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1. Introduction 

In  1900, at  a t ime when his in te rna t iona l  p rominence  as a leading m a t h e m a -  
t ician was  jus t  becoming  firmly established,  DAVID HILBERT (1862--1943) de- 
l ivered one of the centra l  invi ted lectures at  the Second In t e rna t iona l  Congress  
of  Mathemat i c i ans ,  held in Paris .  The lecture bore  the tit le " M a t h e m a t i c a l  
Prob lems" .  At  this very significant o p p o r t u n i t y  HILBERT a t t e m p t e d  to "lift the 
veil" and  peer  in to  the deve lopmen t  of ma thema t i c s  of  the century  tha t  was 
a b o u t  to begin (HILBERT 1902, 438). He  chose to present  a list of  twenty- three  
p rob lems  tha t  in his op in ion  wou ld  and  should  occupy  the efforts of m a t h e m a -  
t icians in the years  to come. This famous  list has ever since been an  object  of  
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mathematical  and historical interest. Mathematicians of all specialties and of all 
countries have taken up its challenges. Solving any item on the list came to be 
considered a significant mathematical  achievement. 

The sixth problem of the list deals with the axiomatization of physics. It  was 
suggested by his own recent research on the foundations of geometry; HILBERT 
proposed "to treat in the same manner  [-as geometry],  by means of axioms, 
those physical sciences in which mathematics plays an important  part  (HILBERT 
1902, 454)." 

This problem differs in an essential way from most  others in the list, and its 
inclusion raises many  intriguing questions. In the first place, as formulated by 
HILBERT, it is more of a general task than a specific mathematical  problem. It  is 
far from evident under what conditions this problem may be considered to have 
been solved. In fact, f rom reports that have occasionally been written about  the 
current state of research on the twenty-three problems, not only is it hard to 
decide to what extent this problem has actually been solved, but moreover,  one 
gets the impression that, from among all the problems in the list, this one has 
received the least attention from mathematicians. 1 

F rom the point of view of HILB~RT'S own mathematical  work, additional 
historical questions may be asked. Among them are the following: Why was this 
problem so central for HILBERT that he included it in the list? What  contact, if 
any, had he himself had with this problem during his mathematical  career? 
What  was the actual connection between his work on the foundations of 
geometry and this problem? What  efforts, if any, did HILBERT himself direct 
after 1900 to its solution? 

These questions are particularly pressing because of their bearing on the 
often accepted identification between HILBERT and the formalist approach to the 
foundations of mathematics. HILBERT'S main achievement concerning the foun- 
dations of geometry was - -  according to a widely-held view - -  to present this 
mathematical  domain as an axiomatic system devoid of any specific intuitive 
meaning, in which the central concepts (points, lines, planes) could well be 
replaced by tables, chairs and beer-mugs, on condition that the latter are 
postulated to satisfy the relations established by the axioms. The whole system 
of geometry should remain unaffected by such a change. Therefore, it is often 
said, HILBERT promoted  a view of mathematics as an empty formal game, in 
which inference rules are prescribed in advance, and deductions are drawn, 
following those rules, from arbitrarily given systems of postulates. 2 If this was 

1 See, e.g., WIGHTMAN 1976, GNEDENKO 1979. 
2 Such a view has been put forward by, e.g., the French mathematician JEAN 

DIEUDONNI~ (1906 1992). In a widely read expository article, DIEUDONNI~ explained the 
essence of HILBERT's mathematical conceptions by analogy with a game of chess. After 
explaining that in the latter one does not speak about truths but rather about following 
correctly a set of stipulated rules, he added (DIEUDONNI~ 1962, 551. Italics in the 
original) : "Transposons cela en math6matiques, et nous aurons la conception de HIL- 
BERT: les math~matiques deviennent un jeu, dont les pi~ces sont des signes graphiques se 
distinguant les uns des autres par leur forme." 
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indeed HILBERT'S view of mathematics, then in what sense could he have 
intended to apply such a view to physics, as stated in the sixth problem? By 
asking what HILBERT was aiming at when addressing the question of the 
axiomatization of physics, we are thus asking what role HILRERT ascribed to 
axiomatization in mathematics and in science in general (especially physics), and 
how he conceived the relation between mathematics and physics. Answering this 
question will help to clarify many aspects of HILBERT'S overall conception of 
mathematics. 

The first part of the present article describes the roots of HILBERT'S early 
conception of axiomatics, putting special emphasis on the analogies he drew 
between geometry and the physical sciences. In this light, HILBERT'S axiomatic 
approach is presented as an endeavor with little connection to the view of 
mathematical theories as empty formal games, devoid of concrete content 
- -  a view that became dominant in wide mathematical circles after the 1930s. 
Rather, it appears as the opposite: as a method for enhancing our understand- 
ing of the mathematical content of theories and for excluding possible contra- 
dictions or superfluous assertions that may appear in them. This understanding 
of HILBERT'S axiomatics also explains the place of the sixth problem in his 
mathematical world. The second part of the article addresses in a more 
detailed manner the question of how HILBERT conceived the specific application 
of the axiomatic approach to particular branches of science, and what image 
of science emerges from that approach. Using the manuscript of a course 
taught by HILBERT in G6ttingen in 1905, I discuss HILBERT'S axiomatic 
treatment of various scientific disciplines and his conception of the conceptual 
and methodological connections among the latter. This account is also intended 
to open the way to a broader understanding of HILBERT'S later works on 
physics and, in particular, to a detailed analysis - -  which I plan to undertake in 
the near future - -  of the path that led HILBERT to his research on general 
relativity. 

2. Hilbert as Student and Teacher 

Physics was not a side issue that occupied HILBERT'S thought only sporadi- 
cally. At least since the mid-1890s HILBERT had been interested in current 
progress in physics, and this interest gradually became a constitutive feature of 
his overall conception of mathematics. In order to describe this properly, one 
has to consider HILBERT'S biography. HILBERT'S studies and early mathematical 
career between 1880 and 1895 took place in his native city of K6nigsberg, 
except for a short trip in 1885 - -  after finishing his dissertation - -  to FELIX 
KLEIN (1849--1925) in Leipzig and to CHARLES HER~ITE (1822--1901) in Paris. 
K6nigsberg had a small university, with a very respectable tradition of research 
and education in mathematics and physics that had been established during the 
first half of the nineteenth century by CARL GUSTAV JACOBI (1804--1851) and 
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FRANZ ERNST NEUMANN (1798--1895). 3 During his first years as a student, 
HILBERT was able to attend the lectures of the distinguished mathematician 
HEINRICH WEBER (1842--1913), 4 whose interests covered an astonishing variety of 
issues ranging from the theory of polynomial equations, to elliptic functions, to 
mathematical physics. The congenial environment WEBER found in K6nigsberg 
for pursuing his manifold mathematical interests was the one within which 
HILBERT'S early mathematical outlook was formed. However, WEBER never de- 
veloped a circle of students around him, and it is unlikely that - -  prior to 
WEBER'S departure for Ziirich in 1883 - -  the young HILBERT benefited from 
direct contact with him or his current research interests. 

HILBERT'S doctoral adviser was FERDINAND LINDEMANN (1852--1939), a former 
student of FELIX KLEIN. LINDEMANN'S mathematical achievements - -  he is re- 
membered today mostly for his proof of the transcendence of ~c - -  were not 
outstanding, but he certainly exerted an important  influence on HILBERT'S 
mathematical formation. But perhaps the foremost influence on shaping HIL- 
BERT'S intellectual horizon in K6nigsberg came from his exceptional relationship 
with two other young mathematicians: ADOLF HURWITZ (1859--1919), first HIL- 
BERT'S teacher and later his colleague, and HERMANN MINKOWSKI (18641909). 
Before accepting in 1884 a new chair especially created for him in K6nigsberg, 
HURWITZ had studied first with KLEIN in Leipzig and then in Berlin, and had 
later habilitated in G6ttingen in 1882. HURWITZ was thus well aware of the kind 
of mathematical interests and techniques dominating current research in each of 
these important  centers. HURWITZ taught for eight years in K6nigsberg before 
moving to Z~rich, and his influence during this time was decisive in shaping 
HILBERT'S very wide spectrum of mathematical interests, both as a student and 
as a young researcher. 

MINKOWSKI'S main interests also lay in pure mathematics, but they by no 
means remained confined to it. As a student, MINKOWSKI spent three semesters 
in Bonn before receiving his doctorate in K6nigsberg in 1885. He returned to 
Bonn as a Privatdozent and remained there until 1894, when he moved to 
Ziirich. Not  until 1902 did he join HILBERT in G6ttingen, following KLEIN'S 
success in persuading the Prussian educational authorities to create a third 
chair of mathematics especially for him. During all those years the friendship 
between MINKOWSKI, HURWITZ and HILBERT remained close. MINKOWSKI visited 
K/Snigsberg each summer, and the three mathematicians would meet daily for 
mathematical walks. During the Christmas holidays of 1890 MINKOWSKI re- 
mained in Bonn, and in a letter to HILBERT he described his current interest in 
physics. In his obituary of MINKOWSKI, HILBERT reported - -  in an often-quoted 

a On the K6nigsberg school see KLEIN 1926--7 Vol. 1, 112-115 & 216-221; VOLK 
1967. The workings of the K6nigsberg physics seminar - -  initiated in 1834 by FRANZ 
NEUMANN - -  and its enormous influence on nineteenth-century physics education in 
Germany are described in great detail in OLESKO 1991. 

4 For more details on WEBER (especially concerning his contributions to algebra) see 
CORRY 1996, w167 & 2.2.4. 



Hilbert and the Axiomatization of Physics 87 

passage - -  that upon his insistence that MINKOWSKI come to G6ttingen to join 
him and HuRwIxz, MINKOWSKI had described himself as being now "con- 
taminated with physics, and in need of a ten-day quarantine" before being able 
to return to the purely mathematical  atmosphere of K6nigsberg. HILBERT also 
quoted MINKOWSKI'S letter as follows: 

I have devoted myself for the time being completely to magic, that is to say, to 
physics. 1 have my practical exercises at the physics institute, and at home I study 
Thomson, Helmholtz and their accomplices. Starting next weekend, I'll work some 
days every week in a blue smock in an institute that produces physical instruments; 
this is a kind of practical training than which you could not even imagine a more 
shameful one. 5 

MINKOWSKI'S interest in physics can certainly be dated even earlier than this; in 
1888 he had already published an article on hydrodynamics, submitted to the 
Berlin Academy by HERMANN YON HELMHOLTZ (MINKOWSKI 1888). Later, during 
his Z/irich years, MINI(OWSK~'S interest in physics remained alive, and so did his 
contact with HILBERT. From their correspondence we learn that MINKOWSKI 
dedicated part of his efforts to mathematical physics, and in particular to thermo- 
dynamics. 6 Finally, MINKOWSKI'S last years in G6ttingen were intensively dedi- 
cated to physics. During those years HmBERT'S interest in physics became more 
vigorous than ever before; he and MINKOWSKI, in fact, conducted advanced 
seminars on physical issues. 7 Attention to current developments in physics was 
never foreign to HmBERT'S and MINKOWSKI'S main concerns with pure mathematics. 

A balanced understanding of HILBERT'S mathematical  world cannot be 
achieved without paying close attention to his teaching, first at K6nigsberg and 
especially at G6ttingen beginning in 1895. H~LBERT directed no less than sixty- 
eight doctoral dissertations, sixty of them in the relatively short period between 
1898 and 1914. As is well-known, at the mathematical  institute created in 
G6ttingen by FELIX KLEIN, HILBERT became the leader of a unique scientific 
center that brought  together a gallery of world-class researchers in mathematics 
and physics, s It  is hard to exaggerate the influence of HtLBERT'S thinking and 
personality on all that came out of the institute under his direction. Fortunate-  
ly, we can document  with great accuracy the contents of HmBERT'S G6ttingen 
lectures, which interestingly illuminate the evolution of his ideas on many 
issues. These lectures were far from being organized presentations of well- 
known results and established theories. Rather, he used his lectures to explore 

5 For the original letter, from which this passage is translated, see R~DENBERG 
& ZASSENHAVS (eds.) 1973, 39-42, on pp. 39-40. For HILBERT's quotation see GA 
Vol. 3, 355. Unless otherwise stated in this article, all translations into English are mine. 

6 See RODENBERG • ZASSENHAUS (eds.) 1973, 110-114. 
7 On MINKOWSKI'S years in G6ttingen, see CORRY 1997a; GALISON 1977; PYENSON 

1977, 1979. 
s Accounts of G6ttingen as the world leading center of mathematics, and the roles of 

KLEIN and HILBERT in fostering this centrality appear in REID 1970; ROWE 1989; 
PARSHALL & ROWE 1994, 150-154. 
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new ideas and to think aloud about  the issues that currently occupied him. 
Following a tradition initiated by KLEIN in G6ttingen, HILBERT'S lecture notes 
were made available to all students who wished to consult them at the Lesezim- 
mer, the heart of the mathematical  institute. At least since 1902, in every course 
he taught, HmBERT chose a student to take notes during the lectures. The 
student was expected to write up these notes coherently, whereupon HILBERT 
would go through them, adding his own corrections and remarks. 9 Today the 
collection of these notes offers an invaluable source for the historian interested 
in understanding HILBERT'S thought. 

Late in life HILBERT vividly recalled that these lectures provided important  
occasions for the free exploration of untried ideas. He thus said: 

The closest conceivable connection between research and teaching became a decisive 
feature of my mathematical activity. The interchange of scientific ideas, the commun- 
ication of what one found by himself and the elaboration of what one had heard, 
was from my early years at K6nigsberg a pivotal aspect of my scientific w o r k . . .  In 
my lectures, and above all in the seminars, my guiding principle was not to present 
material in a standard and as smooth as possible way, just to help the student 
keeping clean and ordered notebooks. Above all, I always tried to illuminate the 
problems and difficulties and to offer a bridge leading to currently open questions. It 
often happened that in the course of a semester the program of an advanced lecture 
was completely changed, because I wanted to discuss issues in which I was currently 
involved as a researcher and which had not yet by any means attained their definite 
formulation. (Translated from HILBERT 1971, 79) 

Recognizing the centrality of his teaching activities and the extent to which 
his lectures reflected his current mathematical  interests, one is led to reassess 
long-established assumptions about  the periodization of HILBERT'S work. In an 
often-quoted passage, HERMANN WEYL (1944, 619) asserted that I-tILBERT'S work 
comprised five separate, and clearly discernible main periods: (1) Theory of 
invariants (1885-1893); (2) Theory of algebraic number  fields (1893-1898); (3) 
Foundations,  (a) of geometry (1898-1902), (b) of mathematics in general 
(1922-1930); (4) Integral equations (1902-1912); (5) Physics (1910-1922). This 
periodization reflects faithfully the division of HILBERT'S published work, and 
what constituted his central domain of interest at different times. It  says much 
less, however, about  the evolution of his thought, and about  the efforts he 
dedicated to other fields simultaneously with his main current interests. 1~ As 
will be seen in what follows, the list of HILBERT'S lectures during those years 
shows a more complex picture than WEYL'S periodization suggests. In particu- 
lar, it will be seen that HILBERT'S concern with the physical sciences was 
a sustained one, which can be documented throughout  his career. 

9 See BORN 1978, 81--85, for a retrospective account of BORN'S own experience as 
HILBERT'S student. 

lo In fact, no one was in a better position than WEYL himself to appreciate the 
impact of HILBERT'S docent activities, as he made clear in various opportunities. 
On WEYL'S (sometimes changing) assessments of HILBERT'S influence as a teacher, see 
SIGUROSSON 1994, 356--358. 
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3. The Background to Hilbert's Axiomatic Approach: 
Geometry and Physics 

HILBERT'S first published, comprehensive presentation of an axiomatized 
discipline appeared in 1899, in the ever since famous Grundlagen der Geometrie. 
The roots of HILBERT'S axiomatic conception accordingly and obviously lie in 
contemporary developments in geometry. In what follows I will briefly describe 
some of these developments, of which several traditional accounts exist. 
Only relatively recently, however, has the relevant historical evidence been 
thoroughly studied. 11 More to the point for my present purposes, l will show 
that HILBERT'S urge to axiomatize physical theories, as well as his conception of 
how this should be done, arose simultaneously with the consolidation of his 
axiomatic treatment of geometry. Certainly to a lesser degree than geometry, 
but still in significant ways, HILBERT'S increasing interest in physics plays an 
important role in understanding the evolution of his thoughts on the axiomatic 
method. 

During the nineteenth century, following the work of JEAN VICTOR PONCELET 
(1788--1867) in 1822, projective geometry became an active field of research 
that attracted the attention of many mathematicians, especially in Germany. 
HILBERT'S own interest in foundational questions of geometry arose in 
connection with long-standing open issues in this domain - -  mainly having 
to do with the role of continuity considerations in the subject's foundations. 
A major contribution here came from the early attempts of F~LIX KLEIN 
to explain the interrelations among the various kinds of geometry and to 
show that Euclidean and non-Euclidean geometries are in some sense derivative 
cases of projective geometry. A crucial step in this project was the introduc- 
tion of a type of distance, or metric, into non-Euclidean structures, with- 
out using concepts derived from the Euclidean case. KLEIN introduced one 
such metric using the concept of the cross-ratio of four points, which 
is invariant under projective transformations. He relied on ideas originally 
introduced by ARTHUR CAYLEY (1821--1895) in his work on quadratic invari- 
ants, 12 but extended them to cover the non-Euclidean case, which CAYLEY had 
expressly avoided in his own work. In order to define cross-ratios in purely 
projective terms, KLEIN appealed to a result of VON STAUDT, according 
to which one could introduce coordinates into projective geometry, indepen- 
dently of metrical notions and of the parallel postulate. In fact, KLEIN 

failed to explain in detail how this could be effected, but in any case 

11 Based on the manuscripts of HILBERT's early lectures, MICHAEL M. TOEPELL 
(1986) has analyzed in considerable detail the development of HILBERT's ideas previous 
to the publication of the Grundlagen, and his encounters with the foundations of 
geometry since his K6nigsberg years. In this section I partly rely on TOEPELL'S illumina- 
ting account. 

12 For an account of CAYLEY'S contributions see KLEIN 1926--7 Vol. 1, 147-151. 



90 L. CORRY 

his arguments explicitly presupposed the need to add a continuity axiom to VON 
STAVDT'S results. 13 

The uncertainties associated with KLEIN'S results, as well as with other 
contemporary works, indicated to some mathematicians the need to re-examine 
with greater care the deductive structures of the existing body of knowledge in 
projective geometry. The first elaborate attempt to do so appeared in 1882, 
when MoRITZ PASCH (1843--1930) published his book Vorlesungen iiber neuere 
Geometrie, presenting projective geometry in what he saw as an innovative, 
thoroughly axiomatic fashion. 14 PASCH undertook a revision of EucLIO'S basic 
assumptions and rules of inference, and carefully closed some fundamental 
logical gaps affecting the latter. In PASCH'S reconstruction of projective ge- 
ometry, once the axioms are determined, all other results of geometry were to 
be attained by strict logical deduction, and without any appeal to diagrams or 
to properties of the figures involved. Yet it is important to stress that PASCH 
always conceived geometry as a "natural science", having as its subject matter 
the study of the external shape of things, and whose truths can be obtained 
from a handful of concepts and basic laws (the axioms), that are directly derived 
from experience. For  PASCH, the meaning of the axioms themselves is purely 
geometrical and cannot be grasped without appeal to the diagrams from which 
they are derived. PASCH, for instance, considered that the continuity axiom for 
geometry was not convincingly supported by empirical evidence. 15 

Though PASCH substantially contributed to clarifying many aspects of the 
logical structure of projective geometry, the true status of continuity assump- 
tions in projective geometry, remained unclear. This is particularly true con- 
cerning the possibility of establishing a link between this geometry and a system 
of real-number coordinates (coordinatization) as well as defining a metrics for it 
(metrization). The question was open whether continuity should be considered 
to be given with the very idea of space, or whether it should be reduced to 
more elementary concepts. KLEIN and WILHELM KILLING (1847--1923) elaborated 
the first of these alternatives, while HERMANN LUDWIG WIENER (1857--1939) and 
FRIEDRICH SCHUR (1856-1932) worked out the second. WIENER put forward his 
point of view in 1891, in a lecture on foundational questions of geometry 
delivered at the annual meeting of the German Mathematicians' Association 
(DMV) in Halle (WIENER 1891). Wiener claimed that starting solely with the 
theorems of DESARGUES and PAPPUS (or PASCAL'S theorem for two lines, as 
WIENER, and later also HIL~ZRT called it), it is possible to prove the fundamental 
theorem of projective geometry, namely, that for two given lines there exists one 
and only one projective mapping that correlates any three given points of the 
first to any three given points of the second in a given order. The classical proof 
of this theorem was based on the projective invariance of the cross-ratio; this 

13 KLEIN 1871 & 1873. For comments on these contributions of KLEIN see ROWE 
1994, 194-195; TOEPELL 1986, 4-6; TORRETTI 1978, 110-152, On VON STAUDT'S contri- 
bution see FREUDENTHAL 1974. 

14 On PASCH'S book see, e.g., TORRETTI 1978, 44-53. 
15 See CONTRO 1976, 284-289; NAGEL 1939, 193 199; TORRETTI 1978, 210-218. 
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invariance implies that the image of a fourth point in the first line is uniquely 
determined under the given projective mapping, but the existence of the fourth 
point on the second line typically calls for the introduction of some kind of 
continuity argument. 16 WIENER'S ideas seemed to open the possibility of devel- 
oping projective geometry from a new perspective without any use of continuity 
considerations. Later, in 1898, SCI~UR further proved Pm, PUS'S theorem without 
using any continuity assumptions (SCHUR 1898). This whole issue of the precise 
role of continuity in the foundations of geometry later became, as we will see, 
a major stimulus for HILBERT'S active involvement in this domain. 

PASCH'S axiomatic treatment of projective geometry had considerable influ- 
ence among Italian mathematicians, and in the first place on GIUSEPPE PEANO 
(1858--1930). PEANO was a competent mathematician, who made significant 
contributions in analysis and wrote important textbooks in this field. 17 But 
besides these standard mathematical activities, PEANO invested much of his 
efforts to advance the cause of international languages - -  he developed one 
such language called Interlingua - -  and to develop an artificial conceptual 
language that would allow completely formal treatments of mathematical 
proofs. In 1889 his successful application of such a conceptual language to 
arithmetic, yielded his famous postulates for the natural numbers. PASCH'S 
systems of axioms for projective geometry posed a challenge to PEANO'S artifi- 
cial language. In addressing this challenge, PEANO was interested in the relation- 
ship between the logical and the geometrical terms involved in the deductive 
structure of geometry, and in the possibility of codifying the latter in his own 
artificial language. This interest led PEANO to introduce the idea of an indepen- 
dent set of axioms, namely, a set none of whose axioms is a logical consequence 
of the others. He applied this concept to his own system of axioms for projec- 
tive geometry, which were a slight modification of PASCH'S. PEANO'S specific way 
of dealing with systems of axioms, and the importance he attributed to the 
search for independent sets of postulates, is similar in many respects to the 
perspective developed later by HIL~ERT; yet PEANO never undertook to prove 
the independence of whole systems of postulates, xs For  all of his insistence o n  
the logical analysis of the deductive structure of mathematical theories, PEANO'S 
overall view of mathematics - -  like PASCH'S before him - -  was neither formalist 
nor logicist in the sense later attributed to these terms. PEANO conceived 
mathematical ideas as being derived from our empirical experience. 19 

16 Obviously the theorem can be dually formulated for two pencils of lines. For 
a more or less contemporary formulation of the theorem see ENRIQUES 1903. Interesting- 
ly, ENRIQUES explicitly remarked in the introduction to the German version of his book 
(p. vii) that he was following the classical approach introduced by VON STAUOT, and 
followed by KLEIN and others, rather than to the more modern one developed recently 
by PASCH and HILBERT. 

17 A brief account of PEANO's mathematical work appears in KENNEDY 1981. For 
more elaborate accounts see KENNEDY 1980; SEGRE 1994. 

is Cf. TORRETTI 1978, 221. 
19 See KENNEDY 1981, 443. 
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Several Italian mathematicians, influenced by PEANO'S ideas, published sim- 
ilar works in which the logical structure of the foundations of geometry was 
investigated. Among them one should mention MARIO PIERI (1860--1913), 2~ who 
strongly promoted the idea of geometry as a hypothetico-deductive system, and 
introduced for his systems of postulates a kind of "ordinal independence", 
somewhat more limited than the one defined by PEANO. 21 Of special interest is 
the original work of GIUSEPPE VERONESE (1845--1917), who in 1891 published the 
first systematic study of the possibility of a non-Archimedean geometry, 22 and 
proved the independence of the Archimedean postulate from the other postu- 
lates of geometry. 23 HILBERT tOO would eventually deal with these issues in his 
axiomatic study of geometry. 2~ 

So much for the geometric background against which HILBERT'S axiomatic 
method arose. I will return to it in the next section. But as I have already 
suggested, we must also look at certain developments in physics in the nine- 
teenth century, in which new axiomatic treatments of old bodies of knowledge 
were also being pursued, independently of the developments in geometry dis- 
cussed above. The axiomatic treatment of mechanics put forward by HEINRICH 
HERTZ (1857--1894) has been much less associated with HILBERT'S axiomatics 
than the above mentioned work of PASCH and the tradition to which it belongs. 
Yet, as will be seen in what follows, HERTZ'S Principles of Mechanics made 
a strong impression on HILBERT, which can be counted among the stimuli for 
the consolidation of his axiomatic conception. 

In 1891 HERTZ began to work for the first time in his career on mechanics. 
This work, to which all his efforts were directed during the last three years of 
his life, led to the posthumous publication in 1894 of The Principles of Mechan- 
ics Presented in a New Form. HERTZ undertook this work motivated by the then 
widely - -  though not unanimously - -  accepted conception that mechanics 
constitutes the most basic discipline of physics, and at the same time, by his 
feeling that all accepted presentations of mechanics had serious shortcomings. 
In particular, HERTZ was deeply dissatisfied with the central role played by the 
concept of force, a concept which he set out to exclude from his own presenta- 
tion. This presentation is usually described as 'axiomatic', a term which, how- 
ever, HERTZ himself never used in describing his own work. In the following 
paragraphs I will attempt to clarify in what sense this term can usefully be 
applied to HERTZ'S work, in order to trace HERTZ'S influence on the emergence 
of HILBERT'S axiomatic approach. This influence, as will be seen, can be found 
both in the general conception of the role of axiomatization in science and in 
HILBERT'S specific axiomatic treatment of mechanics. 

20 On PIERI, see KENNEDY 1981a. 
21 Cf. TORRETTI 1978, 225-226. 
22 In VERONESE 1891. See TRICOMI 1981. 
23 On criticism directed at VERONESE'S work by German mathematicians see 

TOEPELL 1986, 56. 
24 For a concise contemporary account of the place of HILBERT'S contribution in 

connection with these developments see SCHUR 1909, iv-vi. 



Hilbert and the Axiomatization of Physics 93 

HERTz's preface opened with the assertion, that "all physicists agree that the 
problem of physics consists in tracing all the phenomena of nature back to the 
simple laws of mechanics." However, he added, what they disagree about is 
what these simple laws are and, especially, how they should be presented. 
Without claiming that his presentation was the only valid one of its kind, 
HERTZ stressed the need to redefine the very essence of mechanics, in order to 
be able to decide which assertions about nature are in accordance with it, and 
which contradict it. Although HERTz's immediate concern was perhaps with the 
reduction of the equations of the ether to mechanics, this problem was not 
directly addressed in his presentation of mechanics. 25 In fact, rather than 
dealing with the question of the ultimate nature of physical phenomena, the 
issues discussed by HERTZ in the introduction to his book betrayed a rather 
general preoccupation with the need to clarify the conceptual content and 
structure of physical theories. In the particular case of mechanics, such a clarifi- 
cation needed to focus mainly on the problematic concept of force. But this was 
only a very conspicuous example of what HERTZ saw as a more general kind of 
deficiency affecting other domains of research. HERa-z's treatment of mechanics 
implied a more general perspective, from which theories concerning other kind 
of physical phenomena, not only mechanics, should be reexamined. In the 
introduction to the Principles of Mechanics - -  a text that has become widely 
known and has been thoroughly discussed in the literature 26 - -  HERTz sugges- 
ted a perspective that would allow for a systematic assessment of the relative 
predictive value of various scientific theories, while stressing the need to remove 
possible contradictions that have gradually accumulated in them. Generalizing 
from the problems associated with the concept of force, HERTz wrote: 

Weighty evidence seems to be furnished by the statements which one hears with 
wearisome frequency, that the nature of force is still a mystery, that one of the chief 
problems of physics is the investigation of the nature of force, and so on. In the same 
way electricians are continually attacked as to the nature of electricity. Now, why is 
it that people never in this way ask what is the nature of gold, or what is the nature 
of velocity? Is the nature of gold better known to us that of electricity, or the nature 
of velocity better than that of force? Can we by our conceptions, by our words, 
completely represent the nature of anything? Certainly not. I fancy the difference 
must lie in this. With the terms "velocity" and "gold" we connect a large number of 
relations to other terms; and between all these relations we find no contradictions 
which offends us. We are therefore satisfied and ask no further questions. But we 
have accumulated around the terms "force" and "electricity" more relations than can 
be completely reconciled amongst themselves. We have an obscure feeling of this and 
want to have things cleared up. Our confused wish finds expression in the confused 
question as to the nature of force and electricity. But the answer which we want is 
not really an answer to this question. It is not by finding out more and fresh 
relations and connections that it can be answered; but by removing the contradic- 
tions existing between those already known, and thus perhaps by reducing their 

25 See LOTZEN 1995, 4-5. 
2~ For recent discussions see BAIRD et al. 1997; LI~TZEN 1995. 
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number. When these painful contradictions are removed, the question as to the 
nature of force will not have been answered; but our minds, no longer vexed, will 
cease to ask illegitimate questions. 27 

HERTZ described theories as "images" (Bilder) that we form for ourselves of 
natural phenomena. He proposed three criteria to evaluate among several 
possible images of one thing: permissibility, correctness, and appropriateness. 
An image is permissible, according to HERTZ, if it does not contradict the laws 
of thought. This requirement appears, even at the most immediate level, as 
similar to H~LBERT'S requirement of consistency. But in fact this parallel is even 
deeper, in the sense that, in speaking about the laws of thought, HERTZ impli- 
citly took logic to be given a priori, in KANT'S sense, and therefore to be 
unproblematic in this context. This was also the case in H~LBERT'S early axio- 
matic conception although, as will be seen below, his conception later changed 
in the face of logical paradoxes. 

A permissible image is correct for HERTZ if its essential relations do not 
contradict the relations of external things. In fact, HERTZ actually defined an 
image by means of the requirement that its "necessary consequents . . ,  in 
thought are always the images of the necessary consequents in nature of the 
things pictured. (p. 1)" One also finds a parallel to this in HILBERT'S requirement 
that all the known facts of a mathematical theory may be derived from its 
system of postulates. 

But given two permissible and correct images of one and the same thing, it 
is by considering the appropriateness of each that HERTZ proposed to assess 
their relative value. The appropriateness of an image comprises two elements: 
distinctness and simplicity. By the former, HERTZ understood the ability to 
picture the greatest possible amount of "the essential relations of the object." 
Among various pictures of the same object, the "simpler" one is that which 
attains this distinctness while including the smaller number of empty relations. 
HERTZ deemed simpler images more appropriate (p. 2); he used this last cri- 
terion directly to argue that his own presentation of mechanics was better than 
existing ones, since, by renouncing the concept of force, it provided a "simpler" 
image. In general, however, both distinctness and simplicity are far from being 
straightforwardly applicable criteria. H~LBERT'S requirement of independence, 
although not identical to this, can be seen as a more precise and workable 
formulation of HERTZ'S criterion of appropriateness. 

The permissibility and the correctness of an image connect the latter to two 
different sources of knowledge: the mind and experience respectivelY. The per- 
missibility of an image, thought HERTZ, can therefore be unambiguously estab- 
lished once and for all. Its correctness is a function of the present state of 
knowledge, and it may vary as the latter changes. As to the appropriateness of 
an image, HERTZ conceded that it may be a matter of opinion. 

HERTZ also made clear what he understood by "principles" in his work. 
Although the word had been used with various meanings, he meant by it any 

27 HERTZ 1956, 7-8. In what follows, all quotations refer to this English translation. 
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propositions or systems of propositions from which the whole of mechanics can 
be "developed by purely deductive reasoning without any further appeal to 
experience (p. 4)." Different choices of principles would yield different images of 
mechanics. 

HERTZ'S own presentation of mechanics, as it is well known, uses only three 
basic concepts: time, space, mass; HERTZ was trying to eliminate forces from his 
account of mechanics. He thought that this concept, especially as it concerns 
forces that act at a distance, was artificial and problematic. He thought, more- 
over, that many physicists, from Newton on, had expressed their embarrassment 
when introducing it into mechanical reasoning, though no one had done any- 
thing to overcome this situation (pp. 6 7). In his presentation, HERTZ was able 
to eliminate forces by introducing "concealed masses" and "concealed motions." 
Based on the criteria discussed in his introduction, HERTZ criticized the two 
main existing presentations of mechanics: the traditional one, based on the 
concepts of time, space, mass and force, and the energetic one, based on the use 
of Hamilton's principle. He then explained his own view and - -  based again on 
the same criteria - -  established the superiority of his presentation of mechanics. 

This is not the place to give a full account of HE~TZ'S criticism of the 
existing presentations of mechanics nor to discuss his own in detail. 2s I will 
only focus on some of HERTZ'S remarks concerning the basic principles of his 
approach. These will help us in understanding HILBERT'S axiomatic conception 
and will also allow us identify the roots of this conception in HERTZ'S work. 

In principle, HERTZ'S criticism of the traditional approach to mechanics 
concerned neither its correctness nor its permissibility, but only its appropriate- 
ness. Yet he also allowed room for changes in the status of correctness in the 
future. In criticizing the role played by force in the traditional image of mechan- 
ics, HERTZ stressed that the problems raised by the use of this concept are part 
of our representation of this image, rather than of the essence of the image 
itself. This representation had simply not attained, in HERTZ'S view, scientific 
completeness; it failed to "distinguish thoroughly and sharply between the 
elements in the image which arise from the necessity of thought, from experi- 
ence, and from arbitrary choice (p. 8)." A suitable arrangement of definitions, 
notations, and basic concepts would certainly lead to an essential improvement 
in this situation. This improvement in presentation, however, would also allow 
the correctness of the theory to be evaluated in the face of later changes in the 
state of knowledge. HERTZ thus wrote: 

Our assurance, of course, is restricted to the range of previous experience: as far as 
future experience is concerned, there will be yet occasion to return to the question of 
correctness. To many this will seem to be excessive and absurd caution: to many 
physicists it appears simply inconceivable that any further experience whatever 
should find anything to alter in the firm foundations of mechanics. Nevertheless, that 
which is derived from experience can again be annulled by experience. This over- 
favorable opinion of the fundamental laws must obviously arise from the fact that 

28 For one such account see LDTZEN 1995. 
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the dements of experience are to a certain extent hidden in them and blended with 
the unalterable elements which are necessary consequences of our thought. Thus the 
logical indefiniteness of the representation, which we have just censured, has one 
advantage. It gives the foundation an appearance of immutability; and perhaps it 
was wise to introduce it in the beginnings of science and to allow it to remain for 
a while. The correctness of the image in all cases was carefully provided for by 
making the reservation that, if need be, facts derived from experience should deter- 
mine definitions or viceversa. In a perfect science such groping, such an appearance 
of certainty, is inadmissible. Mature knowledge regards logical clearness as of prime 
importance: only logically clear images does it test as to correctness; only correct 
images it compares as to appropriateness. By pressure of circumstances the process is 
often reversed. Images are found to be suitable for a certain purpose; are next tested 
in their correctness; and only in the last place purged of implied contradictions. 
(HERTZ 1956, 10) 

It  seems natural  to assume that by "mature science" HERTZ was referring 
here to Euclidean geometry. But as HILBERT noticed in 1894 when preparing his 
K/Snigsberg lectures on the foundations of geometry (discussed below), the 
situation in this discipline, al though perhaps much better than in mechanics, 
was also begging for further improvement.  Then in 1899, HILBERT felt prepared 
to address those foundational problems of geometry that had remained essentially 
unanswered since KLEIN'S attempts to define a metric for projective geometry. The 
methodological approach HILRERT adopted for this task resembled very much, as 
will be seen below, HERTZ'S stipulations for mechanics as manifest in the above 
quoted passage: to attain logical clearness, to test for correctness, to compare as 
to appropriateness, and to make sure that implied contradictions had been 
purged. Moreover, like HERTZ before him, HILBERT thought that such a procedure 
should be applied to all of natural science and not to geometry alone. 

In HERTZ'S presentation of mechanics, every new statement is deduced only 
from already established ones. This is what has been called his axiomatic 
approach.  Although this in itself is no guarantee against error, HERTZ conceded, 
it has the virtue that it allows the logical value of every important  statement to 
be understood, and any mistake to be easily identified and removed. In the 
second part  of the book, HERTZ investigated the logical relation between various 
principles of mechanics. He was able to specify which statements are equivalent 
to the fundamental  laws of motion, and which statements of the fundamental 
laws are not implied by a given principle. But to what extent is mechanics thus 
presented "correct", in HERTZ'S sense of the word ? Although no known fact of 
experience was then considered to contradict the results of mechanics, HERTZ 
admitted that the latter could not be fully confronted with all possible phe- 
nomena. Thus, mechanics had been built on some far-reaching assumptions that 
could conceivably be questioned. For  instance: is there a full justification for 
assuming the centrality of linear differential equations of the first order in 
describing mechanical processes? Another central, but perhaps not fully justified 
assumption is that of the continuity of nature. HERTZ described it as "an 
experience of the most  general k i n d " . . .  "an experience which has crystallized 
into firm conviction in the old proposit ion - -  Natura non faci t  saltus 
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(pp. 36--37)." HILBERT, in his treatment of physical theories, would not only 
accept this assumption, but also attempt to give it a more mathematically 
consistent formulation. 

Finally, in explaining the sense in which his new image of mechanics was 
simpler than the other existing two, HERTZ stressed that this simplicity (and 
therefore appropriateness) did not concern the practical side of mechanics, but 
rather the epistemological one: 

We have only spoken of appropriateness i n . . .  the sense of a mind which endeavors 
to embrace objectively the whole of our physical knowledge without considering the 
accidental position of man in na ture . . .  The appropriateness of which we have 
spoken has no reference to the practical application of the needs of mankind. (HERTZ 
1956, p. 40) 

H~RTZ'S book was widely praised following its publication in 1894. The 
interest it aroused concerned his construction of mechanics while avoiding the 
use of forces acting at a distance, as well as its philosophical aspects and its 
mathematical elaboration. The actual impact of HERTZ'S approach on physical 
research, however, was far less than the interest it aroused. 29 On the other 
hand, HERTZ'S influence on HILBERT was, as I will show below, more significant 
than has usually been pointed out. LUDWtG BOLTZMANN (1844--1906) should be 
mentioned here among those physicists who were strongly impressed by 
HERTZ'S treatment. In 1897 he published his own textbook on mechanics, 
modeled in many respects after HERTZ'S. This book had a lesser impact on 
HILBERT'S general conceptions; yet its treatment of mechanics, as we will see 
below, was also highly appreciated by HILBERT. 

The positive reactions often associated with the publication of HERTZ'S 
Principles should not mislead us to believe that the idea of axiomatizing 
physical disciplines was a widely accepted one, or became so after HERTZ. 
Although an overall account of the evolution of this idea throughout the 
nineteenth century and its place in the history of physics seems yet to be 
unwritten, one should stress here that axiomatization was seldom considered 
a main task of the discipline. Nevertheless, it is worth discussing here briefly the 
ideas of two other German professors, CARL NEUMANN and PAUL VOLKMANN, 
who raised interesting issues concerning the role of axioms in physical science 
(one of them writing before HERTZ'S Principles, the second one after). Since their 
ideas are visibly echoed in H1LBERT'S work, a brief discussion of NEUMANN'S and 
VOLKMANN'S writings will help set up the background against which HILBERT'S 
ideas concerning the axiomatization of physics arose. 

CARL NEUMANN (1832--1925) was the son of the K6nigsberg physicist FRANZ 
NEUMANN. At variance with the more experimentally-oriented spirit of his 
father's work, CARL NEUMANN'S contributions focused on the mathematical 
aspects of physics, particularly on potential theory, the domain where he 
made his most important contributions. His career as professor of mathematics 

29 See LI~TZEN 1995, 76--83. 
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evolved in Halle, Basel, Tfibingen and Leipzig. 3~ NEUMANN'S inaugural lecture 
in Leipzig in 1869 discussed the question of the principles underlying the 
GALILEO-NEWTON theory of movement. NEUMANN addressed the classical ques- 
tion of absolute vs. relative motion, examining it from a new perspective 
provided by a philosophical analysis of the basic assumptions behind the law of 
inertia. The ideas introduced by NEUMANN in this lecture, and the ensuing 
criticism of them, inaugurated an important  trend of critical examination of the 
basic concepts of dynamics - -  a trend of which ERNST MAClt was also part 
- -  which helped to prepare the way for the fundamental changes that affected 
the physical sciences at the beginning of this century? 1 

NEUMANN opened his inaugural lecture of 1869 by formulating what he 
considered to be the universally acknowledged goal of the mathematical 
sciences: "the discovery of the least possible numbers of principles (notably 
principles that are not further explicable) from which the universal laws of 
empirically given facts emerge with mathematical necessity, and thus the dis- 
covery of principles equivalent to those empirical facts. ''32 NEUMANN intended to 
show that the principle of inertia, as usually formulated, could not count as one 
such basic principle for mechanics. Rather "it must be dissolved into a fairly 
large number of partly fundamental principles, partly definitions dependent on 
them. The latter include the definition of rest and motion and also the defini- 
tion of equally long time intervals." NEUMANN'S reconsideration of these funda- 
mental ideas of Newtonian mechanics was presented as part of a more general 
discussion of the aims and methods of theoretical physics. 

Echoing some ideas originally formulated as early as the middle ages, and 
recently revived by physicists like KIRCHFIOFF and MACH, NEUMANN claimed 
that physical theories, rather than explaining phenomena, amounted to a reduc- 
tion of infinitely many phenomena of like kind to a finite set of unexplained, 
more basic ones. The best known example of this was the reduction of all 
phenomena of celestial motion to inertia and gravitational attraction. The 
latter, while fulfilling their reductionist task properly, remained in themselves 
unexplained, NEUMANN argued. But NEUMA~ went on, and compared this 
reduction to the one known in geometry, wherein the science of triangles, circles 
and conic sections "has grown in mathematical rigor out of a few principles, of 
axioms, that are not further explicable and that are not any further demon- 
strable." NEUMANN was thus placing mechanics and geometry (like HrLBE~T did 
later) on the same side of a comparison, the second side of which was represent- 
ed by logic and arithmetic; the results attained in these latter domains - -  as 
opposed to those of geometry and mechanics - -  "bear the stamp of irrevocable 
certainty", that provides "the guarantee of an unassailable truth." The non- 
explanatory character of mechanics and geometry, NEUMANN stressed, cannot be 

30 See DISALLE 1993, 345; JUNGNICKEL • McCORMMACH 1986, Vol. 1, 181-185. 
31 This trend is discussed in BARBOUR 1989, Chp. 12. 
32 NEUMANN 1870, 3. I will refer here to the translation NEUMANN 1993. 
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considered as a flaw of these sciences. Rather, it is a constraint imposed by 
human capacities. 

The principles to which physical theories are reduced not only remain 
unexplained, said NEUMANN, but in fact one cannot speak of their being correct 
or incorrect, or even of their being probable or improbable. The principles of 
any physical theory - -  e.g., FRESNEL and YOUNG'S theory of light - -  can only be 
said to have temporarily been confirmed; they are incomprehensible (unbegreif- 
lich) and arbitrary (willkiirlich). NEUMANN quoted LEIBNIZ, in order to explain his 
point: nature should indeed be explained from established mathematical and 
physical principles, but "the principles themselves cannot be deduced from the 
laws of mathematical necessity. ''33 Thus, in using the terms arbitrary and 
incomprehensible, NEUMANN was referring to the limitations of our power of 
reasoning. Always relying on basically Kantian conceptions, he contrasted the 
status of the choice of the principles in the physical sciences to the kind of 
necessity that guides the choice of mathematical ones. This is what their 
arbitrariness means. NEUMANN was clearly not implying that physical theories 
are simply formal deductions of any arbitrarily given, consistent system of 
axioms devoid of directly intuitive content. Rather they have very concrete 
empirical origins and interpretations, but, given the limitations of human men- 
tal capacities, their status is not as definitive as that of the principles of logic 
and arithmetic. 

NEUMANN concluded the philosophical section of his lecture by reformulat- 
ing the task of the physicist in the terms discussed before: to reduce physical 
phenomena 

. . .  to the fewest possible arbitrarily chosen principles - -  in other words, to reduce 
them to the fewest possible things remaining incomprehensible. The greater the 
number of phenomena encompassed by a physical theory, and the smaller the 
number of inexplicable items to which the phenomena are reduced, the more perfect 
is the theory to be judged. 

From here he went on to analyze the conceptual difficulties involved in the 
principle of inertia, usually formulated as follows: 

A material point that was set in motion will move on - -  if no foreign cause affects it, 
if it is entirely left to itself - -  in a straight line and it will traverse in equal time equal 
distances. 34 

The first problem pointed out by NEUMANN concerning this formulation has 
to do with the concept of straight line. Recognizing a straight line in physical 
space raises the difficulties traditionally associated with the question of relative 
vs. absolute space. In addressing this question, NEUNANN introduced the idea of 
the Body Alpha: a rigid object located somewhere in the universe, to which all 
motions refer. Thus, the principle of inertia is analyzed, in the first place, into 

33 NEUMANN 1993, 361. The reference is to LEIBNIZ Mathematische Schriften, part 2, 
Vol. 2 (Halle 1860, p. 135.) 

34 NEUMANN 1870, 14 (1993, 361). 
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tWO simpler components: the first asserts the existence of the Body Alpha, the 
second asserts that every material point left to itself will move in a straight line, 
i.e., in a path rectilinear in relation to this Body Alpha. This way of analyzing 
the principle of inertia embodied NEUMANN'S prescription of "incomprehensible 
and arbitrary" principles which helped to make sense of a physical theory. This 
idea attracted much attention and criticism, and NEUMANN himself reformulated 
it several times. This is not, however, the place to discuss the idea and its critics 
in detail.35 

More directly pertinent to our account, since it will reappear in HILBERT'S 
lectures on physics, was NEUMANN'S treatment of the second part of the prin- 
ciple of inertia: the concept of "equal velocities". An appropriate elucidation of 
this concept is clearly related to the problem of relative vs. absolute time. 
NEUMANN discussed in his lecture the problem of the measurement of time and 
of the determination of two equal time-intervals. He proposed to reduce time to 
movement in order to explain the former. In his view, the correct formulation of 
the third component of the principle of inertia should read as follows: "Two 
material points, each left to itself, move in such a way that the equal paths of 
one of them always correspond to the equal paths of the other." From here one 
also gets the definition of equal time intervals as those in which a point left to 
itself covers equal paths. 

This part of NEUMANN'S analysis also attracted attention and gave rise to 
criticisms and improvements. Of special interest is the concept of "inertial 
system", introduced in this context by LUDWIG LANGE in 1886, which became 
standard and has remained so ever since. 36 

In his closing remarks NEUMANN expressed the hope that his analysis may 
have shown that "mathematical physical theories in general must be seen as 
subjective constructions, originating with us, which (starting from arbitrarily 
chosen principles and developed in a strictly mathematical manner) are 
intended to supply us with the most faithful pictures possible of the phe- 
nomena. ''3~ Following HELMHOLTZ, NEUMANN claimed that any such theory 
could only claim objective reality or at least general necessity - -  if one could 
show that its principles "are the only possible ones, that no other theory than 
this one is conceivable which conforms to the phenomena." However, he 
deemed such a possibility as lying beyond human capabilities. Nevertheless 

- -  and this is a point that HILBERT will also stress time and again in his own 
attempts to axiomatize physical domains - -  the constant re-examination of 
principles and of their specific consequences for the theory is vital to the further 
progress of science. NEUMANN thus concluded: 

High and mighty as a theory may appear, we shall always be forced to render 
a precise account of its principles. We must always bear in mind that these principles 
are something arbitrary, and therefore something mutable. This is necessary in order 

35 See BARBOUR 1989, 646-653; DISALLE 1993, 348--349. 
36 LANGE'S ideas are discussed in BARBOUR 1989, 655--662. 
37 NEUMANN 1870, 22 (1993, 367). 
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to survey wherever possible what effect a change of these principles would have on 
the entire edifice (GestaltUng) of a theory, and to be able to introduce such a change 
at the right time, and (in a word) that we may be in a position to preserve the theory 
from a petrification, from an ossification that can only be deleterious and a hindrance 
to the advancement of science. 3s 

HILBERT never directly cited NZUMANN'S inaugural lecture, or any other of 
his publications, but it seems fair to assume that HILBERT knew about  
NEUMANN'S ideas from very early on. Together with RUDOLV ALVREO CLEBSCH 
(1833--1872), NEUMANN founded the Mathematische Annalen in 1868 and co- 
edited it until 1876, 39 and was surely a well-known mathematician. Moreover, 
in 1885, when HmBERT spent a semester in Leipzig, NEUMANN was one of two 
professors of mathematics there, and the two must have met, the young H~LBERT 
listening to the older professor. In any case, we will see below how NEUMANN'S 
conceptions described here recurrently appear in HILBERT'S discussions about  
physical theories. This is true of NEUMANN'S treatment of mechanics, especially 
the question of properly defining time and inertia. It is also true of his general 
conceptions concerning the role of axiomatic treatments of physical theories: the 
reduction of theories to basic principles, the provisory character of physical 
theories and the ability to reformulate theories in order to meet new empirical 
facts, the affinity of geometry and mechanics. NEUMANN had a lifelong concern 
with the ongoing over-specialization of mathematics and physics, and with their 
mutual  estrangement, which he considered detrimental for both. He believed in 
the unity of the whole edifice of science and in constant cross-fertilization 
among its branches. 4~ These are also central themes of HmBERT'S discourse on 
mathematics and physics. NEUMANN'S concerns as described here illuminate, if 
not directly the early roots of HILBERT'S conceptions, then at the very least, the 
proper context in which the emergence of HILBERT'S axiomatic method should 
be considered. 

PAUL VOLKMANN (1856--1938), the second physicist I want to mention here, 
spent his whole career in K6nigsberg, where he completed his dissertation in 
1880, and was appointed full professor in 1894. ~1 In the intimate academic 
atmosphere of K6nigsberg, HILBERT certainly met VOLKMANN on a regular basis, 
perhaps at the weekly mathematical  seminar directed by LINDEMANN. Although 
it is hard to determine with exactitude the nature of his relationship with 
HILBERT and the extent and direction of their reciprocal influence, looking at 
VOLKMANN'S conceptio n of the role of axiomatic treatments in science can 
certainly illuminate the atmosphere in which HILBERT was working and within 
which his own axiomatic conception arose. 

3s NEUMANN 1870, 23 (1993, 368). 
39 See TOBIES & ROWE (eds.) 1990, 29. 
4o See JUNGNICKEL ~% McCORMMACH 1986, Vol. 1, 184-185. 
41 See JUNGNICKEL • MCCORMMACH 1986, Vol. 2, 144-148; OLESKO 1991, 

439--448; RAMSER 1974. 
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VOLKMANN was very fond of discussing epistemological and methodological 
issues of physics, but his opinions on these issues could be very variable. 
Concerning the role of axioms or first principles in physical theories, he moved 
from ignoring them altogether (VOLKMANN 1892), to emphatically denying their 
very existence (VoLKMANN 1894), to stressing their importance and discussing at 
length the principles of mechanics in an elementary textbook published in 1900. 
This book was intended as a thorough defense of the point of view that all of 
physics can be reduced to mechanics. VOLKMANN acknowledged in his book the 
influence of HERTZ and of BOLTZMANN, but at the same time he believed that 
these physicists had paid excessive attention to the mathematics, at the expense 
of the physical content behind the theories. 

In the introduction to his 1900 textbook, VOLKMAN~ warned his students 
and readers that his lectures were not a royal road, comfortably leading to an 
immediate and effortless mastery of the system of science. Rather, he intended 
to take the reader a full circle around, in which the significance of the founda- 
tions and the basic laws would only gradually be fully grasped in the course 
of the lectures. VOLKMANN adopted this approach since he considered it to 
mimic the actual doings of science. VOLKMANN illustrated what he meant by 
comparing the development of science to the construction of an arch. He wrote: 

The conceptual system of physics should not be conceived as one which is produced 
bottom-up like a building. Rather it is like a thorough system of cross-references, 
which is built like a vault or the arch of a bridge, and which demands that the most 
diverse references must be made in advance from the outset, and reciprocally, that as 
later constructions are performed the most divers retrospections to earlier disposi- 
tions and determinations must hold. Physics, briefly said, is a conceptual system 
which is consolidated retroactively. (VOLKMANN 1900, 3 4) 

This retroactive consolidation is the one provided by the first principles of 
a theory. That  is, the foundational analysis of a scientific discipline is not 
a starting point, but rather a relatively late stage in its development. This latter 
idea is also central to understanding HILBERT'S axiomatic conception. In fact, 
the building metaphor itself was one that HmBERT was to adopt wholeheartedly 
and to refer to repeatedly throughout  his career when explaining his conception. 
In his Paris 1900 address (see below), Hn~BERT already alluded to this metaphor, 
but only later did he use it in the more articulate way put forward here by 
VOLKMANN. More importantly, the role assigned by VOIXMANN to the axiomatic 
analysis of a theory was similar to HILBERT'S, not only for physical theories, but 
also for geometry. 

VOLKMANN'S epistemological discussion stressed a further point that is also 
found at the focus of HILBERT'S own view: science as a product of the dialectical 
interaction between the empirical world and the world of thought. Given the 
inherent limitations of man's intellect one can attain only a subjective compre- 
hension of experience, which is of necessity flawed by errors. The aim of science 
is to eliminate these errors and to lead to the creation of an objective experi- 
ence. This aim is achieved with the help of first principles, which open the way 
to the use of mathematics to solving physical problems. Once the mathematical 
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foundations of a discipline are laid, a dialectical process of interaction between 
subjective perception and objective reality begins. A constant reformulation and 
adaptation of ideas will help to close the unavoidable gap between these two 
poles (VoLKMANN 1900, 10). VOLKMAt~N'S account here, as will be seen below, 
also matches to a large extent H~LB~RT'S own views. But of greater interest is 
the fact that according to VOLKMANN, the principles involved in this process are 
of three kinds: axioms (or postulates), hypotheses, and natural laws. 

VOLKMaNN'S treatment of these three categories is not very clear or concise, 
yet it seems to have tacitly conveyed a very significant classification that also 
HILBERT would allude to when putting forward specific systems of axioms 
for physical theories. Its essence may be grasped through the examples that 
VOLKMANN gave of the three kinds of principles. As examples of postulates or 
axioms, he mentioned the principle of conservation of energy and the GALILEO- 
NEWTON inertia law. Among hypotheses, the undulatory nature of light (whether 
elastic or electromagnetic), and an atomistic theory of the constitution of 
matter. Among natural laws: NEWTON'S gravitation laws and COULOMB'S law. 

Very roughly, these three kinds of propositions differ from one another in 
the generality of their intended range of validity, in the degree of their universal 
acceptance, and in the greater or lesser role played in them by intuitive, as 
opposed to conceptual, factors. Thus, the axioms or postulates concern science 
as a whole, or at least a considerable portion of it, they are universally or very 
generally accepted, and they can predominantly be described as direct expres- 
sions of our intuition (Anschauung). Natural laws stand at the other extreme of 
the spectrum, and they are predominantly conceptual. Physical hypotheses 
stand in between. They express very suggestive images that help us to overcome 
the limitations of the senses, leading to the formulation of more precise rela- 
tions. VOLKMANN'S axioms cannot be directly proved or disproved through 
measurement. Only when these postulates are applied to special fields of 
physics and transformed into laws, can this be done. The more an axiom is 
successfully applied to particular domains of physics, without leading to internal 
contradiction, the more strongly it is retrospectively secured as a scientific 
principle. 42 

It is not our concern here to evaluate the originality or fruitfulness of these 
ideas of VOLKMANN. Nor, I think, is it possible to establish their influence on 
HILBERT'S own thought. Rather, I have described them in some detail in order 
to fill out the picture of the kind of debate around the use of axioms in physics 
that HILBERT witnessed or was part of. Still, in analyzing in some detail 
HmBERT'S axiomatization of particular domains of physics, we will find clear 
echoes of VOLKMANN'S ideas. It should also be stressed, that in his 1900 book, 
Volkmann cited Hn~BERT'S Grundlagen as a recent example of a successful 
treatment of the ancient problem of the axioms of geometry (p. 363). 

4z For more details, see V O L K M A N N  1900, 12-20. On pp. 78-79, he discusses in 
greater detail NEWTON'S laws of motion and the universal law of gravitation as examples 
of principles and laws of nature respectively. 
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4. Axiomatics, Geometry and Physics in Hilbert's Early Lectures 

During his K6nigsberg years, geometry was certainly not HILBERT'S main 
area of interest. However, he taught several courses on it, and the issues on 
which he lectured in the mathematical  seminar of the university bear witness 
to his continued interest in geometry and the question of its foundations. 43 
HILBERT taught projective geometry for the first t ime in 1891. His course was 
modeled mainly after two existing texts on projective geometry (Geometrie der 
Laoe) by VON STAUDT and by TH~ODOR REYE (1839--1919) 44 - -  whose 
approach was thoroughly constructive and synthetic, and not in anyway axio- 
matic. In his introductory remarks, however, HILB~RT discussed a more general 
picture of the discipline and the various ways to approach it. He mentioned 
three different, complementary branches of geometry: intuitive (or Geometrie der 
Anschauung - -  including school geometry, projective geometry and analysis 
situs), axiomatic and analytic. Whereas for HILBERT the value of the first branch 
was mainly aesthetic and pedagogical, and the last one was the most  important  
for mathematical  and scientific purposes, he deemed the axiomatic treatment of 
geometry to be mainly of epistemological importance. His definition of what an 
axiomatic treatment implies, however, was here rather loose and certainly far 
from putting forward actual guidelines for teaching or research. In any case, this 
was an approach HILBERT did not follow in these lectures; he was interested in 
the latest developments of projective geometry and the foundational issues 
associated with them, independently of any axiomatic consideration. Moreover,  
in the bibliographical list quoted in the introduction to the course, HILBERT did 
not mention PASCH'S book - -  published back in 1882 - -  nor discuss the virtues 
or limitations of his account. 4s 

What  already characterizes HILBERT'S presentation of geometry in 1891, and 
will remain true later on, is his clearly stated conception of this science as 
a natural one in which - -  at variance with other mathematical  domains - -  sen- 
sorial intuition played a decisive role. This position, which we have already seen 
espoused by CARe NEUMANN, is explicitly manifest in the following, significant 
passage taken from the introduction to the course: 

Geometry is the science that deals with the properties of space. It differs essentially 
from pure mathematical domains such as the theory of numbers, algebra, or the 
theory of functions. The results of the latter are obtained through pure thinking . . . .  
The situation is completely different in the case of geometry. I can never penetrate 
the properties of space by pure reflection, much as I can never recognize the basic 

43 This is documented in TOEPELL 1986, l l  12. 
44 REYE 1886 and VON STAUDT 1847, respectively. See TOEPELL 1986, 26--38, for 

a detailed account of this course. 
45 TOEPELL, 1986, 38, quotes a remark added by HILBERT on the back of the 

titlepage of the manuscript, mentioning PASCH's book as a source for studying the 
axioms and the foundations of geometry. There are reasons to believe, however, that this 
remark was added only much later, and not during the time of the course itself. 
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laws of mechanics, the law of gravitation or any other physical law in this way. 
Space is not a product of my reflections. Rather, it is given to me through the 
senses. ~6 

In 1891 HILBERT also attended the lecture mentioned above in which 
HERMANN WIENER discussed the foundational role of the theorems of DESAR~UES 
and PASCAL for projective geometry. 47 He may also have attended in 1893 
a second lecture in which WIENER explained the implications of these ideas for 
affine and Euclidean geometry. 48 While becoming gradually interested in these 
kinds of foundational problems and gradually aware of possible ways to ad- 
dress them, HILBERT also began pondering the use of the axiomatic approach as 
the most  convenient perspective from which to do so. In preparing his next 
course on geometry, to be given in 1893, HILBERT already adopted the axio- 
matic point of view that two years earlier he had only mentioned in passing, as 
a possible alternative. As the original manuscript  of the course clearly reveals, 
HILBERT decided to follow now the model put forward by PASCH. Like PASCH, 
HILBERT saw the application of this axiomatic approach as a direct expression 
of a naturalistic approach to geometry, rather than as opposed to it: the axioms 
of geometry - -  HILBERT wrote - -  express observations of facts of experience, 
which are so simple that they need no additional confirmation by physicists in 
the laboratory. 49 From the outset, however, HILBERT realized some of the 
shortcomings in PASCH'S treatment, and in particular, certain redundancies that 
affected it. HILBERT had understood the convenience of pursuing the study of 
the foundations of geometry on the lines advanced by PASCH, but at the same 
time he perceived that the task of establishing the minimal set of presupposi- 
tions from which the whole of geometry could be deduced had not yet 
been fully accomplished. In particular, HILBERT pointed out that PASCH'S 
Archimedean axiom could be derived from his others, s~ 

Sometime in 1894 HILBERT became acquainted with HERTZ'S ideas on the 
role of first principles in physical theories. This seems to have provided a final, 
significant catalyst towards the wholehearted adoption of the axiomatic per- 
spective for geometry, while simultaneously establishing, in HILBERT'S view, 
a direct connection between the latter and the axiomatization of physics in 
general. Moreover, HILBERT adopted HERTZ'S more specific, methodological 
ideas about  what is actually involved in axiomatizing a theory. The very fact 

46 The German original is quoted in TOEPELL 1986, 21. Similar testimonies can be 
found in many other manuscripts of HILBERT'S lectures, Cf., e.g., TOEPELL 1986, 58. 

47 See TOEPELL 1986, 40. 
48 WIENER'S second talk was published as WIENER 1893. See ROWE 1996a. 
49 HILBERT 1893/94, 10: "Das Axiom entspricht einer Beobachtung, wie sich leicht 

durch Kugeln, Lineal und Pappdeckel zeigen 1/isst. Doch sind diese Erfahrungsthat- 
sachen so einfach, von Jedem so oft beobachtet und daher so bekannt, dass der Physiker 
sich nicht extra im Laboratorium best/itigen daft." 

50 TOEPELL 1986, 45, quotes a letter to KLEIN, dated May 23, 1893, where HILBERT 
expresses these opinions. 
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that HILBERT came to hear about  HERTZ is in itself not at all surprising; he 
would most probably have read HERTZ'S book sooner or later. But the fact 
that he read it so early was undoubtedly an expression of MINKOWSKI'S 
influence. In the obituary already mentioned, HILBERT stressed that during his 
Bonn years, MINKOWSKI felt closer to HERTZ and to his work than to anything 
else. HILBERT also reported MINKOWSKI'S explicit declaration that, had it not 
been for HERTZ'S untimely death, he would have dedicated himself exclusively to 
physics, sl 

No details are known about  the actual relationship between MINKOWSKI and 
HERTZ, and in particular about  the extent of their intellectual contact at the 
time of the writing of the Principles. But all the circumstances would seem to 
indicate that from very early on, HILBERT had in MINKOWSKI a reliable, and very 
sympathetic, first-hand source of information - -  in spirit, if not in detail 
- -  concerning the kind of ideas being developed by HERTZ while working on his 
Principles. As with many  other aspects of HILBERT'S early work, there is every 
reason to believe that MINKOWSKI'S enthusiasm for HERTZ was transmitted to 
his friend. We do possess clear evidence that as early as 1894, even if HILBERT 
had not actually read the whole book, then at least he thought that the ideas 
developed in its introduction were highly relevant to his own treatment of 
geometry and that they further endorsed the axiomatic perspective as a conve- 
nient choice. As only one student registered for HILBERT'S course in 1893, it was 
not given until the next year. 52 When revising the manuscript  for teaching the 
course in 1894 HILBERT added the following comment: 

Nevertheless the origin [of geometrical knowledge] is in experience. The axioms are, 
as HERTZ would say, images or symbols in our mind, such that consequents of the 
images are again images of the consequences, i.e., what we can logically deduce from 
the images is itself valid in nature. 53 

In these same lectures HILBERT also pointed out the need to establish the 
independence of the axioms of geometry. In doing so, however, he stressed the 
objective and factual character of the science. HILBERT wrote: 

The problem can be formulated as follows: What are the necessary, sufficient, and 
mutually independent conditions that must be postulated for a system of things, in 
order that any of their properties correspond to a geometrical fact and, conversely, in 

51 HILBERT GA Vol. 3, 355. Unfortunately, there seems to be no independent 
confirmation of MINKOWSKI'S own statement to this effect. 

52 See TOEPELL 1986, 51. 
53 HILBERT 1893/94, 10: "Dennoch der Ursprung aus der Erfahrung. Die Axiome 

sind, wie Herz [sic] sagen wiirde, Bilde[r] oder Symbole in unserem Geiste, so dass 
Folgen der Bilder wieder Bilder der Folgen sind d.h. was wir aus den Bildern logisch 
ableiten, stimmt wieder in der Natur." 

It is worth noticing that HILBERT's quotation of HERTZ, drawn from memory, was 
somewhat inaccurate. I am indebted to ULRICH MAJER for calling my attention to this 
passage. 
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order that a complete description and arrangement of all the geometrical facts be 
possible by means of this system of things. 54 

Of central importance in this respect was the axiom of continuity, whose actual 
role in allowing for a coordinatization of projective geometry, as has been 
already pointed out, had been widely discussed over the years and still re- 
mained an open question to which HILBERT directed much effort. VERONESE'S 
book appeared in German translation only in 1894, and it is likely that HILBERT 
had not read it before then. He had initially believed that the axiom of 
continuity could be derived from the other axioms. Eventually he added the 
axiom to the manuscript  of the lecture. 55 

Concerning the validity of the parallel axiom, HILBERT adopted an interest- 
ingly empiricist approach: he referred to GAuss's experimental measurement of 
the sum of angles of a triangle between three high mountain peaks. Although 
GAuss's result had convinced him of the correctness of Euclidean geometry as 
a true description of physical space, s6 HILBERT said, the possibility was still 
open that future measurements would show otherwise. In subsequent lectures 
on physics, HILBERT would return to this example very often to illustrate the use 
of axiomatics in physics. In the case of geometry only this particular axiom 
must be susceptible to change following possible new experimental discoveries. 
Thus, what makes geometry especially amenable to a full axiomatic analysis is 
the very advanced stage of development it has attained, rather than any other 
specific, essential trait concerning its nature. In all other respects, geometry is 
like any other natural science. HILBERT thus stated that: 

Among the appearances or facts of experience manifest to us in the observation of 
nature, there is a peculiar type, namely, those facts concerning the outer shape of 
things. Geometry deals with these fac ts . . .  Geometry is a science whose essentials 
are developed to such a degree, that all its facts can already be logically deduced 
from earlier ones. Much different is the case with the theory of electricity or with 
optics, in which still many new facts are being discovered. Nevertheless, with regards 
to its origins, geometry is a natural science. 57 

It  is the very process of axiomatization that transforms the natural science 
of geometry, with its factual, empirical content, into a pure mathematical  
science. There is no apparent  reason why a similar process might not be applied 

s4 Quoted from the original in TOEPELL 1986, 58--59. 
ss See TOEPELL 1986, 74-76. 
56 The view that GAUSS considered his measurement as related to the question of the 

parallel axiom has recently been questioned (BREITENBERGER 1984, MILLER 1972), argu- 
ing that it was strictly part of his geodetic investigations. For a reply to this argument 
see SCHOLZ 1993, 642-644. It is agreed however, that by 1860 the view expressed here by 
HILBERT was the accepted one, wrongly or rightly so. HILBERT, at any rate, did believe 
that this had been GAUSS'S actual intention, and he repeated this opinion on many 
occasions. 

5v Quoted in TOEPELL 1986, 58. 
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to any other natural science. And in fact, from very early on HILBERT made it 
clear that this should be done. In the manuscript  of his lectures we read that 
"all other sciences - -  above all mechanics, but subsequently also optics, the 
theory of electricity, etc. - -  should be treated according to the model set forth 
in geometry. ''Ss 

By 1894, then, HIL~ERT'S interest in foundational issues of geometry had 
increased considerably. WlENER'S suggestions concerning the possibility of 
proving central results of projective geometry without recourse to continuity 
considerations had a great appeal for him. He had also begun to move towards 
the axiomatic approach as a convenient way of addressing these issues. 
His acquaintance with HERTZ'S ideas then helped him to conceive the axiomatic 
treatment of geometry as part  of a larger enterprise, relevant also for other 
physical theories, and also offered methodological guidelines how to realize 
this analysis. Finally, it is possible that HILBERT was also aware, to some 
extent, of the achievements of the Italian school, although it is hard to say 
specifically which of their works he read, and how they influenced his 
thought, s9 

In 1899 HILBERT lectured in G6ttingen on the elements of Euclidean 
geometry. In the opening lecture of his course, he restated the main result he 
expected to obtain from an axiomatic analysis of the foundations of geometry: 
a complete description, by means of independent statements, of the basic facts 
from which all known theorems of geometry can be derived. This time he 
mentioned the precise source from where he had taken this formulation: the 
introduction to HERTZ'S Principles of  Mechanics. 6~ This kind of task, however, 
was not limited in his view to geometry. While writing his Grundlagen, HILBERT 
lectured on mechanics in G6ttingen (WS 1898/99) for the first time. In the 
introduction to this course, H~LBERT stressed once gain the affinity between 
geometry and the natural sciences, and the role of axiomatization in the 
mathematizat ion of the latter. He compared the two domains with the following 
words: 

Geometry also [like mechanics] emerges from the observation of nature, from 
experience. To this extent, it is an experimental science . . . .  But its experimental 
foundations are so irrefutably and so generally acknowledged, they have been con- 
firmed to such a degree, that no further proof of them is deemed necessary. More- 
over, all that is needed is to derive these foundations from a minimal set of 
independent axioms and thus to construct the whole edifice of geometry by purely 
logical means. In this way [-i.e., by means of the axiomatic treatment] geometry is 
turned into a pure mathematical science. In mechanics it is also the case that the 
physicists recognize its most basic facts. But the arrangement of the basic concepts is 
still subject to a change in perception.. ,  and therefore mechanics cannot yet be 
described today as a pure mathematical discipline, at least to the same extent that 

5s Quoted in TOEPELL 1986, 94. 
s9 See TOEPELL 1986, 55 57. 
6o See TOEPELL 1986, 204. 
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geometry is. We must strive that it becomes one. We must ever stretch the limits of 
pure mathematics, wider, on behalf not only of our mathematical interest, but rather 
of the interest of science in general. 61 

We thus find in this lecture the first explicit presentation of HILBERT'S 
program for axiomatizing natural science in general. The definitive status of the 
results of geometry, as compared to the relatively uncertain one of our know- 
ledge of mechanics, clearly recalls similar claims made by H~RTZ. In the manu- 
script of his 1899 course on Euclidean geometry we also find HILB~RT'S explicit 
and succinct characterization of geometry as part of natural science, in the 
following words: "Geometry is the most perfect of (vollkommenste) the natural 
sciences". 62 

5. Gmndlagen der Geometrie 

The turn of the century is often associated in the history of mathematics 
with two landmarks in HILBERT'S career: the publication of the Grundlagen der 
Geometric and the 1900 lecture held in Paris at the International Congress of 
Mathematicians. Both events are relevant to the present account and we will 
discuss them briefly now. 

The Grundlagen der Geometric appeared in June 1899 as part of a Festschrift 
issued in G6ttingen in honor of the unveiling of the GAUSS-WEBER monument. 
It consisted of an elaboration of the first course taught by HILBERT in G6ttingen 
on the foundations of Euclidean geometry, in the winter semester of 1898-99. 
The very announcement of this course had come as a surprise to many in 
G6ttingen, 63 since HILBERT'S interest in this mathematical domain signified, on 

6i HILBERT 1898/9, 1-3 (Emphasis in the original) : "Auch die Geometric ist aus der 
Betrachtung der Natur, aus der Erfahrung hervorgegangen und insofern eine Experi- 
mentalwissenschaft . . . .  Aber diese experimentellen Grundlagen sind so unumst/Ssslich 
und so allgemein anerkannt, haben sich so fiberall bew~ihrt, dass es einer weiteren 
experimentellen Priifung nicht mehr bedarf und vielmehr alles darauf ankommt diese 
Grundlagen auf ein geringstes Mass unabh/ingiger Axiome zur/ickzufiihren und hierauf 
rein logisch den ganzen Bau der Geometric aufzuffihren. Also Geometric ist dadurch eine 
rein mathematische Wiss. geworden. Auch in der Mechanik werden die Grundthatsachen 
yon allen Physikern zwar anerkannt. Aber die Anordnung der Grundbegriffe ist dennoch 
dem Wechsel der Auffassungen unterworfen . . .  so dass die Mechanik auch heute noch 
nicht, jedenfalls nicht in dem Maasse wie die Geometric als eine rein mathematische 
Disciplin zu bezeichnen ist. Wir miissen streben, dass sic es wird. Wir miissen die 
Grenzen echter Math. immer welter ziehen nicht nut in unserem math. Interesse sondern 
im Interesse der Wissenschaft fiberhaupt." 

62 Quoted in TOEPELL 1986, vii: "Geometric ist die vollkommende Naturwissen- 
schaft." 

63 Cf. BLUMENTHAL 1935, 402: "Das erregte bei den Studenten Verwunderung, denn 
auch wir /ilteren Teilnehmer an den 'Zahlk6rperspazierg~ingen' hatten nie gemerkt, dab 
Hilbert sich mit geometrischen Fragen besch~iftigte: er sprach uns nut yon Zahlk6pren." 
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the face of it, a sharp departure from the two fields in which he had excelled 
since completing his dissertation in 1885: the theory of algebraic invariants and 
the theory of algebraic number fields. 64 As we have already seen, the issue had 
occupied HILBZRT'S thoughts at least since 1891, when he first taught projective 
geometry in K6nigsberg; but it was SCHUR'S 1898 proof of the PAPPUS theorem 
without recourse to continuity that made HILBERT concentrate all his efforts on 
the study of the foundations of geometry. 65 It was then that he embarked on an 
effort to elucidate in detail the fine structure of the logical interdependence of 
the various fundamental theorems of projective and Euclidean geometry and, 
more generally, of the structure of the various kinds of geometries that can be 
produced under various sets of assumptions. A main concern of this whole 
effort was the unsettled issue of the coordinatization of projective geometry 

- -  the connecting link between synthetic and analytic geometry - -  and of the 
specific role of continuity assumptions in the proof of the fundamental the- 
orems. HILB~RT'S axiomatic method appeared as a powerful and effective tool 
for addressing these important  issues properly. 

The 1899 Festschrift was the first full-fledged version of HILBERT'S axiomatic 
treatment of geometry, but by no means the last. In spite of all the rigor 
claimed for this axiomatic analysis, many additions, corrections and improve- 
ments - -  by HILBERT himself, by some of his collaborators and by other 
mathematicians as well - -  were still needed over the following years to attain 
all the goals of this demanding project. Still it must be stressed that all these 
changes, however important, concerned only the details. The basic structure, the 
groups of axioms, the theorems considered, and above all, the innovative 
methodological approach implied by the treatment, all these remained un- 
changed through the many editions of the Grundlagen. It would be well 
beyond the scope of the present article to discuss all the details of the 
Grundlagen, and how it addressed the main foundational questions of 
geometry. 66 But since this is HILBERT'S first articulate, thorough presentation of 
a particular theory in axiomatic terms, it is clearly relevant to comment on 
some features of this work, and in particular on the kind of questions systemati- 
cally addressed here by HILBERT and thus established for any future axiomatic 
study. 

In line with his earlier pronouncements concerning the role of axiomatiz- 
ation in geometry as well as in other physical theories, HILBERT described the 
aim of his Festschrift as an attempt to lay down a "simple" and "complete" 

6,, For instance, in his obituary lecture on HILBERT, HERMANN WEYL wrote (1994, 
635): "[T]here could not have been a more complete break than the one dividing 
Hilbert's last paper on the theory of number fields from his classical book Grundlagen 
der Geometrie." 

6s For the events around the publication of Schur's proof and its effect on Hilbert, 
see TOEPELL 1986, 114-122. 

66 This is precisely a main contribution of TOEPELL 1986. See especially, pp. 
143-236. 
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system of "mutually independent" axioms, 67 from which all known theorems of 
geometry might be deduced. HILBERT'S axioms for geometry - -  formulated for 
three systems of undefined objects (and named "points", "lines" and planes") 

- -  establish mutual relations to be satisfied by these objects. These axioms are 
divided into five groups (axioms of incidence, of order, of congruence, of 
parallels and of continuity), but the groups have no pure logical significance in 
themselves. Rather they reflect HILBERT'S actual conception of the axioms as an 
expression of our spatial intuition: each group expresses a particular way in 
which these intuitions manifest themselves. 

HII~BERT'S requirement for independence of the axioms is the direct manifes- 
tation of the foundational concerns that directed his research. When analysing 
independence, his interest focused mainly on the axioms of congruence, continu- 
ity and of parallels, since this independence would specifically explain how the 
various basic theorems of Euclidean geometry are logically interrelated. But as 
we have seen, this requirement had already appeared - -  more vaguely for- 
mulated - -  in HII~BERa"S early lectures on geometry, as a direct echo of Hertz 's 
demand for appropriateness. In the Grundlagen, independence of axioms not 
only appeared as a more clearly formulated requirement, but I-IILBERT also 
provided the tools to prove systematically the mutual independence among the 
individual axioms within the groups and among the various groups of axioms 
in the system. He did so by introducing the method that has since become 
standard: he constructed models of geometries which fail to satisfy a given 
axiom of the system but satisfy all the others. It  is important  to stress that 
HILBERT'S study of mutual  independence focused on geometry itself rather than 
on the abstract relations embodied in the axioms; the GrundIagen was by no 
means a general study of the abstract relations between systems of axioms and 
their possible models. It  is for this reason that HILBERT'S original system of 
axioms was not - -  from the logical point of view - -  the most economical 
possible one. In fact, several mathematicians noticed quite soon that I-IILBERT'S 
system of axioms, seen as a single collection rather than as five groups, con- 
tained a certain degree of redundancy. 68 HILBEI~T'S own aim was to establish 
the interrelations among the groups of axioms rather than among individual 
axioms belonging to different groups. 

The requirement of simplicity had also been explicitly put forward by 
HERTZ; it complements that of independence. It means, roughly, that an axiom 
should contain 'no more than a single idea'. This requirement is mentioned in 

67 See HILBERT 1899, 1 (Emphasis in the original): " . . .  ein einfaches und vollstiin- 
diges System von einander unabh~ingiger Axiome aufzustellen..." 

68 Cf., for instance SCNUR 1901. For a more detailed analysis of this issue see 
SCHMIDT 1933, 406-408. It is worth pointing out that in the first edition of the 
Grundlagen HILBERT stated that he intended to provide an independent system of axioms 
for geometry. In the second edition, however, this statement no longer appeared, follow- 
ing a correction by E. H. MOO~E (1902) who showed that one of the axioms may be 
derived from the others. See also CORKY 1996, w 3.5; TORRETTI 1978, 239 ft. 
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HILBERT'S introduction, but it was neither explicitly formulated nor otherwise 
realized in any clearly identifiable way in the Grundlagen. It was present, 
however, in an implicit way and remained here - -  as well as in other, later 
works - -  as an aesthetic desideratum for axiomatic systems, which was not 
transformed into a mathematically controllable feature. 69 

The "completeness" that HILBERT demanded for his system of axioms runs 
parallel to HERTZ'S demand for correctness. 7~ Very much like HERTZ'S stipula- 
tion for correct images, HILBERT required from any adequate axiomatization 
that it should allow for a derivation of all the known theorems of the discipline 
in question. The axioms formulated in the GrundIagen, the author claimed, 
would allow all the known results of Euclidean, as well as of certain non- 
Euclidean, geometries to be elaborated from scratch, depending on which 
groups of axioms were admitted. 71 Thus, reconstructing the very ideas that had 
given rise to his own conception, HILBERT discussed in great detail the role of 
each of the groups of axioms in the proofs of two crucial results: the theorems 
of Desargues and the theorem of PASCAL. HILBERT'S analysis allowed a clear 
understanding of the actual premises necessary for coordinatizing projective 
geometry, which, as already stressed, was a key step in building the bridge 
between the latter and other kinds of geometry and a main concern of H~LBERT. 
HILBERT'S results implied, for instance, that these two fundamental theorems are 
valid in Euclidean geometry, as well as in a non-Archimedean geometry, such as 
the one introduced earlier by VERONESE. 72 

Unlike independence, completeness of the system of axioms is not a prop- 
erty that HILBERT knew how to verify formally, except to the extent that, 
starting from the given axioms, he could prove all the theorems he was interest- 
ed in proving. In the case of Euclidean geometry, it seemed to HILBERT that it 

69 As will be seen below, in his 1905 lectures on the axiomatization of physics, 
HILBERT explicitly demanded the simplicity of the axioms for physical theories. It should 
also be remarked that in a series of investigations conducted in the USA in the first 
decade of the present century under the influence of the Grundlagen, a workable criterion 
for simplicity of axioms was still sought after. For instance, EDWARD HUNTINGTON 
(1904, p. 290) included simplicity among his requirements for axiomatic systems, yet he 
warned that "the idea of a simple statement is a very elusive one which has not been 
satisfactorily defined, much less attained." 

70 And, importantly, it should not be confused with the later, model-theoretical 
notion of completeness, which is totally foreign to HILBERT'S early axiomatic approach. 

71 Several important changes concerning the derivability of certain theorems ap- 
peared in the successive editions of the Grundlagen. I do not mention them here, as they 
are not directly relevant to the main concerns of this article. 

72 However, there were many subsequent corrections and additions, by HILBERT as 
well as by others, that sharpened still further the picture put forward by HILBERT in the 
first edition of the GrundIagen. A full account of the Grundlagen would require a detailed 
discussion of the differences between the successive editions. TOEPELL 1986, 252, presents 
a table summarizing the interconnections between theorems and groups of axioms as 
known by 1907. See also FREUDENTHAL 1957 for later developments. 
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was enough to show that the specific synthetic geometry derivable from his 
axioms could be translated into the standard Cartesian geometry (with the 
whole field of real numbers as axes). 

The question of the consistency of the various kinds of geometries was an 
additional concern of HILBERT'S analysis, but it is not explicitly mentioned in 
the introduction to the Grundlagen. He addressed this issue in the Festschrift 
immediately after introducing all the groups of axioms and after discussing their 
immediate consequences. Seen from the point of view of HILBERT'S later recta- 
mathematical research and the developments that followed it, the question of 
consistency appears as the most important one undertaken in the Grundlaeen; 
but in the historical context of the evolution of his ideas it certainly was not. In 
fact, the consistency of the axioms is discussed in barely two pages, and it is not 
immediately obvious why HILBERT addressed it at all It doesn't seem likely that 
in 1899 HILBERT would envisage the possibility that the body of theorems 
traditionally associated with Euclidean geometry might contain contradictions. 
Euclidean geometry, after all, was for HILBERT a natural science whose subject 
matter is the properties of physical space. HILBERT seems rather to have been 
echoing here HERTZ'S requirements for scientific theories, in particular his de- 
mand for the permissibility of images. As seen above, HILBERT had stressed in 
his lectures - -  following an idea of HERTZ - -  that the axiomatic analysis of 
physical theories was meant to clear away any possible contradictions brought 
about over time by the gradual addition of new hypotheses to a specific theory. 
Although this was not likely to be the case for the well-established discipline of 
geometry, it might still happen that the particular way in which the axioms had 
been formulated in order to account for the theorems of this science led to 
statements that contradict each other. The recent development of non-Euclidean 
geometries made this possibility only more patent. Thus, HILBERT believed that 
in the framework of his system of axioms for geometry he could also easily 
show that no such contradictory statements would appear. 

As is well-known, HILBERT established through the Grundlagen the relative 
consistency of geometry vis-fi-vis arithmetic, i.e., he proved that any contradic- 
tion existing in Euclidean geometry must manifest itself in the arithmetic system 
of real numbers. He did this by defining a hierarchy of fields of algebraic 
numbers. It is significant that in the first edition of the Grundlagen, HILBERT 
contented himself with constructing a model that satisfied all the axioms, using 
only a proper sub-field, rather than the whole field of real numbers (HILBERT 
1899, 21). It was only in the second edition of the Grundlagen, published in 
1903, that he added an additional axiom, the so-called "axiom of completeness" 
(Vollstiindigkeitsaxiom); the latter was meant to ensure that, although infinitely 
many incomplete models satisfy all the other axioms, there is only one complete 
model that satisfies this last axiom as well, namely, the usual Cartesian ge- 
ometry, obtained when the whole field of real numbers is used in the model 
(H~LBERT 1903, 22--24). Moreover, as HILBERT stressed, this axiom cannot be 
derived from the Archimedean axiom, which was the only one included in the 
continuity group in the first edition. It is important to notice, however, that the 
property referred to by this axiom bears no relation whatsoever to HILBERT'S 
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general requirement of "completeness" for any system of axioms. Thus his 
choice of the term "VolIstiindigkeit" in this context seems somewhat un- 
fortunate.73 

The question of the consistency of geometry was thus reduced to that of the 
consistency of arithmetic. The further necessary step of proving the latter was 
not even mentioned in the Festschrift, and presumably at the time of its 
publication HILBERT did not yet consider that such a proof  could involve 
a difficulty of principle. Soon, however, he was to assign a high priority to it as 
an important  open problem of mathematics. Thus, among the 1900 list of 
twenty-three problems, upon which I will comment  in a moment,  the second 
one concerns the proof  of the "compatibili ty of arithmetical axioms. ''74 In fact, 
as early as October  1899 HILBERT delivered a lecture in Munich to the D M V  
- -  later published as "Ober den Zahlbergriff" - -  in which he spoke explicitly 
for the first time about  the need to prove the consistency of arithmetic, and 
proposed a system of axioms for this domain. This system essentially repro- 
duced the properties of the "systems of complex numbers" that HILBERT had 
used in constructing his various models in the Grundlagen. Beyond his book on 
the foundations of geometry, this was his 0nly other early publication connected 
with the application of the axiomatic method and, interestingly enough, in spite 
of the central role he accorded to this method, HILBERT emphasized here that he 
did not see it as the only possible one. He discussed two different ways of 
dealing with concepts in mathematics: the genetic approach and the axiomatic 
approach. The classical example of the possibility of defining a mathematical  
entity genetically is provided by the system of real numbers. On the other hand, 
there is the axiomatic method, typically used in geometry. HILBERT claimed that 
both  tendencies usually complement  each other in mathematics, but he raised 
the question as to their relative value. Finally he stated his opinion: 

In spite of the high pedagogic value of the genetic method, the axiomatic method has 
the advantage of providing a conclusive exposition and full logical confidence to the 
contents of our knowledge. (HILBERT 1900, 184) 75 

73 The axiom is formulated in HILBERT 1903, 16. TOEPELL 1986, 254-256, briefly 
describes the relationship between HILBERT'S VoIlstiindigkeit axiom and related works of 
other mathematicians. The axiom underwent several changes throughout the various 
later editions of the Grundlagen, but it remained central to this part of the argument. Cf. 
PECKHAUS 1990, 29-35. The role of this particular axiom within HILBERT'S axiomatics 
and its importance for later developments in mathematical logic is discussed in MOORE 
1987, 109--122. In 1904 OSWALD VEBLEN introduced the term "categorical" (VEBLEN 
1904, 346) to denote a system to which no irredundant axioms may be added. He 
believed that HILBERT had checked this property in his own system of axioms. See 
SCANLAN 1991, 994. 

7,~ HILBERT 1901, 299-300. As is well-known, KURT GODEL (1906-1978) proved in 
1931 that such a proof is impossible in the framework of arithmetic itself. 

vs It is worth pointing out that in one of his letters (January 6, 1900), FREGE 
expressed his agreement with the view expressed by HILBERT in this talk. See GABRIEL 
et al. (eds.) 1980, 44. 
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With this article HILBERT set forth the guidelines for applying to arithmetic 
the kind of axiomatic analysis he had formerly applied to geometry. At 
the same time, he suggested that some of the problems raised by the introduc- 
tion of transfinite cardinals might be solved by applying the same kind of 
axiomatic analysis to the concept of set. On the contrary, he did not connect 
such questions and procedures in any way with concerns of methodology or 
logic. 

These are, then, HILBERT'S main requirements concerning the axiomatic 
systems that define geometry: completeness, consistency, independence, and 
simplicity. In principle, there should be no reason why a similar analysis could 
not apply for any given system of postulates that establishes mutual abstract 
relations among undefined elements arbitrarily chosen in advance and having 
no concrete mathematical meaning. But in fact, HILBERT'S own conception of 
axiomatics did not convey or encourage the formulation of abstract axiomatic 
systems as such: his work was instead directly motivated by the need for better 
understanding of mathematical and scientific theories. In HILBERT'S view, the 
definition of systems of abstract axioms and the kind of axiomatic analysis 
described above was meant to be carried out, retrospectively, for 'concrete', 
well-established and elaborated mathematical entities. In this context, one 
should notice that in the years immediately following the publication .of 
the Grundlagen, several mathematicians, especially in the USA, undertook 
an analysis of the systems of abstract postulates for algebraic concepts such 
as groups, fields, Boolean algebras, etc., based on the application of techniques 
and conceptions similar to those developed by HILRERT in his study of 
the foundations of geometry. 76 There is no evidence that HILBERT showed 
any interest in this kind of work, and in fact there are reasons to believe 
that they implied a direction of research that HILBERT did not contemplate 
when putting forward his axiomatic program. It seems safe to assert 
that HILBERT even thought of this direction of research as mathematically 
ill-conceived. 77 

A commonly accepted image of twentieth-century mathematics depicts it as 
a collection of theories actually constructed on systems of postulates that 
establish arbitrary abstract relations among undefined elements, and that fre- 
quently lack a direct, concrete intuitive meaning. In fact, according to this 
image, the profusion of theories of this kind in contemporary mathematical 
research should be seen as evidence of the success and influence of HrI~BERT'S 
own point of view and as one of his main contributions to shaping contempor- 
ary mathematical thinking. The impact of HILBERT'S axiomatic research, coupled 
with the "formalism" associated with his name in the framework of the so-called 
"foundational crisis" of the 1920s, has occasionally been seen as promoting the 

76 For instance MOORE 1902a, HUNTINGTON 1902. 
77 On the American postulationalists and HILBERT'S response (or lack of it) to their 

works, see CORRY 1996, w 3.5. 
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view of mathematics as an empty, formal game. 78 HILBERX'S own axiomatic 
research, however, was never guided by such a view - -  certainly not in the early 
stages of its development - -  and in fact he often opposed it explicitly. Thus, for 
instance, in a course taught as late as 1919, and aware of existing misconcep- 
tions concerning the nature of mathematical  science, HILBERT explained to 
a general audience his views on this issue and on the role played by axiomatic 
definitions: 

[Mathematics] has nothing to do with arbitrariness. Mathematics is in no sense like 
a game, in which certain tasks are determined by arbitrarily established rules. Rather, 
it is a conceptual system guided by internal necessity, that can only be so, and never 
otherwise. 79 

6. The Frege-Hilbert Correspondence 

An additional, important  early source for understanding HILBERT'S axiomatic 
conception is found in an oft-cited exchange of letters with GOTTLOB FREGE 
(1846--1925), immediately following the publication of the Grundlagen. s~ Histor- 
ians and philosophers have devoted considerable attention to this correspond- 
ence, especially for the debate it contains between HILBERT and FREGB 
concerning the nature of mathematical  truth. HILBERT expressed here the view 
that the axiomatic research of mathematical  theories not only confers a greater 
degree of certainty on existing knowledge, but also provides mathematical  
concepts with justification, and indeed with their very existence. This view, 
which equates mathematical  truth with logical consistency, provided a-posteriori 
legitimacy to proofs of existence by contradiction, like the one advanced in 1893 
by HILBERT himself for the finite basis theorem of algebraic invariants, sl But 
this frequently-emphasized issue is only one side of a more complex picture 
advanced by HILBERX in his letters. In the first place, HILBERT explicitly stated 
that his motivations were different from FREGE'S. Axiomatic research, HILBERT 
stated, was not for him an end in itself with inherent justification, but rather 
a tool to achieve a clearer understanding of mathematical  theories. The need to 

78 A typical instance of such a view appears in RESNIK 1974, 389: " [ H I L B E R T ' S  

conceptioh] removed the stigma of investigating axioms which do not describe any 
known 'reality' and opened the way to the creation of new mathematical theories by 
simply laying down new axioms." See also REID 1970, 60-64. 

79 HILBERT 1992, 14. For HILBERT'S views on the role of Anschauung, as opposed to 
formal manipulation of empty concepts, in his system of geometry see also TOEPELL 
1986, 258-261. 

so The relevant letters between HILBERT and FREGE appear in GABRIEL et al. (eds.) 
1980, esp. pp. 34-51. For comments on this interchange see Boos 1985; MEHRTENS 1990, 
117 ft.; PECKHAUS 1990, 40~46; RESNIK 1974. 

81 See CORRY 1996, w 3.1. 
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undertake axiomatic analysis was forced upon him, as it were, by problems 
HILBERT had found in his day-to-day mathematical  research. Thus in a letter 
dated December 29, 1899, HILBERT wrote to FREaE: 

If we want to understand each other, we must not forget that the intentions that 
guide the two of us differ in kind. It was of necessity that I had to set up my 
axiomatic system: I wanted to make it possible to understand those geometrical 
propositions that I regard as the most important results of geometrical enquiries: 
that the parallel axiom is not a consequence of the other axioms, and similarly 
Archimedes' axiom, etc . . . .  I wanted to make it possible to understand and answer 
such questions as why the sum of the angles in a triangle is equal to two right angles 
and how this fact is connected with the parallel axiom, s2 

In this same letter HILBERT explained his well-known view concerning the 
relationship between axioms and truth. Expressing his disagreement with what 
FREGE had written in an earlier letter, HILBERT claimed that "if the arbitrarily 
given axioms do not contradict one another with all their consequences, then 
they are true and the things defined by the axioms exist. This is for me the 
criterion of existence and truth. ''s3 Clear and concise as it is, this statement in 
no way implies that HILBERT'S own axioms of geometry were actually arbitrary! 

In answering this letter, FREG~ summarized HILBERT'S position as follows: "It  
seems to me that you want to detach geometry from spatial intuition and to 
turn it into a purely logical science like arithmetic. ''84 As HILBERTS'S reply 
contained just a few lines and no substantial content (on account, he said, of 
overburden with work), s5 we know of no direct response from gILBERT to 
FREGE'S characterization of HILBERT'S aims. HILBERT had indeed stated that 
a thorough axiomatization of geometry would allow all its theorems to be 
derived without direct reliance on intuition. But it is essential to recall that for 
HILBERT, as for PASCH before him, the axioms themselves are not detached from 
spatial intuition, but rather are meant  to fully capture it and account for it. 
Thus, contrary to FREGE'S characterization, H1LBERT'S aim was to detach the 
deduction (but only the deduction) of geometrical theorems from spatial intu- 
ition, i.e., to avoid the need to rely on intuition when deriving the theorems 
from the axioms. But at the same time, by choosing correct axioms that reflect 
spatial intuition, HILBERT was aiming, above all, at strengthening the effec- 
tiveness of geometry as the science - -  the natural science, one should say - -  of 
space. 

In the same letter, FREGE also commented upon HILBERT'S proofs of inde- 
pendence. He thought HILBERT'S technique adequate and valuable, but he 
warned that it would be far less interesting if applied to arbitrary systems of 
axioms. He thus wrote: 

s2 Quoted in GABRIEL et al. (eds.) 1980, 38. 
83 Quoted in GABRIEL et al. (eds.) 1980, 39. 
s4 In a letter from Jena, dated January 6, 1900. Quoted in GABRIEL et al. (eds.) 

1980, 43. 
85 HILBERT to FREGE, January 15, 1900. Quoted in GABRIEL et al. (eds.) 1980, 48. 
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The main point seems to me to be that you want to place Euclidean geometry under 
a higher point of view. And indeed, the mutual independence of the axioms, if it can 
be proved at all, can only be proved in this way. Such an undertaking seems to me 
to be of the greatest scientific interest if it refers to the axioms in the old traditional 
sense of the elementary Euclidean geometry. If such an undertaking extends to 
a system of propositions which are arbitrarily set up, it should in general be of far 
less scientific importance, s6 

Again, we are lacking HILBERT'S reply to this part icular  qualm of FREGE. But 
f rom all that  we do know, there is no  reason to believe that  he would  have 
disagreed with him on this point. As already said, HILBERT expressed no direct 
interest in postula t ional  research that  considered the analysis of  abstract  sys- 
tems of  axioms as such as a domain  of  inquiry with inherent mathemat ica l  
value. In  fact, in this discussion the insistence on arbitrary,  rather  than on 
concrete, axiomatic  systems seems to have come here f rom FREOE rather than 
f rom HILBERT. One  m a y  wonder,  then, to what  extent FREOE'S reading of 
HmBERT'S enterprise has helped to spread a different image of  HILBERT'S concep-  
tions f rom that  revealed by HILBERT'S own writing. 

A second, frequently overlooked,  trait of  this correspondence - -  one that  is 
of  part icular  interest for the present account  - -  concerns the kind of  difficulties 
reported by HILBERT as having mot iva ted  the development  of  his axiomatic  
outlook.  These difficulties were found by HILBERT mainly in physical, rather 
than mathemat ica l  theories. HILBERT'S explanations here show a clear connec-  
t ion to similar concerns expressed by HERTZ in stressing the need to analyze 
carefully the addi t ion of  ever new assumptions  to physical theories, so as 
to avoid possible contradictions.  They  also help us to unders tand m a n y  of  
HILBERT'S later endeavours  in physics. In  the same letter of  December  29, he 
wrote: 

After a concept has been fixed completely and unequivocally, it is on my view 
completely illicit and illogical to add an axiom - -  a mistake made very frequently, 
especially by physicists. By setting up one new axiom after another in the course of 
their investigations, without confronting them with the assumptions they made 
earlier, and without showing that they do not contradict a fact that follows from the 
axioms they set up earlier, physicists often allow sheer nonsense to appear in their 
investigations. One of the main sources of mistakes and misunderstandings in mod- 
ern physical investigations is precisely the procedure of setting up an axiom, appeal- 
ing to its truth (?), and inferring from this that it is compatible with the defned 
concepts. One of the main purposes of my Festschrift was to avoid this mistake. 8v 

In  a different passage of the same letter, HILBERT commented  on the possibility 
of  replacing the basic objects of  an axiomatical ly formulated theory by a differ- 
ent system of objects, provided the latter can be put  in a one-to-one,  invertible 

86 Quoted in GABRIEL et al. (eds.) 1980, 44. Italics in the original. 
87 Quoted in GABRIEL et al. (eds.) 1980, 40. The question mark "(?) " appears in the 

German original (after the word "Wahrheit"). 
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relation with the former. In this case, the known theorems of the theory are 
equally valid for the second system of objects. Concerning physical theories, 
HILBERT wrote: 

All the statements of the theory of electricity are of course valid for any other system 
of things which is substituted for the concepts magnetism, electricity, etc., provided 
only that the requisite axioms are satisfied. But the circumstance I mentioned can 
never be a defect in a theory [footnote: it is rather a tremendous advantage], and it 
is in any case unavoidable. However, to my mind, the application of a theory to the 
world of appearances always requires a certain measure of good will and tactfulness: 
e.g., that we substitute the smallest possible bodies for points and the longest 
possible ones, e.g., light-rays, for lines. At the same time, the further a theory has 
been developed and the more finely articulated its structure, the more obvious the 
kind of application it has to the world of appearances, and it takes a very large 
amount of ill will to want to apply the more subtle propositions of [the theory of 
surfaces] or of Maxwell's theory of electricity to other appearances than the ones for 
which they were meant. . .88 

HILBERT'S letters to FRECE show very clearly, then, the direct motivation of 
his axiomatic point of view. That  point of view in no sense involved either an 
empty game with arbitrary systems of postulates nor a conceptual break with 
the classical entities and problems of mathematics and empirical science. Rather 
it sought an improvement  in the mathematician's understanding of the latter. 

7. The 1900 List of Problems 

The next occasion in which HILBERT explained his views concerning the 
centrality of axiomatics as a vehicle for defining mathematical  concepts and as 
the source of mathematical  truth was a very special one. In fact, it was an 
opportunity to explain to a selected audience many  of his ideas about  mathe- 
matics in general; it came in 1900, at the occasion of the Second International 
Congress of Mathematicians held in Paris. By the time of the congress, HIL- 
BERT'S mathematical  reputation was so well established that he was invited to 
deliver one of the main talks. Following a suggestion of MINKOWSKI, HILBERT 
decided to provide a glimpse into what - -  in his view - -  the new century would 
bring for mathematics. This he did by presenting a list of problems which he 
considered to pose significant challenges that would lead mathematicians trying 
to solve them to fruitful research and to new and illuminating ideas. 

In presenting the problems, HILBERT was trying to establish, as it were, 
a research program for the entire mathematical  community for years to come. 
At the same time he was making a clear statement: a wealth of significant open 
problems is a necessary condition for the healthy development of any math- 
ematical branch and, more generally, of that living organism that he took 

8s Quoted in GABRIEL et al. (eds.) 1980, 41. I have substituted here "theory of 
surfaces" for "Plane geometry", which was the English translator's original choice. In the 
German original the term used is "F1/ichentheorie". 
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mathematics to be. 89 From HILBERT'S remarks on this issue one can also learn 
much about  the central place he accorded to empirical motivations as a main 
source of nourishment for that organism. In fact, HILBERT made clear once more 
the close interrelation that, in his mind, underlies mathematics and the physical 
sciences (HILBERT 1902, 440). In particular, the quest for rigor in analysis and 
arithmetic should be extended to geometry and the physical sciences, not only 
because it would perfect our understanding, but also because its results would 
provide mathematics with ever new and fruitful ideas. Commenting on the 
opinion that geometry, mechanics and other physical sciences are beyond the 
possibility of a rigorous treatment, he wrote: 

But what an important nerve, vital to mathematical science, would be cut by the 
extirpation of geometry and mathematical physics! On the contrary I think that 
whenever from the side of the theory of knowledge or in geometry, or from the 
theories of natural or physical science, mathematical ideas come up, the problem 
arises for mathematical science to investigate the principles underlying these ideas 
and so to establish them upon a simple and complete system of axioms, that the 
exactness of the new ideas and their applicability to deduction shall be in no respect 
inferior to those of the old arithmetic concepts. (HILBERT 1902, 442) 

HILBERT described the development of mathematical  ideas - -  using terms 
very similar to those of VOLKMANN'S 1900 book  - -  as an ongoing dialectical 
interplay between the two poles of thought and experience; an interplay that 
brings to light a "pre-established harmony"  between nature and mathematics. 9~ 
Moreover,  using the "building metaphor",  he stressed the importance of inves- 
tigating the foundations of mathematics not as an isolated concern, but rather 
as an organic part  of the manifold growth of the discipline in several directions. 
HILBERT thus said: 

� 9  the study of the foundations of a science is always particularly attractive, and the 
testing of the foundations will always be among the foremost problems of the 
investigator.. .  [But] a thorough understanding of its special theories is necessary to 
the successful treatment of the foundations of the science. Only that architect is in 
the position to lay a sure foundation for a structure who knows its purpose 
thoroughly and in detail. (HILBERT 1902, 455) 

Speaking more specifically about  the importance of problems for the healthy 
growth of mathematics,  HILBERT characterized an interesting problem as one 
which is "difficult in order to entice us, yet not completely inaccessible, lest it 
mock  at our efforts (p. 438)." But perhaps more important  was the criterion he 
formulated for the solution of one such problem: it must be possible "to 
establish the correctness of the solution by a finite number  of steps based upon 

s9 See especially the opening remarks in HILBERT 1902, 438. See also his remarks on 
p. 480. 

9o The issue of the "pre-established harmony" between mathematics and nature 
was a very central one among G6ttingen scientists. This point has been discussed in 
PYENSON 1982. 



Hilbert and the Axiomatization of Physics 121 

a finite number  of hypotheses which are implied in the statement of the 
problem and which must always be exactly formulated (p. 441)." On this 
occasion HILBZRT also expressed his celebrated opinion that every mathematical  
problem can indeed be solved: "In mathematics there is no ignorabimus 
(p. 445)." 

This is not the place to discuss in detail the list of problems and its 
historical context. 91 Our  main concern here is with the sixth problem on the 
list. But before coming to it, one must stress that HILBERT'S concern with 
axiomatization, as part  of the much more general tasks he envisaged for 
mathematics in the future, was expressed succinctly as part  of the second 
problem on the list. In formulating this problem - -  which called for the proof  
of the consistency of arithmetic - -  HILBERT described once again his views 
concerning the relation between logical consistency and mathematical  truth. 
HILBERT wrote: 

When we are engaged in investigating the foundations of a science, we must set up 
a system of axioms which contains an exact and complete description of the relations 
subsisting between the elementary ideas of the science. The axioms so set up are at 
the same time the definitions of those elementary ideas, and no statement within the 
realm of the science whose foundation we are testing is held to be correct unless it 
can be derived from those axioms by means of finite number of logical steps. 
(HILBERT 1902, 447) 

The sixth problem on the list is directly connected to the general view 
expressed here by HILBERT. The problem called for the axiomatization of phys- 
ical science. HILBERT wrote as follows: 

The investigations on the foundations of geometry suggest the problem: To treat in 
the same manner, by means of axioms, those physical sciences in which mathematics 
plays an important part; in the first rank are the theory of probabilities and 
mechanics. (HILBERT 1902, 454) 

HIL~ERT mentioned several existing works as examples of what he had in 
mind here: the fourth edition of MACH'S Die Mechanik in ihrer Entwicklung, 
HERTZ'S Principles, BOLTZMANN'S 1897 Vorlesungen ~ber die Principien der 
Mechanik, and also VOLrCMANN'S 1900 EinJ~hrung. BOLTZMANN'S work offered 
a good example of what axiomatization would offer. BOL'rZMANN had indicated, 
though only schematically, that limiting processes could be applied, starting 
from an atomistic model, to obtain the laws of motion of continua. HILBZRT 
thought it convenient to go in the opposite direction also, i.e., to derive the laws 
of motions of rigid bodies by limiting processes, starting from a system of 
axioms that describe space as filled with continuous matter  in varying 
conditions. Thus one could investigate the equivalence of different systems of 
axioms, an investigation which HILBERT considered of the highest theoretical 
importance. 92 

91 For one such discussion see ROWE 1996. 
92 More on HILBERT'S appreciation of BOLTZMANN's work, below. 
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Together with these well-known works on mechanics, HILBERT also men- 
tioned a recent work by the G6ttingen actuarial mathematician GEOR~ 
BOnLMA~ (1869-1928) on the foundations of the calculus of probabilities. 93 
The latter was important  for physics, HILBERT said, for its application to the 
method of mean values and to the kinetic theory of gases. HILBERT'S inclusion of 
the theory of probabilities among the main physical theories whose axiomatiz- 
ation should be pursued has often puzzled readers of this passage. This point 
will be explained in some detail below, when studying the contents of HILBERT'S 
1905 lectures. 

Modeling this research on what had already been done for geometry meant 
that not only theories considered to be closer to "describing reality" should be 
investigated, but also other, logically possible ones. The mathematician under- 
taking the axiomatization of physical theories should obtain a complete survey 
of all the results derivable from the accepted premises. Moreover, echoing the 
concern already found in HERTZ and in HILBERT'S letters to FREGE, a main task 
of the axiomatization would be to avoid that recurrent situation in physical 
research, in which new axioms are added to existing theories without properly 
checking to what extent the former are compatible with the latter. This proof of 
compatibility, concluded HILBERT, is important not only in itself, but also 
because it compels us to search for ever more precise formulations for the 
axioms (p. 445). 

At the beginning of this article, I claimed that this sixth problem is different 
from the others in the list. Now the differences can be more clearly described. 
In the first place, it is not really a problem in the strict sense of the word, but 
rather a general task for whose complete fulfillment HILBERT set no clear 
criteria. This is the more striking given HILBERT'S detailed account, in the 
opening remarks to his talk, as to what a meaningful problem in mathematics 
is, and his stress on the fact that a solution to a problem should be attained in 
a finite number of steps. Clearly, this particular problem does not fit his criteria. 
Second, on the evidence of HILBE~T'S published work alone, it would be difficult 
to understand the place of this project as part of HILBERT'S general conception 
of mathematics and of his work up to that time. Although beginning in 1912 
HILBERT was to publish important  work related to mathematical physics, before 
1900 his published works show no clue to this kind of interest. Moreover, 
unlike most of the other items in the list, this is not the kind of issue that 
mainstream mathematical research had been pointing to in past years. 

But at the same time, and in spite of its peculiar character, the sixth 
problem has also important  connections with three other problems on 
HILBERT'S list: the nineteenth ("Are all the solutions of the Lagrangian equations 
that arise in the context of certain typical variational problems necessarily 

93 BOHLMANN 1900. This article reproduced a series of lectures delivered by BOH- 
LMANN in a Ferienkurs in G6ttingen. In his article BOHLMANN referred the readers, for 
more details, to the chapter he had written for the EncycIopiidie der mathematischen 
Wissenschafien on insurance mathematics. BOHLMANN'S axioms will be further discussed 
below. 
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analytic?"), the twentieth, closely related to the former and at the same time to 
HILBERT'S long-standing interest in the domain of validity of the Dirichlet 
principle (dealing with the existence of solutions to partial differential equations 
with given boundary conditions) and the twenty-third (an appeal to extend and 
refine the existing methods of variational calculus). Like the sixth problem, the 
latter two are general tasks rather than specific mathematical problems with 
a clearly identifiable solution. All these three problems are also strongly connec- 
ted to physics, though unlike the sixth, they are also part of mainstream, 
traditional research concerns in mathematics. 9~ In fact, their connections to 
HILBERT'S own interests are much more perspicuous and, in this respect, they do 
not raise the same kind of historical questions that HILBERT'S interest in the 
axiomatization of physics does. Below, I will illustrate how HIL~ERT conceived 
the role of variational principles in his program for axiomatizing physics. 

For all its differences and similarities with other problems in the list, the 
important point that emerges from the above account is that the sixth problem 
was in no sense disconnected from the evolution of HILBERT'S early axiomatic 
conception. Nor was it artificially added in 1900 as an afterthought about the 
possible extensions of an idea successfully applied in 1899 for the case of 
geometry. Rather, HILBERT'S ideas concerning the axiomatization of physical 
science arose simultaneously with his increasing enthusiasm for the axiomatic 
method and they fitted naturally into his overall view of pure mathematics, 
geometry and physical science - -  and the relationship among them - -  by that 
time. Moreover, a detailed examination of HILBERT'S 1905 lectures shows a very 
clear and comprehensive conception of how that project should be realized; in 
fact, it is very likely that this conception was not essentially different from what 
HILBERT had in mind when formulating his problem in 1900. Interestingly, the 
development of physics from the beginning of the century, and especially after 
1905, brought about many surprises that HILBERT could not have envisaged in 
1900 or even when lecturing at G6ttingen on the axioms of physics; yet, over 
the following years HILBERT was indeed able to accommodate these new devel- 
opments to the larger picture of physics afforded by his program for axiomatiz- 
ation. In fact, some of his later contributions to mathematical physics came by 
way of realizing the vision embodied in this program. With this picture in mind, 
it is now time to turn to the examination of HILBERT'S 1905 lectures on the 
axiomatic method. 

8. Hilbert's 1905 Lectures on the Axiomatic Method 

As we have seen in the preceding sections, the axiomatization of mathemat- 
ical and scientific disciplines posed for H1LBERT a meaningful mathematical 
challenge that attracted his attention in the same way as many other open 

94 For a detailed account of the place of variational principles in HILBERT's work, 
see BLUM 1994 (unpublished). 
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mathematical problems did. This was, in particular, his attitude to the proof of 
the consistency of arithmetic, as well as to the relation between the axioms 
of set theory and the continuum hypothesis. Until 1903, the main focus of 
HILBERT'S axiomatic interest continued to be the foundations of geometry. 
H~LBERT used the terms "logic" and "logical" in a rather loose manner through- 
out his writings, and his attention was not specifically directed towards the 
more methodological and philosophical issues raised by the application of the 
axiomatic method. In 1903, however, an important change of direction occur- 
red, following RUSSELL'S publication of the paradox arising in FREOE'S logical 
system. Although contradictory arguments of the kind discovered by RUSSELL 
had been made known in G6ttingen a couple of years earlier by ZERMELO, 9s it 
seems that RUSSELL'S publication led HILBERT to attribute to the axiomatic 
analysis of logic and of the foundations of set theory a much more central role 
in establishing the consistency of arithmetic than he had earlier. Beginning in 
1903, intense activity developed in G6ttingen in this direction: it was at this 
time, that the systematic study of logic and set theory as a central issue in the 
foundations of mathematics was initiated in H~LBERT'S mathematical circle. 96 

The first published evidence of this change of orientation and emphasis 
appeared in a lecture delivered by HILBERT at the Third International Congress 
of Mathematicians, held in 1904 in Heidelberg. In this talk, later published 
under the title of "On the Foundations of Logic and Arithmetic" (1905a), 
HILBERT called for a "partly simultaneous development of the laws of logic and 
arithmetic." He presented his ideas in a very sketchy formulation, which he only 
developed later in greater detail in a course delivered in the summer semester of 
1905 in G6ttingen, under the name of "The Logical Principles of Mathematical 
Thinking. ''97 There HILBERT attempted to develop a formalized calculus for 
prepositional logic, one that would provide the basis on which to reconstruct 
the logical foundations of mathematics - -  the project that was then gradually 
beginning to draw his attention. HILBERT'S logical calculus was rather rudimen- 
tary, and it did not even account for quantifiers. As a strategy for proving 
consistency of axiomatic systems, it could only be applied to very elementary 
cases. At that same time, ZERMELO was working by himself on the proof of the 
consistency of arithmetic and on the axiomatization of set theory, following the 
guidelines established by HILBERT. HILBERT was confident of ZERMELO'S ability 
to tackle the whole problem of foundations as he now conceived it, and in fact, 
it was for this purpose that he made efforts to bring him to G6ttingen and keep 

95 PECKHAUS 1990, 48--49. 
96 PECKHAUS 1990, 56-57. 
97 In what follows, I transcribe in the footnotes some relevant passages of this 

unpublished manuscript (HILBERT 1905). The reference to the original pagination in the 
manuscript is given here in square brackets. Texts are underlined or crossed-out as in 
the original. Later additions by HILBERT appear between ( ) signs. There is a second 
manuscript of these lectures in HILBERT'S Nachlass in the Nieders/ichsischen Staats- und 
Universitiitsbibliothek G6ttingen (Cod Ms D. HILBERT 558a), annotated by MAX BORN. 
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him there. After his 1905 course, HILBERT dedicated no further effort to such 
foundational studies, and ZERMELO was left alone to pursue the project. In 1908 
ZERMELO published his well-known paper on the foundations of set-theory, 98 
and he also gave a course in G6ttingen in which he elaborated a new logical 
calculus of his own. 99 

HILBERT'S 1905 course is of special interest for our present concerns, because 
in a lengthy section he presented axiomatic treatments of several physical 
disciplines. Thus, the manuscript of the lectures provides the first clear evidence 
of what HILBERT envisaged as the solution, or at least the way to the solution, 
of the sixth of his 1900 list of problems. The course was divided into two 
separate parts, of which the second developed the "logical foundations" of 
mathematics, including the logical calculus mentioned above. 1~176 The way to the 
issues discussed in the second part of the course was prepared in its first part, 
where HILBERT gave an overview of the basic principles of the axiomatic 
method, including a more detailed account of its application to arithmetic, 
geometry and the natural sciences. HILBERT summarized in the opening lectures 
the aims and basic tools of the axiomatic method, repeating what he had 
already said in former works: when analyzing an axiomatic system we are 
interested in studying the logical independence of its axioms, and their com- 
pleteness, namely, that all the known theorems of the theory may be derived 
from the proposed system of axioms. This time he also mentioned explicitly the 
study of the consistency of the system as a main task of the axiomatic analysis. 
Our main focus will be on HILBERT'S axioms for physical disciplines, but I will 
consider first some of the points he raised in his discussion of arithmetic and 
geometry. These points make very clear the empiricist underpinnings of HIL- 
BERT'S conception of the axiomatic method, and the central role he accorded to 
intuition and experience in the construction of mathematical theories. 

Arithmetic and Geometry 

HILBERT'S axioms for arithmetic, eighteen in number, repeated more or less 
what had appeared in "Ober den Zahlbegriff". He discussed the Archimedean 
axiom this time at some length, stressing its importance for the application of 
mathematics to any measurement of physical quantities. In fact, HILBERT said, 
a most basic assumption of every science involving measurements is that all the 
physical magnitudes of a kind be mutually comparable, in the sense stipulated 
by the axiom. The whole science of astronomy, for instance, is based on the 
idea that celestial dimensions can be expressed in terms of terrestrial ones, by 

98 ZERMELO 1908. A comprehensive account of the background, development and 
influence of ZERMELO's axioms see MOORE 1982. For an account of the years preceding 
the publication, see esp. pp. 155 ft. 

99 For an account of HILBERT'S and ZERMELO'S logical calculi, see PECKHAUS 1994. 
~oo For a detailed account o f  this part of the course, see PECKHAUS 1990, 61-75. 
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straightforward, if somewhat  lengthy, successive addition. HILBERT saw this 
commonplace assumption as far from trivial. It  was precisely by means of 
axiomatic analysis that one could understand both its pervasiveness and the 
need to state it explicitly. 1~ In fact, HIL~RT continued to stress the importance 
of this axiom at every opportunity. For  instance, in his 1918 article " Axio- 
matisehes Denken", he returned to the analysis of the independence of this 
axiom, describing it as a very central one for both  mathematical  and physical 
theories. He stressed the lack of attention that its explicit formulation had 
received from physicists. Significantly, his remarks on the role of this axiom in 
physics underscore once again his empiricist conception of geometry. HILBERT 
wrote: 

In the theory of real numbers it is proven that the axiom of magnitude (Messens), the 
so-called Archimedean axiom, is independent of all other arithmetical axioms. This 
result is acknowledged as being of the utmost significance for geometry, but it seems 
to me that it is also so for physics, since it leads us to the following result: that the 
fact that by continually adding terrestrial distances, we are able to reach the distan- 
ces of bodies in the outer spaces, i.e., that celestial distances can be measured by 
terrestrial measure, and likewise the fact that the distances in the internal parts of 
atoms are expressible in terms of meters, are in no way plain logical consequences of 
the theorem on the congruence of triangles or of geometric configurations, but rather 
results obtained from empirical research. The validity of the Archimedean axiom in 
nature must be confirmed by experiment in the same way that the theorem of the 
sum of angles in a triangle has been confirmed in a well-knwon manner. (HILBERT 
1918, 149) 

Before discussing the axioms of arithmetic, HILBERT mentioned the genetic 
method as the traditional way of creating the system of numbers, starting from 
the basic intuition of natural  number  (Anzahl). This method, he said, had 
usefully been applied by KRONBCKER and WEr~RSTRASS, for instance, in laying 
the foundations of the theory of functions. However, it raises some problems 
because, being based on a specific process of creation, it cannot  always account 
for all the properties of the objects created. For  example: the irrational numbers 
are defined as infinite sequences of integers [0, 14132 = (1, 4, 1, 3, 2 . . . .  )l. What  
properties can one expect these numbers to satisfy? If the sequence is defined by 
throwing a die, is the resulting sequence still an irrational number? The genetic 
method, concluded HILBERT, may  find it difficult to answer questions of this 
kind. 

Yet HILBERT clearly separated the purely logical aspects of the application of 
the axiomatic method from the "genetic" origin of the axioms themselves: the 

lol [34] In jeder Wissenschaft, in der man die Zahlen anwenden will, mug sich so 
erst die Erkenntnis Bahn brechen, dab die Dinge, mit denen man es zu thun hat, 
gleichartig endlich und im Sinne von Ax. 17 durcheinander megbar sind. So ist z.B. der 
Ausgangpunkt der Astronomie die Erkenntnis, dab man durch Aneinanderfiigen irdischer 
Entfernuugen die der K6rper im Weltraume erreichen und tibertreffen kann, d.h. 
dab man die himmelischen Entfernungen durch die irdischen messen kann. 
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latter is firmly grounded on experience. Thus, HILBERT asserted, it is not the 
case that the system of numbers is given to us through the network of concepts 
(Fachwerk yon Begriffen) involved in the eighteen axioms. On the contrary, it is 
our direct intuition of the concept of natural number  and of its successive 
extensions, well-known to us by means of the genetic method, that has guided 
our construction of the axioms. He concluded this brief discussion by claiming 
that: 

The aim of every science is, first of all, to set up a network of concepts based on 
axioms to whose very conception we are naturally led by intuition and experience. 
Ideally, all the phenomena of the given domain will indeed appear as part of the 
network and all the theorems that can be derived from the axioms will find their 
expression there. 1~ 

What  this means for the axiomatization of geometry, then, is that its starting 
point must  be given by the intuitive facts of that discipline, 1~ and that the 
latter must be in agreement with the network of concepts created by means of 
the axiomatic system. The concepts involved in the network itself, HILBERT 
nevertheless stressed, are totally detached from experience and intuition. ~~ This 
procedure is rather obvious in the case of arithmetic, and to a certain extent the 
genetic method has attained similar results for this discipline. In the case of 
geometry, although the need to apply the process systematically was recognized 
much later, the axiomatic presentation has been the traditional one. And if 
setting up a full axiomatic system has proven to be a truly difficult task for 

10~ [36] Uns war das Zahlensystem schliel31ich nichts, als ein Fachwerk yon Begrif- 
fen, das durch 18 Axiome definiert war. Bei der Aufstellung dieser leitete uns allerdings 
die Anschauung; die wir von dem Begriff der Anzahl und seiner genetischen Ausdehnung 
haben.. .  So ist in jeder Wissenschaft die Aufgabe, in den Axiomen zun/ichts ein Fach- 
werk yon Begriffen zu errichten, bei dessen Aufsetllung wir uns natiirlich durch die 
Anschauung und Erfahrung leiten lassen; das Ideal ist dann, dab in diesem Fachwerk alle 
Erscheinungen des betr. Gebietes Platz finden, und dab jeder aus den Axiomen folgende 
Satz dabei Verwertung findet. 

[37] Wollen wir nun ftir die Geometrie ein Axiomensystem aufstellen, so heil3t das, 
daB wir uns den AnlaB dazu durch die anschaulichen Thatsachen der Geometrie geben 
lassen~ und diesen das aufzurichende Fachwerk entsprechen lassen; die Begriffe die wir so 
erhalten, sind aber als g//nzlich losgel6st von jeder Erfahrung und Anschauung zu be- 
trachten. Bei der Arithmetik ist diese Forderung verhiiltnism/iBig naheliegend, sie wird in 
gewissem Umfange auch schon bei der genetischen Methode angestrebt. Bei der Geomet- 
rie jedoch wurde die Notwedigkeit dieses Vorgehens viel sp/iter erkannt; dann aber 
wurde eine axiomatische Behandlung eher versucht, als ein Arithmetik, wo noch immer 
die genetische Betrachtung herrschte. Doch ist die Aufstellung eines vollstSndigen Ax- 
iomensystemes ziemlich schwierig, noch viel schwerer wird sie in der Mechanik, Physik 
etc. sein, wo das Material an Erscheinungen noch viel gr6Ber ist. 

103 [37] . . .  den AnlaB dazu dutch die anschaulischen Thatsachen der Geometries 
geben lassen . . . ;  

lo4 [37] . . .  die Begriffe, die wir so erhalten, sind aber als giinzlich losgel6st yon 
jeder Erfahrung und Anschauung zu betrachten. 
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geometry, then, HILBERT concluded, it will be much more difficult in the 
case of mechanics or physics, where the range of observed phenomena is even 
wider. 1~ 

HILBERT'S axioms for geometry in 1905 were based on the system of the 
Grundlagen, including all the corrections and additions introduced to it since 
1900. Here too he started by choosing three basic kinds of undefined elements: 
points, lines and planes. This choice, he said, is somewhat "arbitrary" and it is 
dictated by consideration of simplicity. But the arbitrariness to which HILBERT 
referred here has little to do with the arbitrary choice of axioms sometimes 
associated with certain twentieth-century formalistic conceptions of mathemat- 
ics; it is not an absolute arbitrariness constrained only by the requirement of 
consistency. On the contrary, it is limited by the need to remain close to the 
"intuitive facts of geometry." Thus, HILBERT said, instead of the three chosen, 
basic kinds of elements, one could likewise start with [no... not with chairs, 
tables, and beer-mugs, but rather with] circles and spheres, and formulate the 
adequate axioms that are still in agreement with the usual, intuitive ge- 
ometry, lo6 

Although in his opinion, it is not for logic or mathematics to explain the 
reasons for this state of affairs, HILBERT plainly declared Euclidean geometry 
- -  as defined by his systems of axioms - -  to be the one and only geometry that 
fits our spatial experience. 1~ But if that is the case, what is then the status of 
the non-Euclidean or non-Archimedean geometries? Is it proper at all to use the 
term "geometry" in relation to them? HILBERT thought it unnecessary to break 
with accepted usage and restrict the meaning of the term to cover only the first 
type. It has been unproblematic, he argued, to extend the meaning of the term 
"number" to include also the complex numbers, although the latter certainly do 
not satisfy all the axioms of arithmetic. Moreover, it would be untenable from 
the logical point of view to apply the restriction: although it is not highly 
probable, it may nevertheless be the case that some changes will still be 
introduced to the system of axioms that describes the intuitive geometry. In 
fact, HILBERT knew very well that this "improbable" situation had repeatedly 
arisen in relation to the original system he had put forward in 1900 in the 
Grundlagen. To conclude, he once more compared the situations in geometry 
and in physics: in the theory of electricity, for instance, new theories 

lo5 [37] . . .  das Material an Erscheinungen noch viel grgBer ist. 
lo6 [39] Dal3 wir gerade diese zu Elementardingen des begrifflichen Fachwerkes 

nechmen, ist willkfirlich und geschieht nur wegen ihrer augenscheinlichen Einfachkeit; im 
Princip k/Snnte man die ersten Dinge auch Kreise und Kugeln nennen, und die Festset- 
zungen fiber sie so treffen, dag sie diesen Dingen der anschaulichen Geometrie en- 
tsprechen. 

lo~ [67] Die Frage, wieso man in der Natur nut gerade die durch alle diese Axiome 
festgelegte Euklidische Geometrie braucht, bzw. warum unsere Erfahrung gerade in 
dieses Axiomsystem sich einfiigt, gehiSrt nicht in unsere mathematisch-logichen Unter- 
suchungen. 
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are continually formulated that transform many of the basic facts of the disci- 
pline, but no one thinks that the name of the discipline needs to be changed 
accordingly. 

HILBERT also referred explicitly to the status of those theories that, like 
non-Euclidean and non-Archimedean geometries, are created arbitrarily through 
the purely logical procedure of setting down a system of independent and 
consistent axioms. These theories, he said, can be applied to any objects that 
satisfy the axioms. For  instance, non-Euclidean geometries are useful to describe 
the paths of light in the atmosphere under the influence of varying densities and 
diffraction coefficients. If we assume that the speed of light is proportional to 
the vertical distance from a horizontal plane, then one obtains light-paths that 
are circles orthogonal to the planes, and light-times equal to the non-Euclidean 
distance from them. 1~ Thus, the most advantageous way to study the relations 
prevailing in this situation is to apply the conceptual schemes provided by 
non-Euclidean geometry. ~~ 

A further point of interest in HILBERT'S discussion of the axioms of geometry 
in 1905 concerns his remarks about what he called the philosophical implica- 
tions of the use of the axiomatic method. These implications only reinforced 
HILBERT'S empiricist view of geometry. Geometry, HILBERT said, arises from 
reality through intuition and observation, but it works with idealizations: for 
instance, it considers very small bodies as points. The axioms in the first three 
groups of his system are meant to express idealizations of a series of facts that 
are easily recognizable as independent from one other; the assertion that a straight 
line is determined by two points, for instance, never gave rise to the question 
whether or not it follows from other, basic axioms of geometry. But establishing 
the status of the assertion that the sum of the angles in a triangle equals two 
right ones requires a more elaborate axiomatic analysis. This analysis shows 
that such an assertion is a separate piece of knowledge which - -  we now know 
for certain - -  cannot be deduced from earlier facts (or from their idealizations, 
as embodied in the three first groups of axioms). This knowledge can only be 
gathered from new, independent empirical observation. This was GAuss's aim, 

108 As in many other places in his lectures, HILBERT gave no direct reference to the 
specific physical theory he had in mind here, and in this particular case I have not been 
able to find it. 

lo9 [69] Ich schlieBe bier noch die Bemerkung an, dab man jedes solches Begriff- 
schema, das wit so rein logisch aus irgend welchen Axiomen aufbauen, anwenden kann 
auf beliebige gegenst/indliche Dinge, wenn sie nur diesen Axiomen geniigen . . .  Ein 
solches Beispiel fiir die Anwendung des Begriffschema der nichteuklidischen Geometrie 
bildet das System der Lichtwege in unserer Atmosph~ire unter dem EinfluB deren vari- 
abler Dichte und Brechungsexponenten; machen wir [70] n/imlich die einfachste m6g- 
liche Annahme, dab die Lichtgeschwindigkeit proportional ist dem vertikalen Abstande 
y yon einer Horizontalebene, so ergeben sich als Lichtwege gerade die Orthogonalkreise 
jener Ebene, als Lichtzeit gerade die nichteuklidiche Entfernung auf ihnen. Um die hier 
obwaltenden Verh~iltnisse also genauer zu untersuchen, k6nnen wir gerade mit Vorteil 
das Begriffschema der nichteuklidischen Geometrie anwenden. 
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according to HILBERT, when he confirmed the theorem for the first time, by 
measuring the angles of the large triangle formed by the three mountain 
peaks.X 10 The network of concepts that constitute geometry, HILBERT concluded, 
has been proved consistent, and therefore it exists mathematically, independent- 
ly of any observation. Whether or not it corresponds to reality is a question 
that can be decided only by observation, and our analysis of the independence 
of the axioms allows to determine very precisely the minimal set of observations 
that need to be made in order to do so. 111 Later on, he added, the same kind 
of perspective must be adopted concerning physical theories, though its applica- 
tion will turn out to be much more difficult there than in geometry. 

In concluding his treatment of geometry, and before his first specific treat- 
ment of a physical theory, HILBERT summarized the role of the axiomatic 
method in a passage which encapsulates his view of science and of mathematics 
as a living organism, whose development involves both an expansion in scope 
and an ongoing clarification of the logical structure of its existing parts. 112 The 
axiomatic treatment of a discipline concerns the latter; it is an important part of 
this growth but - -  HILBERT emphasized - -  only one part of it. The passage, 
which strongly echoes an idea of VOLKMANN'S already quoted above, reads as 
follows: 

The edifice of science is not raised like a dwelling, in which the foundations are first 
firmly laid and only then one proceeds to construct and to enlarge the rooms. 
Science prefers to secure as soon as possible comfortable spaces to wander around 
and only subsequently, when signs appear here and there that the loose foundations 
are not able to sustain the expansion of the rooms, it sets about supporting and 
fortifying them. This is not a weakness, but rather the right and healthy path of 
development.113 

110 [98] In diesem Sinne und zu diesem Zwecke hat zuerst GAUB durch Messung an 
grogen Dreiecken den Satz best/itigt. 

111 [98] Das Begriffsfachwerk der Geometrie selbst ist nach Erweisung seiner Wider- 
spruchslosigkeit nattirlich auch unabh~ingig yon jeder Beobachtung matematisch existent; 
der Nachweis seiner Obereinstimung mit der Wirklichkeit kann nur durch Beobachtun- 
gen geffihrt werden, und die kleinste notwendige solcher wird durch die UnabNingigkeits- 
untersuchungen gegeben. 

112 Elsewhere HILBERT called these two aspects of mathematics the "progressive" 
and "regressive" functions of mathematics, respectively (both terms not intended as value 
judgements, of course). See HILBERT 1992, 17--18. 

113 [102] Das GeNiude der Wissenschaft wird nicht aufgerichtet wie ein Wohnhaus, 
wo zuerst die Grundmauern lest fundiert werden und man dann erst zum Auf- und 
Ausbau der Wohnriiume schreitet; die Wissenschaft zieht es vor, sich m6glichst schnell 
wohnliche R~iume zu verschaffen, in denen sie schalten kann, und erst nachtr~iglich, wenn 
es sich zeigt, dass bier und da die locker gefiigten Fundamente den Ausbau der Wohn- 
r~iume nicht zu tragen verm6gen, geht sie daran, dieselben zu stiitzen und zu befestigen. 
Das ist kein Mangel, sondern die richtige und gesunde Entwicklung. 

Other places where HILBERT USeS the building metaphor are HILBERT 1897, 67; 
HILBERT 1917, 148. 



Hilbert and the Axiomatization of Physics 131 

Mechanics 

Mechanics is the first physical discipline whose axiomatization HILBERT 
discussed in 1905. The axiomatization of physics and of natural science, said 
HILBERT in opening this section of his lectures, is a task whose realization is 
still very far away. 114 Yet one particular issue for which the axiomatic 
treatment has been almost completely attained (and only very recently, for 
that matter) is the "law of the parallelogram" or, what amounts to the same 
thing, the laws of vector-addition. In the lectures, HILBERT based his own 
axiomatic presentation of this topic on works by GASTON DARBOUX (1842--1917), 
by GEOR6 HAMEL (1877--1954), and by one of his own students, RUDOLF 
SCHIMMACK.115 

HILBERT'S axiomatic treatment starts by defining a force as a three-compon- 
ent vector. HILBERT made no explicit additional assumptions here about  the 
nature of the vectors themselves, but it is implicitly clear that he had in mind 
the collection of all ordered triples of real numbers. Thus, like in his axiomatiz- 
ation of geometry, HILBERT was not referring to an arbitrary collection of 
abstract objects, but to a very concrete mathematical  entity; in this case, one 
that had been increasingly adopted over the past decades in the treatment of 
physical theories. 116 In fact, in SCHIMMACK'S article of 1903 - -  based on his 
doctoral dissertation - -  a vector was explictly defined as a directed, real 
segment of line in the Euclidean space. Moreover, SCHIMMACK defined two 
vectors as equal when their lengths as well as their directions coincide (SCHIM- 
MACK 1903, 318). 

The axioms presented here were thus meant to define the addition of two 
such given vectors. This addition - -  said HILBERT - -  is usually defined as the 
vector whose components are the sums of the components of the given vectors. 
At first sight, this very formulation could be taken as the single axiom needed 
to define the sum. But the task of axiomatic analysis is precisely to separate this 
single idea into a system of several, mutually independent, simpler notions that 
express the basic intuitions involved in it. Otherwise, it would be like taking the 
linearity of the equation representing the straight line as the starting point of 

114 [121] Von einem durchgeffihrten axiomatischen Behandlung der Physik und der 
Naturwissenschaften ist man noch weit entfernt; nur auf einzelnen Teilgebieten finden 
sich Ans~itze dazu, die nur in ganz wenige F~tllen durchgefiihrt sind. (Die Durchfiihrung 
ist ein ganzes grosses Arbeitsprogramm, Vgl. Dissertation von SHIMMACK sowie 
SCHUR). 

a15 The works referred to by HILBERT are  DARBOUX 1875, HAMEL 1905, SCHIM- 

MACK 1903. An additional related work, also mentioned by HILBERT in the manuscript, 
iS SCHUR 1903. 

ai6 The contributions of OLIVER HEAVlSlDE (1850-1925), JOSIAH WILLARD GIBBS 
(1839-1903), and their successors, to the development of the concept of a vector space, 
in close connection with physical theories from 1890 on, are described in CROWE 1967, 
150 ft. 
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geometry .  117 This  result,  as HILBERT had  shown in his previous  discuss ion on  
geometry ,  cou ld  be der ived  using all his ax ioms  of  geometry .  

H a v i n g  said that ,  HILBERT fo rmula t ed  six ax ioms  to define the add i t i on  of  
vectors:  the first three assert  the existence of  a well-defined sum for any  two 
given vectors  (wi thout  s ta t ing wha t  its value  is), and  the c o m m u t a t i v i t y  and  
assoc ia t iv i ty  of  this opera t ion .  The  four th  ax iom connects  the resul tan t  vec tor  
wi th  the  d i rec t ions  of  the s u m m e d  vectors  as follows: 

4. Let aA denote the vector (aAx, aA r, aA~), having the same direction as A. Then 
every real number a defines the sum: 

A + aA = (1 + a) A. 

i.e., the addition of two vectors having the same direction is defined as the algebraic 
addition of the extensions along the straight line on which both vectors lie. 118 

The  fifth one connects  add i t i on  with  ro ta t ion :  

5. If D denotes a rotation of space around the common origin of two forces A and 
B, then the rotation of the sum of the vectors equals the sum of the two rotated 
vectors: 

D(A + B) = DA + DB 

i.e. the relative position of sum and components is invariant with respect to rota- 
tion. 119 

The  sixth ax iom concerns  cont inui ty :  

6. Addition is a continuous operation, i.e., given a sufficiently small domain 
G around the endpoint of A + B one can always find domains G1 and G2, around 
the endpoints of A and B respectively, such that the endpoint of the sum of any two 
vectors belonging to each of these domains will always fall inside G. 12~ 

These  are  all  s imple ax ioms  - -  con t inued  HILBERT, wi thou t  having  real ly  
expla ined  wha t  a "s imple"  ax iom is - -  and  if we th ink  of the vectors  as 
represent ing  forces, they also seem ra the r  plausible.  T h e  ax ioms  thus  c o r r e spond  

117 [123] . . .  das andere w/ire genau dasselbe, wie wenn man in der Geometrie die 
Linearit/it der Geraden als einziges Axiom an die Spitze stellen wollte (vgl. S. 118). 

11s [123] Addition zweier Vektoren derselben Richtung geschieht durch algebraische 
Addition der Strecken auf der gemeinsame Geraden. 

119 [124] Nimmt man eine Drehung D des Zahlenraumes um den gemeinsamen 
Anfangspunkt vor, so entsteht aus A + B die Summe der aus A und aus B einzeln durch 
D entstehenden Vektoren: 

D(A + B) = DA + DB. 

d.h. die relative Lage yon Summe und Komponenten ist gegeniiber allen Drehungen 
invariant. 

12o [124] Zu einem geniigend kleiner Gebiete G um den Endpunkt yon A + B kann 
man stets um die Endpunkte von A und B solche Gebiete G1 and G2 abgrenzen, dab der 
Endpunkt der Summe jedes im G1 u. G2 endigenden Vectorpaares nach G f/illt. 



Hilbert and the Axiomatization of Physics 133 

to the basic known facts of experience, i.e., that the action of two forces on 
a point may always be replaced by a single one; that the order and the way in 
which they are added do not change the result; that two forces having one and 
the same direction can be replaced by a single force having the same direction; 
and, finally, that the relative position of the components and the resultant is 
independent o f  rotations of the coordinates. Finally, the demand for continuity 
in this system is similar to that of geometry, and is formulated as it is done in 
geometry. 12 i 

That  these six axioms are in fact necessary to define the law of the parallelo- 
gram was first claimed by DARBOUX, and later proven by HAMEL. The main 
difficulties for this proof  arose from the sixth axiom. In his 1903 article, 
SCmMMACK proved the independence of the six axioms (in a somewhat different 
formulation), using the usual technique of models that satisfy all but one of the 
axioms. H~LBERT also mentioned some possible modifications of this system. 
Thus, Da~Bovx himself showed that the continuity axiom may be abandoned, 
and in its place, it may be postulated that the resultant lies on the same 
plane as, and within the internal angle between, the two added vectors. HAMEL, 
on the other hand, following a conjecture of FRIEDRICn Scnu~, proved 
that the fifth axiom is superfluous if we assume that the locations of the 
endpoints of the resultants, seen as functions of the two added vectors, 
have a continuous derivative. In fact - -  concluded HILBERT - -  if we assume 
that all functions appearing in the natural sciences have at least one continuous 
derivative, and take this assumption as an even more basic axiom, then 
vector addition is defined by reference to only the four first axioms in the 
system.122 

The sixth axiom, the axiom of continuity, plays a very central role in 
HILBERT'S overall conception of the axiomatization of natural science - -  ge- 
ometry, of course, included. It  is part  of the essence of things - -  said HILBERT in 
his lecture - -  that the axiom of continuity should appear  in every geometrical 
or physical system. Therefore  it can be formulated not just with reference to 
a specific domain, as was the case here for vector addition, but in a much more 
general way. A very similar opinion had been advanced by HERTZ, as we saw, 
who described continuity as "an experience of the most general kind", and who 
saw it as a very basic assumption of all physical science. BO~TZMANN, in his 
1897 textbook, had also pointed out the continuity of motion as the first basic 
assumption of mechanics, which in turn should provide the basis for all of 

121 [125]: . . .  endlich kommt noch die Stetigkeitsforderung 6) hinzu (neben der 
schon durch annahmendes reellen Zahlensystems hinein gebrachten Stetigkeit), die noch 
ein besonderes Wort verdient. Das Axiom ist ganz analog formuliert und spielt dieselbe 
Rolle, wie das dritte Axiom in der zweiten Begrtindungsart der Geometrie . . . .  das yon 
der 'Abgeschlossenheit des Systemes der Bewegungen.' 

122 [127] Nimmt man yon vornherein als Grundaxiom aller Naturwissenschaft an, 
dab alle auftretenden Funktionen einmal stetig differenzierbar sind, so kommt man hier 
mit den ersten 4 Axiomen aus. 
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physical science (BOLTZMANN 1974, 228-229). HILBERT advanced in his lectures 
the following general formulation of the principle of continuity: 

If a sufficiently small degree of accuracy is prescribed in advance as our condition for 
the fulfillment of a certain statement, then an adequate domain may be determined, 
within which one can freely choose the arguments [of the function defining the 
statement], without however deviating from the statement, more than allowed by the 
prescribed degree. 123 

Experiment - -  continued HmBERT - -  compels us to place this axiom on top 
of every natural  science, since it allows us to assert the validity of our assump- 
tions and claims. 124 In every special case, this general axiom must be given the 
appropriate  version, as H~LBZRT had shown for geometry in an earlier part  of 
the lectures and here for vector addition. 

As we have already seen, elucidating the role of continuity in foundational 
issues had been among the main motivations behind HILBERT'S interest in 
geometry. In physics, HILBERT also assigned a fundamental role to continuity, 
but one has to bear in mind the difference between the principle of continuity 
formulated above for physical theories, on the one hand, and the equivalent of 
the principle of continuity in H~LBERT'S geometry, i.e., the Archimedean axiom, 
on the other hand HII~B~RT himself was not very careful in drawing this 
distinction in his lectures. As a point of interest, he suggested that from 
a strictly mathematical  point of view, it would be possible to conceive interest- 
ing systems of physical axioms that do without continuity, that is, axioms that 
define a kind of "non-Archimedean physics." He did not consider such systems 
here, however, since the task was to see how the ideas and methods of axio- 
matics can be fruitfully applied to physics)  25 Nevertheless, this is an extremely 
important  topic in HILBERT'S axiomatic treatment of physical theories. When 
speaking of applying axiomatic ideas and methods to these theories, H~L~ERT 
meant  in this case existing physical theories. But the possibility suggested 
here, of examining models of theories that preserve the basic logical 
structure of classical physics, except for a particular feature, opens the way 
to the introduction and systematic analysis of alternative theories, close 

123 [125] Schreibt man fiir die Erffillung der Behauptung einen gewissen geniigend 
kleinen Genaugikeitsgrad vor, so lggt sich ein Bereich angeben, innerhalb dessen man die 
Voraussetzungen frei w~ihlen kann, ohne dab die Abweichung der Behauptung den 
vorgeschriebenen Grad fiberschreitet. 

124 [125] Das Experiment zwingt uns geradezu dazu, ein solches Axiom an die 
Spitze aller Wissenschaft zu setzen, denn wir k6nnen bei ihm stets nur das ~4~ 
(Zu)treffen yon Voraussetzung und Behauptung mit einer gewissen beschr~inkten 
Genauigkeit feststellen. 

125 [126] Rein mathematisch werden natiirlich auch physikalische Axiomensysteme, 
die auf diese Stetigkeit Verzicht leisten, also eine 'nicht-Archimedische Physik' in er- 
weiterten Sinne definieren, yon hohen Interesse sein k6nnen; wir werden jedoch zun/ichst 
noch yon ihrer Betrachtung absehen k6nnen, da es sich vorerst iiberhaupt nur darum 
handelt, die fruchtbaren Ideen und Methoden in die Physik einzufOhren. 
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enough to the existing ones in relevant respects. HILBERT'S future works on 
physics, and in particular his work on general relativity, would rely on the 
actualization of this possibility. 

An additional point that should be stressed in relation to HILBERT'S treat- 
ment of vector addition has to do with his disciplinary conceptions. The idea of 
a vector space, and the operations with vectors as part  of it, has been con- 
sidered an integral part  of algebra at least since the 1920s. 126 This was not the 
case for HILBERT, who did not bother here to make any connection between his 
axioms for vector addition and, say, the already well-known axiomatic defini- 
tion of an abstract group. For  HILBERT, as for the other mathematicians he cites 
in this section, this topic was part  of physics rather than of algebra. 127 In fact, 
the articles by HAMEL and by SCHUR were published in the Zeitschrift fiir 
Mathematik und Physik - a journal that bore the explicit sub-title: "Organ fiir 
angewandte Mathematik." This journal had been founded by OSCAR XAVIER 
SCHL6MLrCH (1823--1901) and by the turn of the century its editor was CARL 
RUN~E (1856--1927), a leading G6ttingen applied mathematician. 

After the addition of vectors, H~LBERT went on to discuss a second domain 
related to mechanics: statics. Specifically, he considered the axioms that describe 
the equilibrium conditions of a rigid body. The main concept here is that of 
a force, which can be described as a vector with an application point. The state 
of equilibrium is defined by the following axioms: 

I. Forces with a common application point are equivalent to their sum. 
II. Given two forces K, L with different application points, P, Q, if they have the 
same direction, and the latter coincides with the straight line connecting P and (2, 
then these forces are equivalent. 
III. A rigid body is in a state of equilibrium, if all the forces applied to it taken 
together are equivalent to 0.128 

From these axioms, HILBERT asserted, the known formulae of equilibrium of 
forces lying on the same plane (e.g., for the case of a lever and an inclined 
plane) can be deduced. As in the case of vector addition, HmBERT'S main aim in 
formulating the axioms was to uncover the basic, empirical facts that underlie 
our perception of the phenomenon of equilibrium. 

In the following lectures HILBERT analyzed in more detail the principles of 
mechanics and, in particular, the laws of motion. In order to study motion, one 

126 See, for instance, DORIER 1995, MOORE 1995. 
127 This point, which helps understanding HILBERT's conception of algebra, is dis- 

cussed in detail in CORRY 1996, w 3.4. See also CORRY 1996a. 
128 [127] I. Krgfte mit denselben Angriffspunkten sind ihrer Summe Om obigen 

Sinne) aequivalent. 
II. 2 Kr/ifte K, L mit verschiedenen Angriffspunkten P, Q und dem gleichen (auch 
gleichgerichteten) Vektor, deren Richtung in die Verbindung P, Q f/illt, heigen gleichfalls 
aequivalent . . . .  
III. Ein starrer K6rper befindet sich im Gleichgewicht, wenn die an ihn angreifenden 
Kfiifte zusammengenommen der Null aequivalent sind. 



136 L. CORRY 

starts by assuming space and adds time to it. Since geometry provides the 
axiomatic study of space, the axiomatic study of mot ion will call for a similar 
analysis of time. 

According to HILBERT, two basic properties define time: (1) its uniform 
passage and (2) its unidimensionali ty) 29 Following his usual methodology, 
HILBE~T asked: Are these two independent facts given by intuition, 13~ or are 
they derivable the one from the other? Since this question had very seldom been 
pursued, he said, one could only give a brief sketch of earlier answers to it. The 
unidimensionality of time is manifest in the fact, that, whereas to determine 
a point in space one needs three parameters,  for time one needs only the single 
parameter  t. This parameter  t could obviously be transformed, by changing the 
marks  that appear  on our c locks)  3~ This is perhaps impractical, HILBERT said, 
but it certainly makes no logical difference. One can even take a discontinuous 
function for t, provided it is invertible and one- to-on@ 3z though in general one 
does not want to deviate from the continuity principle, desirable for all the 
natural sciences. 

Whereas time and space are alike in that, for both, arbitrarily large values of 
the parameters  are materially inaccessible, a further basic difference between 
them is that time can be experimentally investigated in only one direction, 
namely, that of its increase. ~33 While this limitation is closely connected to the 
unidimensionality of time, T M  the issue of the uniform passage of time is an 
experimental fact, which has to be deduced, according to HILBERT, from mech- 
anics alone. 135 The ensuing discussion of the uniform passage of time is some- 
what obscure and, as usual, HILBERT gave no direct references for his sources. 
In the next paragraph,  for the reader's information, I will render it as suc- 
cinctly and faithfully as possible without claiming to explain HILBERT'S meaning 
fully. 

The obscurity of this discussion is connected to HmBERT'S use of an argu- 
ment according to which, if time flowed in a non-uniform manner  then an 
essential difference between organic and inorganic matter  would be reflected in 
the laws mechanics, which is not actually the case. HILBERT suggested that the 

129 [129] . .  ihr gleichm~iBiger Verlauf und ihre Eindimensionalit~it. 
130 . . .  anschauliche unabNingige Tatsachen. 
131 [129] Es ist ohne weiteres klar, dab dieser Parameter t durch eine beliebige 

Funktion von sich ersetzt werden kann, das wiirde etwa nur auf eine andere Benennung 
der Ziffern der Uhr oder einen unregelm~igiger gang des Zeiger hinauskommen. 

132 One is reminded here of a similar explanation, though in a more general context, 
found in HILBERT'S letter to FREGE, on December 29, 1899. See GABRIEL et al. 1980, 41. 

133 [129] Der Ein wesentlicher Unterschied yon Zeit und Raum ist nut der, daI3 wir 
in der Zeit nut in einem Sinne, dem des wachsenden Parameters experimentieren k6nnen, 
w~hrend Raum und Zeit darin iibereinstimmen, dab uns beliebig groBe Parameterwerte 
unzugiinglich sind. 

134 Here HILBERT adds with his own handwriting: [130] (Astronomie! Wie wichtig 
w~ire Beobachtungen in ferner Vergangenheit u. Zukunft!) 

135 [130] . . .  eine experimentelle nur aus der Mechanik zu entnehmende Tatsache. 
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essence of the uniform passage of time may be explained by focusing on the 
dZx 

differential expression m. ~ f .  This product characterizes a specific physical 

situation, HIL~ERT said, only when it vanishes, namely, in the case of inertial 
motion. From a logical point of view, however, there is no apparent reason why 
the same situation might not be represented in terms of a more complicated 
expression, e.g., an expression of the form 

dZx dx 
ml ~ + m 2  d~" 

The magnitudes ma and m2 may depend not only on time, but also on the kind 
of matter involved 136 - -  e.g., on whether organic or inorganic matter is in- 
volved. By means of a suitable change of variables, t = t(z), this latter expression 

d2x 
could in turn be transformed into p. dz ~ ,  which would also depend on the kind 

of matter involved. What this means, HILBERT explained, is that each kind of 
substance would yield, under a suitable change of variables, different values of 
the "time", values that nevertheless still satisfy the standard equations of mech- 
anics. Now, HILBERT continued, one could use the most common kind of matter 
in order to measure time; 137 then, when small variations of organic matter 
occurred along large changes in inorganic matter, clearly distinguishable non- 
uniformities in the passage of time would arise [?!].138 But it is an intuitive 

d2x 
(anschauliche) fact, indeed a mechanical axiom, that the expression m.~/~- al- 

ways appears in the equations with one and the same parameter t, independently 
of the kind of substance involved. Thus, HILBERT concluded his argument, it is 
this fact which determines the uniform character of the passage of time. 

Following this analysis of the basic ideas behind the concept of time, 
HILBERT repeated the kind of reasoning he had used in an earlier lecture 
concerning the role of continuity in physics. He suggested the possibility of 
elaborating a non-Galilean mechanics, i.e., a mechanics in which the measure- 
ment of time would depend on the matter involved, in contrast to the charac- 
terization presented earlier in his lecture. This mechanics would, in most 
respects, be in accordance with the usual one, and thus one would be able to 
recognize which parts of mechanics depend essentially on the peculiar proper- 
ties of time, and which parts do not. It is only in this way that the essence of 
the uniform passage of time can be elucidated, he thought, and one may thus at 
last understand the exact scope of the connection between this property and the 
other axioms of mechanics. 

136 [130] . . .  die m~, m2 yon der Zeit, vor allem aber von dem Stoffe abhgngig sein 
k6nnen. 

13v [130]. . .  der h/iufigste Stoff etwa kann dann zu Zeitmessungen verwandt werden. 
138 [-131] . . .  ffir uns leicht groBe scheinbare Unstetigkeiten der Zeit auftreten. 
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So much for the properties of space and time. HILBERT went on to discuss 
the properties of motion, while concentrating on a single material point. This is 
clearly the simplest case and therefore it is very convenient for HILBERT'S 
axiomatic analysis. However, it must be stressed that HILBERT was thereby 
distancing himself from HERTZ'S presentation of mechanics, in which the dynam- 
ics of single points is not contemplated. One of the axioms of statics formulated 
earlier in the course stated that a point is in equilibrium when the forces acting 
on it are equivalent to the null force. From this axiom, HILBERT derived the 
Newtonian law of motion: 

d 2 x d 2 y d 2 z 
m. dt 2 - X ;  m. ~ - ~  Y; m. ~ = Z .  

NEWTON himself, said HILBERT, had attempted to formulate a system of axioms 
for his mechanics, but his system, was not very sharply elaborated, and several 
objections could be raised against it. A detailed criticism, said HILBERT, was 
advanced by MACH in his Mechanik) 39 

The above axiom of motion holds for a free particle. If there are constraints, 
e.g. that the point be on a plane f (x ,  y, z ) =  O, then one must introduce an 
additional axiom, namely, GAuss's principle of minimal constraint. GAuss's 
principle establishes that a particle in nature moves along the path that minim- 
izes the following magnitude: 

1 {(rex" - X) 2 + (my" - y)2 + (m z " ,  Z) 2} = Minim. 
m 

Here x", y", and z" denote the components of the acceleration of the particle, 
and X, Y, Z the components of the moving force. Clearly, although HILBERT did 
not say it in his manuscript, if the particle is free from constraints the above 
magnitude can actually become zero and we simply obtain the Newtonian law 
of motion. If there are constraints, however, the magnitude can still be mini- 
mized, thus yielding the motion of the particle, t4~ 

In his lectures, HILBERT explained in some detail how the Lagrangian equa- 
tions of motion can be derived from this principle. But he also stressed that the 
Lagrangian equations could themselves be taken as axioms and set on top of 
the whole of mechanics. In this case, the Newtonian and Galilean principles 
would no longer be considered as necessary assumptions of mechanics. Rather, 

139 A detailed account of the kind of criticism advanced by MACH, and before him 
by CARL NEUMANN and LUDWIG LANGE, appears in BARBOUR 1989, Chp. 12. 

140 For more detail on GAUSS'S principle see LANCZOS 1986, 106-110. Interestingly, 
LANCZOS points out that '"Gauss was much attached to this principle because it repres- 
ents a perfect physical analogy to the 'method of least squares' (discovered by him and 
independently by Legendre) in the adjustment of errors". As will be seen below, HILBERT 
also discussed this latter method in subsequent lectures, but did not explicitly make any 
connection between GAUSS's two contributions. 
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they would be logical consequences of a distinct principle. Although this is 
a convenient approach that is often adopted by physicists, HILBERT remarked, it 
has the same kinds of disadvantages as deriving the whole of geometry from the 
demand of linearity for the equations of the straight line: many results can be 
derived form it, but it does not indicate what the simplest assumptions underly- 
ing the discipline considered may be. 

All the discussion up to this point, said HILBERT, concerns the simplest and 
oldest systems of axioms of mechanics of point systems. Beside them there is 
a long list of other possible systems of axioms for mechanics. The first of these 
is connected to the principle of conservation of energy, which HILBERT asso- 
ciated with the law of the impossibility of a perpetuum mobile and formulated 
as follows: "If a system is at rest and no forces are applied, then the system will 
remain at r e s t .  ' '141 

Now the interesting question arises, HILBERT continued, how far we can 
develop the whole of mechanics by putting this law on top of it. One should 
follow a process similar to the one applied in earlier lectures: to take a certain 
result that can be logically derived from the axioms and try to find out if, and 
to what extent, it can simply replace the basic axioms. In this case, it turns out 
that the law of conservation alone, as formulated above, is sufficient, though 
not necessary, for the derivation of the conditions of equilibrium in mechan- 
ics. 142 In order to account for the necessary conditions as well, the following 
axiom must be added: "A mechanical system can only be in equilibrium if, in 
accordance with the axiom of the impossibility of a perpetuum mobile, it is at 
rest. ''t43 The basic idea of deriving all of mechanics from this law, said HILBERT, 
was first introduced by SIMON STEVlN, in his law of equilibrium for objects in 
a slanted plane, but it was not clear to STEVlN that what was actually involved 
was the reduction of the law to simpler axioms. The axiom was so absolutely 
obvious to STEVlN, claimed HILBERT, that he had thought that a proof of it 
could be found without starting from any simpler assumptions. 

From HILBERT'S principle of conservation of energy, one can also derive the 
virtual velocities of the system, by adding a new axiom, namely, the principle of 
D'ALEMB~RT. This is done by placing in the equilibrium conditions, instead of 
the components X,Y, Z of a given force-field acting on every mass point, the 
expressions X -  rex', Y -  my"; Z -  mz'. In other words, the principle estab- 
lishes that motion takes place in such a way that at every instant of time, 

141 [137] Ist ein System in Ruhe und die Kr/iftefunction konstant (wirken keine 
Krfifte), so bleibt es in Ruhe. 

142 [138] Es l~igt sich zeigen, dab unter allen den Bedingungen, die die Gleichgewichts- 
bedingungen liefern, wirklich Gleichgewicht eintritt. 

143 [138] Es folgt jedoch nicht, dab diese Bedingungen auch notwendig ffir das 
Gleichgewicht sind, dab nicht etwa auch unter andern Umst/inden ein mechanisches 
System im Gliechgewicht sein kann. Es muB also noch ein Axiom hinzugenommen 
werden, des Inhaltes etwa: Ein mechanisches System kann nur dann im Gleichgewicht 
sein, wenn es dem Axiom der Unm6glichkeit des Perpetuum mobile gem/iB in Ruhe ist. 
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equilibrium obtains between the force and the acceleration. In this case we 
obtain a very systematic and simple derivation of the Lagrange equations, and 
therefore of the whole of mechanics, from three axioms: the two connected with 
the principle of conservation of energy (as sufficient and necessary conditions) 
and D'ALEMBERa"S principle, added now. 

A third way to derive mechanics is based on the concept of impulse. Instead 
of seeing the force field K as a continuous function of t, we consider K as first 
null, or of a very small value; then, suddenly, as increasing considerably in 
a very short interval, from t to t + z, and finally decreasing again suddenly. If 
one considers this kind of process at the limit, namely, when v = 0, one then 
obtains an impulse, which does not directly influence the acceleration, like 
a force, but rather creates a sudden velocity-change. The impulse is a time- 
independent vector which however acts at a given point in time: at different 
points in time, different impulses may take place. The law that determines the 
action of an impulse is expressed by BERTRAND'S principle, which specifies 
certain conditions on the kinetic energy, thus directly yielding the velocity. The 
principle states that: 

The kinetic energy of a system set in motion as a consequence of an impulse must be 
maximal, as compared to the energies produced by all motions admissible under the 
principle of conservation of energy. 144 

The law of conservation is invoked here in order to establish that the total 
energy of the system is the same before and after the action of the impulse. 

BERTRAND'S principle, like the others, could also be deduced from the elabor- 
ated body of mechanics by applying a limiting process. To illustrate this idea, 
HILBERT resorted to an analogy with optics: the impulse corresponds to the 
discontinuous change of the refraction coefficients affecting the velocity of light 
when it passes through the surface of contact between two media. But, again, as 
with the other alternative principles of mechanics, we could also begin with the 
concept of impulse as the basic one, in order to derive the whole of mechanics 
from it. This alternative assumes the possibility of constructing mechanics 
without having to start from the concept of force. Such a construction is based 
on considering a sequence of successive small impulses in arbitrarily small 
time-intervals, and in recovering, by a limiting process, the continuous action of 
a force. This process, however, necessitates the introduction of the continuity 
axiom discussed above. In this way, finally, the whole of mechanics is recon- 
structed using only two axioms: BERTRAND'S principle and the said axiom of 
continuity. In fact, this assertion of HmBERT is somewhat misleading, since his 
very formulation of BERTRAND'S principle presupposes the acceptance of the law 
of conservation of energy. In any case, HILB~RT believed that also in this case, 
a completely analogous process could be found in the construction of geometric 

144 [141] Nach einem Impuls muB die kinetische Energie des Systems bei der 
(wirklich) eintretenden Bewegung ein Maximum sein gegeniiber allen mit dem Satze 
von der Erhaltung der Energie vertr/iglichen Bewegungen. 
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optics: first one considers the process of sudden change of optical density that 
takes place in the surface that separates two media; then, one goes in the 
opposite direction, and considers, by means of a limiting process, the passage of 
a light ray through a medium with continuously varying optical density, seeing 
it as a succession of infinitely many small, sudden changes of density. 

Another standard approach to the foundations of mechanics that H~LgERT 
discussed is the one based on the use of the Hamiltonian principle as the only 
axiom. Consider a force field K and a potential scalar function U such that 
K is the gradient of U. If T is the kinetic energy of the system, then HAMILTON'S 
principle requires that the motion of the system from a given starting point, at 
time tl and an endpoint, at time t2, takes place along the path that makes the 
integral 

t2 

v)dt 
t l  

an extremum among all possible paths between those two points. The Lagrange 
equations can be derived from this principle, and the principle is valid for 
continuous as well as for discrete masses. The principle is also valid for the case 
of additional constraints, insofar as these constraints do not contain differential 
quotients that depend on the velocity or on the direction of motion (non- 
holonomic conditions). HILBERT added that GAuss's principle was valid for this 
exception. 

Finally, HILBERT discussed two additional approaches to the foundations of 
mechanics, introduced in the textbooks of HERTZ and BOLTZMANN respectively. 
HILBERT described them as both intended to simplify mechanics, but as doing so 
from opposed perspectives. Expressing once again his admiration for the perfect 
Euclidean structure of HERTZ'S construction of mechanics, 145 HILBERT explained 
that for HERTZ, all the effects of forces were to be explained by means of rigid 
connections between bodies; but he added that this explanation did not make 
clear whether one should take into account the atomistic structure of matter or 
not. HERTZ'S only axiom, as described by HILBERT, was the principle of the 
straightest path (Das Prinzip yon der 9eradesten Bahn), which is a special case of 
the Gaussian principle of minimal constraint, for the force-free case. According 
to HILBERT, HERTZ'S principle is obtained from GAuss's by substituting in the 
place of the parameter t, the arc lengths s of the curve. The curvature 

m + + j 

of the path is to be minimized, in each of its points, when compared with all the 
other possible paths in the same direction that satisfy the constraint. On this 

145 [146] Er liefert jedenfalls von dieser Grundlage aus in abstrakter und pr~icisestes 
Weise einen wunderbaren Aufbau der Mechanik, indem er ganz nach Euklidischen 
Ideale ein vollst/indiges system yon Axiomen und Definitionen aufstellt. 
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path, the body moves uniformly if one also assumes NEWTON'S first law. 146 In 
fact, this requirement had been pointed out by HERTZ himself in the introduc- 
tion to the Principles. As one of the advantages of his mathematical  formula- 
tion, HERTZ mentioned the fact that he does not need to assume, with GAuss, 
that nature intentionally keeps a certain quantity (the constraint) as small as 
possible. HERTZ felt uncomfortable with such assumptions. .47 

BOLTZMANN, contrary to HERTZ, intended to explain the constraints and the 
rigid connections through the effects of forces, and in particular, of central 
forces between any two mass points. BOLTZMANN'S presentation of mechanics, 
according to HILBERT, was less perfect and less fully elaborated than that of 
HERTZ. 

In discussing the principles of mechanics in 1905, HILBERT did not explicitly 
separate differential and integral principles. Nor  did he comment  on the funda- 
mental  differences between the two kinds. He did so, however, in the next 
winter semester, in a course devoted exclusively to mechanics (HILBERT 1905-6, 
w 3.1.2). 148 

HILBERT closed his discussion on the axiomatics of mechanics with a very 
interesting, though rather speculative, discussion involving Newtonian astron- 
omy and continuum mechanics, in which methodological and formal con- 
siderations led him to ponder  the possibility of unifying mechanics and 
electrodynamics. It  should be remarked that neither EINSTEIN'S nor POINCARI~'S 
1905 articles on the electrodynamics of moving bodies is mentioned in any of 
HILBERT'S 1905 lectures; it seems that HILBERT was not aware of these works at 
the time. 149 In fact, simultaneous with the course, an advanced seminar was 
co-directed by HILBERT in G6ttingen, dealing with the latest advances in the 
theory of the electron; al though many  of POINCAR~'S related works were among 
the main texts of the seminar, his paper  on the electrodynamics of moving 
bodies was not discussed there? s~ HILBERT'S brief remarks here, on the other 

146 [146] Die Bewegung eines jeden Systemes erfolgt gleichf6rmig in einer 'gerades- 
ten Bahn', d.h. fiir einen Punkt: die Kriimmung 

= (t, asU + t J )  + t, U J 
der Bahnkurve soll ein Minimum sein, in jedem Orte, verglichen mit allen andern den 
Zwangsbedingungen gehorchenden Bahnen derselben Richtung, und auf dieser Bahn 
bewegt sich der Punkt gleichfSrmig. 

t4v See HERTZ 1956, 31. This point is discussed in LOTZEN 1995, 35--36. 
14s The contents of this course is analyzed in some detail in BLUM 1994 (unpub- 

lished). 
149 This particular lecture of HILBERT is dated in the manuscript July 26, 1905, 

whereas POINCARs article was submitted for publication on July 23, 1905, and 
EINSTEIN'S paper three weeks later. POINCARt~ had published a short announcement on 
June 5, 1905, in the Comptes rendus of the Paris Academy of Sciences. 

1so This seminar and the sources studied in it have been discussed in detail in 
PYENSON 1979. 
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hand, strongly bring to mind the kind of argument, and even the notation, used 
by MINKOWSKI in his first public lectures on these topics in 1907 in G6ttin- 
gen. 151 Although MINKOWSKI'S lectures are beyond the scope of the present 
discussion, this particular detail of HILBERT'S course, as well as related remarks 
appearing in his later courses, makes it quite clear that MINKOWSKI'S early 
contributions to the study of special relativity must be properly discussed by 
referring to HILBERT'S program for the axiomatization of physical science. I will 
discuss this significant issue in a forthcoming article. 152 

Earlier presentations of mechanics, HILBERT said, considered the force - -  ex- 
pressed in terms of a vector field - -  as given, and then investigated its effect on 
motion. In BOLTZMANN'S and HERTZ'S presentations, for the first time, force and 
motion were considered not as separate concepts, but rather as closely intercon- 
nected and mutually interacting. Astronomy is the best domain in which to 
understand this interaction, since Newtonian gravitation is the only force acting 
on the system of celestial bodies. In this system, however, the force acting on 
a mass point depends not only on its own position but also on the positions 
and on the motions of the other points. Thus, the motions of the points and the 
acting forces can only be determined simultaneously. The potential energy in 
a Newtonian system composed of two points (a] b [ c) and (x [y [z) equals, as it is 

1 
well-known, - - - ,  the denominator of this fraction being the distance 

r a ,  b, c 
x ,  y ,  z 

between the two points. This is a symmetric function of the two points, and 
thus it conforms to NEWTON'S law of the equality of action and reaction. 
Starting from these general remarks, HILBERT went on to discuss some ideas 
that, he said, came fi'om an earlier work of BOLTZMANN and which might lead to 
interesting results. Which of BOLTZMANN'S works HILBERT was referring to here 
is not stated in the manuscript. However, from the ensuing discussion it is 
evident that HILBERT had in mind a short article by BOLTZMANN concerning the 
application of HERTZ'S perspective to continuum mechanics (BoLTZMANN 1900). 

HERTZ himself had already anticipated the possibility of extending his point 
of view from particles to continua. In 1900 R. REIFF published an article in this 
direction (REIFF 1900), and soon BOLTZMANN published a reply pointing out an 
error. BOLTZMANN indicated, however, that HERTZ'S point of view could be 
correctly extended to include continua, the possibility seemed to arise of con- 
structing a detailed account of the whole world of observable phenomena. 15a 
BOLTZMANN meant by this that one could conceivably follow an idea developed 
by Lord KELVIN, J. J. THOMSON and others, and to consider atoms as vortices 
or other similar stationary motion phenomena in incompressible fluids; this 
would offer a concrete representation of HERTZ'S concealed motions and could 

lsl Published, not in their actual order, as MINKOWSKI 1915 and MINKOWSKI 1908. 
~52 See CORRY 1997. 
153 BOLTZMANN 1900, 668: " . . .  ein detailliertes Bild der gesatnten Erscheinungswelt 

zu erhalten." 



144 L. CORRY 

provide the basis for explaining all natural phenomena. Such a perspective, 
however, would require the addition of many new hypotheses which would be 
no less artificial than the hypothesis of action at a distance between atoms, and 
therefore - -  at least given the current state of physical knowledge - -  little 
would be gained by pursuing it. 

BOLTZMANN'S article also contained a more positive suggestion, related to the 
study of the mechanics of continua in the spirit of HERTZ. Following a sugges- 
tion of ALEXANDER BRILL, BOLTZMANN proposed to modify the accepted Eulerian 
approach to this issue. The latter consisted in taking a fixed point in space and 
deriving the equations of motion of the fluid by studying the behavior of the 
latter at the given point. Instead of this BOLTZMANN suggested a Lagrangian 
approach, deducing the equations by looking at an element of the fluid as it 
moves through space. This approach seemed to BOLTZMANN to be the natural 
way to extend HERTZ'S point of view from particles to continua, and he was 
confident that it would lead to the equations of motion of an incompressible 
fluid as well as to those of a rigid body submerged in such a fluidJ s4 In 1903 
BOLTZMANN repeated these ideas in a seminar taught in Vienna, and one of his 
students decided to take the problem as the topic of his doctoral dissertation: 
this was PAUL EHRENFEST (1880 1933), whose dissertation was completed in 
1904. Starting from BOLTZMANN'S suggestion, EHRENFEST studied various aspects 
of the mechanics of continua using a Lagrangian approach. In fact, EHRENFEST 
in his dissertation used the terms Eulerian and Lagrangian with the meaning 
intended here, as BOLTZMANN in his 1900 article had not (EHRENFEST 1904, 4--5). 
The results obtained in the dissertation helped to clarify the relations between 
the differential and the integral variational principles for non-holonomic sys- 
tems, but they offered no real contribution to an understanding of all physical 
phenomena in terms of concealed motions and masses, as BOLTZMANN, and 
EHRENFEST may have hoped, lss 

EHRENFEST studied in G6ttingen between 1901 and 1903, and returned there 
in 1906 for one year, before moving with his mathematician wife TATYANA to St. 
Petersburg. We don't know the details of EHRENFEST'S attendance at HILBERT'S 
lectures during his first stay in G6ttingen. HILBERT taught courses on the 
mechanics of continua in the winter semester of 1902-03 and in the following 
summer semester of 1903, which EHRENFEST may well have attended. Nor do we 
know whether HILBERT knew anything about EHRENFEST'S dissertation when he 
taught his course in 1905. But be that as it may, at this point in his lectures, 
HILBERT connected his consideration of Newtonian astronomy to the equations 
of continuum mechanics, while referring to the dichotomy between the Lagran- 
gian and the Eulerian approach, and using precisely those terms. Interestingly 
enough, the idea that HILBERT pursued in response to BOLTZMANN'S article was 
not that the Lagrangain approach would be the natural one for studying 
mechanics of continua, but rather the opposite, namely, that a study of the 

154 For more details on this see KLEIN 1970, 64 66. 
155 For details on EHRENFEST's dissertation see KLEIN 1970, 66-74. 
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continua following the Eulerian approach, and assuming an atomistic world 
view, could lead to a unified explanation of all natural phenomena. 

Consider a free system subject only to central forces acting between its 
mass-points - -  and in particular only forces that satisfy NEWTON'S law, as 
described above. An axiomatic description of this system would include the 
usual axioms of mechanics, together with the Newtonian law as an additional 
one. We want to express this system, said HILBERT, as concisely as possible by 
means of differential equations. In the most general case we assume the exist- 
ence of a continuous mass distribution in space, p = p(x,  y, z, t). In special cases 
we have p = 0 within a well-delimited region; the case of astronomy, in which 
the planets are considered mass-points, can be derived from this special case by 
a process of passage to the limit. HILBERT explained what the Lagrangian 
approach to this problem would entail. That approach, he added, is the most 
appropriate one for discrete systems, but often it is also conveniently used in 
the mechanics of continua. Here, however, he would follow the Eulerian ap- 
proach to derive equations of the motion of a unit mass-particle in a con- 
tinuum. 

Let V denote the velocity of the particle at time t and at coordinates (x, y, z) 
in the continuum. V has three components u = u(x, y, z, t), v and w. The accel- 

dV  
eration vector for the unit particle is given by ~ - ,  which Hilbert wrote as 

follows: 156 

dV OV OV OV c~V ~V 1 
+ u  + (v.v). dt & Oy + w & & V • - 2 grad 

Since the only force acting on the system is Newtonian attraction, the potential 
energy at a point (x ly l z )  is given by 

fff P = - - dx' dy' dz' 
rx,,y,,z, 

x,y,z 

where p' is the mass density at the point (x'[y'[z ') .  The gradient of this 
potential equals the force acting on the particle, and therefore we obtain three 
equations of motion that can succinctly be expressed as follows: 

OV 1 
0~- + V x curlV - ~ grad(V.V) = gradP.  

One can add two additional equations to these three. First, the Poisson equa- 
tion, which HILBERT calls "potential equation of Laplace": 

AP = 4np, 

156 In the manuscript the formula in the leflmost side of the equation appears twice, 
having a " ~ "  sign in front of V x curlV. This is obviously a misprint, as a straightfor- 
ward calculation readily shows. 
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where A denotes what the Laplacian operator (currently written as V2). Second, 
the constancy of the mass in the system is established by means of the continu- 
ity equations:l 57 

0p 
- div (p" V ). & 

We have thus obtained five differential equations involving five functions 
(the components u, v, w of V, P and p) of the four variables x, y, z, t. The 
equations are completely determined when we know their initial values and 
other boundary conditions, such as the values of the functions at infinity. 
HILBZRT called the five equations so obtained the "Newtonian world-functions", 
since they account in the most general way and in an axiomatic fashion for the 
motion of the system in question: a system that satisfies the laws of mechanics 
and the Newtonian gravitational Iaw. It is interesting that HILBERT used the 
term "world-function" in this context, since the similar ones "world-point" and 
"world-postulate", were introduced in 1908 by MINKOWSK~ in the context of his 
work on electrodynamics and the postulate of relativity. Unlike most of the 
mathematical tools and terms introduced by MINKOWSKI, this particular aspect 
of his work was not favorably received, and is hardly found in later sources 
(with the exception of "world-line"). HILBERT, however, used the term "world- 
function" not only in his 1905 lectures, but also again in his 1915 work on 
general relativity, where he again referred to the Lagrangian function used in 
the variational derivation of the gravitational field equations as a "world- 
function" (HILBERX 1916, 396). 

Besides the more purely physical background to the issues raised here, it is 
easy to detect that HILBERT was excited about the advantages and the insights 
afforded by the vectorial formulation of the Eulerian equations. Vectorial analy- 
sis as a systematic way of dealing with physical phenomena was a fairly recent 
development that had crystallized towards the turn of the century, mainly 
through its application by HEAVISIDE in the context of electromagnetism and 
through the more mathematical discussion of the alternative systems by 
GIBBS. 158 The possibility of extending its use to disciplines like hydrodynamics 
had arisen even more recently, especially in the context of the German-speaking 
world. Thus, for instance, the Encyclopiidie article on hydrodynamics, written in 
1901, still used the pre-vectorial notation (Lovz 1901, 62-63). ts9 Only one year 
before HILBERT'S course, speaking at the International Congress of Mathematic- 
ians in Heidelberg, the G6ttingen applied mathematician LUDWIG PRANDTL 

157 In his article mentioned above, REIFF had tried to derive the pressure forces in 
a fluid starting only from the conservation of mass. BOLTZMANN pointed out that REIFF 
had obtained a correct result because of a compensation error in his mathematics. See 
KLEIN 1970, 65. 

158 See CROWE 1967, 182-224. 
159 The same is the case for LAMB 1895, 7. This classical textbook, however, saw 

many later editions in which the vectorial formulation was indeed adopted. 
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(1875-1953) still had to explain to his audience how to write the basic equations 
of hydrodynamics "following GmBs's notation" (PRANDTL 1904, 489). Among 
German textbooks on vectorial analysis of the turn of the century, 16~ formula- 
tions of the Eulerian equations like that quoted above appear in ALFRED 
HEINRICH BUCHERER'S textbook of 1903 (BvcHERER 1903, 7784)  and in RICHARD 
GANS'S book of 1905 (CANs 1905, 66--67). Whether he learnt about the useful- 
ness of the vectorial notation in this context from his colleague PRANDTL or 
from one of these textbooks, HILBERT was certainly impressed by the unified 
perspective it afforded from the formal point of view. Moreover, he seems also 
to have wanted to deduce far-reaching physical conclusions from this formal 
similarity. HILBERT pointed out in his lectures the strong analogy between this 
formulation of the equations and MAXWELL'S equations of electrodynamics, 
though in the latter we have two vectors E, and B, the electric and the magnetic 
fields, against only one here, V. He also raised the following question: can one 
obtain the whole of mechanics starting from these five partial equations as 
a single axiom, or, if that is not the case, how far can its derivation in fact be 
carried? In other words: if we want to derive the whole of mechanics, to what 
extent can we limit ourselves to assuming only Newtonian attraction or the 
corresponding field equations? 161 It would also be interesting, said HILBERT, to 
address the question of how far the analogy of gravitation with electrodynamics 
can be extended. Perhaps, he said, one can expect to find a formula that 
simultaneously encompasses these five equations and the Maxwellian ones 
together. 

In discussing a possible unification of mechanics and electrodynamics 
HILBERT was echoing a major concern of contemporary physicists. On the one 
hand there was the tradition of the supporters of the mechanical world view, 
going back to MAXWELL, HERTZ, and BOLTZMANN. 162 Their point of view sought 
to derive the laws of electrodynamics from mechanical foundations. More 
recently, a trend had been developing in the opposite direction, giving rise to 
the so-called electromagnetic view of nature. This trend vigorously developed in 
connection with current research on electron theory, and among its main 
proponents one can mention HENDRIK A. LORENTZ, HENRI POINCARt;, WILHELM 
WIEN, MAX ABRAHAM, and WALTER KAUFMANN. 163 The forces exerted by moving 
electrons upon one another depended only upon the distance between the 
attracting bodies. This difference is noticeable given that HILBERT chose to begin 

160 On early textbooks on vectorial analysis see CROWE 1967, 226-233. 
161 [154] Es w/ire nun die Frage, ob man mit diesen 5 partiellen Gleichungen als 

einzigem Axiom nicht aueh iiberhaupt in der Mechanik auskommt, oder wie weit das 
geht, d.h. wie welt man sich auf Newtonsche Attraktion bzw. auf die entsprechenden 
Feldgleichungen beschr/inken kann. 

162 Below, in the section dealing with HILBERT's lectures on the kinetic theory of 
gases, this tradition and HILBERT's direct reaction to it are discussed in greater detail. 

163 For the development of the electromagnetic view of nature see MCCORMMACH 
1970, especially pp. 471-485. 
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his dosing discussion of mechanics with a remarks concerning the possible 
dependence of attraction upon motion. 

HILBERT'S reference to HERTZ and BOLTZMANN in this context, and his silence 
concerning recent works on LORENTZ, WIEN, and others, is the only hint he gave 
in his 1905 lectures as to his own position on this basic physical issue. In fact, 
throughout  these lectures HILBERT showed little inclination to take stands on 
physical issues of this kind. Thus, his suggestion of unifying the equations of 
gravitation and electrodynamics was advanced here mainly on methodological 
grounds, rather than expressing, at this stage at least, any specific commitment  
to an underlying unified vision of nature. At the same time, however, his 
suggestion is quite characteristic of the kind of mathematical  reasoning that 
would allow him in later years to entertain the possibility of unification and 
to develop the mathematical  and physical consequences that could be derived 
from it. 

Thermodynamics 

After mechanics, HILBERT went on to examine two other domains of science 
in which "an axiomatic treatment is especially suggestive. ''164 The first is 
thermodynamics. 16s The central concern of this discipline is the elucidation of 
the two main theorems of the theroy of heat. Until now, said HILBERT, there 
were two usual ways to provide foundations for thermodynamics. The first, 
advanced by CLAUSIUS and PLANCK, 166 was based on the second theorem, which 
had been formulated as the "Law of the impossibility of a perpetuum mobile of 
the second kind" as follows: 

In a state of thermal equilibrium, given an arbitrary quantity of heat contained in 
a heat source, it is impossible to increase the total amount of work by means of 
purely cyclical processes (i.e., processes in which the bodies involved return finally to 
their initial positions). 16v 

HILBERT did not mention the concept of entropy in this context, nor the 
irreversibility connotations that PLANCK had attached to it in his initial formu- 
lation. 

I64 [154] Ich . . . will nun noch auf zwei besondere Gebiete der Naturwissenschaft 
iibergehen, wo eine axiomatische Behandlung besonders nahe liegt. 

165 At the beginning of the section on thermodynamics, HILBERT added on the 
margin: (Axiome der elementaren Strahlungstheorie einschieben). HILBERT dealt with 
the theory of radiation beginning around 1912. This remark may have been added after 
that time. " 

166 O n  the relationship between CLAUSIUS's and PLANCK's formulations of the 
principle see HIEBERT 1968, 10-16; KUHN 1978, 14-16. 

167 [155] Es ist unm6glich, bei thermischem Gleichgewicht aus einer beliebige W~ir- 
memengen enthaltenden W/irmequelle, durch reine Kreisprocesse Arbeit zu gewinnen 
(d.h. durch solche Processe, bei denen alle K6rper schlieBlich wieder in der Anfangszu- 
stand zuriickkehren). 
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The second kind of foundation, continued HILBERT, was advanced by 
HELMHOLTZ. It  uses far-reaching mechanical analogies and describes thermodyn- 
amical processes by means of cyclical systems and virtual masses. It  is similar to 
HERTZ'S mechanics, and in fact HERTZ was motivated in his book, as HILBERT 
pointed out, by this work of HELMHOLTZ. 16s 

HILBERT declared his intention to set forth a new foundation of thermo- 
dynamics, which would resemble closely the kind of axiomatic treatment used 
earlier in his discussion of mechanics. His stress on the mathematical  elegance 
of the presentation led him to introduce the concepts in an unusual sequence, in 
which the immediate physical motivations are not directly manifest. For  simpli- 
city he considered only homogeneous bodies (a gas, a metal), denoting by v the 
reciprocal of the density. If H denotes the entropy of the body, then these two 
magnitudes are meant  to fully characterize the elastic and the thermodynamical  
state of the body. HILBERT introduced the energy function e = e(v, H), meant to 
describe the state of matter. The various possible states of a certain amount  of 
matter  are represented by the combinations of values of v and H, and they 
determine the corresponding values of the function e. This function then makes 
it possible to provide a foundation for thermodynamics by means of five 
axioms, as follows: 

I. Two states 1, 2 of a certain amount of matter are in elastic equilibrium with one 
another if 

OV J . . . .  L O~) J . . . .  
H -- H1 H = H 2 

i.e., when they have the same pressure. By pressure we understand here the negative 
partial derivative of the energy with respect to v 

0e(v, H) 
p - - p(v, H ) .  

0v 

II. Two states 1, 2 of matter are in thermal equilibrium when 

OH J . . . .  k OH J . . . .  ' 
H = H 1  H ~ H 1 

i.e., when they have the same temperature 0. By temperature we understand here the 
derivative of the energy with respect to entropy: 

0~(v, H)  
0 - - - O ( v , H ) .  

OH 

The purely mathematical  definitions of pressure and temperature exemplify 
HILBERT'S subordinating the physical meaning of concepts to considerations of 
mathematical  convenience. Assume that v and H are functions of time t, and 

168 For a recent account of HELMHOLTZ'S treatment of thermodynamics, see BIER- 
HALTER 1993. 
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call the set of  points  in the v, H plane between any two states a path. He then 
introduces two new functions of  the parameter  t: Q(t) (heat) and A(t) (work). 
Given two states and a pa th  between them, the total heat acquired between the 
two states is ~ dQ = ~(dQ/dt)dt, and similarly for work.  HILBERT added the 
following axiom involving these functions: 

III. The sum of acquired work and heat on a given path between 1 and 2 equals the 
difference of the energy-functions at the endpoints: 

tt  t l  

I dQ + I dA = [e] 2 = e(v2, H2) - e(v,, H1). 
t2 t2 

This the law of conservation of energy, or of the mechanical equivalent. 

The remaining axioms are: 

IV. On a path with H = const., the total heat acquired equals zero. A path of this 
kind (parallel to the v-axis) is called adiabatic. 
V. On a path with v = const, the total work introduced equals zero. 

To  these five HILBERT added - -  as he had done  before for geometry,  for vector 
addition, and for mechanics  - -  the continui ty axiom. Fo r  thermodynamics  it is 
formulated as follows: 

VI. Given two paths connecting the points 1, 2, the quantities of heat added when 
moving along those two paths may be made to diverge from one another less than 
any arbitrarily given quantity, if the two paths are sufficiently close to one another in 
a uniform way (i.e., the two lie in a sufficiently narrow strip). 

/1 

4 

H~LBZRT stressed an impor tan t  feature he saw in this system of six axioms, 
namely,  that  it treats work  and heat in a completely symmetrical  way. More-  
over, he said, the system exhibits a remarkable  ana logy with systems previously 
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introduced in other sciences. 169 Thus, the symmetrical treatment of heat and 
work appears as a very convenient one from the perspective of HILBERT'S 
mathematical account of the theory, which fits his overall image of physics, but 
it does rather obscure the physical differences between reversible and irrevers- 
ible processes. HILBERT also discussed briefly the logical interdependence of the 
axioms. From axioms VI. and III., for instance, one can deduce a continuity 
condition similar to VI., but valid for work rather than for heat. 

HILBERT proceeded to show how some of the basic results of thermo- 
dynamics can actually be derived from this system. An important example is the 
derivation of the entropy formula, which is also sometimes used as a definition 
of this concept. Consider the curves of constant temperature (isothermals) 
O(v, H ) =  const. In order to move along one of these curves from the point 
0 = 0, to the point 0, one uses a certain amount of heat, which depends only on 
the temperature 0 and on H: 

[ u ! o  dQlo(v,m=o = f (0, H). 

The quantity of heat involved in moving along an isothermal line is given by 
the function f(0,  H ) .  But what is the exact form of this function? Its determina- 
tion, HILBERT said in this lecture, is typical of the axiomatic method. It is the 
same problem as, in the case of geometry, the determination of the function that 
represents the straight line; or, in the addition of vectors, the proof that the 
components of the vector that represents the addition are equal to the sums of 
the components of the factors. In all these cases, the idea is to decompose the 
properties of a certain function into small, directly evident axioms, and from 
them to obtain its precise, analytical representation. In this way - -  he con- 
cluded - -  we obtain the basic laws of the discipline directly from the axioms. 17~ 
And in fact, in all the domains that HILRERT considered in his 1905 lectures, the 
determination of a particular function of the kind prescribed here, starting from 
the particular axioms defining that domain, lies at the focus of his presentation. 
We saw it above in his presentation of geometry and vector addition, and we 
will see it below in the discussion of other domains. In this way HILBERT'S 
application of the axiomatic approach results in a remarkable unity of presenta- 
tion. A detailed description of HILBERT'S determination of this function in the 

169 [-161] Damit haben wir nun ein vollsfiindiges und notwendiges Axiomensystem 
der Thermodynamik, der sehr fibersichtlich und klar ist und insbesondere auch den 
Vorzug hat, die W/irme Q und Arbeit A v611ig symmetrisch einzuffihren, obendreiI1 has 
es in seinem Aufbau noch eine groBe Analogie mit frfiheren Axiomensystemen anderer 
Wissenschaften. 

17o [-163] Allemal handelt es sich datum, die Eigenschaften einer gewissen Funktion 
in kleine unmittelbarer evidente Axiome zu zerlegen, und aus ihnen dann die anlitysch 
Darstellung der Funktion herzuleiten; diese 1/iBt dann die wesentlichen Eigenschaften der 
Siitze der vorliegenden Disziplin unmitelbar zu erkennen. 
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case of thermodynamics will help us to grasp directly the manner in which he 
linked the axiomatic approach to specific physical theories. 

It is clear, in the first place, that f (0 ,  H) = 0. Consider now a parallel C to 
the H-axis (v = const), between the points l(v[0) and 2(v[H). This line may be 
divided by arbitrarily close points Hi  = 0 ,  H2, H3 . . . . .  Through these 
points draw the isothermal lines O(v, H) = 0i, 02, 03,. �9 as well as the horizon- 
tal lines H = H2, H 3 , . . .  and form a zigzag line Z, whose triangles can be made 
as small as desired, by increasing the number of points in the partition of the 
line. 

# 

7 
7 

E 

-~r 

Using now axiom VI, and noticing that the limit of Z is C when we take an 
infinite number of points in the partition, the heat added when moving through 
C is 

2 2 

d Q = l i m  S dQ. 
i (c) i (z) 

But by axiom IV, all the contributions to the left hand side integral by the 
horizontal segments (H = const) are zero. As for the segments that correspond 
to isothermal lines, say 0 = 01, the addition of heat corresponding to it equals, 
by definition of f(O, H), to 

(cOf) (H2--H1) f(O1, H2) -f(Oi, Hi) = ~ ol 

where the derivative is taken for an average value of H in the isothermal 
(Hi, H2). Hence 

z dQ = lim ~U 01 (Ha - H1) + ~ (H3 - Hz) + . . . .  
1(C) 0a 
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Finally, the passage to the limit yields: 

i = 1 ~ dH.  (a) 

But now by axiom V, since in the curve C, v = const, the parallel integral 
for work is zero. Applying now Axiom III,  one obtains 

2 

dO. = [~3~. 
1 

But again, since on C, v = const., the difference of energies over C can be 
expressed as follows 

2 2 (~,e 2 

5 dQ = [~]~ = j ~ dH = 50dH.  (b) 
, 1 l 1 

Finally, from (a) and (b) 

i 0  I 2 1~  dH=SO~ au. 

This identity holds for all values of 2 over the line C, and therefore the 
integrands are equivalent. That  is, 

af 0 
aH 

and therefore 

f =  O.H + W(O). 

But the function W(O) must be identically zero, since f(O, O) = O. Therefore 
we obtain 

f (O, H) = O.H. 

This result could be extended now to paths C more general than in the former 
case, by an adequate use of the continuity axiom. 

A 
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A similar value is thus found for any value of H; f(O, H) = O.H. In this case 
as well 

and hence 

- o  
OH 

HI 

Q=S OdU. 
Ho 

This is the formula for the heat absorbed as the system moves along an 
arbitrary path C. By differentiation with respect to H, one gets 

dQ 0. 
dH 

If all these magnitudes are seen as functions of v over the path C, then 

dQ 
0 

Integrating between 0 and 1, one gets 

[U]o = i 
dQ 

o 0 

which is the known formula for the change of entropy, in terms of change of 
heat and temperature. In the usual presentation of the theory, which considers 
the increase of temperature as the primary process, this formula is used as the 
definition of entropy. 171 

One well-known published work on the foundations of thermodynamics was 
directly influenced by these lectures of HILBERT, and perhaps even more by the 
scientific atmosphere in G6ttingen within which HILBERT developed his ideas: 
this is an article of 1909 by CONSTANTIN CARATHt~ODORY (1873--1950). 
CARATH~ODORY received his doctorate in G6ttingen in 1904, and habilitated 
there in 1905. He taught as Privatdozent until 1908, when he moved to Bonn, 
and later returned to lecture in G6ttingen from 1913 to 1918. His early stay at 
GSttingen had a lasting influence on his mathematical thinking and he always 
remained associated with the HILBERT circle. MAX BORN, who had been a close 
friend of CARATHt~ODORY since their student days recounted in his auto- 
biography how he had suggested to CARATHgOI)ORY the main idea behind the 
latter's study of thermodynamics. In 1907 BORN spent a semester in Cambridge, 
England doing mainly experimental research. At that time he also read GIBB'S 
book on thermodynamics, which strongly attracted his attention. He later 
wrote: 

171 At the end of the section, HILBERT added in his handwriting [-167]: (Nernst's 
dritte W{irmersatz!} 
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From [-my reading of Gibbs] sprang an essential piece of progress in thermo- 
dynamics - -  not by myself, but by my friend Carath6odory. I tried hard to under- 
stand the classical foundation of the two theorems, as given by Clausius and Kelvin; 
they seemed to me wonderful, like a miracle produced by a magician's wand, but 
1 could not find the logical and mathematical root of these marvelous results. 
A month later I visited Carath6odory in Brussels where he was staying with his 
father, the Turkish ambassador, and told him about my worries. I expressed the 
conviction that a theorem expressible in mathematical terms, namely the existence of 
a function of state like entropy, with definite properties, must have a proof using 
mathematical arguments which for their part are based on physical assumptions or 
experiences but clearly distinguished from these. (BORN 1978, 119) 

Whether or not BORN'S reminiscences faithfully reflect the actual course of 
events, we know for certain that HILBERT had precisely put forward, in consider- 
able detail, a similar idea in the lectures that BORN himself annotated for him in 
1905. I t  is likely that BORN'S reading of GIBBS rekindled the line of thought he 
had earlier heard in those lectures. In any case, it is clear that both 
CARATHt~ODORY and BORN were acting here, if not in the details then certainly in 
the general spirit, under the spell of the kind of axiomatic analysis of physical 
theories promoted by HILBERT. 

In opening his 1909 article, CARATHgODORY claimed that there were no 
hypotheses in thermodynamics that could not now be experimentally verified. 
In a formulation that recalls HIImERT'S own, he explained that the axioms he 
put forward for this domain were "generalizations of the facts of experience, 
which have been observed in especially simple circumstances" (CARATI~ODORY 
1909, 139). He also claimed, though he gave no proof, that his axioms were 
mutually independent. For  purposes of comparison, it is useful to quote here 
CARATn~ODORY'S axioms for thermodynamics. The basic concepts of his pre- 
sentation of the theory are: phase, volume, pressure, adiabatic processes, equiva- 
lent systems, equilibrium. He formulated only two axioms: 

I. In a state of equilibrium, to every phase ~b~ of a system S there corresponds 
a certain function e~ of the magnitudes 

Vi, Pi, tni 

called the internal energy of the phase, which is proportional to its total volume V~. 
The sum 

over all the phases, is called the internal energy of the system. 
In adiabatic state transformations the change of energy due to external work is zero. 
In symbols, if 8, g represent the initial and final values of the energy, then 

g - e + A = 0 .  

II. In the surroundings of any arbitrarily given initial conditions there are certain 
conditions that cannot be approximated as much as desired. 

After formulating the axioms CARaTH~ODORY went on the develop the de- 
clared aim of his paper, namely, to explain how, with the help of the two main 
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axioms, it is possible to determine by experiment the internal energy of a system 
and to establish the general properties of the energy-function e (pp. 139-140). 

Many  years later, CARATHI~ODORY presented a second axiomatic treatment of 
thermodynamics. Elaborating on a suggestion of PLANCK, he discussed in 1925 
the place of irreversible processes in thermodynamics. He referred again to his 
earlier paper  and explained what he had tried to do in it. His explanation 
makes clear the extent of HILR~RT'S influence on him. He wrote: 

If one believes that geometry should be seen as the first chapter of mathematical 
physics, it seems judicious to treat other portions of this discipline in the same 
manner as geometry. In order to do so, we are in possession since ancient times of 
a method that leaves nothing to be desired in terms of clarity, and that is so perfect 
that it has been impossible ever since to improve essentially on it. Newton felt this 
already when trying to present his mechanics also in an external form that would fit 
the classical model of geometry. It is quite remarkable that with even less effort than 
in mechanics, classical thermodynamics can be treated by the same methods as 
geometry. 
This method consists in the following: 
1. Create thought experiments, as in the case of geometry, constructing figures or 
moving around spaces figures already constructed. 
2. Apply to these thought experiments the axioms that the objects considered are 
supposed in general to satisfy. 
3. Extract the logical conclusion that follows from the given premises. (CARA- 
THt~ODORY 1925, 176--177) 

CARAT~gODORY explained that in his 1909 article he had proceeded exactly 
in this way, but, in his opinion, the parallel application of the axiomatic method 
to thermodynamics and geometry was more clearly manifest only in this paper. 

That  CARATH~ODORY'S work had itself little impact among contemporary 
physicists is manifested in a paper  published in 1921 by MAX BORN in the 
Physikalische Zeitschrift, aimed precisely at making CARATHt~ODORY'S point of 
view more widely known than it was. BORN'S article, in turn, interestingly 
displays the influence of HmBERT on his own conception of the link between 
physics and mathematics. In the introduction BORN asserted that the logical 
elaboration of a physical theory can be considered as concluded only when the 
theory has been transformed into a "normal"  chapter of mathematics. BokN 
stressed the relatively reduced kinds of differential equations that appear  time 
and again in the various domains of physics. Thus, for instance, every domain 
dealing with continuous processes is equations provide the basic building blocks 
from which the physicist always starts his investigation. He then works out the 
empirical data, refashions and remolds the laws obtained from this data until 
these fit one of the already existing equational forms. 

To this account of the way differential equations are used in physics, 
however, BORN saw an important  exception in the case of thermodynamics. No 
other field in physics, he wrote, is based on equations similar to those represent- 
ing Carnot  processes, or related ones. Since the kinds of mathematical  equa- 
tions used in thermodynamics are so typical and specific to this domain, it 
seems that if one takes away the physical content intrinsic to it, one is left with 
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no independent mathematical  structure. In its traditional presentation, then, 
thermodynamics had not attained the logical separation - -  so desirable, and in 
fact necessary, in the eyes of this disciple of the G6ttingen school - -  between 
the physical content and the mathematical  representation of the theory. BORN'S 
characterization of the litmus test for recognizing when this separation is 
achieved brings us back directly to HIL~ERT'S 1905 lecture: a clear specification 
of the way to determine the form of the entropy function (BORN 1921, 218). 

BORN mentioned CARATH~ODORY'S article of 1909 as an important  and suc- 
cessful at tempt to attain for thermodynamics the desired separation between 
physical content and mathematical  form. BORN thought, moreover, that 
CARATHEODORY'S presentations had important  pedagogical advantages and could 
be used with profit in the classroom. This attempt, however, was barely known 
among physicists and BORN saw two main reasons for that. The first concerned 
the generality and abstract character of the article. The second reason, BORN 
suggested, was its publication in a journal which few physicists read: the 
Mathematische Annalen. BORN'S own article was intended to bring 
CARATHI~ODORY'S point of view to his colleagues. Revealing once aga in  his 
Hilbertian influences, BORN emphasized that his presentation would start with 
the simplest facts of experience and would lead up to the final form of the main 
mathematical  theorems of the theory. The relationship between this and the 
traditional way of formulating the theory BORN described as follows: 

This presentation of the theory should also be seen as putting forward a certain 
criticism of the classical one. Nevertheless, it should in no way be seen as belittling 
the huge achievements of the masters who were guided by their intuition. Rather, the 
intention is only to clear away some ruins that pious tradition has not hitherto 
ventured to remove. (BORN 1921, 219) 

In the article, BORN reworked CARATHI~ODORY'S presentation of thermo- 
dynamics, in a way he thought more accessible to physicists. His art icle seems 
to have had as little noticeable influence as the one that inspired it. 172 But for 
the purposes of the present account it helps us to understand the way HILB~RT 
wanted to go about  axiomatizing physical theories: starting from the basic facts 
of experience, one strives to formulate an elaborate mathematical  theory in 
which the physical theorems are derived from simple axioms. This theory may 
itself be different from the classical, more physically intuitive one, but the 
mathematical  presentation contributes to a more unified view of physics as 
a whole. 

172 In BORN'S autobiography one can read the following, relevant passage (1978, 
119): "I tried to popularize [CARATH~;ODORY'S ideas] in a series of articles which 
appeared in the Physikalische Zeitschrift. But only a few of my colleagues accepted this 
method, amongst them R.H. Fowler, one of the foremost experts in this field. Fowler and 
I intended, a few years ago, to write a little book on this subject in order to make it 
better known in the English-speaking world, when he suddenly died. That will, I sup- 
pose, be the end of it, until somebody re-discovers and improves the method." 
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Probability Calculus 

The next discipline discussed by HILBERT in his 1905 lectures, is, after 
thermodynamics, the second one for which he considered the axiomatic treat- 
ment to be especially appropriate, namely, the calculus of probabilities. This 
domain of study is utterly different from the preceding ones, he said, yet it can 
be treated in a completely analogous way2 

The axioms for the calculus of probabilities that HILBERT presented in his 
lectures were taken from an article on insurance mathematics that GEORa 
BOHLMANN published in the Encyclopiidie der mathematischen Wissenschaften 
(1901). As already mentioned, in formulating his sixth problem HILBERT had 
also cited among the texts representative of the task of axiomatizing physics 
a lecture of BOHLMANN published in 1900. But (as BOHLMANN himself stated in 
a footnote to his 1900 article) the Encyclop~die article contained a much more 
precise mathematical formulation of the axioms underlying the mathematical 
treatment of life insurance, which in the earlier article appear as very general, 
somewhat loosely formulated assumptions. BOHLMANN'S axioms in the Encyclo- 
piidie article are presented in two separate groups: general axioms of probability 
and special axioms of insurance mathematics (Sterbenswahrscheinlichkeit). The 
first group he credited to an article on probability by the Austrian mathematic- 
ian EMANUEL CZUBER (1851--1925), appearing in the same volume (CzuB~R 1900, 
735-740). The second group he credited to a second article in the volume, on 
the applications of probability to statistics, written by the St. Petersburg statisti- 
cian LADISLAUS VON BORTKIEWICZ (1868--1931) (VoN BORT~ZlEWICZ 1900, 
837--846). BOHLMANN also referred to POINCARg'S textbook on probability as 
a main source of ideas for his axiomatization. 173 However, although the ideas 
embodied in some of BOHLMANN'S axioms can indeed be retrospectively recog- 
nized in the texts he cites (and also in his own 1900 article), none of these 
sources contains the kind of systematic and concise treatment that BOHLMANN 
himself adopted in the Encyclopiidie article. Under the manifest influence of 
HILBERT'S Grundlagen, BOHLMANN was probably the first to provide this kind of 
axiomatization for the calculus of probabilities, although, on the other hand, he 
did not analyze, or mention, the properties of independence, completeness or 
simplicity as related to his system. 

In HILBERT'S 1905 lectures, probability was defined, following BOHLMANN, by 
means of a function p(E), where E is any event, and 0 < p(E)< 1. HILBERT 
explained that this is considered a definition in the theory, although, at its 
present state of development, the "axioms" and the "definitions" somewhat 
overlap with each other, iv* He was obviously referring to BOHLMANN'S 

173 The reference is to POINCARI~ 1896, 12. In order to make the context of ideas 
more precise, it is worth mentioning that the subtitle of POINCARt~'S book is "Cours de 
physique mathematique." 

174 [168] Wir fassen das einfach als Definitionen auf, wiewohl im gegenw~irtigen 
Zustande der Entwicklung besonders die Bezeichnungen 'Axiom' und Definition noch 
etwas durcheinandergehen. 
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treatment, in which definitions and axioms indeed appear intermingled, in 
a way that HILBERT himself would have avoided if he had systematically 
followed the model of the Grundlagen. HILBERT'S remark here is interesting in 
view of the interchange mentioned above between HILBERT and FRZGE, in which 
the interrelation between axioms and definitions in a mathematical theory was 
discussed. HILBERT in his lectures did not bother to separate axioms and 
definitions more completely than BOHLMANN had done before him, and thus - -  
in appearance, at least - -  he presents a more flexible position on this issue than 
the one he expressed in his letters to FREG~. One of the main points put 
forward by HILBERT in that correspondence was the  impossibility to define 
concepts in mathematics without connecting them to axioms. It is only the 
system of axioms taken as a whole, he had written to FRE~E, that yields 
a complete definition of the concepts involved. 175 In treating the axioms of 
probability and speaking of the need to separate - -  rather than to combine 
- -  axioms and definitions, HILBERT was perhaps stressing the early state in 
which the theory was then found. And as a matter of fact, BOttLMANN'S system 
of axioms was far from satisfying HILBZRT'S standards, a fact not mentioned in 
the manuscript of the lectures. 

HILBZRT adopted the notation used by BOHLMANN in his article. The simulta- 
neous occurrence of two events El, E2 is denoted by E1 + E2, whereas El 'E2  

denotes their disjunction. Two events are mutually exclusive if p(E1 + E2) = 0, 
while p(EI[E2), denotes conditional probability. 176 HILBZRT did not mention an 
additional definition appearing in BOHLMANN'S article, namely, that two events 
E~, E2 are independent if the probability of their simultaneous occurrence 
equals p ( E 1 ) ' p ( E 2 )  �9 Following BOHLMANN'S presentation, H~LBERT introduced 
the following two axioms as defining the theory: 

I. p(E 1 . E2) = p(E 0 + p(E2), if p(E~ + E2) = O. 

II. p(E 1 + E2) = p(E1) . p(E 1 [E2). 

In order to clarify the import of BOHLMANN'S contribution, it should be 
stressed that these two axioms appear in POINCARt~'S book as theorems 

(th~or~mes des probabili tks composkes et totales - -  respectively), and they are 
proved with reference to the relative frequencies of the events involved (PorNCAR~; 
1896, 12). 

Like BOHLMANN in his article, beyond stating the axioms as such HILBERT 
went no further. He did not comment on the independence, consistency or 
"completeness" of these axioms. In fact, this system was a rather crude one by 
HILBERT'S own criteria; more elaborate ones had already been attempted since 
BOHLMANN. In 1904 RUDOLF LAEMMEL, in a dissertation written in Zurich, had 
addressed the issue of the axioms of probability. He mentioned there CZUBER'S 
article, but, strangely enough, not BOHLMANN'S axioms. LAEMMEL proposed two 

175 See GABRIEL et al. (eds.) 1980, 40. 
176 [-170] 'Wenn E1 ist, so ist stets auch E2' oder 'E 2 folgt aus El' schreiben wir 

E1 [E2. 
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axioms and three definitions as a "minimal system" for the theory, formulating 
them in terms of "set-theoretical" notions (like those used by DEDEKIND and 
CANTOR in their works). He then asserted that his axioms were independent and 
sufficient to develop the whole theory, but he did not mention the problem of 
consistency. 17v It is not clear how far LAEMMEL was acquainted with HILBERT'S 
Grundlagen nor  whether he intended, through his axiomatization, to arrive for 
this domain at the goals HILBERT had reached in his book. It is likely that 
HILBERT in turn was not aware of the existence of this dissertation by 1905. In 
1907, however, one of HILBERT'S doctoral students, UGO BROGGI, took up once 
more the issue of the axiomatization of the calculus of probability, attempting 
to perfect - -  following the guidelines established in the Grundlagen - -  the 
earlier proposals of BOHLMANN and LAEMMEL. 178 Based on LEBESG~E'S theory of 
measure, BROOGI not only formulated a system of axioms for probability, but 
also showed that his axioms were complete (in HILBERT'S sense), independent 
and consistent, thus demonstrating the shortcomings of BOHLMANN'S earlier 
system. 179 In 1908, addressing the Fourth International Congress of Mathema- 
ticians in Rome, BOHLMANN himself referred to BROGGfS dissertation and con- 
ceded that the latter had shown the need to provide a more thorough logical 
analysis of the concept of event (Ereignissbegriff) in the theory of probabilities 
(BOHLMANN 1909). 

HILBERT in 1905, however, was much less interested in the calculus of 
probabilities as such, than in its applications. The first important application 
concerns what HILBERT referred to as the theory of compensations of errors 
(Ausgleichungsrechnung), which deals with the methods for eliminating, as far as 
possible, the influence of observational errors that may arise when repeatedly 
measuring physical magnitudes. The systematic study of measurement errors 
had originated at the beginning of the nineteenth century, especially in connec- 
tion with observational errors in astronomy. Later, it had been expanded to 
cover measurement in other physical domains as well. One of the central 
slogans of the physical seminar of KBnigsberg, led since 1834 by FRANZ 
NEUMANN, had been its insistence on the value of exactness in measurement as 
a leading principle of physical research. NEUMANN not only took pains to 
impart this principle directly to his seminar students but also developed math- 
ematical techniques to determine the theoretical limitations of the instruments 
used in his laboratory exercises; also more generally, he dedicated much effort 
to the study of elaborate methods of error analysis, is~ Of course, HILBERT did 

177 LAEMMEL's dissertation is reproduced in SCHNEIDER (ed.) 1988, 359-366. 
17s Reproduced in SCHNEIDER (ed.) 1988, 367-377. 
179 For a review of later attempts to axiomatize the calculus of probabilities until 

1933, see SCHNEIDER (ed.) 1988, 353-358. A more detailed account appears in VON 
PLATO 1994; see especially pp. 179-278, for the foundational works of VON MISES, 
KOLMOGOROV, and DE FINETTI. 

1so The centrality of this principle for NEUMANN's K6nigsberg seminar for physics, 
especially at the pedagogic level, is thoroughly discussed throughout the chapters of 
OLESKO 1991. 
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not himself attend NEUMANN'S seminar, but it is likely that the influence of the 
latter was felt in K6nigsberg long after the latter's retirement in 1876. It  should 
not come as a surprise, therefore, that in HILBERT'S general overview of the 
axiomatization of physics this subject was also considered. 

In his lectures HILBERT claimed that the theory of compensation of errors is 
based on a single axiom, from which the whole theory could be derived: 

If various values have been obtained from measuring a certain magnitude, the most 
probable actual value of the magnitude is given by the arithmetical average of the 
various measurements, ls~ 

Two theorems appear  here as particularly interesting. The first one is 
GAuss's error theorem, according to which the frequency of error in measuring 
a given magnitude is given by the integral 

i e-t2dt. 
0 

The second theorem is the so-called principle of least squares addition: the most 
probable value of the variables measured is obtained by minimizing the squares 
of the errors involved in each observation. 

As in the case of mechanics, any of these three equivalent statements - -  the 
axiom and the two theorems - -  could be taken as basis for the whole theory. 
But from HILBERT'S point of view, the main contribution of his analysis was in 
clarifying the need to assume at least one of the three statements. Earlier, he 
said, attempts had been made to prove one of the three without assuming the 
others, but now it was clear that this is impossible, ts2 On the other hand, 
however, it could still be of great interest to at tempt a reduction of them to 
other axioms with a more limited content and greater intuitive plausibility, as 
was done for the theories considered earlier in the lectures. Since there are so 
many  possibilities of providing foundations for a discipline, he concluded, our 
actual choices are always arbitrary, and depend on personal inclinations and on 
the particular state of science in general at a certain time. 18a 

What  HILBERT really considered important  and certain to remain as the real 
contribution of this kind of work were "the interdependencies that this research 
makes manifest. ''1s4 This remark - -  essential for understanding HILBERT'S whole 

lsi [171] Liegen fiir eine Gr613e mehrere Werte aus Beobachtungen vor, so ist ihr 
wahrscheinlichster Wert das arithmetische Mittel aller beobachteten Werte. 

ls2 [171] Es ist also gleichgfiltig, welches dieser 3 vollkommen aequivalenten Axiome 
man zu grunde liegt. Eines von ihnen zu 'beweisen', wie man [172] frfiher wohl ver- 
suchte, ist natiirlich unm6glich. 

ls3 [172] Was man dab wirklich gerade als Grundlage aussprechen will, wenn sich 
so verschiedene M6glichkeiten ergeben haben, is wie stets willkfirlich und h~ingt yon 
pes6nlichen Momenten und dem allgemeinen Stande der Wissenschaft ab. 

ls4 [172] [D] as dauernd bleibende und wichtige sind die Abh/ingigkeiten, die bei 
diesen Untersuchungen zu Tage treten. 
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conception of the axiomatization of physics - -  would reappear in a very similar 
formulation in 1924, when HILBERT published an up-to-date, corrected version 
of his 1915 paper  containing the field equations of general relativity, lss HILBERT 
also suggested in this lecture the possible interest of finding and analyzing other 
kinds of error-laws, less well-established than those mentioned above. For  
instance: what happens if one takes the absolute values of the deviations instead 
of their squares, as in GAuss's law? These questions, according to HILBERT, had 
recently been investigated. A relevant source that HILBERT may have been 
thinking of here was the EncyclopSdie article on this issue. In order to under- 
stand properly the context in which the theory of compensation of errors was 
presented in the Encyclopiidie - -  and in which HILBERT himself considered the 
question - -  it should be noticed that this article was commissioned from an 
astronomer, since as t ronomy is the domain in which the theory was tradition- 
ally considered. The article, however, written by the Berlin as t ronomer JULIUS 
BAUSCHINGER (1860--1934), does not itself contain anything like an axiomatic 
analysis (BAuSCHINGER 1900). 186 HILBERT concluded this part  of his lectures by 
pointing out that additional, deeper, work was to be expected in this domain, as 
in all others that have been treated axiomatically. 

Kinetic Theory of  Gases 

A second main application of the calculus of probabilities is to the kinetic 
theory of gases. HILBERT expressed his admiration for the remarkable way this 
theory combined the postulation of far-reaching assumptions about  the struc- 
ture of matter  with the use of probabili ty calculus. This combination was 
applied in a very illuminating way, leading to new physical results. In order to 
understand HILBERT'S presentation of the theory, it seems necessary to give 
a brief account of some of the main issues in kinetic theory of gases during the 
last decades of the nineteenth century, lsv 

JAMES CLERK MAXWELL (1831--1879) was the first to develop a theory of the 
behavior of gases, based on the idea that the velocities of the molecules of a gas 
are not uniform and do not tend to uniformity, but rather produce a range of 
velocities. In a paper  published in 1860 he claimed that in order to calculate 
most  of the observable properties of a gas it is not necessary to know the 

ls5 See HILBERT 1924, 2: "Ich glaube sicher, dab die hier yon mir entwickelte 
Theorie einen bleibenden Kern enth~ilt und einen Rahmen schafft, innerhalb dessen fiir 
den kiinftigen Aufbau der Physik im Sinne eines feldtheoretischen Einheitsideals 
geniigender Spielranm da ist." 

186 For an account of BAUSCHINGER'S contributions to astronomy see HOPMANN 
1934. 

ls7 Two classical, detailed accounts of the development of the kinetic theory of gases 
(particularly during the late nineteenth century) can be consulted: BRUSH 1976 a n d  
KLEIN 1970 (esp. 95-140). In the following paragraphs I have drawn heavily on them. 
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positions and velocities of all particles a t  a given time: it suffices to know the 
average number of molecules having various positions and velocities. Assuming 
that the number of molecules in a given volume of gas is uniformly distributed, 
MAXWELL addressed the problem of determining the velocity distribution func- 
t ionf(v),  w h e r e f ( v ) d v  expresses the average number of molecules with velocities 
between v and v + dr. Assuming, moreover, that the velocity components along 
the three orthogonal directions are statistically independent, he deduced the 
specific form of the distribution function as follows: 

1 f ( x )  = ~ e -(x2/~2). 

Here x is one of the orthogonal components of the velocity, and c~ 2 is a con- 
stant that MAXWELL showed to be equal to 2/3 of the mean-square velocity of 
the particles. If N is the total number of particles contained in the gas, then the 
number of particles having velocity between v and v + dv is given by: 

4 V2 (x2/~ ~) N ~ e -  dr. 
N/TCO~ 3 

Based on this probability function, MAXWELL was able to calculate, among 
others, the average potential energy, the average kinetic energy, and the mean 
free path of a molecule. 

The assumptions made by MAXWELL in his 1860 paper were not altogether 
unproblematic. In 1867 he rederived the same function, assuming this time only 
that t he  velocities of any two colliding particles, rather than the components of 
the velocity of a single particle, were statistically independent. MAXWELL also 
retied on the principle of conservation of energy. This line of reasoning was 
adopted and developed by LUDWIG BOLTZMAY~, beginning in 1868. BOLTZMANN 
continued to work intensively (though not exclusively on it) over the rest of his 
career, and his name came to be identified with the theory, and more particularly 
with the atomistic view of matter associated with it: the behavior of macroscopic 
matter was to be explained in terms of statistical laws describing the motion of 
the atoms, which themselves behave according to Newtonian laws of motion. 

One of BOLTZMA~rt~'S main achievements was to work out in detail the 
connection between the thermodynamic concept of entropy and the kinetic 
theory of gases, ass A mechanical interpretation of the second law of thermo- 
dynamics had been a principal motivation behind BOLTZMANN'S work from the 
outset, and most of his subsequent work evolved as a process of constant 
reformulation and improvement of his results in response to harsh criticisms 
directed against them. Central among the latter was the apparent contradiction 
between the irreversible character of the statistically described state of the gas 

188 Although it must be stressed that, until MAX PLANCK'S treatment of the issue in 
1900, this connection was largely ignored by other physicists involved in the study of the 
macroscopic behavior of gases. See KUHN 1978, 20--21. 
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and the reversible, Newtonian behavior of its individual molecules. This basic 
tension raised by the kinetic theory of gases came later to be known as the 
reversibility paradox (or objection): Umkehreinwand. BOLTZMANN'S first at tempt 
to deal with this particular argument, elaborated in detail by his Vienna 
colleague JOSEF LOSCHMIDT in 1876, dates from 1877.189 BOLTZMANN claimed 
that his proof  of the second law was based not on mechanics alone, but on 
combining the laws of mechanics and of probability: the probabili ty of initial 
states that would produce an increase in entropy was enormously larger than 
that of states leading to decreases. HILBERT, as we will see presently, would 
specifically address this point in his 1905 lectures. 

Another conceptual difficulty inherent in the kinetic theory of gases is the 
so-called recurrence paradox (or objection): Widerkehreinwand. ~9~ In 1890 POIN- 
CARg published a theorem of mechanics, according to which any mechanical 
system constrained to move in a finite volume with fixed total energy must 
eventually return to the neighborhood of any specified initial configuration. As 
a consequence of this theorem, the kinetic model, which is a mechanical one, 
appears to be incompatible with the constant increase in entropy stipulated by 
the second law of thermodynamics.  Anyone who considered the latter as an 
irrefutable fact of experience, would have to conclude that the kinetic theory of 
gases - -  and more generally, the atomistic interpretation of nature - -  should be 
abandoned. Among the scientists who held such a view one can mention 
POINCARg himself, ERNST MACH, WILHELM OSTWALD, PIERRE DUHEM, MAX 
PLANCK (especially at an early stage) 19t and - -  the one who actually published 
his objections on these grounds against BOLTZMANN'S theory - -  ERNST ZERMELO. 

ZERMELO'S earliest scientific interest was in applied mathematics and theoret- 
ical physics. In 1894 he completed a dissertation on the calculus of variations, 
working with HERMANN ARMANDUS NCItWARZ in Berlin. F rom 1894 to 1897 he 
was MAX PLANCK'S assistant at the institute for theoretical physics in Berlin, 
before going to G6ttingen, where he habilitated in 1899 with a work on 
hydrodynamics and with a lecture on the application of the calculus of prob- 
abilities to the study of dynamical systems. Only at the turn of the century did 
his interests begin to shift to set theory, the field with which his name came to 
be associated. 192 In 1896, ZERMELO became involved in an intense and long- 
lasting discussion with BOLTZMANN concerning the interrelation between the 
second law and the kinetic theory. On the basic status of the atomistic ap- 
proach, ZERMELO'S position was even more extreme than that of his former 

189 BOLTZMANN 1877. See BRUSH 1976, 605--627. 
19o The terms Umkehreinwand and Widerkehreinwand were introduced only in 1907 

by TATYANA and PAUL EHRENFEST. See KLEIN 1970, 115. 
191 For the subtleties of PLANCK'S position on this issue see HIEBERT 1971, 72--79; 

KUHN 1978, 2~29. 
192 Although several detailed studies of ZERMELO'S contribution to set-theory and 

logic are available (e.g., MOORE 1982, PECKHAUS 1990, 76-122), his complete biography 
is yet to be written. 
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teacher PLANcI(, who believed that by considering a continuous, rather than 
a molecular model of matter, the mechanic and the thermodynamic views could 
be reconciled: according to ZER~ELO, either one or the other had to be 
abandoned. 193 

ZER~LO also raised some additional objections about technical details of 
BOLa'ZMANN'S argument. Specifically, he claimed that the properties attributed 
by BOLa'ZMANN to the so-called H-curve, which provided the core of his math- 
ematical argument, were not only unproved, but actually incompatible with the 
laws of mechanics. One particular detail of ZERM~LO'S argument concerned the 
fact that the probability of occurrence of a certain value of H should be 
measured by the volume in phase space of all states having this value. A the- 
orem known to physicists as the LIOUVILLE theorem 194 states that the equations 
of motion imply that this volume is independent of time, and from this ZEg- 
MELO concluded that the H-curve would have no clear tendency to increase or 
decrease. 

BOLTZMANN'S reply to the "reversibility paradox" was to identify the reason 
for the increase of entropy in the physical world with the relatively enormous 
probability of attaining a state of disorder, starting from either one of order or 
of disorder, as compared to that of attaining one of order. This had the virtue 
of providing a new, statistical interpretation of the formerly mysterious concept 
of entropy: it identified the latter with 9reater disorder in a system. In fact, 
BOLTZMANN defined the entropy of a system in terms of the relative probability 
of a certain macroscopic state actually to happen. Irreversibility is then nothing 
but a tendency to go from less probable to more probable states. 

To the recurrence argument BOLTZMANN replied that according to the statist- 
ical point of view a particular initial state of a system was likely to reappear 
provided one waited long enough. This, however, was unlikely to be confirmed 
by experience, since the time needed to observe the recurrence would be 
immensely long. BOIn'ZMANN suggested that the universe as a whole is a system 
in a state of equilibrium, and that experience of a "direction of time", due to the 
increase of entropy, was only a subjective phenomenon observable within rela- 
tively small regions, such as for example a galaxy. He thus reconciled locally 
irreversible phenomena (like entropy), the validity of mechanical laws, and 
cosmic reversibility and recurrence. As for Z~RMELO'S objection to the properties 
of the H-curve, BOm'ZMANN wrote several articles in which he refined his own 
treatment of the curve, though many issues connected to it remained quite 
unclear. Beginning in 1906 TATVANA and PAUL E~R~NWST (the latter a student 
of BOIn'ZMANN'S) contributed to clarifying BOLTZ~ANN'S ideas still further in 
a series of publications of the conceptual foundations of statistical mechanics. 

A third controversy around the kinetic theory of gases concerned the so- 
called equipartition theorem, an important consequence of the MAXWELL-BOL- 
TZMANN distribution formula, according to which the energy of a gas is evenly 

193 See KUHN 1978, 26--27. 
194 This is different from LIOUVILLE'S theorem on analytic functions. 
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distributed on average throughout all the volume. During the early years of 
BOLTZMANN'S elaboration of the theory, the consequences of this theorem were 
contradicted by several new experimental results concerning the heat capacity of 
certain gases. As with the other two kinds of objection, this too led BOLTZMANN 
to clarify his formulations, but he was not able to dispel all doubts related to 
this particular point. In fact, the difficulties raised by the equipartition theorem 
were not thoroughly settled until the development of quantum theory. 

At the turn of the century several works appeared that changed the whole 
field of the study of gases, leading to more widespread appreciation of the value 
of the statistical approach. The work of PLANCK, GIBBS and EINSTEIN and 
contributed to focus much more interest on BOLTZMANN'S statistical interpreta- 
t ion of entropy. 195 

One can thus see why HmRERT would have wished to undertake an axio- 
matic treatment of the kinetic theory of gases: not only because it combined 
physical hypotheses with probabilistic reasoning in a scientifically fruitful way, 
as HILBERT said in his lectures, but also because the kinetic theory was a good 
example of a physical theory in which, historically speaking, additional assump- 
tions had been gradually added to existing knowledge without properly check- 
ing the possible logical difficulties that would arise from this addition. The 
question of the role of probability arguments in physics was not a settled one in 
this context. In HILBERT'S view, the axiomatic treatment was the proper way to 
restore order to this whole system of knowledge, so crucial to the contemporary 
conception of physical science. 

In stating the aim of the theory as the description of the macroscopic states 
of a gas, based on statistical considerations about the molecules that compose 
it, HILBERT assumed without any further comment the atomistic conception of 
matter. From this picture, he said, one obtains, for instance, the pressure of the 
gas as the number of impacts of the gas molecules against the walls of its 
container, and the temperature as the square of the sum of the mean velocities. 
In the same way, entropy becomes a magnitude with a more concrete physical 
meaning than is the case outside the theory. Using MAXWELL'S velocity distribu- 
tion function, BOLTZMANN'S logarithmic definition of entropy, and the calculus 
of probabilities, one obtains the law of constant increase in entropy. H~LBERT 
immediately pointed out the difficulty of combining this latter result with the 
reversibility of the laws of mechanics. He characterized this difficulty as a para- 
dox, or at least as a result not yet completely well-established. 196 In fact, he 
stressed, the theory has not yet provided a solid justification for its assump- 
tions, and ever new ideas and stimuli are still being constantly added. 

Even if we knew the exact position and velocities of the particles of gas 
- -  HILBERT explained - -  it is impossible in practice to integrate all the differen- 
tial equations describing the motions of these particles and their interactions. 

195 EINSTEIN 1902, GIBBS 1902. See KUHN 1978, 21. 
196 [176] Hier k6nnen wir aber bereits ein paradoxes, zum mindesten nicht recht 

befriedigendes Resultat feststellen. 
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We know nothing of the motion of individual particles, but rather consider only 
the average magnitudes that are dealt with by the probabilistic kinetic theory of 
gases. In an oblique reference to BOLTZMANN'S replies, HILBERT stated that the 
combined use of probabilities and infinitesimal calculus in this context is a very 
original mathematical contribution, which may lead to deep and interesting 
consequences, but which at this stage has in no sense been fully justified. Take, 
for instance, one of the well-known results of the theory, namely, the equations 
of vis viva. In the probabilistic version of the theory, HILBERT said, the solution 
of the corresponding differential equation does not emerge solely from the 
differential calculus, and yet it is correctly determined. It might conceivably be 
the case, however, that the probability calculus could have contradicted well- 
known results of the theory, in which case the use of that calculus would clearly 
be considered to yield unacceptable conclusions. HILBERT explained this warning 
by showing how a fallacious probabilistic argument could lead to contradiction 
in the theory of numbers. 

Take the five classes of congruence module 5 in the natural numbers, and 
consider how the prime numbers are distributed among these classes. For any 
integer x, let A(x)  be the number of prime numbers which are less than x, and 
let Ao(x) . . . . .  A4(x),  be the corresponding values of the same function, when 
only the numbers in each of the five classes are considered. Using the calculus 
of probabilities in a similar way to that used in the integration of the equa- 
tions of motion of gas particles, one could reason as follows: The distribution 
of prime numbers is very irregular, but according to the laws of probability, 
this irregularity is compensated if we just take a large enough quantity of 
events. In particular, the limits at infinity of the quotients Ai (x ) /A(x )  
are all equal for i = 0 , . . . , 4 ,  and therefore equal to 1/5. But it is clear, 
on the other hand, that in the class of numbers of the form 5m, there are no 
prime numbers, and therefore A o ( x ) / A ( x ) = 0 .  One could perhaps correct 
the argument by limiting its validity to the other four classes, and thus conclude 
that: 

L A~(x) 1 
for i =  1 , . . . , 4 .  

x=~o A(x)  - 4' 

Although this latter result is actually correct, HILBERT said, one cannot speak 
here of a real proof. The latter could only be obtained through deep research in 
the theory of numbers. Had we not used here the obvious number-theoretical 
fact that 5m can never be a prime number, we might have been misled by the 
probabilistic proof. Something similar happens in the kinetic theory of gases, 
concerning the integration of the vis viva. One assumes that MAXWELL'S distri- 
bution of velocities obeys a certain differential equation of mechanics, and 
in this way a contradiction with the known value of the integral of the 
vis viva is avoided. Moreover, according to the theory, because additional 
properties of the motion of the gas particles, which are prescribed by the 
differential equations, lie very deep and are only subtly distinguishable, they do 
not affect relatively larger values, such as the averages used in the MAXWELL 
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laws. 197 As in the case of the prime numbers, however, HILBERT did not 
consider this kind of reasoning to a real proof. 

All this discussion, which HILBERT elaborated in further detail, led him to 
formulate his view concerning the role of probabilistic arguments in mathemat-  
ical and physical theories. In this view, surprisingly empiricist and straightfor- 
wardly formulated, the calculus of probabili ty is not an exact mathematical  
theory, but one that may appropriately be used as a first approximation,  
provided we are dealing with immediately apparent  mathematical  facts. Other- 
wise it may lead to significant contradictions. The use of the calculus of 
probabilities is justified - -  HILBERT concluded - -  insofar as it leads to results 
that are correct and in accordance with the facts of experience or with the 
accepted mathematical  theories. 19s 

Beginning in 1910 HILBERT taught courses on the kinetic theory of gases and 
on related issues, and also published original contributions to this domain. In 
particular, as part  of his research on the theory of integral equations, which 
began around 1902, he solved in 1912 the so-called BOLrZMANN equation. 199 
Moreover,  he directed the work of three doctoral students, who in 1913-14 
completed dissertations dealing with problems connected with the theory (HANs 
BOLZA, BERNHARD BAULE and KURT SCHELLENBERG), 200 and inspired additional 
publications by younger G6ttingen scientists. 2~ 

In his published works, HILBERT did not even come close to expressing any 
opinion concerning crucial physical questions related to the theory, such as the 

197 [180] Genau so ist es nun hier in der kinetischen Gastheorie. Indem wir behaup- 
ten, dab die Maxwellsche Geschwindigkeitsverteilung den mechanischen Differen- 
tialgleichnungen [181] gen/igt, vermeiden wir wohl einen VerstoB gegen das sofort 
bekannte Integral der lebendigen Kraft; weiterhin aber wird die Annahme gemacht, 
dag die durch die Differentialgleichungen geforderten weiteren Eigenschaften der Gas- 
partikelbewegung liegen soviel tiefer und sind so feine Unterscheidungen, dab sie so 
groBe Aussagen fiber mittlere Werte, wie die des Maxwellschen Gesetzes, nicht ber/ihren. 

198 [182] Sie ist keine exakte mathematische Theorie, aber zu einer ersten Orient- 
ierung, wenn man nur alle unmittelbar leicht ersichtlichen mathematischen Tatsachen 
benutzt, h//ufig sehr geeignet; sonst ffihrt sie sofort zu grol3en Verst6Ben. Am besten kann 
man immer nachtr//glich sagen, dab die Anwendung der Wahrscheinlichkeit immer dann 
berechtigt und erlaubt ist, wo sie zu richtigen, mit der Erfahrung [183] bzw. der 
sonstigen mathematischen Theorie /ibereinstimmenden Resultaten ffihrt. 

199 In HILBERT 1912, Chpt. XXII. 
2oo See HILBERT GA Vol. 3,433. Two of the dissertations were published as BAULE 

1914 and SCHELLENBERG 1915. 
2ol Cf. for instance: BOLZA, BORN & VAN KKRMKN 1913; HECKE 1913; HECKE 1922. 

The all-important article of PAUL and TATYANA EHRENFEST on the conceptual founda- 
tions of statistical mechanics (EHRENFEST 1912), published in 1912 in the Encyclopiidie 
der mathematischen Wissenschaften, also makes HILBERT'S influence manifest in several 
respects. It would be far beyond the scope of the present article, however, to study this 
influence in greater detail. 
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status of the atomistic conception. 2~ In his lectures, although he was still quite 
cautious when it came to such questions, occasionally he did - -  sometimes 
explicitly and sometimes implicitly - -  express opinions, and the latter often 
changed over time. In his 1905 course, as was already said, HILBERT praised the 
fruitfulness of combining "far-reaching physical assumptions" with the theory of 
probabilities and thus implicitly endorsed BOLTZMANN'S atomistic view of phys- 
ics. On the other hand, he avoided explicitly taking sides on any unsolved 
question of the theory, or in any discussion concerning its foundations. In the 
winter semester of 1911-12, H~LBERa" lectured specifically on the kinetic theory. 
In the introduction to these lectures he discussed different ways in which 
physical domains can be rigorously formulated in mathematical terms. First one 
has the "phenomenological perspective." In this case, the whole of physics is 
divided into various chapters: thermodynamics, electrodynamics, optics, etc. 
Each of these domains can be approached using different assumptions, peculiar 
to each, and different mathematical consequences are thus derived from these 
assumptions. The main mathematical tool used under this approach is the 
theory of partial differential equations. The second possible way is to assume 
the "theory of atoms." In this case a "much deeper understanding is r e a c h e d . . .  
We attempt to put forward a system of axioms which is valid for the whole of 
physics, and which enables all physical phenomena to be explained from a uni- 
fied point of view. ''2~ The mathematical methods used here, continued HIL- 
BERT, are obviously quite different from the former: they can be subsumed, 
generally speaking, under the methods of the theory of probabilities. The most 
salient examples of this approach are found in the theory of gases and in 
radiation theory. From the point of view of this approach, the phenomenologi- 
cal one is a palliative, indispensable as a primitive stage in the way to know- 
ledge, which must however be abandoned "as soon as possible, in order to 
penetrate to the real sanctuary of theoretical physics. ''2~ Unfortunately, said 
HILBERa', mathematical analysis is not developed enough to be able to satisfy all 
the demands of the second approach. We must therefore do without rigorous 

202 In his account of the development of the kinetic theory, STEPHEN BRUSH (1976, 
p. 448) claims that, in dealing with the BOLTZMANN equation, HILBERT had no direct 
interest in the theory, but rather "he was simply looking for another possible application 
of his mathematical theories." The present account is meant to allow a broader look at 
the motivations behind HILBERT's contribution, than the one implied by BRUSH's 
assertion. 

zo3 HILBERT 1911--12, 2: "Hier ist das Bestreben, ein Axiomensystem zu schaffen, 
welches f//r die ganze Physik gilt, und aus diesem einheitichen Gesichtspunkt alle 
Erscheinungen zu erkl//ren . . . .  Jedenfalls gibt sie unvergleichlich tieferen Aufschluss gber 
Wesen und Zusammenhang der physikalischen Begriffe, ausserdem auch neue Auf- 
kl//rung/iber physikalische Tatsachen, welche we~t//ber die bei A) erhaltene hinausgeht." 

2o4 HILBERT 1911--12, 2: "Wenn man auf diesem Standpunkt steht, so wird man den 
fr/iheren nur als einer Notbehelf bezeichnen, der n6tig ist als eine erste Stufe der 
Erkentnnis, fiber die man abet eilig hinwegschreiten muss, um in die eigentlichen Heilig- 
t/imer der theoretischen Physik einzudringen." 
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logical deductions and be temporarily satisfied with rather vague mathematical 
formulae, z~ It is amazing, HILBERT thought, that using this method we never- 
theless obtain ever new results that are in accordance with experience. What 
can be considered the "main task of physics", he said in concluding the 
introduction to his 1911-12 lectures, is "the molecular theory of matter." 

The molecular theory of matter was the subject of HILBERT'S course in the 
following winter. This theory, he said in the introductory lecture, studies phys- 
ical bodies and the changes affecting them, by considering systems composed of 
large numbers of masses moving in space, and acting on each other through 
collisions and other kinds of interacting forces. Such a study, he said - -  repeat- 
ing a view he had already stated on different occasions - -  meets with enormous 
difficulties, which force us to adopt a "physical" point of view. This point of 
view is attained by clearly emphasizing, through the use of the axiomatic 
method, those places where physics intervenes in mathematical deduction. In 
this way, he proposed to separate - echoing a distinction formerly drawn by 
both HERTZ and VOLKMANN three different components of the specific domain 
considered: first, what is arbitrarily adopted as definition or taken as assump- 
tions of experience; second, what we expect a priori  should follow from these 
assumptions, but the current state of mathematics does not yet allow us to 
conclude with certainty; and third, what is truly proven from a mathematical 
point of view. 2~ 

But then, in his next series of lectures, in the summer semester of 1913, 
HILBERT was already adopting a view quite different from the molecular one 
and he now embraced with full commitment the unified, electromagnetic view of 
nature that was to underlie his general relativistic theory of gravitation in 
1915. 2o7 This change, together with the opinions expressed in his 1911-12 and 
1912-13 courses, seems to suggest that a main reason for HILB~RT'S willingness 
to abandon the atomic theory of matter which he had espoused until then 
(though perhaps never zealously), came from the enormous difficulty he recog- 
nized in developing a thorough mathematical treatment of the theory that was 
the foremost expression of the atomistic view. Given HILBERT'S overarching 
mathematical knowledge - -  and more specifically, given his recent work on the 
theory of integral equations, with its all-important applications in kinetic theory 
- -  it seems that no one was in a better position than he to judge those 

2 0 5  HILBERT 1911--12, 2: " . . .  sich mit etwas verschwommenen mathematischen 
Formulierungen zufrieden geben muss." 

2o6 HILBERT 1912--13, 1: "Dabei werden wir aber streng axiomatisch die Stellen, in 
denen die Physik in die mathematische Deduction eingreift, deutlich hervorheben, und 
das voneinander trennen, was erstens als logisch willkfirliche Definition oder Annahme 
der Erfahrung entnomen wird, zweitens das, was a priori sich aus diesen Annahmen 
folgern liesse, abet wegen mathematischer Schwierigkeiten zur Zeit noch nicht sicher 
gefolgert werden kann, und drittens, das, was bewiesene mathematische Folgerung ist." 

2o7 For more details on this important issue, see below the section on electro- 
dynamics. 
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difficulties. The "physical point of view" he was "forced" to adopt  in view of the 
mathematical  difficulties encountered when starting from the atomistic concep- 
tion was then in decline among physicists, but it proved indeed fruitful in 
leading H~LBERT to develop what he saw as his contribution to the foundations 
of the whole of physics. 

Insurance Mathematics 

The third application of the calculus of probabilities considered by HILBERT 
was the insurance calculus: this domain is treated - -  again following BOHLMANN 
- -  by taking the axioms of probability introduced above, and adding more 
specific definitions and axioms. In discussing thermodynamics, the state of 
matter  has been expressed in terms of a function e = (v, H). A similar move was 
made here: for the purposes of insurance, an individual person is characterized 
by means of a function p(x, y), defined for y > x. This function expresses the 
probabili ty that a person of age x will reach age y, and it is required to satisfy 
the following axiom: 

The probabilities p(x, y), p'(x', y') associated with two different individuals are inde- 
pendent for all pairs x, y x', y' of positive numbers. 

Now, a collection of individuals, such for that any two of them p(x, y) = p'(x, y), 
is called an equal-risk group. F rom the point of view of insurance, the indi- 
viduals of any of these collections are identical, since the function p wholly 
characterizes their relevant behavior. 

HILBERT attempted to develop the analogy between thermodynamics and the 
insurance calculus even further. In the former discipline, the main result 
achieved in the lectures was the explicit derivation of the form of the function 
f(O, H), using only the particular axioms postulated. Something similar should 
be pursued for all other disciplines, and in this particular case, the aim would 
be the determination of a certain function of one variable. 2~ The axiomatic 
system on which HILBERT proposed to base the insurance calculus was thus 
postulated as follows: Every equal-risk group associated with a function of 
probabili ty p(x, y) defines a "virtual mortali ty-order" (fingierte Absterbeord- 
nung). This means that one can associate to every such group a function l(x) of 
the continuous variable x, called the "number of living people of age x" or "life 
function", satisfying the following properties: 2~ 

2os [184] Wie wir nun in der Thermodynamik zun/ichst als wichtigstes Resultat aus 
den Axiomen die Gestalt einer gewissen Funktion f(O, H) herleiten mugten, und ~ih- 
nilches auch mehrfach in andern Disciplinen halten, so ist auch hier die fundamentalste 
Tatsache die Existenz einer gewissen Funktion einer Variablen und ihre Darstellung. 

209 [185] Jede Gesammtheit von gleichartigen Risiken, zu denen die Wahrscheinlich- 
keit p(x,y) geh6rt, besitzt eine (fingierte) Absterbeordnung; d.h. zu ihr geh6rt eine 
Funktion l(x) der kontinuerlichen Variablen x, gennant die Zahl der Lebenden des Altes 
x oder Lebensfunktion mit folgenden Eigenschaften: . . .  
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1. 1 is well-determined up to a constant factor. 
2. l is non-negative and decreases with x, 

dr(x) 
l(x)>=o, - -  <=o 

dx 

3. It is possible to establish the relation 

l(y) 
p(x,  y) = - - .  

t(x) 

HILBERT did not prove any of the results pertaining to this theory and to the 
functions p and 1. He stated only that such proofs would involve a kind of 
deduction similar to those used in the other domains. He added, however, that 
in these deductions also, an unspecified axiom of continuity of the kind as- 
sumed in the former domains - -  the particular version of which he would not 
formulate explicitly in this case - -  plays a central role. 

Electrodynamics 

In subsequent lectures, HILBERT discussed several questions concerning elec- 
trodynamics. The manuscript of the lecture indicates that this particular domain 
had not been discussed by HILBERT before July 14, 1905. By that time HILBERT 
must have been deeply involved with the issues studied in the advanced seminar 
on electron-theory that was being run in G6ttingen parallel to his lecture 
course. These issues must surely have appeared in the lectures as well, although 
the rather elementary level of discussion in the lectures differed enormously 
from the very advanced mathematical sophistication characteristic of the sem- 
inar. As mentioned above, at the end of his lectures on mechanics HILBERT had 
addressed the question of a possible unification of the equations of gravitation 
and electrodynamics, mainly based on methodological considerations. Now he 
stressed once more the similarities underlying the treatment of different physical 
domains. In order to provide an axiomatic treatment of electrodynamics similar 
to those of the domains discussed above - -  HILBERT opened this part of his 
lectures - -  one needs to account for the motion of an electron by describing it 
as a small electrified sphere and by applying a process of passage to the limit. 

One starts therefore by considering a material point m in the classical 
presentation of mechanics. The kinetic energy of a mass-point is expressed as 

L(v) = �89 a. 

The derivatives of this expression with respect to the components vs of the 
velocity v define the respective components of the momentum 

aL(v) 
- -  m .  Vs"  Ov~ 
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If one equates the derivative of the latter with respect to time to the compo- 
nents of the forces - -  seen as the negative of the partial derivatives of the 
potential energy - -  one gets the equations of motion: 

8L 
d - -  

8v~ 8U 
+ = ~  (s = x, y, z). 

As was seen earlier in the lectures on mechanics, an alternative way to 
attain these equations is to use the functions L, U and the variational equation 
characteristic of the Hamiltonian principle: 

t2 

(L - U) dt = Minim. 
t l  

This principle can be applied, as LAPLACE did in his Celestial Mechanics, 
even without knowing anything about  L, except that it is a function of the 
velocity. In order to determine the actual form of L, one must then introduce 
additional axioms. HmBERT explained that in the context of classical mechanics, 
LAPLACE had done this simply by asserting what for him was an obvious, 
intuitive notion concerning relative motion, namely, that we are not able to 
perceive any uniform motion of the whole universe, 21~ From this assumption 
LAPLACE was able to derive the actual value L(v) = �89 my 2. This was for HILBERT 
a classical instance of the main task of the axiomatization of a physical science, 
as he himself had been doing throughout his lectures for the cases of the 
addition of vectors, thermodynamics, insurance mathematics, etc.: namely, to 
formulate the specific axiom or axioms underlying a particular physical theory, 
from which the specific form of its central, defining function may be derived. In 
this case, LAPLACE'S axiom is nothing but the expression of the Galilean- 
invariance of the Newtonian laws of motion, although HILBERT did not use this 
terminology here. 

In the case of the electron, as HILBERT had perhaps recently learnt in the 
electron-theory seminar, this axiom of Galilean-invariance is no longer valid, 
nor  is the specific form of the Lagrangian function. Yet - -  and this is what 
H~LBERT stressed as a remarkable fact - -  the equation of motion of the electron 
can nevertheless be derived following considerations similar to those applied 

210 [187] Zur Festlegung von L mug man nun natfirlich noch Axiome hinzunehmen, 
und Laplace kommt da mit einer allgemeinen, ihm unmitelbar anschaulichen Vorstellung 
fiber Relativbewegung aus, dab wir nfimlich eine gleichf6rmige Bewegung des ganzes 
Weltalls nicht merken wfirden. Alsdann 1/igt sich die Form my2/2 von L(v) bestim- 
men, und das ist wieder die ganz analoge Aufgabe zu denen, die das Fundament 
der Vektoraddition, der Thermodynamik, der Lebensversicherungsmathematik u.a. 
bildeten. 
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in LAPLACE'S case. One need only find the appropriate  axiom to effect the 
derivation. Without  further explanation, HILBERT wrote down the Lagrangian 
describing the mot ion of the electron. This may be expressed as 

1 - v  2 l + v  
L(v) = # - - ' l o g  - -  

v 1 - - v  

where v denotes the ratio between the velocity of the electron and the speed of 
light, and /~ is a constant, characteristic of the electron and dependent on its 
charge. This Lagrangian appears, for instance, in MAX ABRAHAM'S article on the 
dynamics of the electron (ABRAHAM 1902, 37), and a similar one appears in the 
article on electron theory written by HENDRIK A. LOR~NTZ in 1903 and pub- 
lished in 1904 in the volume on mechanics of the Encyclopiidie der mathematis- 
chen Wissenschaften (LoRENTZ 1904, 184). 211 If not earlier than that, HILBZRT 
had studied these articles in detail in the advanced seminar on electron theory, 
where LORENTZ'S article was used as a main text. 212 An important  work 
reviewed in that article, which also received some attention in the seminar, was 
ABRAHAM'S second article o n  the dynamics of the electron. In its central section, 
ABRAHAM described translational mot ion by means of still another Lagrangian 
(equal to the difference between magnetic and electrical energy) and showed 
that the principle of least action also holds for what he called ""quasi-stationary" 
translational motion. 213 That  the dynamics of the electron could be expressed 
by means of a Lagrangian was for ABRAHAM a result of special epistemological 
significance (ABRAHAM 1903, 168)! 214 ABRAHAM, it must be stressed here, had 
been Privatdozent in G/fttingen since 1900, and while certainly HILBZRT may 
have learned much from him about  the specific, physical results of the theory, it 
must also have been the case that ABRAHAM'S basic ideas about  what is of 
importance - -  and in particular, of epistemological importance - -  in the math-  
ematical t reatment of physical theories were in turn influenced by HILBERT'S 
ideas. 

If, as in the case of classical mechanics, one again chooses to consider the 
differential equation or the corresponding variational equation as the single, 
central axiom of electron theory, taking L as an undetermined function of 
v whose exact expression one seeks to derive, then - -  HILBERT said - -  in order 
to do so, one must  introduce a specific axiom, characteristic of the theory and 
as simple and plausible as possible. Clearly - -  he said concluding this section 
- -  this theory will require more, or more complicated, axioms than the one 

21~ LORENTZ's Lagrangian is somewhat different, since it contains two additional 
terms, involving the inverse of v 3. 

212 See PYENSON 1979, 103. 
213 Namely, motion in which the variation in the velocity of the electron in the time 

required for light to traverse its diameter is small. 
214 O n  ABRAHAM'S electron theory see GOLDBERG 1970. 
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introduced by LAPLACE in the case of classical mechanics. 215 The electron- 
theory seminar in which HILBERT was participating had been discussing many  
recent contributions, by people such as POINCAI~E, LORENTZ, ABRAHAM and KARL 
SCHWARZSCHILD, who on many  important  issues held contradicting views. 216 It  
was thus clear to H~LBERT that, at that time at least, it would be too early to 
advance any definite opinion as to the specific axiom or axioms that should be 
placed at the basis of the theory. This fact, however, should not affect in 
principle his argument as to how the axiomatic approach should be applied to 
the theory. 

It  is noteworthy that HILBERT in 1905 did not mention the LORENTZ trans- 
formations, which were to recieve very much attention in his later lectures on 
physics. LORENTZ published the transformations in an article of 1904, but this 
article was not listed in the bibliography of the electron theory seminar, and it 
is likely that HILBERT was not aware of it by the time of his lectures (LORENTZ 
1904a). 2~v The next time HILBERT lectured on electron theory was in the 
summer semester of 1913. This time the demand of invariance under LOREYTZ 
transformations was the first topic discussed in the lectures, and it appeared as 
a general principle that should be taken as valid for the whole of physics. 
Moreover,  at a time when recent developments in physics - -  above all, the 
development of quantum theory - -  had raised significant difficulties for the 
electromagnetic view of nature, 2~s HILBERT'S initial inclinations towards a mech- 
anical view had cleared the way for an explicit preference for the unified, 
electromagnetic conception that in the next two years was to provide the 
physical basis for his relativistic theory of gravitation. 2~9 In his 1913 lectures, 
stressing again the methodological motivation behind the quest for a unified 
view of nature, HILBERT said: 

2is [188] Nimmt man nun wieder die Differentialgleichungen bzw. das zugeh6rige 
Variationsproblem als Axiom und l~iBt L zun/ichst als noch unbestimmte Funktion von 
v stehe, so handelt es sich darum, dafiir m6glichst einfache und plausible Axiome so zu 
konstruiren, dab sie gerade jene Form yon L(v)bestimmen. Natfirlich werden wir mehr 
oder kompliciertere Axiome brauchen, als in dem einfachen Falle der Mechanik bei 
Laplace. 

216 For a detailed discussion of the various positions, as manifest at the 1905 
electron-theory seminar in G6ttingen, see PYENSON 1979, 110-128. On the differences 
between ABRAHAM and LORENTZ, as seen by ABRAHAM, see GOLDBERG 1970, 19-22. 

2a7 See PYENSON 1979, 103. 
21s MCCORMMACH 1970, 485-491. 
219 On December 17, 1912, MAX BORN lectured at the G6ttingen Mathematical 

Society on MIE'S theory of matter (see the announcement in the Jahresberieht der 
Deutschen Mathematiker-Vereinigung Vol. 22 (1913), 50). This is the first recorded evid- 
ence of the theory being discussed in G6ttingen. On October 22, 1913, that is, during the 
semester following HILBERT'S above-mentioned lectures, MIE wrote a letter to HILBERT 
expressing his satisfaction for the interest that the latter had manifested (in an earlier 
letter which is not preserved) on MIE's recent work. MIE'S letter is in HILBERT'S 
Nachlass, NSUB G6ttingen - -  Cod Ms David Hilbert 254/1. 
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But if the relativity principle [i.e., invariance under Lorentz transformations] is valid, 
then it is so not only for electrodynamics, but for the whole of physics. We would 
like to consider the possibility of reconstructing the whole of physics in terms of as 
few basic concepts as possible. The most important concepts are the concept of force 
and of rigidity. From this point of view electrodynamics would appear as the 
foundations of all of physics. But the attempt to develop this idea systematically 
must be postponed for a later occasion. In fact, it has to start from the movement of 
one, of two, etc. electrons, and there are serious difficulties on the way to such an 
undertaking. The corresponding problem for Newtonian physics is still unsolved for 
more than two bodies. 22~ 

Since the very first endeavors of LOR~NTZ and WILHELM Wren to implement 
their unifying program for an electromagnetic view of nature, the task of sub- 
suming gravitation under it had been unsuccessfully attempted. 221 Of particular 
interest for this account is the fact that in MINKOWSKI'S 1907 detailed derivation 
of the equations of electrodynamics, he discussed in a final appendix a sketch of 
how this possible reduction could be actually worked out, outlining a Lorentz- 
invariant theory of gravitation (MINKOWSKI 1908, 401--404). In fact, the possibil- 
ity of extending to all of physics the validity of invariance under Lorentz 
transformations was a main theme of MINKOWSKI'S article, which he formulated 
in terms very similar to those used by HILBERT here. MINKOWSKI'S "postulate of 
relativity" is nothing but a "confidence" (Zuversicht) in the plausibility of 
extending to all of physics, as a general underlying principle, what was a math- 
ematical theorem known to be valid for the laws of electrodynamics (p. 353). As 
late as 1913, HILBERT reasserted the need to realize the view behind the confi- 
dence expressed by MINI(OWSKI, and turned it into a central task of his own 
unified perspective for physics. Nevertheless, he was well-aware of the difficulties 
of a purely electromagnetic reduction. Lecturing on the theory of the electron 
he asserted: 

The Maxwell equations and the concept of energy do not suffice to provide a 
foundation of electrodynamics. The concept of rigidity is thus needed. Electricity 
should be attached to a stable scaffold, and this scaffold is what we denote as 
an electron. The electron embodies the concept of a rigid body in Hertz's mechanics. 
All of the laws of mechanics can be derived, in principle at least, from these 
three ideas: Maxwe11's equations, the concept of energy, and rigidity. From them 
also all the forces of physics can be derived, and in particular the molecular 

22o HILBERT 1913, 13: '"Die wichtigsten Begriffe sind die der Kraft und der Starrheit. 
Die Elektronentheorie wiirde daher von diesem Gesichtspunkt aus das Fundament der 
gesamten Physik sein. Den Versuch ihres systematischen Aufbaues verschieben wir 
jedoch auf sp/itcr; er h/itte yon der Bewegung eines, zweier Elektronen u.s.w, auszugehen, 
und ibm stellen sich bedeutende Schwierigkeiten in der Weg, da schon die entsprechen- 
den Probleme der Newtonschen Mechanik fiir mehr als zwei K6rper ungel6st sind." 

221 Me CORMMACH 1970, 476--478. 
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forces. Only gravitation has evaded until now every attempt at an electrodynamic 
explanation. 222 

When HILBERT addressed in 1915 the problem of a relativistic theory of 
gravitation, he was simply following a line of interest that he had systematically 
pursued since the time of his earliest involvement with physical theories. The 
existing evidence allows us in fact to say much more about the evolution of 
HILBERT'S view from his 1905 lectures to his 1915 field equations for gravitation, 
but that would be beyond the scope of the present article and will be left for 
a later occasion. To conclude this brief sketch of that development, however, 
I must add that HILBERT'S 1915 presentation of general relativity was meant as 
an axiomatization of the principles of physics in general. The second basic 
axiom of his theory was the demand that the equations of gravitation be 
generally covariant (HILBERT 1915, 396). In this way, we can discern a clear line 
of evolution in HILBERT'S thought: in 1905 he acknowledged the need for 
postulating Galilean-invariance as an axiom of the Newtonian theory of gravi- 
tation; later (e.g., in the 1913 course), he adopted a view elaborated by 
MINKOWSKI (to a certain extent, perhaps, under HILBERT'S influence) and in- 
cluded the demand of Lorentz-invariance as a basic principle of all physics, 
though he was not able to derive gravitation from it. Finally, in 1915, the 
demand of general covariance was among the axioms from which he was able 
to derive the desired theory of gravitation. For  HILBERT, the general covariance 
of what he saw as the basic equations of physics always remained the most 
important achievement of modern science, an opinion he repeatedly expressed 
in later years. Thus for instance in a lecture held in 1921, HILBERT asserted that 
no other discovery in history had aroused as much interest and excitement as 
EINSTEIN'S relativity theory, "the highest achievement of the human spirit." This 
excitement was indeed justified in HILBERT'S view since, whereas all former laws 
of physics were provisory, inexact and special, the principle of relativity (and 
here HILBERT meant by this the general covariance of physical laws) signified "for 
the first time, since the world has existed, a definitive, exact and general expres- 
sion of the natural laws that hold in reality. ''223 But in order to appreciate in its 
proper historical context the meaning of H~LBERT'S adoption in 1915 of the 

222 HILBERT 1913, 61-62: "Auf die Maxwellschen Gleichungen und den Energiebeg- 
rift allein kann man die Elektrodynamik nicht grfinden. Es muss noch der Begriff der 
Starrheit hinzukommen; die Elektrizit~it muss an ein festes Geriist angeheftet sein. Dies 
Gerfist bezeichen wir als Elektron. In ihm ist der Begriff der starter Verbindung der 
Hertzschen Mechanik verwirklicht. Aus den Maxwellschen Gleichungen, dem Ener- 
giebegriff und dem Starrheitsbegriff lassen sich, im Prinzip wenigstens, die vollstiindigen 
S/itze der Mechanik entnehmen, auf sie lassen sich die gesamten Kriifte der Physik, im 
Besonderen die Molekularkriifte zurtickzuftihren. Nur die Gravitation hat sich bisher 
dem Versuch einer elektrodynamischen Erkliirung widersetzt." 

223 HILBERT 1921, 1: " . . .  denn das Relativit~itsprinzip bedeutet, wie mir scheint, zum 
ersten Mal, seit die Welt steht, eine definitive, genaue und allgemeine Aussage fiber die in 
der Wirklichkeit geltenden Naturgesetze." 
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demand for covariance as a main foundational axiom of physics, it is necessary 
to recall the fact that this adoption came after three years of EINSTEIN'S failure 
to embrace general covariance as a leading principle of his own relativistic 
theory of gravitation. After several unsuccessful attempts to formulate such 
a theory, and after discarding general covariance as part of these attempts, 
EINSTEIN had only very recently re-espoused this principle. 224 

HILBERT'S brief discussion of electrodynamics in 1905 and the point of view 
adopted in it are thus of fundamental importance for understanding the main 
ideas behind HILBERT'S program for the axiomatization of physics, as well as his 
own later contributions to it. We have already seen various passages where 
HILBERT - -  following an idea expressly manifest in the introduction to HERTZ'S 
P r i n c i p l e s  2 2 5  - -  stressed the possibility that new, significant facts would be 
added in the future to the edifice of mechanics. The axiomatization of this 
science should be carried out in a way that would allow for the absorption of 
such eventual discoveries into the existing body of knowledge, without major 
modifications in the logical structure of the theory, and by adding or deleting 
specific axioms of relatively circumscribed consequences for that structure. In 
1905 HILBERT was faced with the new discoveries brought about by research on 
electron theory. From his point of view, this new research should and could be 
easily incorporated into the existing picture of mechanics, by the addition of 
suitable axioms. This is precisely what he stated in this section of his 
lectures. At that time, HILBERT was not yet aware of the recent publication 
of EINSTEIN'S special theory of relativity. Yet not even the subsequent develop- 
ment of this theory would present any problem of principle for HILBERT'S 
conception. On the contrary, repeating what he had done in 1905 for the laws 
of motion of the electron, he would simply be confronted with the need to find 
the special axioms that would allow the special theory of relativity to be 
incorporated into the already established - -  yet open to necessary modifications 

- -  logical structure of mechanics. Finally, beginning in the late 1913, HILBERT 
would again be in the same position with regard to GUSTAV MIE'S elec- 
trodynamic theory of matter and EINSTEIN'S attempt to develop a relativistic 
theory of gravitation. HILBERT'S endeavor to address the challenge posed by the 
possible incorporation of these two theories into the existing picture of physics 
initiated a line of development that would eventually lead him to the discovery 
and publication of his own version of the correct field equations for general 
relativity, 

224 See NORTON 1984. 
225 HERTZ 1956, 10: "Our assurance, of course, is restricted to the range of pre- 

vious experience: as far as future experience is concerned, there will be yet occasion 
to return to the question of correctness." This passage is quoted extensively above on 
p. 95. 
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Psychophysics 

The last domain considered by HILBERT in his 1905 account of the role of 
axiomatization in natural science was psychophysics. HIEBERT'S account of this 
domain referred to a recent work on the theory of color perception published 
by EGON RITTER YON OPPOLZER, a psychologist from Innsbruck (OPPOLZER 
1902--3). OPPOLZER'S article was a classical representative of the German school 
of experimental psychology, going back to the work of GUSTAV FECHNER 
(1801--1887). 226 One of FECHNER'S main contributions to this field was the 
so-called WEBER-FEcHNER law concerning the relation between the magnitude of 
a stimulus and the magnitude of the sensation produced by it. Since the latter 
cannot  be directly measured, FECHNER focused rather on the absence or pres- 
ence of a sensation, estimating its threshold values, i.e., the minimal amount  of 
stimulus needed to produce that sensation or a noticeable difference between 
two sensations of the same kind. Before FECHNER, ERNST HEINRICH WEBER 
(1795--1878), a professor of anatomy and physiology at Leipzig, had experi- 
mentally established in 1834, for a light stimulus of intensity Ik and brightness 

Ik + A Ik . 
Xk, that the quotient - -  is constant for all values of Axk. 

Ik 
Building upon WEBER'S result, FECHNER - -  who had started his career as 

professor of physics - -  established in 1860 a more precise quantitative relation: 
if R denotes the magnitude of the stimulus (Reiz) and S denotes the magnitude 
of the sensation, then 

S = k log R. 

Here, S is measured in multiples of the empirically determined, minimal notice- 
able difference between two sensations of the same kind, whereas R is measured 
as multiples of the threshold value of the stimulus. 

OPPOLZER took the WEBER--FECHNER law - -  with certain reservations - -  as 
one of the starting points of his work. He also relied on the work of HERMANN 
VON HELMHOLTZ (1821--1894), who in 1860 had published an analysis of color 
vision in the second part  of his Handbuch der physiologischen Optik. HELM- 
HOLTZ'S theory, based in turn on THOMAS YOUNG'S account of vision, became 
a most  influential source for the study of color vision. 227 OPPOLZER'S was only 
one of a long series of German articles devoted to this question after the 
publication of HELMHOLTZ'S book. 22s Its declared aim was to characterize the 

226 On FECHNER'S contributions see BORING 1929, 265-287. More generally, on the 
German school, see there, pp. 237 401. OPPOLZER is mentioned neither in BORING's 
classical account, nor in other, standard similar works. 

227 HELMHOLTZ'S theory is discussed in detail in KREMER 1993, 237--258. 
228 According to TURNER 1987, 44, research into color vision was the single topic 

that attracted the greatest number of publications in physiological optics between 1870 
and 1885. It continued to be at the center of attention of German vision research until 
1920. See KREMER 1993, 257-258. 
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sensation of light in "total colorblind systems" by means of a single, purely 
psychological parameter  - -  the brightness ( H e l l i g k e i t )  - -  as opposed to the 
physically characterizable concept of intensity ( I n t e n s i t i i t ) .  The problem ad- 
dressed by OPPOLZER, as H~LBERT presented it in his lectures, was to express the 
magnitude of this parameter  as a function of the intensity and wave-length of 
light. 229 

As in the case of BOHLMANN'S work on probabilities, the axioms mentioned 
by HILBERT for the case of psychophysics can be found only retrospectively in 
OPPOLZER'S own article. OPPOLZER himself described his basic assumptions 
discursively, sometimes loosely, and not only in the opening sections, but 
throughout  his article; Needless to say, he did not analyze the independence, 
consistency or any other property of his "axioms". Yet precisely because the 
unsystematic way in which OPPOLZER discussed principles and ideas drawn from 
works as diverse as those of GOETH~ and the German psychologists, NEWTON 
and THOMAS YOUNG, this work seems to have presented HILBERT with a further, 
unexplored territory in which the axiomatic approach could usefully be applied. 
In fact, OPPOLZER'S article was in this sense symptomatic  of a more general 
situation in con temporary  research in psychophysics, 23~ and was therefore 
well-suited to exemplify HILBERT'S claims concerning the careless introduction of 
new assumptions into existing physical theories. 

The manuscript  of the lectures makes no mention of the differences between 
HILBER3:'S formulation and OPPOLZER'S own. HILBERT simply put forward his 
axioms, which are defined for a collection of "brightnesses" xl,  x2 . . . . .  The 
axioms postulate the following properties that the brightnesses are required to 
satisfy: 

1. To every pair of brightnesses xl, x2, a third one [xl, x2] can be associated, called 
"the brightness of the mixed light of x~, x2." Given a second pair of brightnesses 
x3, x4, such that x 1 = x 3 and x 2 = x 4, then Ix1, x2] = Ix3, x4]. 
2. The "mixing" of various brightnesses is associative and commutative. 
3. By mixing various homogeneous lights of equal wave-lengths, the brightness of 
the mixed light has the same wave length, while the intensity of the mixed light is the 
sum of the intensities. 

Experience, said HILBERT, amply confirms these three axioms. The first one 
contains what HILBERT called the law of GRASSMANN, namely, that intensities 

229 [189] Das Hauptproblem ist, diese Helligkeit x als Funktion der Bestimmung- 
stiicke der das Licht physisch (sic) zusammensetzenden homogenen Lichter (d.i. Intensit~it 
und Wellenliinge eines jeder) darzustellen. 

23o As KREMER 1993, 257, describes it: "For a variety of philosophical, institutional 
and personal reasons, color researchers between 1860 and 1920 simply could not 
agree on which color experiences are quintessential or on what criteria are appro- 
priate to evaluate hypothetical mechanisms for a psychoneurophysiological system of 
sensation." 
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that are psychically equal (but may be physically different), remain equivalent at 
the psychical level, after they are physically mixed. TM 

If one calls the uniquely determined number Ix1, x2], x12, one can then 
write it as a function of the two parameters 

x(12) =f(x l ,  x2). 

From the second axiom, one can derive the functional equation: 

f ( f  (xl, x2),f (x3, x4)) = f ( f  (xl, x3),f (x2, x4)) = f ( f  (xt, x4),f (x2, x3)). 

One can then introduce a new function F that satisfies the following relation: 

F(x12) = F(f(xl ,  x2) ) = F ( X 1 )  -]- F(x2) . 

From axiom 3, and assuming the by now well-known general postulate of 
continuity, it follows that the function F, for homogeneous light, is proportional 
to the intensity. This function is called the "stimulus value" (Reizwert), and once 
it is known, then the whole theory becomes, so HILBERT claimed, well-estab- 
lished. One notices immediately, HILBERT went on to say, the analogy with the 
previously studied domains, and especially with the theorem of existence of 
a function l(x) in life-insurance mathematics. This very analogy could suffice to 
show, he Concluded, that in this latter domain also, so far removed from the 
earlier ones, the approach put forward in the whole course would become 
fruitful. 232 

HILBERT'S treatment of psychophysics, at least as it appears in the manu- 
script, was rather sketchy and its motivation was far from obvious, since he did 
not provide any background for understanding the current research problems of 
this domain. Moreover, as in the case of probabilities, H~LBERT did not examine 
the logical interrelations among the axioms, beyond the short remarks quoted 
in the preceding paragraphs. Yet, in the context of his treatment of other 
physical domains and of the confused state of affairs in contemporary psycho- 
logical research, one can grasp the breadth of application that H~LnERT en- 
visaged for the axiomatic method in science. H~LBERa"S ideas seem not to have 
influenced in any tangible way the current research of German psychologists, 
and one wonders whether or not there was any personal contact between him 
and his psychologist colleagues, at least in G6ttingen. 

In the years following this series of lectures, HILBERT himself became grad- 
ually involved in actual research in mathematical physics. To conclude the 
present discussion, it is interesting to notice that several years after having 
taught this course, HILBERT returned to the manuscript and added some re- 
marks in his own handwriting on the front page, in which he mentioned two 

231 [189] Psychisch gleich Erscheinendes (was [190] aber physisch verschieden sein 
kann), bei der physischen Operation der Mischung wieder psychisch Gleiches gilt. 

232 [190] Das mag zur Kennzeichnung geniigen, wie auch in diesem yon den 
friiheren so ganz verschiedenen Gebiete unsere Gedankeng;,inge fruchtbar werden. 
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more recent works he thought relevant to understanding the use of the axio- 
matic method in physics. First, he simply referred to a new article by HAMEL on 
the principles of mechanics. HAMEL'S article, published in 1909, contained philo- 
sophical and critical remarks concerning the issues discussed in his own earlier 
article published in 1905 (the one mentioned by HILBERT with reference to the 
axiomatization of vector addition). In particular, it discussed the concepts of 
absolute space, absolute time and force, as a priori concepts of mechanics. The 
contents of this article are beyond the scope of our discussion here. HILBERT'S 
interest in it may have stemmed from a brief passage it contains on the 
significance of his axiomatic method (HAMEI~ 1909, 358), and, more importantly 
perhaps, from its account of a new system of axioms for mechanics. 233 

Second, in a formulation that condenses in a very few sentences what 
HILBERT saw as the principles and goals of axiomatization, as applied to 
geometry and to various domains of physics, he also directed attention to what 
he saw as PLANCK'S application of the axiomatic method in the latter's recent 
research on quantum theory. HILBERT thus wrote: 

It is of special interest to notice how the axiomatic method is put to use by Planck 
- -  in a more or less consistent and in a more or less conscious manner - -  even in 
modern quantum theory, where the basic concepts have been so scantily clarified. In 
doing this, he sets aside electrodynamics in order to avoid contradiction, much as in 
geometry continuity is set aside in order to remove the contradiction in non-Pas- 
calian geometry, or in the theory of gases mechanics is set aside in favor of the 
axiom of probability (maximal entropy), thus applying only the Stossformel or the 
Liouville theorem, in order to avoid the objections involved in the reversibility and 
recurrence paradoxes. T M  

This remark may reflect some kind of contact of HILBERT with the ideas of 
PAUL EHRENFEST, either personally or through HILBERT'S reading of the latter's 
Encyclop~die article (written in collaboration with his wife TATYANA). In fact, the 
two last terms used here by HILBERT (Umkehr- oder Wiederkehreinwand) were 

233 According to CLIFFORD TRUESDELL (1968, 336), this article of HAMEL, together 
with the much later NOLL 1959, are the "only two significant attempts to solve the part 
of Hilbert's sixth problem that concern mechanics [that] have been published." One 
should add to this list at least another long article by HAMEL (1927) that appeared in 
Vol. 5 of the Handbuch der Physik. 

23, (Besonders interessant ist es zu sehen, wie die axiomatische Methode von Planck 
sogar bei der modernen Quantentheorie, wo die Grundbegriffe noch so wenig gekl~irt 
sind, in mehr oder weniger konsequenter und in mehr oder weniger bewussten Weise zur 
Anwendung gebracht werden: dabei Ausschaltung der Elektrodynamik, um Widerspruch 
zu vermeiden - -  gerade wie in der Geometrie Ausschaltung der Stetigkeit, um den 
Widerspruch gegen die Nichtpaskalsche Geometrie zu beseitigen, oder in der Gastheorie 
Ausschaltung der Mechanik (Benutzullg allein der Stossformel oder des Liouvilleschen 
Satzes) dafiir Axiom der Wahrscheinlichkeit - -  (Entropie Maximum), um den Wider- 
spruch gegen den Umkehr- oder Wiederkehreinwand zu beseitigen.) 



Hilbert and the Axiomatization of Physics 183 

introduced only in 1907 by the EHRENFESTS, 235 and were made widely known 
only through the Encyclopiidie article that appeared in 1912. Also, the Stossformel 
that HILBERT mentioned here referred probably to the Stossanzahlansatz, whose 
specific role in the kinetic theory, together with that of the Liouville theorem 
(that is the physicists' Liouville theorem), the EHRENFEST'S article definitely con- 
tributed to clarify. 236 Moreover, the clarification of the conceptual interrelation 
between PLANCK'S quantum theory and electrodynamics alluded to by HmUERT 
in his added remark was also one of EHRENVEST'S central contributions. 237 

Concluding Remarks 

HILBERT'S call in 1900 for the axiomatization of physical theories was 
a natural outgrowth of the background from which his axiomatic approach to 
geometry first developed. Although in elaborating the point of view put forward 
in the Grundlagen der Geometrie HILBERT was mainly driven by the need to 
solve certain, open foundational questions of geometry, his attention was also 
attracted in this context by recent debates on the role of axioms, or first 
principles in physics. HERTZ'S textbook on mechanics provided an elaborate 
example of a physical theory presented in strict axiomatic terms, and - -  per- 
haps more important for HILBERT - -  it also discussed in detail the kind of 
requirements that a satisfactory system of axioms for a physical theory must 
fulfill. CARL NEUMANN'S analysis of the "Galilean principle of inertia" - -  echoes 
of which we find in HILBERT'S own treatment of mechanics - -  provided a further 
example of the kind of conceptual clarity that one could expect to gain from 
this kind of treatment. The writings of HILBERT'S colleague at K6nigsberg, PAUL 
VOLKMAYN, show that towards the end of the century questions of this kind 
were also discussed in the circles HILBERT moved in. From his earliest attempts 
to treat geometry in an axiomatic fashion in order to solve the questions he 
wanted to address in this field, HmBERT already had in mind the axiomatization 
of other physical disciplines as a task that could and should be pursued in 
similar terms. 

The lecture notes of HILBERT'S 1905 course on the axiomatic method provide 
the earliest encompassing evidence of HILBERT'S own picture of physical science 
in general and, in particular, of how he thought that the axiomatic analysis of 
individual theories should be carried out. This interesting document shows that 
HILBERT'S interests covered a very wide range, and he seems to have been well 

235 On November 13, 1906, PAUL EHRENFEST gave a lecture at the G6ttingen 
Mathematical Society, at which HILBERT was most likely present, on BOLTZMANN'S 
H-theorem and some of the objections (Einwiinde) commonly raised against it. This 
lecture is reported in the Jahresbericht der Deutschen Mathematiker-Vereinigung, Vol. 15 
(1906) p. 593. 

236 See KLEIN 1970, 119-140. 
23v See KLEIN 1970, 230--257. 
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aware of the main open questions being investigated in most of the domains 
addressed. HILBERT'S unusual mathematical abilities allowed him to gain a quick 
grasp of existing knowledge, and at the same time to consider the various 
disciplines fi'om his own idiosyncratic perspective, suggesting new interpreta- 
tions and improved mathematical treatments. However, one must exercise great 
care when interpreting the contents of these notes. It was not a characteristic 
trait of HILBERT'S working style to study thoroughly and comprehensively all 
the existing literature on a topic he was pursuing. The relatively long biblio- 
graphical lists that we find in the introductions to many of his early courses do 
not necessarily mean that he studied all the works mentioned there. From his 
repeated, enthusiastic reference to HERTZ'S textbook we cannot safely infer that 
he had read that book thoroughly, or even cursorily. Very often throughout his 
career he was content when some colleague or student communicated to him 
the main ideas of a recent book or a new piece of research. In fact, the official 
assignment of many of his assistants was precisely that: to keep him abreast of 
recent advances by studying in detail the research literature of a specific field. 
HILBERT would then, if he was interested, study the topic more thoroughly and 
develop his own ideas. It is thus hard to determine with exactitude how far he 
really commanded all the details of each theory and each topic discussed in 
his lectures. 

It is also important to qualify properly the extent to which H~LBERT carried 
out a true axiomatic analysis of the physical theories he discussed. As we saw in 
the preceding sections, there is a considerable difference between what he did 
for geometry and what he did for other physical theories. In no case, in the 
framework of the lectures, did HILBERT actually prove the independence, consist- 
ency or completeness of the axiomatic systems he introduced. In certain cases, 
like vector addition, he quoted works in which such proofs could be found 
(significantly, works of his students or collaborators). In other cases there were 
no such works to mention, and - -  as in the case of thermodynamics - -  HILBERT 
simply stated that his axioms are indeed independent. In still other cases, he 
barely mentioned anything about independence or other properties of his 
axioms. Also, his derivations of the basic laws of the various disciplines from 
the axioms are rather sketchy, when they appear at all. Many times HILBERT 
simply declared that such a derivation was possible. What is clear is that 
HILBERT considered that an axiomatization along the lines he suggested was 
plausible and could eventually be fully performed following the standards estab- 
lished in the Grundlagen. 

Yet for all these qualifications, the lecture notes of 1905 present an intri- 
guing picture of HILBERT'S knowledge of physics, notable both for its breadth 
and its incisiveness. They afford a glimpse into a heretofore unexamined side of 
his G6ttingen teaching activity, which must certainly be taken into account in 
trying to understand the atmosphere that dominated this world center of science, 
as well as its widespread influence. More specifically, these notes illustrate in 
a detailed fashion how HILBLRT envisaged that axiomatic analysis of physical 
theories could not only contribute to conceptual clarification but also prepare the 
way for the improvement of theories, in the eventuality of future experimental 
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evidence that conflicted with current predictions. If one knew in detail the 
logical structure of a given theory and the specific role of each of its basic 
assumptions, one could clear away of possible contradictions and superfluous 
additional premises that may have accumulated in the building of the theory. 
At the same time, one would be prepared to implement, in an efficient and 
scientifically appropriate way, the local changes necessary to readapt the theory 
to meet the implications of the newly discovered empirical data. As I have 
suggested in various places above, HILBERT'S own future research in physics 
would be increasingly guided by this conception. The details of his efforts in 
this area call for additional research which I intend to undertake in the future. 

In H~LBERT'S treatment of physical theories we find diverse kinds of axioms 
that reflect a classification previously found in the writings of PAUL VOLKMANN. 
In the first place, every theory is assumed to be governed by specific axioms 
that characterize it. These axioms usually express mathematical properties es- 
tablishing relations among the basic magnitudes involved in the theory. Then, 
there are certain general mathematical principles that HILBERT thought should 
be valid for all physical theories. In the lectures he stressed above all the 
"continuity axiom", providing both a general formulation and more specific 
ones for each theory. As an additional general principle of this kind he sugges- 
ted the assumption that all functions appearing in the natural sciences should 
have at least one continuous derivative. Furthermore, the universal validity of 
variational principles as the key to deriving the main equations of physics was 
a central underlying assumption of all of HILBERT'S work on physics, and that 
kind of reasoning appears throughout these lectures as well. In each of the 
theories he considered in his 1905 lectures, HILBERT attempted to show how the 
exact analytic expression of a particular function that condenses the contents of 
the theory in question could be effectively derived from the specific axioms of 
the theory, together with more general principles. On some occasions he elabor- 
ated this more thoroughly, while on others he simply declared that such 
a derivation should be possible. 

There is yet a third type of axiom for physical theories, however, which 
HILBERT avoided addressing in his 1905 lectures. That type comprises claims 
about the ultimate nature of physical phenomena, an issue which was parti- 
cularly controversial during the years preceding these lectures. Although 
HILBERT'S sympathy for the mechanical world-view is apparent throughout the 
manuscript of the lectures, his axiomatic analyses of physical theories contain 
no direct reference to it. The logical structure of the theories is thus intended to 
be fully understood independently of any particular position in this debate. 
HILBERT himself, as I suggested above, would later adopt a different stance. His 
work on general relativity was based directly on his adoption of the electromag- 
netic world-view and, beginning in 1913, a quite specific version of it, namely, 
GUSTAV MIE'S electromagnetic theory of matter. On the other hand, HERMANN 
MINKOWSKI'S work on electrodynamics, with its seminal reinterpretation of 
EINSTEIN'S special theory of relativity in terms of space-time geometry, should be 
understood as an instance of the kind of axiomatic analysis that HILBERT 
advanced in his 1905 lectures. That is to say, MINKOWSKI was exploring the 
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implications of the adoption of the postulate of relativity as a general principle 
of physics (comparable to HILBERT'S principle of continuity), while at the same 
time avoidin 9 the debate between the mechanical and the electromagnetic world 
views.23 s 

When reading the manuscript  of these lectures, one cannot help speculating 
about  the reaction of the students who attended them. This was, after all, 
a regular course offered in G6ttingen, rather than an advanced seminar. Before 
them stood the great HILBERT, rapidly surveying so many  different physical 
theories, together with arithmetic, geometry and even logic, all in the framework 
of a single course. HILBERT moved from one theory to the other, and from one 
discipline to the next, without providing motivations or explaining the historical 
background to the specific topics addressed, without giving explicit references to 
the sources, without stopping to work out any particular idea, without proving 
any assertion in detail, but claiming all the while to possess a unified view of all 
these matters. The impression must have been thrilling, but perhaps the under- 
standing he imparted to the students did not run very deep. WEYL'S account of 
his experience as a young student attending HILBERT'S course upon his arrival in 
G6ttingen offers direct evidence to support  this impression. Thus, in his obitu- 
ary to HILBERT, WEYL wrote: 

In the fullness of my innocence and ignorance I made bold to take the course 
Hilbert had announced for that term, on the notion of number and the quadrature 
of the circle. Most of it went straight over my head. But the doors of a new world 
swung open for me, and I had not sat long at Hilbert's feet before the resolution 
formed itself in my young heart that I must by all means read and study what this 
man had written. (WEYL 1944, 614) 

But the influence of the ideas discussed in HILBERT'S course went certainly 
beyond the kind of general inspiration described here so vividly by WzYL; they 
had an actual influence on later contributions to physics. I mentioned above the 
works of BORN 239 and CARATHI~ODORY on thermodynamics, and of MINKOWSKI 
on electrodynamics. Then there were the many  dissertations written under 
Hilbert, as well as the articles written under the influence of his lectures and 
seminars. I also suggested a possible influence on EHRZNVEST'S style of concep- 
tual clarification of existing theories, especially as manifest in the famous Ency- 
clopiidie co-authored by PAUL and TATYANA EHRZNFEST article on the kinetic 
theory of gases. HILBERT'S actual influence on the various disciplines of physics 
is an issue that merits further investigation. On the other hand, we can say that 
relatively little work on physical theories was published along the specific lines 
of axiomatic analysis suggested by HILBERT in the Grundlagen. It  seems, in fact, 

z3s In CORRY 1997 I present this interpretation in greater detail. 
239 In fact, BORN claimed in his autobiography (1978, p. 99) that HILBERT'S lectures 

on physics, and in particular the lectures on kinetic theory of gases, deeply influenced 
all his work, including his contributions to the establishment of quantum mechanics 
between 1920 and 1925. 
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that such techniques were never fully applied by HILBERT or by his students and 
collaborators to yield detailed analyses of axiomatic systems defining physical 
theories. Thus, for instance, in 1927 GEORO HAMEL - -  whose name I mentioned 
above in relation with the axioms of vector addition - -  wrote a long article on 
the axiomatization of mechanics for the Handbuch der Physik (HAMEL 1927). 
HAMEL did mention HILBERT'S work on geometry as the model on which any 
modern axiomatic analysis should be based. However, his own detailed account 
of the axioms needed for defining mechanics as known at that time was not 
followed by an analysis of the independence of the axioms, based on the 
construction of partial models, such as HILBERT had carried out for geometry. 
Similarly, the question of consistency was discussed only summarily. Neverthe- 
less, as HAMEL said, his analysis allowed for a clearer comprehension of the 
logical structure of all the assumptions and their interdependence. 

All in all, HILBERT'S work on physics did not gain widespread acceptance 
among physicists. For  instance, it is well known that EINSTEIN, in a letter to 
HERMANN WEYL, judged HILBERT'S approach to the general theory of relativity 
to be "childish . . .  in the sense of a child that recognizes no malice in the 
external world. ''z4~ WEYL himself considered that, compared to HILBERT'S work 
in pure mathematics, his work in physics - -  and especially his application of 
the axiomatic method was of rather limited value. A valuable contribution to 
physics, WEYL thought, required skills of a different kind from those in which 
Hilbert excelled. In one of his obituaries of HILBERa', WEYL wrote: 

The maze of experimental facts which the physicist has to take in account is too 
manifold, their expansion too fast, and their aspect and relative weight too change- 
able for the axiomatic method to find a firm enough foothold, except in the 
thoroughly consolidated parts of our physical knowledge. Men like Einstein and 
Niels Bohr grope their way in the dark toward their conceptions of general relativity 
or atomic structure by another type of experience and imagination than those of the 
mathematician, although no doubt mathematics is an essential ingredient. 241 

Be that as it may, and regardless of the actual influence of his ideas about  
the axiomatization of physics on subsequent developments in this discipline, it 
is important  to bear in mind that a full picture of HILBERT'S own conception of 
mathematics cannot be complete without taking into account his views on 
physical issues and the relationship between mathematics and physics. Hence 
the importance of studying the physical background to HILBERT'S axiomatic 
conception and the contents of the lecture notes of 1905. 
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240 In a letter of November 23, 1916. Quoted in SEELIG 1954, 200. 
241 Quoted in SIGURDSSON 1994, 363. 
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