rotation toward the center. In dealing with the real world, Descartes
did not rely on his impact rules but considered factors such as the structure
of marter, the nacure of its pores, and the size and speed of the fluid particles
flowing through them. In Descartes’ eyes, the virtue of this type of explanation
is that it accounts for all phenomena with philosophically acceptable notions,
avoiding inexplicable artractions and repulsions and all actions not based on
direct contact.”?

Part 4 is devoted to the earth and examines a range of phenomena about its
formarion and features, extending among others to gravity, tides, chemical
phenomena and reactions, the origin of flames, magnetism, and the elastic-
ity of air and other substances. Concerning gravity, for example, Descarres
argued that because of the different sizes and speeds of the particles gener-
ating it and flowing through terrestrial bodies, the weight of a body is not
proportional to its quantity of solid matter or the grosser matter of Descartes’
third element.”

Descartes’ formulation of the first two laws, his insistence on conservation
in the third, and his posing the problem of curvilinear motion and impact
changed the landscape of the science of motion. By identifying matter with
extension, Descartes set the scene in principle for a radical geometrization
of the universe. In practice, however, the complexity of the interactions

" Descartes, Principia, pt. 3, paras. 48-63.
7 Descartes, Principia, pt. 4, para. 25. Later in the century, Newton was to address precisely this point.
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only in limited areas.”

READING DESCARTES AND GALILEO: HUYGENS
AND THE AGE OF ACADEMIES

Although probably only a few devoted followers accepted Descartes’ views in
their entirety, the intellectual world of the second half of the seventeenth cen-
tury was dominated by criticism, responses, reformulations, and refinements
of his doctrines. No one who read his works went away unchanged. Already
during Descartes’ lifetime, and even more so in the second half of the cen-
tury, university textbooks based on his philosophy began to appear, marking
a major change in higher education. Henri Regis (1598-1679) and Jacques
Rohault (1620-1675), just to mention two of the most prominent authors,
wrote influential rextbooks that went through many editions stretching, in
the latter case, to the eighteenth century.”

Let us consider how Descartes” Principia was read, especially his laws of
nature and impact rules. Among the community of mathematicians, the first
two laws of motion fared much better than the third one and its instantiation
in the impact rules. Scholars accepted that undisturbed motion is uniform
and rectilinear, ar least in principle, even if at times they forgot to apply it
in practice, as did Giovanni Alfonso Borelli (1608—1679), holder of Galile.o’s
former chair of mathematics at Pisa, in his study of falling bodies on a rotating
earth.”® The conservation of quantity of motion and the rules of impact were
more problematicand were subjected to criticism and refutation. Both peaked
in the late 1660s.

It may be useful to begin with a brief historiographic consideration. Tra-
ditionally, the study of impact has been considered simply as a search for the
correct rules.”” The rules, however, depend on the different types of bod-
ies involved, and therefore the problem is twofold: to determine the rules
and to classify bodies appropriately. In order to have meaningful rules, one

must know the meaning of terms such as soft, hard, and elastic for impgct
phenomena. Thus, the study of impact involves the properties of material

74 Optics was an area where Descartes was especially successful in this regard. See Gaukroger, Descartes,
pP- 256-69. . B
See, for example, Henricus Regis, Fundamenta physices (Amsterdam: Apud Lud?v1cu111 Elzevirium,
1646); Jacques Rohault, Traité de physique (Paris: Chez la Veuve de Charles Savreux, 1671); and
Brockliss, French Higher Education in the Seventeenth and Eighteenth Centuries. .
On subtle differences berween Descartes’ laws and later formulations, see Gabbey, “Force and Tncrt{a
in Seventeenth-Century Dynamics”; Govanni A. Borelli, De vi percussionis (Bologna: Ex typographia
[acobi Montii, 1667}, pp. 107-8; and Koyré, “Documentary History,” pp. 358—60.
77 See, for example, Richard S. Westfall, Force in Newron's Physics (London: Macdonald, and New
York: American Elsevier, 1971), ad indicem.
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matter or elements depending on shape and size. Over time, the particles of
matter become rounded like pebbles on a beach, and their minute fragments
form different types of macter. The first element forms the sun and fixed
stars, and is fine-textured and moves very fast; the second element is coarser
and forms Fhe fluid filling the heavens; and finally, the third element is rather
gross and forms planets and comets. Light is the pressure resulting from the
endeavor of small particles to escape from a rotating vortex. From his second
[aw‘of motion to his analysis of light, Descartes relied on motion being
rectilinear. Curvilinear motion is caused by an external agent and generates a
tendency to escape along the tangent. Descartes did not provide a quantitative
measure of this outward tendency but laid the conceptual foundations for
explaining it that remained in place for several decades. A body tending to
escape along the tangent also tends to escape from the center. Thusa rotating
stone pulls the sling retaining it and is counterbalanced by the hand holdin
the sling. Similarly, in the universe, orbiting bodies have a tendency to escapg
along the tangent, and those with a stronger tendency push the others toward
the center. Thus, bodies appearing to have a renden’cy roward the cenrer are
in .reality only the losing ones in the competition to move ourward. In a
universe with no empty space, for every particle moving outward there must
bc? a corresponding‘onc moving the opposite way. Descartes illustrated this
with the cxam ple of straws floating in a whirlpool of water and being pushed
b?/ the rotation toward the center. In dealing with the real world, Descartes
did nor rely on his impact rules but considered factors such as the structure
of matter, the nature of its pores, and the size and speed of the fluid particles
ﬁowing through them. In Descartes’ eyes, the virtue of this type of explanation
is that itaccounts for all phenomena with philosophically acceptable notions
avoiding inexplicable attractions and repulsions and all actions not based or;
direct contact.”™
\ Part 4 is devoted to the earth and examines a range of phenomena about its
formation and features, extending among others to gravity, tides, chemical
phenomena and reactions, the origin of flames, magnetism, and the elastic-
ity of air and other substances. Concerning gravity, for example, Descartes
argued that because of the different sizes and speeds of the parti,cles gener-
ating it and flowing through terrestrial bodies, the weight of a body is not
proportional to its quantity of solid matter or the grosser matter of Descartes’
third element.”
A Descartes’ formulation of the first two laws, his insistence on conservation
in the third, and his posing the problem of curvilinear motion and impact
changed the landscape of the science of motion. By identifying marter with
exﬂtension, Descartes set the scene in principle for a radical geometrization
of the universe. In practice, however, the complexity of the interactions

7 Descartes, Principia, pt. 3, paras. 48~63.
73 " Q NN - H
Descartes, Principia, pt. 4, para. 2s. Later in the century, Newton was to address precisely this point
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among streams of particles moving in all directions meant that the actual
formulation of a mathematical description of nature could be accomplished

only in limited areas.”™

READING DESCARTES AND GALILEO: HUYGENS
AND THE AGE OF ACADEMIES

Although probably only a few devoted followers accepred Descartes’ views in
their entirety, the intellectual world of the second half of the seventeenth cen-
tury was dominated by criticism, responses, reformulations, and refinements
of his doctrines. No one who read his works went away unchanged. Already
during Descartes’ lifetime, and even more so in the second half of the cen-
tury, university textbooks based on his philosophy began to appear, marking
a major change in higher education. Henri Regis (1598-1679) and Jacques
Rohault (1620-1675), just to mention two of the most prominent authors,
wrote influential textbooks that went through many editions stretching, in
the latter case, to the eighteenth century.”

Let us consider how Descartes’ Principia was read, especially his laws of
nature and impact rules. Among the community of machemaricians, the first
two laws of motion fared much better than the third one and its instantiation
in the impact rules. Scholars accepted that undisturbed motion is uniform
and rectilinear, at least in principle, even if at times they forgot to apply it
in practice, as did Giovanni Alfonso Borelli (1608-1679), holder of Galileo’s
former chair of mathematics at Pisa, in his study of falling bodies on a rotating
carth.”® The conservation of quantity of motion and the rules of impact were
more problematic and were subjected to criticism and refutation. Both peaked
in the late 1660s.

It may be useful to begin with a brief historiographic consideration. Tra-
ditionally, the study of impact has been considered simply as a search for the
correct rules.”” The rules, however, depend on the different types of bod-
ies involved, and therefore the problem is twofold: to determine the rules
and to classify bodies appropriately. In order to have meaningful rules, one
must know the meaning of terms such as soft, hard, and elastic for impact
phenomena. Thus, the study of impact involves the properties of material

74 Optics was an area where Descartes was especially successful in this regard. See Gaukroger, Descartes,
pp- 25669

75 See, for example, Henricus Regis, Fundamenta physices (Amsterdam: Apud Ludovicum Elzevirium,
1646); Jacques Rohault, Traité de physique (Paris: Chez la Veuve de Charles Savreux, 1671); and
Brockliss, French Higher Education in the Sevenseenth and Eighteenth Centuries.

76 On subtle differences between Descartes’ laws and later formulations, see Gabbey, “Force and Inertia
in Seventeenth-Century Dynamics”; Govanni A. Borelli, De vi percussionis (Bologna: Ex typographia
Iacobi Montii, 1667), pp. 107-8; and Koyré, “Documentary History,” pp. 358—60.

77 See, for example, Richard S. Westtall, Force in Newton's Physics (London: Macdonald, and New
York: American Elsevier, 1971}, ad indicem.
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bodies. The most significant and wide-ranging of those properties was elas-
ticity, a property amenable to mathematical description and linked to a large
number ofi‘nstruments, phenomena, and experiments such as the wind gun,
pneumatic fountains, the spring, the Torricellian tube, and the air-pump.

In the lare 1650s, the Dutch scholar Christiaan Huygens (1629~169s) had
come to mistrust Descartes’ rules and proceeded to formulace new ones, but
his work was known in part only to a few correspondents, and the treatise
he composed remained unpublished at the time. Huygens used pendulums
to study impact, an effective technique whereby the speeds before and after
the impact can be ascertained by the bobs™ heights. His final formulation was
axiomatic, in the style of Galileo’s science of motion, and was based not on
experiments but on the skillful use of general principles. Among the most
famous were relativity of motion to disprove some of Descartes’ rules, and
a generalization of Torricelli’s principle whereby the center of gravity of two
colliding bodies cannot rise.”® If one thinks of colliding pendulu;ns, it is
quite natural to consider the height the bodies can reach and ro introduce
an expression based on the square of their speed times their weight, a notion
later known, following Leibniz, as vis viva, or living force.” In 1660 and
1661, Huygens demonstrated his prowess ar solving impact problems in Paris
and London in front of several members of the Royal Society.

In 1666 and 1667, Borelli published two works, on the motion of the
Medicean planets and on the force of percussion, two exquisitely Galilean
topics. In his works, he criticized some of Descartes’ rules and proposed
some of his own. For example, Borelli argued, pace Descartes, that a smaller
body could set a larger one in motion, and he studied impact for what he
called perfectly hard bodies that do notrebound. The key notion in impact for
Borelli was vis motiva, o speed taken with its direction times the body, which
he argued is conserved. Borelli had difficulties in dealing with the bodies’
rebound, a common phenomenon in impact that was difficule to explain
it the colliding bodies were conceived to be inflexible. He also dealt with
elasticity, but did not formulate rules for elastic impacs, possibly because he
did not believe they could be given in mathematical form.

In the late 1660s, the Royal Society investigated the problem of motion and
addre§sed the issue of impact at several of its meetings, where experiments
and discussions took place. In 1668, the Society invited contributions on the
problem, to which the Oxford Savilian professor John Wallis (1616-1703), the
architect Christopher Wren (1632-1723), and Huygens provided solutions.

S N N .
Christiaan Huygens, Oeuvres Complétes, 22 vols. (The Hague: Martinus Nijhotf, 1888—1950), 16:
21—5 and 95 n. 10. This is a generalization of Torricelli’s principle because the two colliding bodies
are no longer joined. }

9 Vis viva hrsr appéarcd in princ in Leibniz’s Tentamen de motuum coelestium causis, published in the
,J{ct{z eru_dztorum tor 1689. See Domenico Bertoloni Meli, Equivalence and Priority (Oxford: Oxtord

. Umvef&lty Press, 1993), pp. 86—7; the relevant passage from the Tenzamen is translated at p. 133.

© Westtall, Force, pp. 215-18. ’
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Wallis’s essay was very brief and did not address the main issue. He later
expanded his discussion considerably in his Mechanica, sive de motu tractatus
geometricus (Mechanics, or Geometrical Treatise on Motion, 1670-1), where
he classified bodies as hard, soft, and elastic. These are abstractions because
real bodies are not perfectly hard or elastic. Clay, wax, and lead are examples
of soft substances, and steel and wood are examples of clastic ones. By hard
bodies Wallis probably meant the ultimate constituents of matter, but he
provided no example, despite the fact that he provided impact rules for
them. Wallis excluded soft bodies from his rules, arguing that a portion of
their quantity of motion is lost in impact. Thus he did not present a universal
conservation rule that was valid for all bodies.

Wren provided a brief and rather cryptic essay quite similar to that of
Huygens, who later complained that Wren had gotten his idea in 1661 when
they had discussed the matter at the Society. Huygens was irritated that
the contributions by Wren and Wallis appeared before his own, and he
published a version of his paper first in the Journal des scavants and then
in the Philosophical Transactions of the Royal Sociery. He pointed out that
Descartes’ conservation law was not valid because the Cartesian quantity of
motion can increase, remain constant, and decrease. What remains constant
in impact for all types of bodies is the quantity of motion in one directien.
Huygens distinguished between hard and soft bodies and argued that for the
former impact is instantaneous, whereas for the latter it occurs over time. He
also claimed that hard non-elastic bodies rebound like elastic ones. Examples
of hard bodies are atoms, whose existence Huygens tentatively accepted, and
Descartes’ subtle matter. Here it would be impossible to understand the terms
of the debate without realizing its Cartesian roots.”

In the study of curvilinear motion once again, Descartes provided an
important conceptual framework with the example of the sling, and, once
again, it was Huygens who had the vision and mathemarical skill to offer a
solution to the problem. As in the case of the impact rules, Huygens reached
his important results in the late 1650s, but it took several years before they were
published in curtailed form. The initial stimulus to work on this topic came
somewhat indirectly from Mersenne. As we have seen, the French Minim’s
reading of Galileo was often aimed at determining numerical values. The dis-
tance fallen by a body in free fall in one second was onc of the values sought.
Tackling the question directly proved problematic because bodies fall very
fast, and thus the problem was best rephrased. Huygens was led to consider
the action of graviry in a conical pendulum, whose bob rotates on a plane
parallel to the horizon, to be counterbalanced by centrifugal force. Relying
on Galileo’s science of motion and Descartes” notions, Huygens produced

% A, Rupert Hall, “Mechanics and the Royal Society, 16681670, British Journal for the History of
Science, 3 (1966), 2438, is still a useful essay. See also Westfall, Force, pp. 231-43.
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a remarkable series of theorems, which he then published without proof in
his masterpiece, the Horologium oscillatorium (The Pendulum Clock, 1673),
one of the most original works in the history of mechanics as a whole and
a model for Newton's Principia mathematica philosophiae naturalis (Mathe-
matical Principles of Narural Philosophy, 1687).%

Mersenne had come to doubt on purely empirical grounds Galileo’s claim
that the oscillations of a pendulum are isochronous regardless of their ampli-
tude. He surmised that this may be the case in a vacuum but was not true
in air. While seeking the perfect or isochronous clock, Huygens moved the
research from the world of experiments to a more theoretical level, producing
awork addressing technical issues of horology and joining the new science of
motion with higher mathematics. He proved that the problem was not sim-
ply air resistance because pendular oscillations depend on their amplitude,
with greater ones being slower. The issue was not one of pure theory but was
linked to the problem of finding the longitude at sea, a major concern for
the burgeoning colonialism of European states.®

Horologium oscillatorium is closer to a Galilean tradition than a Cartesian
one. Of course, it was Galileo who had started to use the pendulum as a
time-measuring device and who had thought of building a clock regulated
by the pendulum’s oscillarions. Much as Galileo had dene with regard to
the science of motion in the Discorsi, Huygens avoided issues such as the
cause of gravit}ns‘* Rathert, he sought to promote the virtues of his clocks,
explain their principles of operation and construction, and produce new
theories both in mechanics and mathematics. Much as Galileo had done at
the end of the first day of the Discorsz, when he had tried to show technicians
how to draw parabolas by throwing balls along inclined planes or hanging
the extremes of a chain from two nails, Huygens showed practical ways for
drawing a cycloid.® The cycloid was a new curve in the seventeenth century
and the double mathematical protagonist of his treatise because in order to
have isochronisim the curve described by the bob had to be a cycloid, and in

2 Joella G. Yoder, Unrolling Time (Cambridge: Cambridge University Press, 1988), provides a detailed
account of Huygens’s research. Henk J. M. Bos, M. J. S. Rudwick, H. A. M. Snelders, and R. P W,
Visser, Studies on Christiaan Huygens (Lisse: Swets and Zeitlinger, 1980), contains many valuable
contributions. See also Michael S. Mahoncey, “Huygens and the Pendulum;: From Device to Mache-
matical Relation,” in The Growrh of Mathematical Knowledge, cd. Herbert Breger and Emily Grosholz
{Dordrecht: Kluwer, 2000), pp. 17-39.

Christiaan Huygens, The Pendulum Clock, trans. R. |. Blackwell (Ames: University of lowa Press.
1986), p.19; and William J. H. Andrews, ed., 7he Quest for Longitude: The Proceedings of the Longitude
Symposium, Harvard University, Cambridge, Massachuserts, November 1~6, 1993 (Cambridge, Mass.:
Harvard University Press, 1996).

[t should be remembered, however, thar although he expressly ruled out discussions on the cause
of gravity in day three of the Discorsz, Galileo embarked on extensive discussions on the cause of
cohesion in day one. Thus, it would be inaccurate to take his acritude toward the cause of gravity
as representative of his views on physical causes in general.

Galileo, Two New Sciences, pp. 142-3. The curve traced by a sphere rolling on an inclined plane is
a parabola, whereas that described by a hanging chain resembles the parabola but is more complex.
Huygens., Pendulum Clock, pp. 21-4.
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order to make the bob move along a cycloid, it is necessary to constrain it
between cheeks that are also cycloid arcs. Also in Part 1T of the Horologium
oscillatorium, on falling bodies and their motion in a cycloid, Huygens often
referred to Galileo's proofs in the Discorsi and rephrased them..g(’ Of course,
Huygens expanded on Galileo’s results by including'a m’athema.rl.c?l rreatment
of motion along a cycloid, something beyond Galileo’s cap.alnh.tles. o
Part 11T of the Horologium oscillatorium is a mathematical investigation
of curves generated by unrolling a thread on another curve and their
mutual relationships. With Part IV, we return to mechamcs' proper and
to a debate involving Mersenne, Descartes, and Roberval dating from the
1640s, namely to find the center of oscillation for a compou.nd pendulun.n.
A simple pendulum has all its mass concentrated in one point, whereas in
a real physical pendulum the mass is distributed over a f‘lnl[(? area. Whe.reas
the period of a simple pendulum can be determined by its length,.m a
real pendulum there is no obvious point whereby the.length ‘assocxated
with its period can be determined. Finding the center of osc1lla.1t10‘n means
determining that point in a real pendulum. Huyge‘ns’s success m.hndmg a
procedure to determine that point counts as one of the finest achievements
of seventeenth-century mechanics. 7
In Huygens’s work in mechanics there is an interesting dichotom)f berwszen
Galilean and Cartesian approaches. Whereas the Horologium oscillatorium
clearly looked to Galileo’s science of motion as a modﬂ for content and
structure, other works looked more to Descartes” Principia philosophiae. A
a debate in 1669 at the Paris Académic Royale des Sciences on the cause of
gravity, Huygens proposed a mechanism emphasizing the‘account f)fphysmal
causes over mathematical accuracy. He took a bucket of warter with a small
sphere floating in it that was constrained by two st.rings stretc.hed between
opposite sides of the rim. By setting the water in circular motion and then
stopping it, the sphere moved toward the center, t.hus shown.ng an effect
analogous to gravity. Unlike Descartes, Huygens did not believe that the
universe was a plenum but accepted empty space and argued that the matter
of the vortex rotates in all directions. Heavy bodies do not follow the motion
of the particles of the fluid but are pushed toward the center bécausc.of tbcir
lack of centrifugal force. Huygens also artempted a quantitative estimation
of the speed of the particles of the fluid based on his theorergs on centrifugal
force. He found that the speed of a particle of fluid required to produce
gravity was seventeen times the speed of a point on the earth’s equator.”’
With mechanical explanations extended to all types of phenomena, from
falling bodies to magnetism, fluids and vortices became C(.)mmon explanatory
models, but they were not the only ones. At times elasticity, for example, was
explained in terms of subtle fluids, but it was also c9nsidcred an autonomous
property of matter accountable mathematically in mechanical terms and

86 Huygens, Pendulum Clock, esp. pp. 40-s.
87 Westfall, Force, chap. 4.
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capable of explaining a number of other phenomena. Robert Hooke
(1635-1703), curator of experiments at the Royal Society and professor of
geometry at Gresham College, was one of the most pro;ninent scholars of
elasticity, and the author of Lectures de potentia resitutiva, or of springs (1674).
Elasticity was tied not only to mathemarics and physical explanations but
’tIlSO to more practical concerns such as horology. Huygens and Hooke real-
ized thac the oscillations of a spring were isochronous and tried to construct
clocks based on that principle.

Huygens was one among many scholars of his age who sought to combine
explagations of physical phenomena in Cartesian terms with mathemarical
descriptions. ~For several years, Isaac Newton, since 1669 the Cambridge
Lucasian Professor of Mathematics, also followed a similar approach. On the
one hand, Newton speculated on the specific mechanisms causing gravity,
and on the other he calculated that the terrestrial vortex was compreised b }
the solar vortex by approximately 1/43 of its width.®® !

NEWTON AND A NEW WORLD SYSTEM

The dichotomy between mathematical and physical explanations of gravity
mentioned earlier was not unique to Huygens. Hooke also studied cercain
problems with a similar dual approach whereby mathematical and physical
coneerns were not always present at the same time. In his study of the motion
of celestial bodies, Hooke talked of attractions and provided several inspiring
comments. His analysis of the role of force in curvilinear motion differed
from that of most Continental scholars. Whereas on the Continent math-
ematicians favored the idea of an imbalance between opposing centrifugal
a'n.d center-seeking tendencies, Hooke explored the combination of a rec-
tilinear uniform motion v'v1th a center-seeking tendency. It seems plausible
that Hooke developed this approach in the mid-1660s while studying the
bending of light rays. Curiously, it was the same comet of 1664 that firsc
aroused Newton’s interest in astronomy. Hooke saw an imperfect bur reveal-
ing analogy between the motion of celestial bodies and thar of the bob of a
lconical pendulum. In both cases, a central attraction deflects a body from
its rectilinear path, but whereas in the conical pendulum the force increases
with distance, in celestial bodies the central force was likely to decrease.®®
S.tarting from a celebrated correspondence with Hooke in 1679 on falling
bodles on a moving earth, Newron began working at the problem of curvi-
linear, and especially planetary, motion following Hooke's approach. Shortly

8 Erie ] Al y 7 -
Eric ]. Aiton, The Vortex Theory of Planetary Motion (New York: American Elsevier, and London:

Macdonald, 1972); and Derek T. Whiteside, ed., The Prelim; ipts fo

h- A i . < b > ed., eliminary Manuscripts for aac Ne 5

N {’rmnpm, 1684“‘1686 (Cambridge: Cambridge University Press, 1989), p. x. pofor s Newton's
]im A Bcnncrg, : Hoovke and Wren,” British Jowrnal for the History of Science, 8 (1975), 32—61; Ofer
Gal, Meanest Foundations and Nobler Superstructure (Dordrecht: Kluwer, 2002) ' ' ‘
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thereafter, Hooke began to discuss mathematical problems of planetary orbits
with London mathematicians Edmond Halley (1656-1742) and Christopher
Wren. Thus, in the first half of the 1680s, several English mathematicians
debated problems of celestial motion, such as the elliptical orbits of plan-
ets, from a mathematical standpoint, without paying immediate attention
to physical causes. Moreover, they were using analogous conceptual tools,
without having recourse to a Huygensian centrifugal force. Only Newton
succeeded in finding an answer to the problem of the attractive force required
to produce Keplerian clliptical orbits.”

In 1681, Newton engaged in a correspondence on the huge comet of 1680—
[ with John Flamsteed (1646-1719), the Astronomer Royal at Greenwich.
Initially, like most of his contemporaries, Newton believed in the existence
of two comets, one approaching the sun and another regressing from it.
Flamsteed made some clumsy attempt to convince him of the contrary by
arguing that the comet had turned in front of the sun and that it was attracted
by its magnetic virtue while approaching it and repelled when moving away,
but to no avail. Newton pointed out that the comet could not possibly have
curned in front of the sun but had to move behind it, and objected thart the
sun could not be magnetic because magnets are known to lose their power
when heated. Despite Newton’s rejection of Flamsteed’s views, it s easy- to
see how crucial those views were to become in just a few years, when comets
became assimilated with other celestial bodies such as planets and satellites
moving under the action of universal gravity.

It is not clear when Newton actained his first result, namely chat for ellip-
tical orbits the force is inversely proportional to the square of the distance.
Most likely this occurred at the time of his correspondence with Hooke, but
thereafter Newton let the matter sleep. By the fall of 1684, following a visit
to Cambridge by Halley, Newton produced his first tract on the subject, De
motu corporum in gyrum (On the Motion of Bodies in a Circle), which was
registered at the Royal Society. Newton was able to account also for the two
other Keplerian laws of planetary motion besides the first, which states that
the orbits are ellipses, where the sun occupies one of the foci. He proved that
trajectories described under a central force describe areas proportional to the
times, Kepler’s second law, and that the squares of the revolution periods of
both planets and satellites are as the third power of the major semiaxis of the
ellipse — Kepler’s third law.

In the following months, Newton went through an extraordinarily cre-
ative period during which he accounted tor a huge number of phenomena
on the basis of his inverse-square law of gravitational attraction-and under-
went a radical transformation in his views about nature and its creator. The

90 Derek T. Whiteside, “The Prehistory of the Principia from 1664 to 1686,” Notes and Records of the
Royal Society of London, 45 (1991), n1-61, provides an exccllent account. See also D. Berroloni Meli,
“Inherent and Centrifugal Forces in Newton,” forthcoming in Archive of History of Exact Sciences.
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mathematical and physical results of his research appeared in 1687 as Principia
mathematica, alarge soo-page book published under the auspices of the Royal
Society and seen through the press by Halley. What Newton achieved in a
couple of years would have more commonly been the result of as many
decades and not surprisingly was to prove exceedingly challenging to most
of his contemporaries and even his immediate successors.

The work starts with a set of definitions and laws. Especially prominent
among Newton’s definitions are those of mass, separating it conceptually
from weight, and centripetal force. Newton later established with a Famous
experiment reported in Book 3 that weight and mass are proportional, most
likely in response to Descartes, who had denied as much in Part IV of Prin-
cipua philosophiae.”* Centripetal force was a neologism that became a symbol
of Newtonianism. Among the laws of motion, the first, known as the law
of inertia, states that a body preserves its state of rest or rectilinear uniform
motion unless it is acted upon, and expressed a notion that was generally
accepted by 1687. The second law was valid both for attractions and for
impulses and stated that the change in quantity of motion is proportional to
the motive force impressed and is directed in the same line. The third law,
stating that action equals reaction, was the only law Newton atcempted to
prove experimentally both for collisions, using pendulum bobs, and arttrac-
tions, using magnetic bodies. It is equivalent to the conservation of quantity
ot motion in one direction, or as we would say, vectorially.?* /

Books rand 2 deal with the motion of bodies in spaces void of resistance and
in resisting media, respectively. Book 1 is almost exclusively mathematical,
whereas Book 2 provides a mathematical account of motion in resisting
media and a refutation of the existence of an acthereal fluid medium filling
the spaces and penetrating bodies on the earth. In Book 3, Newron moved o
the system of the world and stated the law of universal gravity, according to
which all parts of matter attract each other with a force inversely proportional
to the square of their distance.

We have seen in the previous section that up to the late 1670s, and
probably until the beginning of the 1680s, Newton subscribed to a view
of nature that was dominated by subtle fluids and vortices largely inspired by
Descartes’ Principia philosophiae. Probably late in 1684 or in 1685, Newton's
views changed dramatically, and he rejected those physical explanations he
had followed for decades. It is likely that Newton chose the title of his work to
mark his rejection ot Cartesianism. His emphasis on mathemarical principles
highlights a key difference from Descartes. The latter developed philosoph-
ical principles, as his title suggests, starting from the principles of human
knowledge. Although Descartes stated that the principles of his physica were

9 Newton, Principia, new translation, pp. 403—4, 806-7. 1. Bernard Cohen has provided a derailed

and refiable account of the contents of the Principiain the guide accompanying the new translation
?* Newton, Principia, new translation, pp. 416-7.
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the same as those of mathematics,” in practice most of the mathematics
amounted to accounts of the shape and size of particles. In the work of
Newton, by contrast, mathematics occupied a leading position in a very dif-
ferent sense. The mathematical principles prominently advertised in the title
examined theoretically a series of situations. Experiments and observations
then often served to select from those possible mathematical constructions
those applying to the real world. At times, Newton tried to argue thar this
was a more secure method of inquiry in natural philosophy,®* but elsewhere
he implied that his method required due caution. In Book 2, for example, he
examined the properties of hypothetical fluids composed of particles repelling
each other with forces varying as a power of their distances. One of those
repulsion laws led, with significant mathematical simplifications, to Boyle’s
law for gases, whereby the density is proportional to the compression. Newron
showed, assuming that fluids consist of particles repelling each other. that
the converse was also true. Yet he added a significant qualification: “Whether
elastic fluids consist of particles that repel one another is, however, a ques-
tion for physics. We have mathemartically demonstrated a property of Huids
consisting of particles of this sort so as to provide natural philosophers with
the means with which to treat the question.”® A similar reasoning could be
casily applied to the universal attractive force at the center of his treatise:

By investigating more and more areas, Newton realized that the phenom-
ena of the heavens, as well as tides and the shape of the earth, came under the
compass of his inverse-square law. Celestial motions were especially signifi-
cant because they had been observed for millennia: The motions of planets,
for example, were known to be exceedingly regular, a sign for the astute math-
ematician that force decreases exactly as the inverse square of the distance.
The regularity of the motions of planets and satellites, and the motion of
comets in all directions, led Newton to suspect that celestial motions were nat
due to a fluid vortex, which would have hindered them. The initial suspicion
became more and more ingrained with a pincer movement, on the one hand
explaining more and more phenomena from the same assumptions and on
the other showing the contradiction arising from the hypothesis of vortices.

The structure of Principia mathematica reflects Newton’s methodological
predicament. Book 1 can be seen as a carefully contrived pars construens,
whereas Book 2 was intended as a lengthy pars destruens, clearing the way
for his system of the world in Book 3. Book 2 ends with a refutation of
Cartesian vortices, arguing that they were incompatible with Kepler's laws of
planerary motion, but the entire book was geared toward an attack on vortices

9 Descartes, Principia philosophiae, p. 2, para. 64.

94 George Smith, “The Methodology of the Principia,” in The Cambridge Companion to Newton, ed.
I. Bernard Cohen and G. Smith (Cambridge: Cambridge University Press, 2002}, pp. 138-73.

9 Newton, Principia, new translation, pp. s88-9, Scholium to sec. 11, and pp. 696-9, quotation at
p. 699. Here, by “physics” Newton meant experiment as well. See Smith, “The Methodalogy of the
Principia.”




668 Domenico Bertoloni Meli

even in innocent-looking parts. For example, Newton tried to determine
the speed of sound to show, contrary to Robert Boyle (1627-1691), that air
is the only medium through which sounds propagate and that no other
medium is required.”® By removing from the heavens the material fuid
commonly believed to carry the planets, Newton left open the problem of
the cause of gravity. His opinion oscillated somewhat in later years, but
at the time of composition of the first edition of Principia mathematica it
appears that Newton believed God was responsible for gravity through his
presence in space. Gravity would thus be caused by an immaterial divine agent
immediately present and acting on all the bodies in the universe. Although
Newrton was not so explicit in Principia mathematica, he believed he had said
enough for those wishing to understand to realize that the cause of gravity
he had envisaged was not material.

These preliminary observations and the contrast between Descartes and
Newton highlight both the high methodological profile Newton gave to
mathematics and also the range of his investigations. Fundamental as the link
between ellipses and an inverse-square attraction was, it proved to be only one
of the wealth of results attained by Newton in Principia mathematica. In Book
3, Newton put forward his demonstration about universal gravity and was
able to account for the mortion of planets and satellites, especially Ehe moon,
and also for the precession of the equinoxes, tides, and the motio;l of comets.
While writing Book 3, Newton collaborated extensively with Flamsteed, who
willingly provided a wealth of astronomical data on the moon, the satellites
of Jupiter and Saturn, the shape of Jupiter, and the trajectory of comets.

Although Newton was acutely aware of the importance of styles and meth-
ods in mathematics, in Principia mathematica the main emphasis was on
attaining results. Newton used a heterogencous set of tools, including the
method of first and last ratios — a form of infinitesimal geometry — series
expansions, and occasionally the calculus of fluxions. One of the most remark-
able features of Newton’s work was its use of a wide range of mathematical
tools and techniques to produce quantitative predictions and assess orders of
magnitude. He did so even for such famously intractable cases as the three-
body problem, namely the determination of the motions of three reciprocally
attracting bodies.

READING NEWTON AND DESCARTES: LEIBNIZ
AND HIS SCHOOL

Unlike Descartes, Newron made sure his Principia could not be read as a
novel. Descartes could address in print Princess Elizabeth as the ideal reader,
whereas probably the first female reader who could truly understand — and

96 N T . .
I\Lwrgn, szunpza, new translation, pp. 776-8. The relevant passage from the first edition is trans-
lat_ed in a foornote. See also Boyle, New Experiments Physico-Mechanical Touching the Spring of the
AI?', Cxpcrlnlcnt 27. ’ '
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indeed rranslate into French — Newton's work was the Marquise du Charelet
(1706-1749), over a half-century after the book was first published. Fora num-
ber of reasons, male readers did not fare much better. Even though Newton
had kept the calculus of fluxions at the margin of the Principia, there was
still plenty of cutring-edge mathematics in his work to make it exceedingly
challenging for anyone who was not an expert mathematician. A leading
philosopher such as John Locke (1632-1704) had to ask Huygens whether
he could trust Newton’s theorems because he was unable to assess them on
his own.”” Even Huygens and Leibniz, the two leading mathematicians on
the Continent, found the work daunting. Because they were not prepared
to accept universal gravity on philosophical and, in the case of Leibniz, also
theological grounds, they were reluctant to follow page after page of challeng-
ing mathematics: Why go through them all if Newton’s system was based
on the absurd principle of attraction? Wren, too, expressed doubts about
Newton's apparent rejection of a physical cause for gravity. Until the tumn of
the cighteenth cencury, the problem of a physical cause for gravity was the
major concern of the few readers who could follow Newton.”

In many respects, reading Principia mathematica was colored by contem-
porary readings of Principia philosophiae and developments of Cartesianism,
broadly conceived. Physical causes were not the only problem, conservation
being another prominent issue. The third law of nature in Descartes’ Prin-
cipia philosophiae stated the conservation of quantity of motion in the uni-
verse and specifically in impact. Others, t00, had relied on different notions
of conservation in a range of contexts. Galileo, for example, had claimed that
a pendulum displaced from the equilibrium position could rise back to its
original height. In the second half of the seventeenth century, several scholars
worked with the notion of conservation, but Newton was not among them.
Whereas Descartes had seen in conservation a sign of divine order, Newton
saw with equal if not greater commitment the lack of conservation in the
form of a constant decay and the appearance of periodic phenomena such as
comets as a sign of God’s intervention and action in the world. These radi-
cally different views were prominently debated in 1716—7 by Samuel Clarke
(1675-1729), a theologian allied with Newton, and the German polymath
Leibniz, councilor and librarian to the Duke of Hanover. Their exchange
went through Caroline, Princess of Wales (1683-1737), a woman with deep
theological concerns. From our perspective here, it is worth highlighting

97 Niccolo Guicciardini, Reading the ‘Principia’: The Debates on Newron's Mathematical Methods for
Natural Philosophy from 1687 to 1736 (Cambridge: Cambridge University Press, 1999), explores the
range of mathematical methods used by Newton and the way his work was read by mathematicians.
On reading Newton's Principia largely in an English context, see Rob liffe, “Butrter for Parsnips:
Authorship, Audience, and the Incomprehensibility of the Principia,” in Scientific Authorship: Credir
and Intellectual Property in Science, cd. Mario Biagioli and Peter Galison (London: Routledge, 2003),
pp- 33-65.

[saac Newton, The Correspondence of lsaac Newton, ed. Herbert W. Turnbull, J. E Scotr, A R.
Hall, and L. Tilling, 7 vols. (Cambridge: Cambridge University Press, 1959-77), 4: 266-7. See also
Bertoloni Meli, Equivalence and Priority.
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a curious feature of Newton’s views, namely his belief that motion in the
universe would decay were it not for the presence of active replenishing prin-
ciples such as gravity and fermentation.” Newton’s emphasis on the decay
of motion caused by the lack of elasticity of bodies means that although he
disagreed with Descartes on the conservation of quantity of motion — in a
Cartesian sense, not including direction — he still considered it a meaningful
notion.

Leibniz was probably the most ardent advocate of conservation principles
and at the same time paradoxically the most prominent critic of Descartes,
because he disagreed with Descartes on what was conserved. Leibniz did
not consider quantity of motion as a very significant notion, either in the
Cartesian sense without direction or in the Huygensian sense with direction.
Rather, he believed that he had identified the conservation of a ditferent
notion as a key law of nature. The new conservation law concerned “force,”
which Leibniz claimed was proportional either to the square of the speed
or to the height to which a body can rise. In the case of impact, Leibnizian
force was called vis viva, or living force, and was proportional to the body’s
mass and square of the velocity, or mu*. The problem is that when the
colliding bodies are not elastic, vis viva is not conserved. In those cases,
Leibniz argued that the portion of vis viva that appeared to be lost was in fact
absorbed by the small components of the colliding bodies. Leibniz provided
no direct empirical justification for his claim, but rather he seems to have
established the conservation principle in general terms as a law of nature
and then found ways to apply it to all cases, including problematic ones.
In 1686, Leibniz published in the Acta eruditorum a brief essay designed to
enrage the Cartesians, Brevis demonstratio evroris memorabilis Cartesis (A Brief
Demonstration of Descarres’ Celebrated Error). His plan succeeded probably
beyond his own expectations, and the controversy over the conservation of
force became a major feature of mechanics in the firsc half of the cighteenth
century.'®®

With the new century, interest shifted ro Newton’s mathemarics for two
main reasons. With the explosion of the priority dispute over the invention
of calculus between Newton and Leibniz, Continental mathematicians such
as Johann (1667-1748) and Niklaus (1687-1759) Bernoulli started combing
through Principia mathematica in search of errors showing Newrton’s inade-
quate knowledge of calculus. Secondly, in 1700, French mathematician Pierre

7% Samuel Clacke, A Collection of Papers, which Pussed between the Late Learned My, Leibnitz and
Dr. Clarke in the Years 1715 and 1716 (London: Printed for J. Knapron, 1717); E. Vailati, Letbniz
& Clarke: A Study of Their Correspondence (Oxford: Oxford Un iversity Press, 1997); D. Bertoloni
Meli, “Caroline, Leibniz, and Clarke,” Journal of the History of Ideas, 60 (1999), 469-86; and Isaac
Newton, Opticks (New York: Dover, 1952), Query 31, pp. 397—401, at p. 398.

An excellent account is Daniel Garber, “Leibniz: Physics and Philosophy,” in The Cambridge
Companion to Leibniz, ed. Nicholas Jolley (Cambridge: Cambridge Universiry Press, 1995), pp. 270
352,
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Varignon (1654-1722), a member of the [aris Académie Royale des Scicncc.s,
started publishing a series of memoirs on motion L.m'der central force§ and in
resisting media where he translated several propositions by Newton into thef
language of the differential calculus. Leibniz had published t'he key rules‘ 0
calculus in a series of essays in the German journal Acra eruditorum, saarting
with the celebrated Nova methodus pro maximis et minimis (New M.ethod
for Finding Maxima and Minima, 1684). Although Varignon's work did not
contain new results and was largely dependent on Newton, he made some of
Newton's results more accessible by systematizing mathematical pro.ccdurcs
and notation. Thus his originality cannot be assessed so much‘ with new
theorems as with a new style to deal with the science of motion using the dif-
ferential calculus. In pardcular, Varignon wrote equations of motion \VhCII(‘i
time appears prominently rather than being swallowed by othcrvsymb(;\l§.
Varignon was careful to treat Newton’s work ina pL}rely matherr.latlcal fashion,
maintaining a noncommittal attitude toward the issue ofPhy51cal causes. He
managed to remain on good terms with both the NC\th.OIllan and Lelbmzmn
camps. Despite the talent of Continental mathewmatlcx.an's, the effectwegcss
of the differential calculus, and their tircless efforts, it is probably fair .to
say that the results they achieved in compe.tition with P;.fznfzpza m'at/yematzm
were negligible, amounting to the correction of a few inaccuracies and the
tightening of some theorems.

Conrinental mathematicians, however, also worked on other themes rele-
vant to mechanics, such as the study of new curves described by bodies under
given conditions and elasticity. Prominent among the new curves were the
catenary, described by a chain hanging perpendicular to the horizon t-rom
two nails fixed in a wall, and the curve of fastest descent between two points,
which remarkably turned out to be the same cycloid that Huygens found
to make pcndulu}n oscillations isochronous. Jakob Bernoulli’s works on the
elastic beam were especially noteworthy.** . o

In 1713, Newton published a second edition of his Principia, and the
third edition followed in 1726. The second was seen through the press by
the Cambridge Plumian Professor of Astronomy Roger Cotes (1682-1716), a
very talented mathematician, who transformed largt? portions of the work and
corrected several mistakes. Cotes was the sort of editor whose letters authors
open with a shaky hand. He combed the text with unparallelec.l acumen and
patience and never let the matter rest even when Newton made it clear tha.t he
was unwilling to embark on major revisions. Newton r'eshaped large sections
of Book 2 especially and performed many new experiments on the motion
of bodies in resisting media. From the standpoint of the role o.ff:xperlmems,
the second edition — and the third, too — appears like a different book.

) . . . . sl . Yt . . o ce,

191 See Michael Blay, La naissance de la mécanique analyrique (Pasis: Presses Universitaires de France
1992), for an account of Varignon’s achievements and bibliography.

192 Benvenuto, Structural Mechanics, ad indicem.




