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Abstract The present article discusses the computational tools (both conceptual and
material) used in various attempts to deal with individual cases of FLT, as well as the
changing historical contexts in which these tools were developed and used, and affected
research. It also explores the changing conceptions about the role of computations
within the overall disciplinary picture of number theory, how they influenced research
on the theorem, and the kinds of general insights thus achieved. After an overview
of Kummer’s contributions and its immediate influence, I present work that favored
intensive computations of particular cases of FLT as a legitimate, fruitful, and worth-
pursuing number-theoretical endeavor, and that were part of a coherent and active,
but essentially low-profile tradition within nineteenth century number theory. This
work was related to table making activity that was encouraged by institutions and
individuals whose motivations came mainly from applied mathematics, astronomy,
and engineering, and seldom from number theory proper. A main section of the article
is devoted to the fruitful collaboration between Harry S. Vandiver and Emma and Dick
Lehmer. I show how their early work led to the hesitant introduction of electronic
computers for research related with FLT. Their joint work became a milestone for
computer-assisted activity in number theory at large.
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1 Introduction

In 1976, the mathematician Samuel Wagstaff announced a proof that Fermat’s Last
Theorem (FLT) is true for any exponent smaller than 100,000 [Wagstaff 1976]. The
state of the art on the problem at the time was described by Harold Edwards in the
following terms:

Since 1850, work on the theorem has centered on proving more and more inclu-
sive sufficient conditions [for the validity of FLT]. In one sense the best known
sufficient conditions are now very inclusive, and in another sense they are very
disappointing. The sense in which they are inclusive is that they include all
primes less than 100,000. The sense in which they are disappointing is that no
sufficient condition for Fermat’s Last Theorem has ever been shown to include an
infinite set of prime exponents. Thus one is in the position of being able to prove
Fermat’s Last Theorem for virtually any prime within computational range, but
one cannot rule out the possibility that the Theorem is false for all primes beyond
some large bound. [Edwards 1977, v–vi. Emphasis in the original]

This description appears in the introduction to Edwards ‘Genetic Introduction to Alge-
braic Number Theory, which comprises an authoritative account of the historical
development of central ideas that arouse in relation with FLT. At this time, Andrew
Wiles’ ground-breaking general proof of FLT was almost 20 years away and the path
that eventually led to it—sensibly diverging from all what had previously been done
around the problem—had only been initially elucidated around in the work of Yves
Hellegouarch [Hellegouarch 1972]. Indeed, the possible link between FLT and the
Taniyama-Shimura conjecture (the link that lies at the heart of Wiles’ proof) was
clearly elaborated by Gerhard Frey in the mid-1980s. In the wake of Wiles’ general
proof, previous attempts to approach FLT by gaining insights on the basis of intensive
calculations on specific cases (such as Wagstaff’s) appeared more definitely than in
the past as an obsolete perspective from which to gain new insights on the problem.
Consequently, some of these attempts were essentially forgotten in historical accounts
of FLT that were published after Wiles’ impressive achievement. A main aim of the
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present article is to describe in some detail this central thread within the history of
FLT, which is seldom accorded the kind of separate attention it deserves.

In analyzing the role of computations with specific cases as part of the history of
FLT one is lead to several interesting considerations. For instance, the prime numbers
“within computational range” for which FLT can or cannot be proved is a historically
determined concept. Being this the case, it seems relevant to discuss the kind of com-
putational tools (both conceptual and material) available at any given point in time
and the changing historical contexts in which these tools developed, were used, and
affected work on FLT. Likewise, the changing conceptions about the role of computa-
tions within the overall disciplinary picture of number theory influenced the ways in
which specific cases of the theorem were pursued, and the kinds of general insights
thus achieved. The aim of this article, then, is to present and analyze the changing
historical contexts of various computational efforts related with FLT.

The present article is part of an attempt to gain a broad and balanced picture of this
often told, but sometimes ill-documented story. It is meant to be complemented (with
some overlapping) by three additional publications. In [Corry 2007], I have presented
a portrait of Harry Schultz Vandiver (1882–1973), the only mathematician—prior to
Wiles—to have devoted a considerable part of his professional life to a well-conceived
research program aimed at proving FLT. An interesting and rather forgotten figure,
Vandiver is mentioned marginally, if at all, in most of the existing historical accounts. I
have tried to explain the historical context of his lifelong quest for proving FLT. Here I
provide additional details about the kind of calculations he pursued as part of his quest.
Among other things, Vandiver aided himself with electronic computers being one of
the first mathematicians to do so for a problem of this kind in number theory. His incur-
sion into this field was in collaboration with the young couple Emma (1906–2007) and
Derrick Henry (Dick) Lehmer (1905–1991). The story of this unique collaboration is
the topic of [Corry 2007a], in which special attention is paid to the broader question of
the slow and hesitant incursion of computer-assisted methods into the mainstream of
research in pure mathematics (and particularly number theory). Again, here I provide
additional details about the technical aspects of their computations.

In [Corry (forthcoming)], I will discuss the various historical contexts within which
certain mathematicians paid more or (typically) less attention to FLT. Against the
background of the mythical status of FLT in the mathematical lore, which was only
intensified after the dramatic grand finale provided Wiles’ general proof and the many
publications that followed it, I claim that 350 years of history of FLT have enormously
been over-dramatized in most existing accounts. My own account is, in the first place,
an attempt to temper this over-dramatization with a more balanced picture. Essentially,
FLT was a theorem to which few mathematicians—and, above all, very few outstand-
ing number theorists—dedicated sustained research efforts worthy of that name. The
theorem always aroused curiosity but mainly of the passive kind. Before the last stage
that culminated in the work of Wiles, it attracted relatively little serious research work
throughout the years.

The first main focus of the present analysis is in the work of Ernst Edward Kummer
(1810–1893). Kummer was both an avid computer and a theory builder, and his con-
tributions to FLT touch on both aspects of his mathematical personality. For important
historical reasons, however, it was the second aspect that gained prominence as part
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of the legacy bestowed upon the following generations. Indeed, through the combined
efforts of leading number-theorists like Richard Dedekind (1831–1916) and Leopold
Kronecker (1823–1891), the full elaboration of the important insights contained in
Kummer’s theory of “ideal complex numbers” led to a complete redefinition of how
factorization properties are to be investigated in higher arithmetic (and even to a redef-
inition of “integers” in the more general domains that were now investigated).

While developing the theory of algebraic number fields in the wake of Kum-
mer’s work on ideal complex numbers, Kronecker and Dedekind mutually comple-
mented the theorems, proofs and techniques elaborated by each other. Nevertheless,
they represented two rather different, and in some sense opposed, approaches to the
essence of mathematical practice. Kronecker represented what may be called a more
“algorithmic” approach, whereas Dedekind was the quintessential representative of the
so-called “conceptual” approach. This is not intended to mean that Kronecker intro-
duced no new, abstract and general concepts or that he derived no results from an
adequate use of them. Nor do I mean to say that one finds no computations in Dede-
kind. Rather, the point is that Dedekind’s perspective allowed for the indiscriminate
use of infinite collections of numbers defined by general abstract properties, whereas
Kronecker insisted on the need to prescribe the specific procedures needed to gen-
erate the elements of such collections and to determine whether or not two given
elements were one and the same. Dedekind did not seek or require such procedures
and Kronecker did not consider it legitimate to ignore them.

A decisive factor in transforming Dedekind’s approach into the dominant one in
algebraic number theory and related fields at the turn of the twentieth century and
thereafter was the influential Zahlbericht, published in 1897 by David Hilbert (1862–
1943). The Zahlbericht was initially commissioned by the Association of German
Mathematicians as an up-to-date report on the state of the art in the discipline. Hilbert
indeed summarized the work of his predecessors but also added many new results and
sophisticate techniques and opened new avenues for research in various fields. These
avenues were indeed pursued by many leading researchers in the decades to come.
The choices made by Hilbert in preparing the Zahlbericht were strongly influenced
by both Dedekind and Kronecker. Still, Hilbert allowed for a clear emphasis on the
“conceptual” perspective embodied in the former’s work, over the “algorithmic” one
of the latter. Eventually this kind of emphasis spread to all of algebra, via the influ-
ential work of Emmy Noether (1882–1935), of pervasive impact in twentieth-century
mathematics [Corry 2004, pp.129–136].

While seeking to prescribe avenues for future research Hilbert also influenced the
way in which previous work in the discipline came to be seen. Like Gauss and Kummer
before him, Hilbert stressed the primacy of the problem of higher reciprocity within
number theory. Hilbert also suggested that Kummer’s approach comprised more of a
computational component that he now considered necessary or advisable. Hilbert thus
wrote [Hilbert 1998, p. ix]:

It is clear that the theory of these Kummer fields represents the highest peak
reached on the mountain of today’s knowledge of arithmetic; from it we look
out on the wide panorama of the whole explored domain since almost all essential
ideas and concepts of field theory, at least in a special setting, find an applica-
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tion in the proof of the higher reciprocity laws. I have tried to avoid Kummer’s
elaborate computational machinery, so that here too Riemann’s principle may
be realised and the proof completed not by computations but purely by ideas.

Hermann Minkowski (1864–1909)—who was Hilbert’s close friend and collaborator
and no less prominent number-theorist than him—systematically promoted a similar
perspective in his work. He spoke of “the other Dirichlet principle”, embodying the
view that in mathematics “problems should be solved through a minimum of blind
computations and through a maximum of forethought” [Minkowski 1905].

Kummer did invest great efforts in computations with particular cases as a mean
to gain new insights on the new kinds of number domains he was dealing with. Such
calculations, as will be seen below, appear in his research on unique factorization in
cyclotomic fields and with the theory of ideal complex numbers. One well-known
consequence of his research was a result of 1857 that FLT is true for all prime expo-
nents less than 100. Although extending this result beyond 100 involved no more than
straightforward (if tedious) computations of new values of so-called Bernoulli num-
bers, very little work was devoted to such computations before the late 1920s. It is
interesting to consider why and when additional computations were not pursued, in
the first place, and then, eventually, when and why they were resumed.

Kummer’s work has been discussed in detail in existing historical accounts, with
special emphasis on the processes that led to the rise of algebraic number theory. In
Sect. 2, I rely strongly on Edwards’ work, but at the same time, in preparation for the
subsequent sections, it lays the stress on the computational aspects of Kummer’s work
and cites some additional, relevant material. From here I move to the other sections
that constitute the more specific contribution of this paper. Section 3 discusses the
kind of works that favored intensive computations of particular cases of FLT, or of any
other result, as a legitimate, fruitful and worth-pursing number-theoretical endeavor.
These works were part of a coherent and active, but essentially low-profile tradition
within nineteenth-cnetury number theory. In Sect. 7, I discuss the involvement of
Vandiver and the Lehmers on this tradition in connection with FLT, while indicating
how their work became a milestone for computer-assisted activity in number theory.
Prior to that, Sects. 4 and 5 discuss progress made in FLT by intensive computations
performed on specific exponents p and using various techniques and approaches. Sec-
tion 6 describes the collaboration between Vandiver and the Lehmers and how this
prepared the ground for their joint, unlikely introduction of electronic computers for
work related with FLT.

In some places I slightly deviate from the notation or symbolisms used in the
original texts, and adopt terms introduced somewhat later. This is done for the sake of
uniformity and simplicity, and it should not create any significant historical distortion.
Unless otherwise stated, translations from original texts are mine.

2 Background: FLT from Sophie Germain to Kummer (1825–1857)

As is well known, at the center of FLT stands the Diophantine equation

xn + yn = zn . (1)
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Fermat conjectured sometime after 1630 that Eq. (1) has no non-trivial integer solu-
tions when p > 2, and he also famously claimed to have a proof which the margins
of the book were too narrow to contain. The history of FLT traces various attempts
to provide a general proof, be that Fermat’s putative, original one or any other valid
one. The early chapters of this story comprise some initial results by Leonhard Euler
(1707–1783) and the publication in 1798 of a treatise on number theory by Adrien
Marie Legendre (1752–1833) that included proofs of FLT for exponents n = 3 and
n = 4. The first great treatise on number theory, Disquisitiones Arithmeticae, was
published in 1801 by Carl Friedrich Gauss (1777–1855). It introduced the theory of
congruences as main tool for the discipline (and it did not deal with FLT at all).

Against this background, the first important result that needs to be mentioned in the
present account is due to Sophie Germain (1776–1831), who taught herself number
theory by studying in detail and with great enthusiasm the treatises of Legendre and
Gauss. Notice that, as a direct consequence of the proof of FLT for n = 4, the con-
jecture is proved once it is proved for all odd prime exponents. Also, it is easily seen
that, without loss of generality, one may assume that x, y, and z are relatively prime.
Germain’s line of attack on FLT divided the possible solutions to be investigated into
two separate cases, namely:

Case I—there are no three positive integer numbers x, y, z that satisfy xn + yn = zn ,
and such that no one of them is divisible by n.
Case II—there are no three positive integer numbers x, y, z that satisfy xn +yn = zn ,
and such that one and only one of them is divisible by n.

This separation was to become standard in many of the important contributions to the
problem thereafter. Germain’s own important theorem can be formulated by consid-
ering the following congruence:1

ξ p + ηp + ζ p ≡ 0 (mod l), (2)

The theorem thus states:

Theorem 1 Case I of FLT is true for an exponent p, if there is an auxiliary odd prime
l for which the following two conditions hold:

(1.1) if congruence (2) is true for three integers ξ, η, ζ then either ζ ≡ 0 (mod l), or
η ≡ 0 (mod l), or ζ ≡ 0 (mod l)

(1.2) x p ≡ p (mod l) is impossible for any value of x

Based on this result, Germain proved that case I holds whenever n and 2n +1 are both
prime. She also proved additional conditions involving congruences among primes of
various forms. Based on these results, she performed detailed calculations, generating
among other things values of the auxiliary prime l. She was thus able to prove that
case I of FLT is valid for all prime exponents p smaller than 197.2

1 This formulation is close to Vandiver’s and I adopt it here, for the sake of uniformity in notation throughout
the article.
2 Since only a part of Germain’s work became public through Legendre’s book, it was common until
recently to attribute her only with the proof for p < 100, whereas Legendre was attributed with its exten-
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Somewhat surprisingly case II turned out to be much more difficult than case I.
Thus, for instance, only in 1825, case II was proved for n = 5 in separate, comple-
mentary proofs of Legendre and Peter Lejeune Dirichlet (1805–1859). Dirichlet also
proved in 1832 case II for n = 14, and he did so while trying to prove it for n = 7.
This latter case turned out to be especially difficult, and it was finally proved in 1839
by Gabriel Lamé (1795–1870).3

In 1847 a group of mathematicians gathered at the Paris Academy—including Lamé
as well as Augustin Louis Cauchy (1789–1857) and Joseph Liouville (1809–1882)—
were involved in one of the most interesting interchanges of ideas in the history of FLT.
On March 1, Lamé presented his colleagues with what he thought to be a possible way
to prove the general case. Lamé used an idea originally suggested to him by Liouville,
which involved a factorization of a sum of integers into linear complex factors of a
certain type, as follows:

xn + yn = (x + y)(x + ζ y)(x + ζ 2 y) · · · (x + ζ n−1 y). (3)

Here n is an odd natural number, and ζ is a complex number called a primitive n-root
of unity, namely, a number that satisfies the condition: ζ n = 1 and ζ �= 1, n being the
smallest integer for which this condition holds. Starting from this factorization, Lamé
would apply an argument based on the method of infinite descent in order to lead to a
contradiction that would prove FLT.

There were from the beginning some doubts about the validity of Lamé’s argu-
ment, and Liouville himself was among those who manifested such doubts. On May
24 Liouville read to his friends a letter sent from Germany by Kummer, who had also
sent an article published in 1844 and that retrospectively invalidated Lamè’s alleged
proof. Kummer’s article directly showed that the factorization in question was not
unique, as tacitly assumed by Lamé. Kummer had been working for several years
now on generalizing ideas of Gauss about sub-domains of the complex numbers with
a behavior similar to that of the integers. Indeed, as part of his work on the prob-
lem of biquadratic reciprocity Gauss introduced a new kind of numbers, the so-called
“Gaussian integers”, namely, complex numbers of the form a + ib, where a, b are
any two integers. Gauss realized the Gaussian integers behave, in many important
respects, like standard integers (or “rational integers” as they became known starting
with the work of Dedekind). In particular, he identified those numbers that play the
role of prime numbers within this domain, and used them to prove a corresponding
version of the fundamental theorem of arithmetic, namely, that every number in the
domain has a unique representation as a product of the corresponding primes in the
domain of Gaussian numbers.

sion for all values up to p < 197 (see, e.g., [Laubenbacher & Pengelley 1999, 185–193]). However, [Del
Centina 2007] has now presented this differently. Being the most detailed account of Germain’s work to
date and, based on a careful analysis of many of her unpublished manuscripts, Del Centina convincingly
shows that Germain actually proved case I of FLT for all values of to p < 197.
3 For detailed explanations about the theorems and proofs mentioned in this paragraph as well as references
to the original sources, see [Edwards 1977, 59–75].
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Kummer generalized this idea by considering domains of numbers a + ρb, similar
to the Gaussian numbers but with ρ being either any primitive root of unity (like in
the case of Lame’s proof), or a root of a negative integer other than −1. The following
example shows why unique factorization mail fail to hold in such domains:

(4 + √−5) · (4 − √−5) = 3.7 = 21. (4)

Of course, in this case it is first necessary to show that all the factors involved (3,7
4+√−5 and 4−√−5) count as “prime” in this domain, and this was done by Kummer
in the examples he considered. But once this is done, what we have obtained here are
two different representations of 21 as products of two prime factors in the domain of
numbers a + b

√−5.
Kummer’s important insight implied that the traditional identification (going back

to Euclid) of the two properties, primality and indecomposability, had to be abandoned
in the case of certain, more general domains of numbers. But at the same time Kummer
also developed a theory of “ideal complex numbers” meant to restore a kind of unique
prime factorization into these generalized domains. The ideal complex numbers are
factors which do not themselves belong to the domain in which the factorization is
being considered. Then, rather than exhibiting explicitly the factors of any given num-
ber in the domain, one focuses on the properties that such factors should have, as if
they were actually given. Thus, for example, to any number m belonging to a given
domain of generalized complex numbers Kummer ascribed a list of “ideal prime num-
bers” and proved that this list satisfies all the division properties expected from the list
of ordinary prime factors of an integer. Every “ideal prime factor” g belonging to the
list of m is said to be “contained” in m. Kummer also defined for a prime ideal factor
the meaning of being contained in m “with multiplicity greater than 1.” In these terms,
the main property one expects from the prime factors to satisfy is that m divides n if
and only if every prime factor contained in m is also contained in n with at least the
same multiplicity [Kummer 1847, 322–323]. It is curious that Kummer, apparently
realizing the novelty implied in his ideas, took the unusual step of explaining his ideas
to fellow mathematicians—in one of the expositions of his theory—with the help of an
analogy taken from the realm of chemistry. The composition of complex numbers—he
said—can be visualized as the analogous of a chemical combination: while the prime
factors correspond to the elements, the ideal prime numbers can be compared to hypo-
thetical radicals that do not exist in themselves, but only in combinations [Kummer
1851, 447–448].

Kummer’s main motivation in studying these domains of generalized complex
numbers and in developing his new factorization theory was a long-standing effort
to address questions related to higher reciprocity laws. Very much like Gauss before
him, Kummer declared that the problem of higher reciprocity was the “central task and
the pinnacle of achievement in number-theoretical research.” He conducted important
research in this field, following on the footsteps of Carl Gustav Jacobi (1804–1851).
Kummer even adopted the notation originally used by Jacobi when dealing with reci-
procity [Edwards 1977, 1977a]. Of particular interest in the context are the cyclotomic
fields, obtained as extensions of the field of rational numbers by adjoining a primitive
p-root of unity ζp (with p prime, p > 2). The pth cyclotomic field Q(ζp) comprises
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all complex numbers f (ζp) of the form

f (ζp) = r0 + r1ζp + · · · + rp−1ζ
p−1
p (5)

where r0, r1, . . . , rp−2 are rational numbers. If r0, r1, . . . , rp−1 are all integers, we
then speak of the cyclotomic integers for that field, and this is one possible general-
ization of the idea of the Gaussian integers.

Kummer saw the ideal complex numbers as a tool for actual computation in relation
with these domains of numbers, and not just as a useful, general theoretical conceptual
tool. Thus, he wrote:

The decomposition into prime factors gives at the same time a perfect knowledge
of the complex numbers that appear in the theory of the division of the circle
and a simple method for calculating them. For, as we have seen, all reduces
to the problem of finding a prime complex factor of the number p, which can
be represented either as an integer complex, if it exists as such, or as a root of
some degree of an existing complex number, if it is ideal. The investigation of
these prime factors can be easily performed by means of indirect methods that
arise naturally. It would not be too onerous, and it would be very useful, to build
up a table of all actual and ideal prime factors of the prime numbers up to one
thousand. This table will provide all the numbers necessary for the algebraic
solution of the equation x p = 1, for all primes p within those limits. [Kummer
1851, 453]

And indeed, already in his dissertation he had devoted intensive efforts to preparing
such a table [Kummer 1844]. Indeed, Kummer’s insights about the possible failure of
unique factorization in cyclotomic fields came directly from his actual involvement
with such computations. The lowest power for which unique factorization of cyclo-
tomic integers fails is p = 23, and the example with which Kummer realized that this
is the case required a certain amount of computations. It seems that Kummer initially
checked the validity of unique factorization for p = 5 and p = 7, and then he moved
directly to the case p = 23. At this point he did not know whether or not it holds
for the cases p = 11, 13, 17 or 19 [Smith 1965, 95]. It also seems that failure of
unique factorization for p = 23 was known to Eisenstein (who, like Kummer was
also investigating higher reciprocity) some weeks earlier than to Kummer [Edwards
1975].

In his research of cyclotomic fields, Kummer introduced some additional, important
concepts that are needed for our discussion below. Notice, first, that ζp, ζ

2
p,

ζ 3
p, . . . , ζ

p−1
p , are all different primitive p-roots of unity. The norm of a cyclotomic

integer f (ζp), N f (ζp), is defined as the product

N f (ζp) = f (ζp) · f (ζ 2
p) · f (ζ 3

p). · · · f (ζ
p−1
p ). (6)

It is easy to prove that N f (ζp) is itself a cyclotomic integer. If N f (ζp) = 1, then f (ζp)

is called a unit. Additionally, Kummer associated to every field Q(ζp) a rational inte-
ger h p, called the “class number” of Q(ζp), which in a way provides a “measure” of
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the failure of unique factorization of integers in that domain. Kummer showed that this
number can be expressed as a product of two integers h1, h2, that are obtained each
through a somewhat complex expression (not given here explicitly). These integers
are commonly known nowadays as the first and second factors of the class number.
Kummer proved that a necessary, but not sufficient condition for h2 to be divisible by
p is that h1 be divisible by p.

Like with many other numerical concepts he introduced, Kummer meticulously
calculated many values of h1 in order to better understand its properties. He published
his results for all prime values of p, with p ≤ 97. For p = 3, 5, 7, 11, 13, 17, 19,
he obtained the value h1 = 1. For p = 97 he obtained h1 = 411322823001 =
3457 × 118982593. He indicated that these values grow “extraordinarily fast” and
conjectured that they would asymptotically converge to

h p1 = p(p+3)/4

2(p−3)/2 · π(p−1)/2
. (7)

He promised to provide a proof for this later on [Kummer 1851, 473], but apparently
he never published such a proof.4

A much more important insight arising from the computations associated with the
class number and its two factors was that for p ≤ 97 only three cases satisfy the
property that p divides h p. These are 37, 59, and 67. Kummer realized that prime
numbers with this property will appear as singularities of general results that could
be proved about cyclotomic fields, and that they would need to be treated separately.
He thus suggested a new task for research: to find all prime numbers p for which the
class number h p is divisible by p. Such primes are known nowadays as irregular prime
numbers (a notation I will continue to use hereafter, even though it does not appear
until much later). It is rather curious, in my view, that in spite of all the effort devoted
to investigating them and their properties, Kummer did not designate them with any
special name.

The first step to deal with this task is to find a more directly operational criterion
for identifying any given prime as regular or irregular. Here Kummer’s computational
abilities brought up the surprising, and now well-known connection between regular
primes and the so-called “Bernoulli numbers”. To define these numbers we consider
the coefficients bi in the expansion

x

ex − 1
=

∞∑

n=0

bn xn

n! . (8)

4 The first known proof of an approximate value for this formula appears in [Ankeny & Chowla 1949]. A
more recent result appears in [Murty & Petridis 2001].
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The first few values of these coefficients bi are:

b0 = 1

b1 = −1/2

b2 = 1/6

b3 = 0

b4 = −1/30

b5 = 0

b6 = 1/42

b7 = 0

b8 = −1/30

It is easily seen that for all odd indexes n greater than 1, bn = 0, and that for even
indexes, the signs alternate. Usually the bn’s are themselves defined as the Bernoulli
numbers, but in this article, since the work I discuss in greater detail is that of Vandiver,
I will follow a simplifying convention adopted by him (and not only by him. See, e.g.,
[Davis 1935, 181]) to consider only even indexes, and to define Bn = (−1)n−1b2n . In
these terms, the first few values of Bn are:

B1 = 1/6

B2 = −1/30

B3 = 1/42

B4 = −1/30

B5 = 5/66

B6 = −691/273

Thus stated, Kummer showed that a prime p is regular iff it does not divide the numer-
ators of any of the Bernoulli numbers B0, B2, . . . , B(p−3)/2. Already in the lower
cases one sees that B6 = −691/2730, which shows directly that 691 is an irregu-
lar prime. The history of the computations associated with Bernoulli numbers are of
direct relevance for our story here, and I will return to it below. At this point I will
just mention that the values that Kummer most likely used in his own computations
were those published in 1842 by Martin Ohm (1792–1872) [Ohm 1840]. Ohm had
calculated values up to B31 and these appeared in Crelles’ Journal so that they were
surely known to Kummer at the time of his research.

Kummer invested great efforts in identifying regular and irregular primes with the
help of computations related with Bernoulli numbers, and in investigating further
properties of the primes and the class numbers of the respective cyclotomic fields.
Initially, he used the values of Bn known at the time to investigate each prime number
up to 43. The only irregular prime found in this range is 37, as it divides the numera-
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tor of B16 (i.e., 7709321041217) [Kummer 1850]. In later investigations he extended
his computations to show that the only non-regular primes under 164 are 37, 59, 67,
101, 103, 131, 149, and 157. After 164, the computations became prohibitively com-
plex. Kummer’s computations also showed that for p = 157, the class number h p is
divisible by 1572 but not by 1573 . For all the other irregular primes under 157, the
class number was divisible by p only. Also p = 157 had the special property that
it divides both the numerators of B31 and of B55. This gives rise to the concept of
“irregularity index” (not specifically used by Kummer), whose value in the case of
157 is 2.

With his theory of ideal complex numbers at hand, Kummer had conjectured in
1848 a very general law of reciprocity for higher congruences [Kummer 1850], but it
was only in 1859 that gave a more or less general proof, albeit one which was not yet
valid for certain primes [Kummer 1859].5 All the while, however, Kummer was also
aware of the relevance of his ideas to a possible proof of FLT. In his 1847 letter to
Liouville Kummer stated, indeed, that the application of the theory of ideal complex
numbers to the proof of FTL had occupied him for some time now. On the other hand,
he clearly stated his opinion that FLT was “a curiosity in number theory, rather than
a major item.” That year he announced to Dirichlet a proof that FLT is valid for all
regular primes [Kummer 1847a, 1850a]. The question thus remained open for irregu-
lar primes, and in the following years Kummer attempted to address this question as
well.

In 1857 Kummer published a famous article that broke new ground both conceptu-
ally and in terms of specific computations [Kummer 1857]. Kummer introduced three
criteria that, if satisfied by an exponent p, implied the validity of FLT for that expo-
nent. I formulate here the criteria in terms that are more modern than those actually
used by Kummer, as follows:

(K-1) h1 is divisible by p but not by p2.
(K-2) If Bn ≡ 0 (mod p), n < (p − 1)/2, then there exists an ideal (of the ring of
integers) in Q(ζp) with respect to which the unit

En =
(p−3)/2∏

i=1

ε
(
ζ r i

p

)r−2in

is not congruent to a pth power of an integer in Q(ζp).
[
In this formula ε

(
ζ r j

p

)
=

(
(1−ζ ri+1

p )(1−ζ−ri+1
p )

(1−ζ ri
p )(1−ζ−ri

p )

)1/2

, and r is a primitive root of p.
]

(K-3) The Bernoulli number Bn is not divisible by p3.

Kummer proved that each of the cases smaller than 100, namely, 37, 59 and 67, satis-
fied these assumptions. He thus achieved the very impressive result that FLT is valid
for all exponents under 100. We will see below that Vandiver showed in 1920 that
Kummer’s proof contained some relatively minor inaccuracies. Nevertheless, by all

5 The published, fully consistent application of ideal factors to prove reciprocity laws appears in [Eisenstein
1850].
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accounts this result and the techniques implied in it remained a major milestone in the
history of FLT.

Kummer asserted that it would not be difficult, though perhaps somewhat tedious
in cases of large Bernoulli numbers, to prove that these criteria hold for individual
irregular primes. Criterion (K-1) is relatively easy to check, whereas criteria (K-2)
and (K-3) required very intensive computations. Kummer assisted himself with some
existing data appearing in a very important collection of mathematical tables published
by Jacobi in 1839, the Canon Arithmeticus, and about which more is said below. But
beyond that he did not show his computations nor explained the formula on which
these computations were based. Higher values of Bernoulli numbers were calculated,
he said, using special tricks, “that would be too long to explain here in detail”. Still he
stressed that his methods comprised either some self-checking mechanisms or compu-
tations in two different ways, so that “the correctness of the results can be guaranteed”
[Kummer 1857, 74].

Apparently Kummer thought at first that there exist infinitely many regular primes,
but he soon realized that proving this would not be easy. It is less clear what his esti-
mation was about the irregular numbers and about the number of cases not covered by
his general proof of 1847. Kummer most likely expected this number to be relatively
small, and he may have even perhaps thought that there is some way to cover them all
by arguments similar to those he used now in 1857.6

Given Kummer’s willingness to undertake such extensive and detailed computa-
tions, and given his full domain of the theoretical aspects of the problem at hand, his
results on FLT, on irregular primes, and on Bernoulli numbers, can be taken to indicate
the material limit to which this approach could lead as a way to proving FLT by 1860.
At the same time, with these results and methods at hand, a clearly defined avenue of
research had been opened for a possible, continued investigation of FLT. In principle,
at least, all that was needed now was to continue the search for irregular primes, and
then separate proofs could be worked out for each of them, according to Kummer’s
criteria. In addition, Kummer’s criteria could be refined and further elaborated, with
a view to finding more efficient tests for the validity of FLT for given irregular expo-
nents. Working out as many additional, specific cases as possible would in turn add
new insights about the overall behavior of prime exponents in this context and perhaps
suggest new ideas for general proofs of FLT. As it happened, however, this possible
way was followed by very few number theorists—if at all—until Vandiver appeared on
the scene. One reason for this was the difficulty of the calculations involved. Another
reason was that FLT was not high on the agenda of most leading number theorists,
starting from Kummer himself. This in itself should not necessarily imply that further
investigations into the Bernoulli numbers or into regular and irregular primes would
be pursued only at a very limited pace. And yet this actually turned out to be the case.
Relatively few new Bernoulli numbers were computed in the decades to come and

6 It should be pointed out that Cauchy and Liouville raised several objections concerning Kummer’s use of
the ideal prime factors in his first proof. [Kummer 1857] (submitted on June 1856) responded to all those
objections. In this article, however, Kummer did not mention explicitly either the objections or the problems
actually arising in his first proof. For a contemporary account (1860) of Kummer’s proof see [Smith 1965,
134–137]. More recent accounts appear in [Edwards 1975, 225–231; 1977a.]
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when they were, the motivation never came—before Vandiver and his collaborators—
from number theoretical concerns (certainly not from attempts to deal with FLT). This
situation was mainly a consequence of the limited role accorded in the second half of
the nineteenth-century within number theory (at least by some of its most prominent
practitioners) to specific computations with particular cases. In the following section
I elaborate this important point, before taking again the thread of progress done on
FLT by the turn of the twentieth century.

3 Number theory and number crunching (1860–1910)

As explained in the introduction, Kummer’s ideas on ideal complex numbers led to
seminal developments in number theory over the following few decades, especially
in Germany. The other side of Kummer’s mathematical personality, the willingness to
undertake massive computations as a main tool in number theoretical research receded
into the background, and yet it would be wrong to think that it was not continued at
all. As a matter of fact, the story of the development of number theory in the second
part of the nineteenth century is a rather complex one in this regard. On the one hand,
there are the important achievements of long-standing impact such as embodied in the
works of Dedekind and Kronecker, or such as those derived from the use of analytic
approaches originally introduced in the work of Dirichlet. On the other hand, actual
interest in the field on the side of broader audiences of mathematicians (and espe-
cially of prominent mathematicians) was definitely reduced for rather lengthy periods
of time. It is well know, for instance, that Dedekind’s theory of ideals was hardly
read at the time of its publication, both in its German original and then in its French
translation of 1876–1877 [Goldstein & Schappacher 2007, 68–70]. At the same time,
actual research was being done in number theory during that period, but in directions
different to those that would be become prominent in the early twentieth century. The
field of number theoretical research in the second half of the nineteenth century can
be described as being organized around several clusters of interest. These clusters
grouped mathematicians, who shared common interests within number theory, used
similar techniques and pursued similar objectives. They published in similar journals
and quoted each other. As a rule, they represented self-contained communities that
hardly intercommunicated with each other [Goldstein 1994; 2007a, 71–74].

Some of these clusters eventually turned into two main trends of number theoret-
ical research at the turn of the century, e.g., the “algebraic” and the “analytic” ones.
But during this period, the cluster where most of the actual activity in number the-
ory (quantitatively considered) took place was a different one. This cluster focused on
question directly connected with some of the basic topics discussed in Gauss’s Disqui-
sitiones, such as reciprocity, and cyclotomic and Diophantine equations. It explicitly
avoided the use of techniques involving complex numbers and analysis. Contributors
to this cluster included in a visible way not only mathematicians, but also engineers,
high-school teachers and university professors from other disciplines. They came from
various countries including places without well-developed research traditions in the
field. Remarkably, very few Germans were among them. More than any other cluster
or sub-discipline in number theory, works belonging to this cluster as a rule did not
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involve highly sophisticate mathematical knowledge. Still, some of them comprised
very ingenious and innovative ideas, appearing mostly in the work of the more promi-
nent mathematicians that contributed here. The latter included James Joseph Sylvester
(1814–1897), Angelo Gennochi (1817–1889), and Edouard Lucas (1842–1891). This
cluster did not evolve into a full-fledged, school of mathematical research that trained
students and was systematically taught. Incidentally, most research on FLT during
this period can be easily associated with this cluster of activity in number theory, and
indeed, even here it counted as a rather marginal trend in terms of attention devoted to
it. Still, this cluster interests us in the present account not because of whatever direct
contribution it may have yield in relation with FLT, but rather because of the broader
issue of computation with specific cases as a focus of interest in number theory, that
was part of it.7

Indeed, the fact that so little progress was made in relation with the apparently simple
question of finding additional irregular primes, beyond those calculated by Kummer
himself, is directly connected with the overall processes undergone by the discipline.
One way to realize the rather reduced attention devoted to the question of irregular
primes is by looking at the terminology associated with it, as it was not until quite late
before the terms “regular” and “irregular” were introduced, and certainly before it was
widely adopted, to denote the meaning that eventually became standard. As already
mentioned, Kummer himself introduced no specific term to denote the primes that
satisfied the condition “prime numbers p for which the class number h p is divisible
by p”. Smith’s famous Report on the Theory of Numbers of 1859–1866 speaks only
of “exceptional primes” (for the irregulars [Smith 1965, 134]), a term that was still in
use in a few research articles still at the beginning of the century [Mirimanoff 1904].
No specific term continues to be the case for systematic presentations of Kummer’s
work, and this is the case both for the best known of them [Bachmann 1910, 458–476]
as well as for the more esoteric [Schoenbaum 1908]. Around 1910 there is a boom in
publications on FLT, on the wake of the creation of the Wolfskehl prize. At this time
we find an article that uses the term “irregular primes” in its title but not in its text
[Hecke 1910], and somewhat later it gradually appears in more and more texts. It will
still take several year before the term becomes standard, and this can be taken as a
good indication of the little attention devoted to the questions in which these numbers
play a central role, such as FLT.

A further indication is provided by actual results proved about irregular primes after
Kummer. Kummer had initially assumed that in proving FLT for regular primes, he
was proving it for an infinite number of cases. Nowadays, there are heuristic arguments
to support such an assumption, but no definite proof of it.8 In spite of the fact that some
questions of this kind arise naturally when following the line of attack derived from
Kummer, the fact is that not until 1915 someone devoted some systematic thought
to it. This was done by an unknown student, the Danish Kaj Løchte Jensen (not to
be mistaken for the better known Johan Ludvig Jensen (1859–1925)), whose teacher

7 [Goldstein 1994; 2007a, 71–74] and [Goldstein & Schappacher 2007] analyze this topic in detail.
8 Indeed, there is an estimate that about 61% of the primes should be regular. See [Siegel 1964], [Washington
1997, 63]
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happened at the time to be looking at Bernoulli numbers. And Jensen proved a result
about irregular primes, rather than about the regular ones.

As a matter of fact, very little is known about Jensen. Apparently he was a stu-
dent of Niels Nielsen (1865–1931), a versatile mathematician who after 1904 became
interested in Bernoulli numbers, and published a series of research articles and later
on a textbook on the topic [Nielsen 1923]. Still as a student in 1915 Jensen published
in a remote Danish journal a proof of the existence of infinitely many irregular primes
of the form 4k + 3 [Jensen 1915]. His proof was rather straightforward and did not
require any special idea or technique that was not known to number theorists since the
time of Kummer. Jensen asserted that the result he had proved was then commonly
assumed. This may have indeed been the case, and this is in any case what Jensen
heard from his teachers. Still I have found no written, direct evidence of discussions
pertaining to the question at the time. At any rate, Jensen did connect it, but only in
passing, with FLT. He wrote:

That there exist infinitely many irregular primes has been conjectured for a long
time but as far as I know it has not been proved. It is well known that it has a
certain importance for the evaluation of Kummer’s investigations of Fermat’s
last theorem.

Jensen’s result remained unknown for several years even to mathematicians involved
with the relevant kind of questions. Thus, for instance, it is not even mentioned in the
authoritative History of the Theory of Numbers, published in 1919–1920 by Leonard
Eugene Dickson (1874–1954). We find it for the first time in a follow-up of the His-
tory published several years later [Vandiver & Wahlin 1928, 182]. Vandiver published
Jensen’s argument in English for the first time only in 1954 [Vandiver 1954], and he
stressed that by that time it was not yet well-known. One year earlier, Leonard Carlitz
(1932–1977) proved a similar, but more general result without the limitation 4k + 3
[Carlitz 1954].

But even if anyone would try to perform additional computations in order to identify
new cases of regular or irregular primes and thus extend Kummer’s results on FLT, a
basic limitation still existed concerning the known values of Bernoulli numbers. And
as Bernoulli numbers are related to broader contexts than just FLT, a look (even if
partial) at mathematical activities related with calculating new values of Bn is very
instructive about the place of computations within number theory.

Previous to its surprising application by Kummer in the context of regular primes
and cyclotomic fields, Jacob Bernoulli was the first to call attention to the possible
usefulness of the numbers Bn . His ideas on this matter were published posthumously
in 1713 as part of the Ars Conjectandi. The question at stake was to find a general
formula for power sums of the kind

Sn = 1k + 2k + 3k + · · · + nk . (9)

Bernoulli devised a recursive method involving the numbers bn , with the help of which
he calculated in “less than half of a quarter of an hour” the sum of the tenth powers
of the first hundred numbers, obtaining the result 91 409 924 241 424 243 424 241
924 242 500. He stressed that his work showed “how useless was the work of Ismael
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Bullialdus (1605–1694) spent on the compilation of his voluminous Arithmetica Infi-
nitorum in which he did nothing more than compute with immense labor the sums of
the first six powers, which is only a part of what we have accomplished in the space
of a single page” [Bernoulli 1713, 90]. Bullialdus (or Boulliau) was a Frech astron-
omer whose book Opus novum ad arithmeticam infinitorum [Bullialdus 1862] had
attempted to clarify Wallis’ proto-calculus method involving sums of powers [Nellen
1994].

Bernoulli’s formula can be rendered in more modern terms (here for the case of
fourth powers) as follows:

14 + 24 + 34 + · · · + n4

= 1
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There are various recursion formulas that allow calculating coefficients bi . For the
sake of simplicity I will mention here only,

m∑

j=0

(
m + 1

j

)
b j = 0 or alternatively (b + 1)k = bk, (11)

where after expanding the polynomial, bi is taken to mean bi .
Leonhard Euler was the first to indicate the connection of Bernoulli numbers with

the power expansion (8) above. He computed values of bn up until n = 30, b30 =
8615841276005/14322, and used them for summations of certain slow converging
series [Havil 2003, 81–85]. The next to calculate additional values was Ohm in 1842
and, as already indicated, Kummer used Ohm’s results that comprised values up to B31.
Ohm stressed that the efforts to calculate such numbers were fully justified because
of the many contexts in which they were used, but did not specify what context he
had in mind. After Ohm, the next significant step taken in the computations related
to these numbers came in 1878 with the publication of the following 31 values by
John Coach Adams (1819–1892). Adams had calculated values of Bn several years
prior to publication and at some point decided that the right place for them to appear
would be in the same venue where Ohm had published earlier on [Adams 1878].
The bibliography of works devoted to the theoretical and computational aspects of
the theory of numbers was already considerably lengthy by this time [Ely 1882] and
at any rate, we are already speaking here about large numbers, as the numerator of
B62 comprises 110 digits. Adams was followed by further computations by Sergey
Serebrennikov [Serebrennikov 1907], who reached values up to B92. Much later, in
1935, tables published by Harold T. Davis (1892–1974), were based on an improved
algorithm he had devised on his own [Davis 1935]. All of these computations were
pursued with the explicit aim of assisting astronomical research, rather than number
theoretical one. This was also the case with more general results obtained throughout
the years in order to improve the existing computational methods. The most important
among the latter was the so-called von Staudt-Clausen theorem [von Staudt 1840;
Clausen 1840], consistently used by all those who prepared the above mentioned
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tables. It thus happened, as will be seen below, that some mathematicians who there-
after undertook number theoretical research where values of Bernoulli numbers were
necessary (such as in the case of FLT), did so by establishing a kind of somewhat
unusual professional contact with astronomers.

A more detailed account of how Bernoulli numbers were computed and used in
various contexts is beyond the scope of the present article. But their example suggests
the need to look more closely at an important part of mathematical practice that only
recently started to attract the attention of historian of mathematics, namely the elabo-
ration, dissemination and use of mathematical tables of various kinds [Campbell-Kelly
et al (eds.) 2003]. In the case of mathematical tables related to number theory even less
has been done. It is nevertheless clear that one cannot speak about the computational
side of the discipline without devoting some attention to the peculiar role that table
making has played in it. For considerations of space, I will do this only briefly here
while directing the readers to existing secondary literature.

In the first place, I stress once again the importance of specific computations for
Kummer and the efforts he devoted to this activity. He carefully tabulated much of
his computations so that he could examine them carefully and try to ponder their
significance [Edwards 2007]. Kummer himself never published these tables, but a
table of primes in cyclotomic number fields that was written on the basis of Kum-
mer’s theory of ideal complex numbers was published in 1875 by a rather forgotten
figure, Carl Gustav Reuschle (1812–1875) [Folkerts & Neumann (eds.) 2006]. Reu-
schle was a high-school teacher of mathematics, physics and geography at Stuttgart
who corresponded with Kummer on mathematical topics after 1850. It is not clear to
what extent his book of tables, Tafeln complexer Primzahlen aus Wurzeln der Einheit
gebildet [Reuschle 1875] was used among number theorists, but it seems that at least
Vandiver knew it and saw in it a valuable source for anyone involved in research in
cyclotomic fields.9

Previous to Kummer we could also mention other prominent mathematicians for
whom number-theoretical tables were an essential work-tool, remarkably so Gauss
and Jacobi. For instance, Gauss’s thorough inspection and computing of additional
values for existing tables of logarithms and of prime numbers was essential in leading
to his conjecture about the distribution of the latter [Tschinkel 2006]. Jacobi in turn
considered tables of indices for prime numbers (i.e., the analog of tables of logarithms
for the multiplication mod p of numbers not divisible by p). His Canon Arithmeticus
[Jacobi 1893] contained—among other things—tables of such indices for primes less
than 1,000. These indices were of direct use for Kummer in his own detailed compu-
tations related with the reciprocity law. They continued to be used until well into the
twentieth century.10

What for prominent mathematicians like Gauss, Jacobi, and Kummer was a useful
tool leading to inspired theoretical work was a main focus of activity for others, like the

9 See below footnote 29.
10 It is indeed remarkable that the book continued to be in use without changes and additions until quite
late. [Brandt & Patz 1956] added tables for computations of sums and differences of indexes. Indexes of
primes and powers of primes less than 2000 were added in [Andree 1962] with computations carried out
with an IBM 650–653.
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already mentioned Reuschle and Adams. Indeed, mathematical table-making received
a renovated impetus in the second half of the nineteenth century with the introduc-
tion of novel mechanizing processes of various kinds. It is important to stress from the
beginning, that mechanization involved not only improvements in the precision, speed
and complexity of the computations themselves. Rather, there were other tasks related
with table making that were sensibly improved, such as transcription, typesetting,
proof reading, printing, binding and distribution. In this broader context, mechani-
zation could be seen a possible tool to alleviate the main concern of table-makers
throughout history, namely, the avoidance of error. It is remarkable, though, that at
least in the early stages, there was no consensus that mechanization will solve the prob-
lem, possibly because of the various human interfaces mediating among the successive
phases of the process. Indeed, as will be seen now, it was not before the mid-1930s that
mechanized computation became the standard procedure for table making, but even at
this time we find clear evidence that the concern for error avoidance continued to haunt
those involved in this activity. This concern is nicely summarized in the introduction
to a book of mathematical tables first published in 1935 and reprinted as late as 1963,
a time when interest in tables definitely started to decline:

In the publication of a work on mathematical tables the greatest struggle must be
waged against error. One is particularly amazed at the many ingresses available
to this incubus of the computer.11 This is particularly true in a project which
embraces the computation of so many diverse functions, computations which
are being made simultaneously by different computers. First the basic formulas
must be carefully prepared and auxiliary table computed and checked. After the
tabular values have been found, these must be checked by some device indepen-
dently of the one employed in the original calculation. Duplicate computation
is resorted to only when other methods appear too laborious or impractical. . . .

Differencing, the best check, although a tedious process with available statisti-
cal machinery, is employed in most instances. Finally, after the tables have been
completed and checked, they must be transferred to copy sheets for the printer
and then proofread for the original notebooks. This latter is, perhaps, the most
exacting task of all and may be the most fruitful source of errors unless it is
warily undertaken. [Davis 1935, xii–xiii]

In the early history of attempts to mechanize table making a main figure was, of
course, Charles Babbage (1792–1871). The central motivation came from his involve-
ment with astronomy and the concern for possible errors found in existing tables. As
Babbage’s ideas on mechanized computation evolved, a much broader agenda devel-
oped and table making remained one of the underlying preoccupations behind the
drive for mechanization though not always a central one [Swade 2003, 159]. And yet,
the increased mechanization of table-making activities made more evident than ever
their institutional dimensions, and more patent their separation from the kind of work
with which most creative mathematicians wanted to see themselves identified. Evi-
dently, a separation between “mathematicians” and “computers” was nothing new in

11 Of course, “computer” means here a “human computer”. See [Grier 2005].
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itself. Leibniz in 1685 wrote that “it is unworthy of excellent men to loose hours like
slaves in the labor of computations which could be done by any peasant with the aid
of a machine” [Swade 2003, 150]. But the more this became an activity involving the
coordinated interaction of groups of people working according to established rules, the
sharper the separation became. The parallel intrinsic developments in number theory
towards sweeping conceptual approaches such as promoted by Hilbert and Minkowski
only added to this trend.

The need for new and more accurate tabulated values of special functions became
increasingly pressing for astronomers, engineers and physicists by the last third of the
nineteenth century. Several initiatives were undertaken in order to cope with these,
and a significant part of the efforts were devoted to create infrastructures that would
allow for routine work that would produce the tables and check the results. One of
the most salient examples of institutionalizing table making in order to deal with such
pressing needs came with the creation of the British Mathematical Tables Commit-
tee. The committee brought together leading mathematicians such as Arthur Cayley
(1821–1895) and Henry J.S. Smith (1826–1883), with the two leading British mathe-
matical physicists such as Sir William Thomson (1824–1907) and Sir George Stokes
(1819–1903). But the main active force behind its activities was James W.L. Glaisher
(1848–1928) [Croarken 2003], who had himself made important contributions to the
theory of Bernoulli numbers [Forsyth 1929].

The activities of the Committee started with a broad survey and classification of
existing tables, the results of which were published in 1893 as a catalogue that became
a classic for years to come and has remained an authoritative bibliographical guide
on the topic. To this catalogue, Cayley added two years later a similar one devoted
only to existing tables in number theory. Glaisher then started to design the computa-
tional standards and to supervise the computations to be carried out in the forthcoming
years by trained (human) computers. Corresponding to the main motivations behind
the creation of the Committee, most were devoted to functions that were relevant
to applied mathematical concerns, such as elliptic functions, Legendrian functions
and Bessel functions. Computations related with the latter class of functions were
conducted mainly by Alfred Lodge (1854–1937), who joined the Committee later on.
He assisted himself with two volunteers, and in 1889 he was the first to use a machine
to check the printed tables. This was the circular calculating machine, designed and
patented by Joseph Edmondson in 1883 [Edmondson 1885].

But from very early on, the infrastructures and abilities of the Committee and its
associated members and workers were also used for computations related with num-
ber theory. The first such undertaking related factor tables, a topic on which Glaisher
also published a broad historical account [Glaisher 1878]. By 1873 such tables cov-
ered numbers up to three millions and then from six to nine millions. The Committee
undertook filling the gap with the help of two hired computers and the results were
published in three volumes in 1879, 1880 and 1883.

An additional number theoretic effort related with the activities of the Committee
was conducted under the initiative of an interesting figure, Lt. Colonel Allan Joseph
Cunningham (1842–1928). Born in Delhi, he was a military engineer who retired from
the army in 1891 and devoted the rest of his life to computations related with the the-
ory of numbers, particularly in relation to residues of powers, as well as quadratic and
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higher reciprocity [Western 1928]. In 1895 he suggested to the Committee to publish
a table of residues of powers of 2, which would be useful for testing divisibility, for
factorizations, and for solving congruences to base 2. He had started calculating such
tables by himself and now he asked for the support of the Committee. Support was
indeed granted and the project was completed in 1899 [Cunningham 1899]. Addi-
tionally, he published other detailed number theoretical tables related with quadratic
partitions (x and y satisfying x2 + dy2 = p, for various values of d) [Cunningham
1904], Haupt exponents (the smallest exponent e for which be ≡ 1 (mod n), for given
b and n) [Cunningham 1905], residue indices (values of n for given y in yn ≡ 1 (mod
p)), and successive primes [Cunningham & Woodall 1904].

Upon his death, Cunningham bequeathed a moderate legacy to the Committee to
be used in the production of new number theory tables. The money was also used to
purchase calculating machines for the committee’s current activities and to publish,
with a delay of more than thirty years, additional number theoretical tables (divisor
and power tables) that had been prepared by Glaisher but had remained unpublished
theretofore. All of this happened in a period when the secretary of the Committee
was the dynamic Leslie John Comrie (1893–150). Comrie joined in 1915 the Nautical
Almanac Office and by 1928 he had completely mechanized its processes for table
making. He brought with him many technical, conceptual and organizational innova-
tions to the Committee’s activities. His unique approach to minimizing the incidence
of errors in the tables comprised not only original and improved calculational tech-
niques. It also signified a clear understanding of the typographical aspects of printing
and the influence of the latter on human communication. Thus, he systematically intro-
duced the use of figures with heads (e.g., for 6 and 8) and tails (e.g., for 3, 5 and 7) as
opposed to equal height figures, and he also employed extra white spaces instead of
lines to divide across lines and columns. The layouts of the tables were no doubt much
more effective for the reader than any other ones available at the time [Croarken &
Campbell-Kelly 2000, 50–52]. Below we will see this approach reflected in the work
of the Lehmers.

Some of Cunningham’s work was also published posthumously, by Alfred
E. Western (1873–1961), another curious figure in this context. A Cambridge 7th
Wrangler of 1895, Western spent most of his professional life working as a solicitor,
but kept his active interest in mathematics alive. He published research, among others,
on quadratic fields, on reciprocity laws, on primes of the form n2 + 1, on expressing
numbers as a sum of 4 or 5 cubes, and on Fermat and Mersenne numbers. But above all,
he had a great interest in numerical computations [Miller 1963]. In this spirit, he under-
took the responsibility for the publication of Cunningham’s work, which culminated
in his Table of Indices and Primitive Roots [Western & Miller 1968]. In 1943, Western
announced that some interesting, unpublished manuscripts of Cunningham, housed in
the library of University College, London, had been “destroyed by an enemy air raid.”12

Cunningham and Western will reappear below in my account of attempts to prove FLT.
Another mathematician enthusiastic about table making who is relevant to this story

is Derrick Norman Lehmer (1867–1938). Lehmer was a professor of mathematics at

12 See Mathematical Tables and Other Aids to Computation 1, 1943, 92–96.
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Berkeley with a great interest in computations and aids to computations. It will suffice
to mention here that in 1909 he published a Factor table for the first ten millions
[Lehmer DN 1909] and in 1914 a List of prime numbers from 1 to 10006721 [Lehmer
DN 1914]. Later on, in 1929 he also prepared Factor Stencils that gave a method of
factorizing any number using cards with holes punched in them [Lehmer DN 1939].
He had very strong opinions on the experimental character of mathematical research,
and accorded a central role to tables in general. In the introduction to one of his books
he stated such views as follows:

In spite of the contention of certain eminent scientists that mathematics is a
science that has nothing to do with observation and experiment, the history of
the Theory of Numbers has been chiefly made by those who followed methods
closely allied to those of the student of the natural science. Gauss himself, the
most successful investigator of the field, was an indefatigable computer, as may
be seen by consulting the long list of table in his collected works. Jacobi was
also a tireless maker of tables. It is hardly likely, indeed, that any theoem of
importance in the Theory of Numbers was ever discovered which was not found
in the first place by observation of listed results. [Lehmer DN 1914, vi]

Hardly other, contemporary number-theorist would stress this part of the work of
Gauss and Jacobi as Lehmer did. But then, hardly other number theorist would be
involved in constructing analog devices for specific tasks such as primality testing like
Lehmer and his son, Derrick Henry (Dick), did for many years. Below I will return
to Dick’s important collaboration with Vandiver on FLT, but at this point it is relevant
to conclude this section, by adding some brief comments about the slow adoption
of mechanized computation in various fields of mathematics in the early twentieth
century.

If we look at the development of the activities of the British Mathematical Tables
Committee then we notice that, in spite of Babbage’s initial impetus and their enthusi-
astic adoption in statistical and related contexts, the use of desktop calculating devices
as a main tool for numerical calculation in mathematics was slower than one can
imagine. Desk calculator machines such as the Brunsviga–Dupla, Nova Brunsviga,
and the already mentioned Emerson, to name but a few, were available to scientists
and engineers at the beginning of the century, but human computers that were well
trained and efficient on using other aids, such as tables and slide rules, continued for
a while to be central to these activities.

The Nautical Almanac Office, for instance, was one of the main institutions where
large scale computations were performed. These computations were used for tasks
such as navigation, ephemerides computations, statistics and astronomy. Up to 1926
they continued to be performed with the help of logarithmic tables. The people who
did some of the more demanding computations were retired members of the staff, their
methods worked well and they were familiar with their jobs. When desktop calculators
first became available it did not seem convenient to make any changes. In the early
1900 the available machines were quite expensive in comparison with books of tables,
and they were large and cumbersome to use. In addition, computations with them
required natural rather than logarithmic values of the trigonometric, exponential and
hyperbolic functions, which were the main tools used in places like the Nautical Office.
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Since the time of Napier such computations had been done using logarithms and they
were the standard. In 1918 at least five new such tables were produced. Only by the
early 1930s desk machines had replaced 4- 5- 6- and 7-figure logarithms as the most
common method of large scale computations by both individuals and organizations
[Croarken 1990, 16–19].

As we will see now, much of the work done on FLT at the turn of the twentieth cen-
tury and in the following decades was based on number theoretical tables of the kind
just described. It is remarkable, however, that the main tools (conceptual, mechani-
cal, institutional) needed for the creation, production and distribution of such tables
were developed with very specific concerns in mind, all of them directly related with
applied mathematics and all foreign to number theory itself. It seems evident that only
concerns of this kind would have elicited the enormous human efforts and material
resources necessary for the huge tasks at play here. Number theory benefitted from
these developments only at a later stage, when some of the persons involved, for whom
this field was an additional focus of interest, made a wise use of the infrastructure that
had been created with a very different purpose in mind.

After this overview of computations, computers and tables in the period following
Kummer’s work, we can return now to the main thread of our story.

4 Progress on Case I (1898–1941)

Before Kummer’s road was retaken in the work of Vandiver, as will be seen below,
some further attempts were made to prove FLT for ever larger classes of specific expo-
nents. In this context case I was and remained much easier to handle than case II.
Thus, for instance, Germain’s and Legendre’s results for case I had been successively
extended at the turn of the twentieth century. Edmond Maillet proved in 1897 that case
I is valid for p < 223 [Maillet 1897]. Dimitry Mirimanoff (1861–1945) extended this
in 1904 to p < 257. He did some intensive computations in order to achieve this
result, but this was not a straightforward extension of what had been previously done.
Rather he provided a new, useful criterion along the lines of Kummer’s earlier work,
as he proved that Eq. (1) is impossible in integer solutions when the numerator of
at least one of four Bernoulli numbers B (l−3)

2
, B (l−5)

2
, B (l−7)

2
, B (l−9)

2
is not divis-

ible by p [Mirimanoff 1904]. In two articles of 1908, Dickson proved the validity
of case I for every prime exponent p < 7000, except 6857 [Dickson 1908, 1908a,
Dickson 1909]. Interestingly, Dickson’s results make no use of Kummer’s methods,
but rather are directly built on refinements of Germain’s original computations. His
articles make an interesting reading since they feature an eclectic attempt to use every
possible tool available in order to reach the highest possible exponent. Likewise, we
see how Dickson calculates value after value, assisting himself with existing tables of
various kinds. Jacobi’s Canon was obviously a main tool which he used intensively,
but also the assistance of Cunningham and of Mr. E.B. Escott is repeatedly mentioned
in his articles.13 For example, in one case his proof required verifying, with the help

13 As a matter of fact, Dickson was the author of one of the volumes on number theoretical tables published
with the funds provided by Cunningham’s legacy. See [Dickson 1933].
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of a certain lemma about numbers of the form 1 + 128*k, the primality of

E = 42116007041 = 1 + 128 ∗ 329031305.

On completing the proof Dickson remarked that testing a similar number for values
close to 400 millions would require fifteen minutes, and for 800 millions about 25 min-
utes [Dickson 1908a, 42]. The exponent p = 6857 required a considerable amount
of additional computations, but Dickson did not “take the trouble” to do so, since this
exponent was too close to 7000, a value up to which he had proved the validity of the
theorem in case I for all other prime exponents.

Mirimanoff’s result of 1904 led to a most important new direction that was opened in
1909 by Arthur Wieferich (1884–1954). Using Mirimanoff’s article, Wieferich proved
that if three integers x, y, z relatively prime to p actually did satisfy x p + y p = z p,
then the congruence 2p−1 ≡ 1 (mod p2) holds [Wieferich 1909]. Mirimanoff then
simplified Wieferich’s somewhat involved argument and extended this result by prov-
ing that the same p would satisfy 3p−1 ≡ 1 (mod p2). Mirimanoff pointed out that
his result could be combined with Wieferich’s to state that case I of FLT is impossible
for exponents p, where p is a prime of the form 2α3β = ±1 [Mirimanoff 1910].

For the sake of simplicity I use in what follows the notation

q(m) = m p−1 − 1

p
, (12)

and W (m) to be the statement that, whenever x p + y p = z p is satisfied by three
integers x, y, z relatively prime to p, then q(m) ≡ 0 (mod p). In these terms, Wie-
ferich proved W (2) and Mirimanoff W (3). W (m) was proved for higher values of m
in a series of later works: in 1914 Vandiver proved W (5) [Vandiver 1914], and Georg
Ferdinand Frobenius (1849–1917) proved W (11) and W (17). Frobenius also proved
W (m) for m = 7, 13, and for m = 19 whenever p = 6n − 1 [Frobenius 1914].
In 1917 Felix Pollaczek (1892–1981), then a student of Frobenius in Berlin proved
W (31) [Pollaczek 1917]. Later on, in 1931, Taro Morishima (1903–1969) used the
methods of Frobenius to provide a new proof for m = 31, in a way that he claimed
to have establish the validity of W (m) (for all but a finite number of values) in case
m = 37, 41, 43 [Morishima 1931]. In his doctoral dissertation at Cornell, Norman
G. Gunderson raised objections to Morishima’s proof and succeeded in correcting
some of the existing mistakes [Gunderson 1948], but as late as 1988 problems with
Morishima’ calculations were still found [Granville & Monagan 1988, 331].

A more systematic approach to this line of attack was also introduced earlier on by
Philip Furtwängler (1869–1940) who proved the following [Furtwängler 1912]:

Theorem 2 If case I of FLT is satisfied by three integers x, y, z for a prime exponent
p, then the condition r p−1 ≡ 1 (mod p2) holds true for every factor r of x (in case x
is not divisible by p), and for every factor r of x2 − y2 (in case x2 − y2 is not divisible
by p).

These were all significant results since they helped calculate a lower bound for
the value of integers for which Eq. (1) could be satisfied. Moreover, they did so only
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by considering p, and irrespective of the values of x, y, z that may satisfy the equa-
tion. Thus for instance, Furtwängler’s result led in 1913 to an interesting and very
specific result achieved by Waldemar Meissner. Meissner combined Furtwängler’s
general theorem with recent results obtained by arduous computations with residues
modulo prime number p [Meissner 1913]. He referred to a rather obscure, recent Rus-
sian textbook on number theory, written by a certain Ukranian mathematician, Dmitri
Grawe (1863–1939), who was involved mainly in questions of applied mathematics
and differential equations.14 Grawe tabulated for all prime numbers p < 1000 the
residues modulo p of the ratios 2p−1 − 1/p, and stated his belief that it might be pos-
sible to prove that Wieferich’s congruence never holds. “Had he continued to the next
1000”, Meissner remarked, “he would have found that the prime number p = 1093
does satisfy the congruence. Indeed, this is the highest number under 2000 to satisfy
the congruence.” The next related result came only in 1925 when N.G.W.H. Beeger
(1884–1965) proved that between 2000 and 14000, the only exponent p that satisfies
the Wieferich congruence is 3511. It was readily showed, however, that neither 1093
nor 3511 satisfied the Mirimanoff congruence [Beeger 1925].

Beeger explained the method of his computations and of his checking and why his
method “makes an error almost impossible”. Moreover, he disclosed, unlike Meiss-
ner that he “constantly used W.J. Odhner’s ‘Bunsviga’ calculating machine” [Beeger
1925, 18]. So, this is the first mechanical computer that we explicitly know of as being
used for attaining a result directly related with FLT. Both Meissner and Beeger used
the Cunningham tables of 1905 on Haupt exponents, containing, for all prime and
prime powers pk < 10000, those exponents t for which 2t ≡ 1 (mod pk). Beeger
returned to this problem in 1939 and, using Dickson’s result of 1908, he proved that
case I of FLT is valid for exponents up to 16,000 [Beeger 1939].

Another interesting thread of computations was conducted, somewhat later, by
J. Barkley Rosser (1931–1989). Rosser, a student of Alonzo Church, is mainly remem-
bered for his contributions to logic and foundations. He also did some important
research in analytic number theory and applied mathematics, being later involved in
the Apollo project as well. His incursion into FLT in 1939–1940 is a rather unknown
facet of his mathematical activity. What is peculiar in his approach is that he applied
analytic methods to the above described situations and used these methods to allow
further computations of specific values with the help of some mechanical or possibly
electro-mechanical calculators. This he did as follows [Rosser 1939]: If p is a prime
for which equation x p + y p = z p is satisfied by three integers x, y, z relatively prime
to p, Rosser called p, an improper prime. Call now n an An number if it is divisi-
ble by no prime which is greater than the nth prime, pn . Rosser showed that while
q(x) ≡ 0 (mod x) is satisfied at most by (p − 1)/2 integers x , with x < p2/2, (with
q(x) as defined in Eq. (12) above) every An number is a solution of q(x) ≡ 0 (mod x),
provided W (m) has been established for all prime values up to pn . Thus, if we define
the function φn(x), to be the number of An numbers not greater than x , we can state

14 Some information on Grawe appears in http://www.cultinfo.ru/fulltext/1/001/008/012/539.htm and
http://kspu.kaluga.ru/mathematik/mat/name/grave.htm.
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that

2φn(p2/2) ≤ p − 1. (13)

The basic idea of Rosser’s proof was to show that (13) cannot hold for small p’s if the
An numbers are sufficiently dense. Thus, using analytical methods, he found a lower
bound for φn(x). He defined by recursion a sequence of polynomials fk(x), as follows

f1(x) = x

log 2
, fn+1(x) = 1

log pn+1

x∫

0

fn(y)dy + 1

2
fn(x). (14)

He then proved by induction that

if x ≥ 1, then φn(x) > fn+1(logx). (15)

Initially, Rosser used the available result of Morisihima for p = 31, which corresponds
to p11. Thus, he computed successively the values of f1(x), f2(x), . . . and obtained
an explicit expression for f11(x), as follows:

f11(x) = 0.00000005447197741x11 + 0.0000003295918757x10

+0.00008081950130x9 + 0.001046349948x8 + 0.007817038320x7

+0.03463081936x6 + 0.09016427288x5 + 0.1322851609x4

+0.1003412456x3 + 0.03325580732x2 + 0.00324407042x

At the same time f11(x) could be computed following a different approach, namely,

fn(x) = 1

n!(log 2)
n−1

(
xn + n
1

2
xn−1 + n(n − 1)
2

22 xn−2

+ · · · + n(n − 1) · · · (2)
n−1

2n−1 x

)
, (16)

where 
n denotes the elementary symmetric function of log 3, log 5, . . . log pn . A
comparison of both values of f11(x) thus obtained provides a fair check of the com-
puted values, and these values are calculated using some “ten place machine” (of a
type not specified by Rosser), with the tenth place being rounded off. Rosser pointed
out that errors in the tenth significant figure unavoidably occur in this case. However,
the largest discrepancy which occurred between the two computed values of f11(x)

was five units in the tenth significant figure, which indicated that the results were
reliable.

The proof was completed by a combined application of straightforward (if involved)
computations with integers methods such as applied by Meissner and Beeger, on the
one hand, and analytical considerations concerning f11(log(x2/2)) and its derivative,
on the other hand. From the former, Rosser could deduced that if p is an improper
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prime, then 2φ11(p2/2) > 411,815.08, and hence p ≥ 411, 817. From the analyti-
cal considerations, and using the fact that p ≤ 411.817, Rosser further deduced that
p − 1 > 8,332,366.22, from which, p ≥ 8,332,403 (i.e., the next prime after that
number).

Rosser presented his first paper in April 1939. Five moths later he presented a sec-
ond one [Rosser 1940], where he extended the result of Morishima to m = 37 and
41. Interestingly, this was done by using a fact obtained in the earlier article, namely
that if p is an improper prime, then p > 8,000,000. Then, with the values m = 37
and m = 41, applying the same analytical methods as before, Rosser deduced that an
improper prime p is actually greater than 41,000,000. He also made the interesting
observation that although it would seem certain that higher values for a lower bound
of p can be found, “it seems unlikely that an indefinitely high lower bound can be so
deduced.” Thus for instance, it was clear to Rosser that there will be no difficulty to
prove W (43), even from the same value p > 8,000,000. Indeed, soon thereafter, Ros-
ser did prove W (43), in a third article, but he did so without using analytical methods
[Rosser 1941].

The reason why Rosser thought the method to have inherent limitations was related
to the use of two quantities, called the “eliminants”, that had been central to all proofs
of results mentioned above, starting from Dickson’s 1908 article, and up until Rosser’s
own ones. The “eliminants” are two quantities, xm−1 − 1 and (x + 1)m−1 − 1 that are
used in various ways in proving congruences of the kind q(m) ≡ 0 (mod p). Rosser
used them here in his article for the cases m = 37, m = 41. Using considerations
taken from Landau’s analytical theory of the distribution of primes, Rosser estab-
lished a suggestive connection between the order of size of the eliminants used in each
case and the lower bound attained. This connection, Rosser asserted, is what made
the method work. But it turned out that as larger and larger primes would be involved
in the proof this specific connection could not be preserved, and hence the method
would not work. More interestingly, Rosser raised a possible counter-argument that
could be adduced against his own reasoning, namely, that what counts in his expla-
nation is not the size of the eliminants involved, but rather the size of their largest
prime factor (and this because of the way in which the eliminants enter the proof). The
immediate answer to this counter-argument was that “after one passes the limits of
factor tables, it becomes impracticable to deal with the factors of the eliminant rather
than the eliminant” [Rosser 1941, 304]. In other words, the existence of improved
methods of computation would perhaps allow the method suggested here, after all, to
be used for higher values than Rosser estimated (and perhaps even unlimited values).

Rosser’s result was soon extended by Emma and Derrick Henry Lehmer in 1941,
for values of up to p < 253,747,889. The Lehmers referred in their article to a recent
unpublished manuscript by Alfred Western that contained a further kind of related
computations. Western had communicated his result to the Lehmers in private corre-
spondence. He had called attention to the properties of An numbers, indicating that as
a consequence of a theorem of Landau [Landau 1913], if q(m) ≡ 0 (mod m) is valid
for all values of m up to pn , then case I of FLT is true for any exponent p which is the
sum or difference of two An numbers. However, since all the numbers less that pn+1
are An numbers, it follows that case I of FLT is true for primes in a region where the
An numbers are so dense that they do not differ by more than 2pn+1. Based on this
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result – the Lehmers reported – Western had proved in 1938 that case I of FLT is true
for 16,000 < p < 100,000.

It is not clear from the Lehmers’ text, whether or not Rosser was aware of Western’s
result when he developed his own proof using the idea of the density of the An num-
bers. He did not adopt Western’s term, “An numbers”, and he used the notation “F
numbers” to denote integer solutions of q(x) ≡ 0 (mod m), relative to a given p. He
probably took this from a recent short article on FLT by a rather unknown mathema-
tician from Breslau, Eugen Gottschalk [Gottschalk 1938]. Gottschalk also spoke of
“N numbers”, to designate those that do not satisfy q(x) ≡ 0 (mod m) and are not
divisible by p. He proved a series of results similar to those attributed by Lehmers
to Western, and involving F and N numbers. Based on these results he proved the
case p = 6875, that had not been covered by Dickson’s proof of 1908, thus closing
an existing lacuna that was seldom mentioned. Gottschalk believed that his method
would allow proving infinite numbers of cases.

The Lehmers undertook to streamline Rosser’s method and to find higher val-
ues of p for which case I of FLT is valid. Their idea was to separate the solutions
of q(x) ≡ 0(mod m) into classes that might be more easily scrutinized. Thus, for
instance, by considering separately odd and even solutions and by using φ∗

n (x) to
denote the number of odd An numbers not greater than x , it is easily seen that

φn(p2/3) + φ∗
n (p2/3) ≤ (p − 1)/2. (17)

The Lehmers stressed an important point that was not explicitly mentioned by
Rosser, namely, that the use of analytical approaches for calculating lower bounds
for the discrete functions involved here was necessary because of the limitations of
the existing tables. Indeed, Cunningham’s Quadratic and Linear Tables would not
cover the cases beyond n = 5 [Cunningham 1927, 162–170]. Western, they added,
had been recently preparing additional tables, but apparently these did not go much
beyond Cunningham. The Lehmers’ ability to improve on Rosser’s result relied on
their recent involvement with Bernoulli numbers. The context of this involvement was
much broader than just the attempt to deal with FLT and it is described in some detail
below. Here I will just mention how it extended Rosser’s result for case I of FLT.

Based on their recent research, the Lehmers defined two kinds of polynomials
Pn, Qn of degree n that provide, respectively, a lower and an upper bound for φn(10x ),
and yet another kind, P∗

n−1, of degree n −1, for a lower bound for φ∗
n (10x ). As Rosser

had already proved W (41), the index to work with now was n = 13. The Lehmers
calculated the relevant (rather daunting) values of the coefficients of P13, Q13, P∗

12,
some of which comprised up to twenty decimal digits. They used them for calculating
the desired lower bounds of (13) and (17). Thus for instance, using:

P13(log p2/2) ≤ (p − 1)/2, (18)

and calculating with the explicit expression of the polynomial, one sees that the equa-
tion holds only for values p ≤ 93,785,629. It follows that case I of FLT is valid for
p < 93,785,629 (compared to Rosser’s best value of 41,000,000). On the other hand,
the equation
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Q13(log p2/2) ≤ (p − 1)/2, (19)

holds only for p > 141,000,000 and hence, even if we knew the exact value of φn(x),
for n = 13, we could not get a better result than this. Finally,

P13(log p2/3) + P∗
12(log p2/3) ≤ (p − 1)/2, (20)

holds only for p > 102,108,200. This establishes case I of FLT for exponents p up to
that value. However, before the article was published, Rosser informed the Lehmers of
his recent result for W (43). Recalculating with the same techniques all the necessary
polynomials and bounds for the case n = 14, the final result was achieved that case
I of FLT is valid for p < 253,747,889. This was added in proof, on March 1, 1941
[Lehmer & Lehmer 1941].

The value computed by the Lehmers remained, for many years to come, the highest
individual result of this kind. But parallel to this, some other results were obtained con-
cerning case I, mainly by Vandiver. Vandiver’s results arose from ideas developed in
his attempts to deal with case II, as well as from directly extending previous results of
Sophie Germain. Thus, using Furtwängler’s (Theorem 2) and Germain’s (Theorem 1)
he proved in 1926 the following two theorems [Vandiver 1926]:

Theorem 3 If there exists an odd prime p such that congruence (2) has no set of
integral solutions, each not divisible by l, and such that l is not congruent to 1 module
p2, then Eq. (1) has no solutions, each prime to p.

Theorem 4 If congruence (2) has no set of integral solutions, each not divisible by l,
where l = 1 + mp, and m < 10p, then Eq. (1) has no solutions, each prime to p.

Then, in an important paper published in 1934, Vandiver summarized several results
and techniques introduced in previous works by giving a concise formulation and a
sketch of the proof of the following theorem:

Theorem 5 If Eq. (1) is satisfied for p with x, y, z relative prime to p, then h2 is
divisible by p.

He added an interesting comment to the effect that much of his “work concerning
FLT is tending toward the possible conclusion that if the second factor of the class
number” h2 of Q(ζp) is prime to p, “then FLT is true” [Vandiver 1934, 122]. This
is the so-called “Vandiver conjecture” about which he had begun to speculate much
earlier.15

The survey of results presented in this section shows that the considerable progress
achieved on case I of FLT between 1897 and 1934, whereby its validity was established
for prime exponents up to p, p < 253,747,889, proceeded in a rather haphazard way,
supported above all by intense calculations of many kinds. The increasingly higher

15 The importance of this conjecture for algebraic number theory in general gradually gained recognition
over the years, albeit in somewhat modified versions. See, for instance, [Iwasawa & Sims 1965]. [Lang
1978, 142] pointed out that the conjecture had originally been formulated by Kummer [Coll. Vol. 1, 85].
Lang indicated that “Vandiver never came out in print with the statement: “I conjecture etc. . . .”, but “the
terminology ‘Vandiver conjecture’ seemed appropriate to me. I any case I believe it”.
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values of exponents for which the result was proved to be valid were calculated on the
basis of previous results, creating a complex network of interrelated but not clearly
structured results, that was far from transparent and in which certain lacunae could
easily pass unnoticed. Some degree of theoretical progress did accompany all these
calculations, but it was of relatively limited impact.

5 Vandiver and Case II (1919–1932)

Whereas significant progress had been achieved for case I, as we have seen above,
very little was done for case II which proved much more difficult to deal with. One
isolated attempt, which however turned out to be unsuccessful, appeared in an article
of 1910 by Felix Bernstein (1878–1956) [Bernstein 1910]. The very fact that Bernstein
came to publish an article on FLT was no doubt related to the recent establishment of
the Wolfskehl prize and the temporary boost it brought to attempted proofs. Indeed,
he completed a Habilitation thesis under Hilbert on class field theory and published
two short articles related to this [Bernstein 1903, 1904]. But thereafter, in his highly
productive career, Bernstein published important works on set theory and on statistics
and the only time he ever returned to number theory was in 1910, when he published
this article. Bernstein’s article was close to Hecke’s already mentioned one and used
its results. Like Hecke’s it was very conceptual rather than computational. Bernstein
first presented certain conditions related with p and with the second factor of h p, h2,
that were formulated in terms of class fields and ideals, under which case I is valid.
To this he then added certain, somewhat similar conditions for the validity of case II:
case II is valid whenever h p is divisible by p, but not by p2, or, equivalently, whenever
Q(ζp) contains no class whose p2 power (but no lower power than that) is a principal
class, and the second factor of h p, h2, is prime relative to p.

Bernstein’s article produced no visible follow-up in the form of further attempts to
prove FLT. The first to mention it later again was Vandiver, as part of his own incursion
into case II – the only truly significant one to address this part of the problem ever
since Kummer’s 1857 article. After his 1914 proof of W (5) Vandiver had proved some
additional, relatively minor results related with FLT. Thus, for instance, in [Vandiver
1919] he provided a general argument from both Kummer criteria and Furtwängler’s
1912 result could be derived. Much more important contributions came in 1920, when
he identified some lacunae and accuracies in Kummer’s arguments of 1857 [Vandiver
1920, 1920a]. Vandiver’s painstaking review of each of Kummer’s assumptions and
derivations, as well as of Bernstein’s more recent ones that depended on the former,
indicated that existing proofs for the irregular primes under 100 were not valid.16 As
[Mirimanoff 1893] contained a separate proof of case p = 37, it turned out that at this
point FLT was proved for all prime exponents p, p < 100, except for the two values
59 and 67. On the other hand, Vandiver’s objections did not invalidate Kummer’s proof
for regular primes. Thus in the range of prime exponents p, 100 < p < 167, the only
cases not covered by the proof were 101, 103, 131, 149, and 157.

16 Based on a different kind of consideration, also [Pollaczek 1924] showed that Bernstein’s result did not
imply the validity of FLT for 37, 59 and 67.
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Over the following years, Vandiver worked on formulating a correct version of
Kummer’s argument, and on applying this modified version to obtaining further results
related with FLT, both of general character and for specific cases of p. For example,
in [Vandiver 1925] he developed a different kind of criterion for case I, namely, one
based on properties of Euler numbers. He also proved [Vandiver 1925a] that if case I
is true for p, then h1 is divisible by p8. But the really significant contributions, which
implied a real breakthrough and led to considerable new advances for case II, appeared
in a series of papers published beginning in 1926. Vandiver summarized his results in
a detailed article published in 1929 in the Transactions of the AMS [Vandiver 1929].
For this article he was awarded the first Cole prize, established by the AMS in 1931
for outstanding work in number theory. The computational approach presented here
deserves some detailed discussion.

As already said, for the irregular prime p = 157, the first factor of the class number
of Q(ζp) is divisible by 1572, and therefore (K-1) does not apply to this exponent.
One of Vandiver’s immediate tasks was to develop criteria that would yield a proof
for this case. This he did by way of four different theorems, each of which implied
separately that FLT is valid for p = 157. It turned out that that this validity can be
further extended up to p = 211. In fact, even before the 1929 article appeared in print,
Vandiver had realized that his arguments extended the validity of FLT to all exponents
p, p < 269. Following Kummer, these four theorems used numbers x, y, z that are
integers in the field defined by (ζp + ζ−1

p ) and which are prime to each other. An
important result that Kummer had proved states that h2 equals the class number of
this field. Vandiver also added a fifth theorem that made explicit use of the somewhat
restrictive fact that x, y, z are rational integers. He was fully conversant with recent
progress in both number theory and abstract algebra, and he included in his work all
the necessary results and techniques that were now available. In order to formulate the
theorems, let p be any odd prime number and let B p be the set of Bernoulli numbers
Bi , i = 1, . . . , (p − 3)/2. Then the four theorems are as follows:

Theorem 6 Case II of FLT is true for l, if the following two assumptions are satisfied:

(6.1) h2 is prime relative to p,
(6.2) none of the Bernoulli numbers in the set B p is divisible by p3.

The proof of this theorem is essentially an extension of Kummer’s 1857 proof.

Theorem 7 FLT is true for p, if the following two assumptions are satisfied:

(7.1) there is only one index n for which a Bernoulli number Bn in B p is divisible
by p,

(7.2) for that n and for p, the Bernoulli number Bnp is not divisible by p3.

Also the proof of this theorem is essentially an extension of Kummer’s 1857 proof.

Theorem 8 FLT is true for p, if the following two assumptions are satisfied:

(8.1) p ≡ 1 (mod 4),
(8.2) all Bernoulli numbers in B p which are divisible by p have even indexes.
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At variance with the previous ones, the proof of this theorem relied on more recent
results, namely, a technique developed in [Mirimanoff 1893].

Theorem 9 Case II of FLT is true for l, if the following assumption is satisfied:

(9.1) None of the units Ea, a = a1, a2, . . . , as , is congruent (mod L) to the pth
power of an integer in the field Q(ζp).

Here we have: (i) L is a prime ideal divisor of l; (ii) l is a prime number, l <

(p2 − p), l ≡ 1 (mod p); (iii) a1, a2, . . . as are the subscripts of the Bernoulli num-
bers in B p which are divisible by p; (iv) Ea is defined as in (K - 2) above.

Theorem 10 FLT is true for p, if the following two assumptions are satisfied:

(10.1) there exists a rational prime l, such that the congruence

u p + v p + w p ≡ 0 (mod l)

has no solution u, v, w, all rational integers prime to l, and l is not congruent
with 1 (mod p2)

(10.2) the relation
{

Ea
L

}
�= 1 holds, where a ranges over the values a1, a2, . . . , as,

these integers being the indexes of Bernoulli numbers in B p which are divis-
ible by p, and L is a prime ideal divisor of l.

Here the expression
{

Ea
L

}
denotes the pth power character as defined, for instance,

in Hilbert’s Zahlbericht, §113 [Hilbert 1998, 199]. Thus, condition (10.2) is closely

related to condition (9.1) since, as Hilbert had shown, the relation
{

Ea
L

}
�= 1 indicates

that Ea is not congruent (mod L) to the pth power of an integer in the field Q(ζp)

[Hilbert 1998, 200, Theorem 139].
This theorem was of particular importance for Vandiver since it was “apparently the

first time criteria of this kind have been obtained for the second case of Fermat’s last
theorem” [Vandiver 1929, 637]. In his 1934 article, already mentioned above, Vandiv-
er commented that it is not conclusive that any of the methods used so far absolutely
depend on the fact that x, y, and z in Eq. (1) are rational integers. For example, the
proof of theorem (Theorem 10) does rely on the fact that x, y, z are rational integers,
but it is not shown that a similar argument does not work when x, y, z are interges in
the field Q(ζ + ζ−1). This point had apparently been raised in a conversation with
Rudolf Fueter (1880–1950) a leading German number theorist and former student of
Hilbert. “Perhaps FLT is true for rational integers – Vandiver concluded – but not for
integers in Q(ζ + ζ−1).”

Because of (Theorem 5), and given that for h2 to be divisible by p it is necessary
that h1 be divisible by p, it followed that (Theorem 6) was true for case I, so that it
was necessary to prove only case II, which Vandiver did through a series of compli-
cate lemmas of the kind that Kummer had used back in the 1850s (or of elaborations
thereof).

Having these theorems at hand, the time came for computations. For this purpose,
Vandiver also developed a series of formulae related with Bernoulli numbers that
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became the basis for dealing separately with the various particular cases. Since all the
irregular prime numbers under 157 (37, 59, 67, 101, 103, 131, 149) divided the numer-
ator of only one Bernoulli number, Bn , in their respective relevant ranges, Vandiver
used (Theorem 7) to prove the validity of FLT in those cases. This necessitated proving
separately for each exponent p, that for the relevant n mentioned in the theorem, the
Bernoulli number Bnp is not divisible by p3. In order to so, Vandiver introduced two
auxiliary quantities, defined as follow:

If a is any integer, 1 < a < (p − 1)/2, and p is a prime integer > 5, then

B ′
ap = (−1)a−1 Bap(22ap − 1)

2ap
; Aa = (−1)a Bap(22ap − 1)

22apap
(21)

(Vandiver’s Aa’s should not be confused with Western’s “An numbers” mentioned
above).

The following two congruences can be now proved:

B ′
ap ≡ 12ap−1 + 32ap−1 + 52ap−1 + · · · + (l − 2)2ap−1 (mod p2) (22)

Aa ≡ 12ap−1 + 22ap−1 + · · · +
(

p − 1

2

)2ap−1

(mod p2) (23)

In proving these formulae, Vandiver relied on well-known results, such as the von
Staudt-Clausen Theorem, and added some shortcuts to make the computations with
the B ′’s and A’s easier. He stressed that these computations do not give as much
information as Kummer obtained when he computed the actual values of h1 for each
value of p. Still, he regarded them as a sufficient check on Kummer’s results [Vandiver
1929, 615–616].

The computations involved here were by all means long and tedious, and Vandiver
relied on the help of colleagues and students among whom he distributed different
ranges to be investigated. Thus, Mrs. A.C.S. Williams, a graduate student, checked
all cases p < 100. This was important in order to check with and compare against
Kummer’s existing results. Thus for instance, for p = 37, she used a = 16, and found:
B ′

16·37 ≡ 42·37 (mod 372). Kummer had previously calculated that B16·37/37 ≡ 35·37
(mod 372). The current calculation thus agreed with the older one. In addition, she
also obtained:

B ′
22·59 ≡ 59 · 17(mod 592)

B ′
29·67 ≡ 67 · 13(mod 672)

This later case, Vandiver stressed, implied that B29·67 ≡ 672 · 41 (mod 672), where
Kummer had written B29·67 ≡ 672 · 49 (mod 673). Vandiver thus deduced that this
had been a misprint.17 Vandiver wrote that these results were obtained “directly”, by
which he probably meant that no machine was used.

17 But incidentally Vandiver himself had a misprint here, as he wrote: B′
9·67 ≡ 67 · 13 (mod 672).
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Samuel Wilks (1906–1964) was another graduate student whom Vandiver recruited
to the work. Eventually, after completing his MA at Austin, Wilks went on to study
mathematical statistics at Iowa and from there he continued to Princeton, where he
became one of the leading statisticians of the country, and a leading mathematical
educator [Mosteller 1964]. For Vandiver, he performed computations related with the
Aa’s in the cases 100 < p < 211. This he did “using Monroe and Marchant electrical
computing machines” [Vandiver 1929, 641]. His results included:

A34 ≡ 96 · 101(mod1012)

A12 ≡ 10 · 103(mod1032)

A11 ≡ 103 · 131(mod1312)

A65 ≡ 133 · 149(mod1332)

The case 157 was of course more important, as here B31 ≡ B55 ≡ 0 (mod 157). The
computations for this case showed:
A31 ≡ 39 · 157 (mod 1572) and A55 ≡ 156 · 157 (mod 1572).

With these results at hand, Theorem II implied the validity of FLT for all cases
p < 211, except 157. On the other hand, the only primes p for which the two con-
ditions of Theorem III are satisfied simultaneously are 37 and 101. As for Theorem

IV, Vandiver and his collaborators calculated
{

Ea
L

}
for all relevant values of p and a.

Thus for instance, for p = 37, the relevant values are a = 16, l = 149, ζ ≡ 17 (mod
L). In order to test whether or not the symbol equals 1, Vandiver reduced E16(17) mod
149, and obtained the index modulo 149 by looking at tables of indices for all prime
numbers less than 200, published in the second volume of Eugene Cahen’s Theorie de
Nombres [Cahen 1925, 38–54]. Vandiver reassured the readers that these tables had
been checked independently by comparing their companion tables against each other.

The relevant computations for all irregular primes in this range (except 157) were
performed by Elizabeth Stafford (1902–2002), who was just about to receive her
PhD degree from Wisconsin. For instance, in the case l = 37, the said index, ind
E16(17) ≡ 24 (mod 137) and this agrees with Kummer’s results of 1857. Only the
case p = 157 was calculated by Vandiver himself. Here two cases arise a = 31 and
a = 55. The relevant values are:
a = 31, p = 1571, r = 139, ζ ≡ 1024(mod P). Thus: ind E31(1024) ≡ 150 (mod
157)
a = 55, p = 1571, r = 139, ζ ≡ 1024 (mod P). Thus: ind E55(1024) ≡ 39 (mod
157)

Vandiver also explained why these computations implied two results, namely:

• in all cases of irregular primes p considered here, h2 is prime to p,
• Theorem 6 had been tested for all irregular primes.

He summarized all his results by stating that FLT is valid for all powers n < 211,
and by announcing in a footnote that, after the article was submitted and before its
publication, the upper bound had been raised to 269.

For details about many of the computations mentioned here, especially concerning
Bernoulli numbers, Vandiver directed the readers to a joint article with Stafford
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[Stafford & Vandiver 1930]. Here the discussion was oriented towards questions
related with cyclotomic fields, but the computations involved were of course relevant
to those needed for FLT. Vandiver and Stafford provided the following two definitions:
A cyclotomic field is called irregular if h p ≡ 0 (mod p); it is called a properly irregular
cyclotomic field if h1 is divisible by p but h2 is prime relative to p. They proved here
that all irregular fields determined by primes p < 211 were also properly irregular.

It is particularly interesting to see at this point, how – somewhat like we saw above
for case I – an increasingly complex network of reciprocal reliance across books and
articles starts to be used as evidence for the validity of the results, and it is not always
straightforward to determine what the actual source for the overall reliability of the
final results is. Some kind of institutional authority had to be infused into the system
in order to reassure the readers. Thus, for instance, like in Vandiver’s article, also here
use was made of Cahen’s Tables, and to this information was added from Jacobi’s
Canon. But in addition, some further values that are not treated in those tables had
to be calculated. Stafford “made all her computations”, we are told, “in two different
ways”. Vandiver’s computations for p = 157 were checked by “Mr. S.S. Wilks, tutor
in mathematics, University of Texas”. Vandiver himself went “through the computa-
tions concerning the second factor of the class number as a pattern of his work” on
the case p = 157, and in doing so, he “checked again the computations of Kummer
and Mrs. Stafford for p = 37”. Stafford’s computations were further supported by the
fact that in the cases p = 37, 59, 67, they coincided with Kummer’s. And, in addition
to all of this, the authors promised that “the paper containing all the above-mentioned
computations are now in the possession of Mr. Vandiver at the University of Texas;
ultimately they will be deposited in some University library” [Stafford & Vandiver
1930, 149]. This implicitly offered the opportunity to check the results to every reader
who might be potentially interested in doing so.

In subsequent papers, Vandiver continued to develop the main topics of his work
on FLT, cyclotomic fields and Bernoulli numbers. In the first place, as already said,
he extended the upper bound of his result on FLT to p < 269. In order to do so,
he and his collaborators first found the irregular primes in this range: 233, 257, 263.
Then, they found that for each of them only one Bernoulli number satisfies the divis-
ibility test: B42 ≡ 0 (mod 233), B82 ≡ 0 (mod 257), and B50 ≡ 0 (mod 263).
This was double-checked by using the values appearing in the Adams tables of 1878.
These computations were performed by another graduate student, Elizabeth Badger,
who included them in her MA thesis. The next step was to apply (Theorem 6) to the
irregular primes. Another graduate student, J.A. Clack, found the following values:
A42 ≡ 26 · 233 (mod 2332), A18 ≡ 186 · 257 (mod 2572), and A50 ≡ 162 · 263 (mod
2632). Vandiver did not say if the computations were machine-aided but, this result
established the validity of FLT for exponents p < 269. Computations were already
underway for extending the theorem up to p < 300 [Vandiver 1930].

Parallel to this, the results obtained in the joint paper with Stafford on cyclotomic
fields were also extended with further computations [Vandiver 1930a]. The results
were extended by Badger to primes p, 210 < p < 269, and by another graduate
student, Mr. M.M. Abernathy, for primes p, 268 < p < 307. He found, first of all,
that all primes in the range are regular except 271, 283 and 293. Then it was proved
that the cyclotomic fields generated by all irregular primes between 210 and 307
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were in fact properly irregular. All of this involved considerable amounts of compu-
tation, and Vandiver devised further methods to ease and speed up the procedures
and also to allow for double-checking. Thus, for instance, he had proved that in a
properly irregular cyclotomic field none of the units En are pth powers of units in
Q(ζp). This result was used here for the exponents in question. Vandiver devised a
method that allowed checking if En can possibly satisfy the said property for indexes
n of Bernoulli numbers Bn that are divisible by p in each case. This was based on
the use of Jacobi’s tables for indexes of primes, and a rather complex table of rele-
vant values was constructed for all the cases under investigation. Likewise, Vandiver
devised a test for double-checking his results. Besides the already mentioned graduate
students, also M.E. Tittle and Miss B. Bennett participated in the lengthy computa-
tions. Vandiver went on to use his results on irregular cyclotomic fields to extending
his results on FLT. Thus, for instance, Clack calculated that A10 ≡ 283 · 71 (mod
2832). Using various computations of this kind, and the five theorems proved in 1929,
Vandiver could prove all the cases involving irregular primes less than 307, and for
some cases he even had more than one different proof (for p = 149, 257 and 293,
he actually had four different proofs). He concluded by stating that FLT had been
fully established for all exponents < 307. In these two articles of 1930, Vandiver did
not mention any mechanical or electric machine used for his computations, but one
may assume that at least something similar to what was used in 1929 was at play
here. Additional relations involving Bernoulli numbers and irregular primes appeared
in [Vandiver 1932].

6 The Lehmers, FLT and Bernoulli numbers (1939–1946)

The most important collaboration in which Vandiver was involved in relation with his
research on FLT is that with the young couple Emma and Dick Lehmer. Elsewhere
I have provided a broader background of the mathematical personalities of Vandiver
and of the Lehmers, and discussed the interesting details of how their collaboration
started and developed. Here I will only repeat as much as needed for the purposes of
the present account, while directing the readers to [Corry 2007] and [Corry 2007a] for
further details.

Vandiver’s life-long quest to deal with FLT was not guided by an attempt to develop
new concepts or overarching theories that would afford completely novel perspec-
tives. Rather, he approached this problem as a meticulous technician who is willing
to explore and exhaust the unexploited potential of existing theories, while refining
them where necessary. As we have already seen, and will further see now, Vandiver
was undaunted by even the most demanding computations, aiding himself with any
available tools and persons. He was a poor lecturer and formally he only directed five
doctoral students. At the same time, however, he had the ability to deeply engage in
collaborative work and meaningful interchanges of ideas, as well as to activate groups
of younger people willing to undertake heavy calculation projects under his direction.
The previous section already mentioned examples of this, and now we will see some
additional, and more important ones (including with the Lehmers).
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Dick Lehmer was greatly influenced by the work of his father, Derrick Norman
(DNL). Numerical tables and devices for automatic computations were always a topic
of great interest for Dick, as they were for his father, and they occupied him for his
entire life. Thus, for instance, as an undergraduate, he built a number sieve based on a
set of bicycle chains hanging on sprockets attached to a shaft and turned by an electric
motor. In 1929 DNL published his Factor Stencils that gave a method of factorizing
a number using cards with holes punched in them. Dick was directly involved in this
project. In the 1930s he devised the famous Lucas-Lehmer primality test for Mers-
enne numbers [Williams 1998, 180–201]. In 1932 he constructed a highly ingenious
photoelectric number sieve [Lehmer DH 1933].

It was also through his father that Dick came to know his future wife and mathemat-
ical partner of a lifetime, Emma Trotskaia. This happened when she was an undergrad-
uate student at Berkeley attending DNL’s class. The couple married the year Emma
graduated and moved to Brown University. In 1930 Dick completed there his Ph.D.
under Jacob D. Tamarkin while Emma was awarded her M.Sc. Emma never completed
a PhD or had a permanent teaching position, but this was only due to technical circum-
stances, such as the fact that university rules prevented at various places a husband
and wife teaching in the same department. This fact, however, never prevented her
from actively pursuing her mathematical interests both alone and in collaboration with
Dick, and of being a leading member of the USA number theory community. Indeed
she was completely satisfied with this institutional situation and was able to make the
best of it, as she argued in a delightful essay called “On the advantages of not having
a Ph.D.” [Brillhart 1992].

The main focus of both Emma’s and Dick’s mathematical work was in number
theory, and they approached it (separately and in collaboration) in a rather eclectic
way, that included algebraic, analytic and computational methods. It was always some
specific problem and the desire to crack it that stood at the focus of their attention.
Conceptual and mechanical tools were always sought or developed as ancillary to such
pursuits. As pioneers of the use of electronic computers (in particular, but not only,
on number theory) they were keenly aware of basic question that a good programmer
must face, such as a correct use of computational resources and streamlined coding. As
part of their overall interest in computations related with number-theoretical problems,
the Lehmers were well aware of current work on FLT, and in particular of the current
work of Vandiver. I already mentioned the 1941 article where the couple extended the
known results on case I of FLT up to p < 253,747,889. In fact, it was much earlier
that they started to publish results related with the problem.

In 1932 Dick published a short note improving on a result of Vandiver [Lehmer DH
1932]. As mentioned above, Vandiver had proved in 1925 that if case I is true for p, then
h1 is divisble by p8. This result had been recently improved in [Morishima 1932], who
showed that p8 can be replaced by p12 provided p does not divide 75571.20579903.
Lehmer now proved that the proviso is actually not necessary, since x p + y p + z p = 0
is not satisfied by the prime factors of 75571·20579903. This proof was within the
thread—described above—that stemmed from Wieferich’s work, rather than compu-
tations related with Kummer’s criteria and irregular primes. But the Lehmers would
soon move into this latter kind of work, following their interest in Bernoulli numbers
and related topics.
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The link between Vandiver and the young Lehmers came through the mediation
of Derrick Norman Lehmer. Vandiver and DNL were part of the relatively small
USA number theory community and were in a friendly relationship from the early
1920s. It was through his father that Vandiver contacted Dick and asked the couple
to join him in his FLT project aroud 1932. Vandiver arranged for a scholarship of the
American Philosophical Society that would pay for the rent of an electric Monroe
machine for conducting the computations. It also paid partly for Dick’s work, then at
Lehigh, whereas Emma contributed large amounts of time and effort of her own. An
immediate concern of Vandiver was the need for improved methods for calculating
Bernoulli numbers. Dick and Emma were natural candidates for such a task, and they
got quickly into work. In 1935, Dick published an article containing improved recur-
rence formulae for calculating Bernoulli and Euler numbers. Referring to previous
tables such as those prepared by the “intrepid calculators”, “Adams and Cerbrenikoff
[sic]”, Dick felt a distinct need to justify the calculation of further values, and his
arguments are very telling about current attitudes of mainstream mathematicians to
this kind of mathematical pursuit. He thus wrote [Lehmer DH 1935, 637]:

The reader may question the utility of tabulating more than 93 Bernoulli numbers,
and hence the need of giving formulas for extending their computations. It is true
that for the ordinary purposes of analysis, for example in the asymptotic series
of Euler MacLaurin summation formula, a dozen Bernoulli numbers suffice.
There are other problems, however, which depend upon more subtle properties
of the Bernoulli numbers, such as the divisibility by a given prime. Examples of
such problems are the second case of Fermat’s Last Theorem and the Riemann
Zeta-function hypothesis. Our knowledge as to the divisibility properties of the
Bernoulli numbers is still quite primitive and it would be highly desirable to add
more to it even if the knowledge thus gained be purely empirical.

Dick considered four classes of numbers that have important similarities and inter-
relations. These are the Bernoulli numbers (b), the Euler numbers (E), the Lucas
numbers (R), and the Gennochi numbers (G). They may be defined, respectively, by
the following four basic recurrence formulas:

b0 = 1, b1 = −1/2, (b + 1)n − bn = 0 (n > 1)

E0 = 1, E1 = 0, (E + 1)n + (E − 1)n = 0 (n > 1)

R0 = 1/2, R1 = 0, (R + 1)n − (R − 1)n = 0 (n > 1)

G0 = 0, G1 = 1, (G + 1)n + Gn = 0 (n > 1)

Here the expressions like (b + 1)n should be read as operational symbols, which after
expansion must be turned again into subscripts.18 The known analytical expressions
for the four kinds are also similar:

18 In his paper Lehmer used the letter B rather than b, for the Bernoulli numbers, but for the sake of
consistency with the rest of the article I will keep B here for its use as with Vandiver and with the Lehmers
in their collaboration with Vandiver.
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ebx = x

ex − 1
eEx = 2ex

e2x + 1
,

eRx = 2ex

e2x − 1
eGx = 2x

ex + 1
.

The similarity between the four families of numbers is further enhanced by the fact
that they vanish for odd values of the indexes, and the even-indexed values have alter-
nating signs. Dick developed a “lacunary” kind of recurrence formulae that do not use
all preceding numbers for the calculation of any individual one, but rather leave some
gaps. bn is computed from a set of previous b’s whose indexes are congruent to n
modulo m, where m represents the length of each gap. He showed how the recurrence
formulae could be used for calculating these, and other kinds of numbers.

Typical of his very pragmatic approach, in applying these kinds of formulae, Dick
was interested not only in the results they yield, but also in their algorithmic behavior
and efficiency, ease of storage, communications and reproduction of results, etc. Such
concerns are clearly reflected in an article written the following year where he applied
his lacunary formulae to the methods for proving new cases of FLT [Lehmer DH
1936]. The most common ways to calculate Bernoulli numbers at the time were based
in the recursive formula (b + 1)n = bn . This was also the case even in recent tables,
such as that published in 1935 by Davis. Lehmer called this a “fundamental though
inefficient” algorithm. Other existing recurrence formulae were more efficient, but
then the calculation of the coefficients soon increased in complexity. Dick suggested
that a good compromise could be found in the use of Gennochi numbers, for which
the following conversion formula was known:

Gn = 2(1 − 2n)bn . (24)

Moreover, the following recurrence formula was available for calculating them:

4G2n + 3
[n/3]∑

λ=1

(
2n
6λ

)
G2n−6λ =

{
2n, i f n = 3k − 1,

otherwise.
(25)

Dick thus suggested an improvement of this formula that would be better suited for
actual computations. In order to present this formula, one first defines

g(n, λ) =
(

2n
6λ

)
|G2n−6λ|. (26)

Thus, the recursion above becomes

100 |G2n| = 75
[n/3]∑

λ=1

(−1)λ−1g(n, λ) +
{

50n · (−1)n, i f n = 3k − 1,

100n · (−1)n−1, otherwise.
(27)
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For λ > 0, g(n, λ) can be obtained as

g(n, λ) = g(n − 3, λ − 1). f (n, λ), (28)

where

f (n, λ) = 2n (2n − 1) . . . (2n − 5)

6λ (6λ − 1) . . . (6λ − 5)
. (29)

Now since g(n, λ) is integer, the denominator of f (n, λ) (in lowest terms) must divide
g(n − 3, λ − 1). This property provides a good way to check the computations for
g(n, λ).

The numbers Gn are quite large but they offer two important advantages for the
computation of bn :

• The G’s are integers and therefore, no additional work in eliminating fractions is
needed

• If we write |b2n| = Nn/Dn then Nn = G2n/dn , where dn is the integer 2(4n −
1)/Dn .

In this way, Nn is obtained as the quotient of an exact long division. For n = 100, for
instance, G220 has 313 digits, while d10 has 63 digits. This provides a good checking
method.

Following this approach, Dick first checked all the results of Serebrennikov and
Adams. Adams, as already stated, had calculated the first 62 non-zero values and Ser-
ebrennikov the first 92. Here he calculated all values up to B196, which would be of
course important for handling FLT for cases with higher exponents.

For the sake of clarity in presentation, Dick arranged and printed the numerators
of the B numbers in a novel way, possibly under the influence of Comrie’s style of
typographic improvements. Previously, it had been customary to write these numer-
ators as strings of digits in a long line, and here Lehmer suggested printing them in
columns of 9 digits. Thus for instance, for B110 he got: D110 = 7590, whereas N110
he wrote as:

8717064
809960074

...

768306053

⎤

⎥⎥⎥⎦ 28 lines of 9 digits each.

Printing the results in this way, he stressed, will be very effective, especially “with
standard computing machinery” [Lehmer DH 1936, 461].

The results attained by Dick Lehmer in these articles were immediately used by
Vandiver–as will be seen right below–for achieving additional results on FLT, via cal-
culation of irregular primes and application of his own extension of Kummer’s criteria.
But Dick published additional results on Bernoulli numbers that could be applied in
different ways to FLT, as we saw above in relation with Rosser’s papers. These results
appeared in two papers of 1940–41. The Lehmers’ improvement over Rosser was
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based on the use of certain polynomials Pn, Qn that provided lower and upper bounds
for the function φn(x), and yet another kind, P∗

n−1, of degree n − 1, for a lower bound
for φ∗

n (x). These polynomials arise, also as lower and upper bounds, Pn(λ) and Qn(λ),
in the attempt to estimate the value of a function Nn(λ) = Nn(λ|ω1, ω2, . . . , ωn), rep-
resenting the number of n-tuples of integers (x1, x2, . . . , xn), that satisfy the equation
ω1x1 + ω2x2 + · · · + ωn xn ≤ λ. Such n-tuples constitute the lattice points inside,
or on the boundary of, the n-dimensional tetrahedron bounded by the hyperplanes
x1 = 0, x2 = 0, . . . , xn = 0, and the hyperplane ω1x1 + ω2x2 + · · · + xn = λ,
where ωi are positive real numbers and λ is a non-negative parameter [Lehmer DH
1940a]. Lehmer asserted that the best way to calculate these bounds was to obtain
them recursively, as successive solutions of difference equations involving Bernoulli
polynomials, namely expressions of the type:

bν(x) = (b + x)ν =
ν∑

k=0

(
ν

k

)
xν−kbk (30)

where (b + 1)ν is taken to mean bν , so that b0(x) = 1, b1(x) = x − 1/2;
b2 = x2 − x + 1/6. These Bernoulli polynomials have the convenient property that

b′
n(x) = nbn−1(x). (31)

An earlier article [Lehmer DH 1940] presented convenient estimates for maxima
and minima of Bernoulli polynomials in the unit interval, 0 ≤ x ≤ 1, and these were
used here for calculating specific values of Pn, Qn . In order to grasp the correct context
in which all of these computations took place, however, it must be pointed out that
one source of direct motivation for calculating these maxima and minima arose in a
conversation of Lehmer with a seismologist, and Lehmer believed that they may also
have important applications in statistics and interpolation theory. The need for such
extreme values arises in connection with the equation

n
∑

1�λ�t

(t − λ)n−1 = bn(t) − bn(t − [t]), (32)

in which bn(t) appears as approximating the sum on the right hand side up to an error
that depends on the said extreme value. Lehmer expressed his surprise about the fact
that the problem of maxima and minima had not been treated in the rather extensive,
existing literature on Bernoulli numbers (including the recent tables by Davis).19

In addition, it is remarkable that while Lehmer would use the values of Pn, Qn

in order to improve on the computations of Rosser for case I of FLT, he in turn, in
calculating the values of Nn(λ) used the values of the functions fn that Rosser had
calculated in his previous article. Thus, the network of interconnected results on which
the Lehmers’ analytic estimation that case I of FLT up to p < 253, 747, 889 was based
was a rather complex, and far from transparent one.

19 For a comprehensive overview of the literature on Bernoulli numbers see http://www.mathstat.dal.ca/
~dilcher/bernoulli.html.
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The extant correspondence from this time contains many interesting information
about the Lehmers’ approach to the main problems involved in correctly implement-
ing algorithms for automated computations. This was the kind of task in which their
mathematical abilities were most clearly manifest. But the question that more recur-
rently comes up in the letters concerns the expected publication of their results: what
exactly should be published and who would want to publish it? What tables? How
many results for each case? The Lehmers clearly understood that coming up with new
values of Bernoulli numbers was not the kind of result that the mainstream mathemat-
ical community would hold in highest professional esteem. In a letter of February 10,
1936, Dick wrote to Vandiver:

I had tried the Annals but received an immediate rejection from Lefschetz on the
grounds that it is against the policy of the Annals to publish tables. He suggested
that the tables be deposited with the AMS library or else published in some
obscure journal. So I tried the Duke journal.

And indeed, the results of their collaboration were eventually published in the then
new Duke Mathematical Journal as well as in the Proceedings of the National Acad-
emy of Science (PNAS), rather than in mainstream mathematical journals of the time.
One is not surprised to see that in 1943 Lehmer was among the founders of the new
journal, Mathematical Tables and Other Aids to Computation, originally published by
the National Research Council. In 1960 the name of the journal was changed to Math-
ematics of Computation and it was only in 1962 that the AMS became associated with
its publication. This process, together with the prominence that this journal eventually
attained, attests for the deep transformation that affected some of basic mathematical
values ingrained in the practice of number theory for generations, starting right after
Kummer. Vandiver and the Lehmers played a significant, active role in bringing about
this transformation.

The results of their joint work appeared in 1937 in an article entitled “On Bernoulli
Numbers and Fermat’s Last Theorem.” Vandiver’s name appeared as sole author, but
the active collaboration of the Lehmers, as well as that of Abernathy and Tittle, was
explicitly acknowledged. The article comprises first of all the identification of new val-
ues of irregular primes. Various sources were used for this purpose, including Jacobi’s
Canon, and the Lehmers’ recent computations of Bn up to n = 110. Vandiver used
algorithms that were a refinement of those used in 1919. Based on these, the Lehmers
checked the validity of FLT for all irregular primes p below 601, and all primes p of
the form, p = 4n + 3, 601 ≤ p < 619. Vandiver stressed that arithmetical machines
had not been used “except in connection with addition.” He explained that tables of
indices had been carefully constructed that allowed for identifying the smallest res-
idue of any integer raised to a power modulo l. For any given integer n the tables
were used to find what power λ is congruent to n modulo l, where λ is a primitive
root of l for all primes l below 211. The tables were computed for each l selected in
connection with each regular prime p. Vandiver further claimed that tables of indices
for primes beyond 1000, if prepared in the future, would be very useful for many
other questions in number theory. The values of l used in this connection were: 1187,
1229, 1543, 1579, 1627, 1637, 1699,1733,1867, 2083, 2309, 2767, 2803, 3209, 3343,
3643, 4211, 4549, 4943, 5231, 5471, 5557, 9739. Rather than publishing the tables
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used, Vandiver indicated that they “will be ultimately deposited in the library of the
American Mathematical Society” [Vandiver 1937, 583].

Using the data discussed in the article, it was shown that FLT is true for all prime
exponents p, 2 < p < 617, except possibly for 587. As a matter of fact, FLT was
proved for various other prime exponents below 700. The case 587 raised some com-
putational difficulties which were nevertheless overcome very soon, while the result
was extended to cover also the prime p = 617. This case was especially interesting,
Vandiver pointed out, since 617 is the first instance of an irregular prime with irregu-
larity index of 3 [Vandiver 1939]. By 1937, then FLT had been proved to be valid for
all exponents less than 619. It was also clear by this time, however, that above 619
the computations became prohibitively long and laborious for being carried out with
a desktop calculator.

In 1946, the editors of the American Mathematical Monthly asked Vandiver to
prepare a detailed exposition of the state of the art in research on Fermat’s problem
[Vandiver 1946]. Vandiver was the acknowledged, world leading expert on the topic.
FLT was a problem that many mathematicians were curious to hear about but, at the
same time, very few were aware of recent progress in it. So both the problem and the
author were natural choices. And indeed, the report is thorough, clearly written and
authoritative, and it is small wonder that it remained a classical source of reference
for decades to come. Vandiver’s expository abilities came to full expression here, as
he was able to present a rather systematic picture of a field of research that evolved in
a rather haphazard way and actually retained that spirit.

One of the most interesting features of Vandiver’s article is his current opinion
about the possible, general validity of the conjecture, a question about which he was
frequently asked. In this regard, Vandiver drew a clear distinction between the two
classical cases. He was convinced of the validity of case I, but not merely because
it had been proved for very high values. Rather, his confidence stemmed from some
important, related theorems he had proved along the way on trinomial congruences
and cyclotomic fields. Case II involved a much more complex situation; thus, while
he believed it would ultimately be proven, he did not think he had any compelling
evidence to support it. Indeed, it seems that Vandiver had been skeptical about the
general validity of case II of FLT, as we realize from a letter written to him by Eric
Temple Bell in 1929:

If I remember rightly, you once said that you would not be surprised if the second
case turn out to be false. . . . You give the limit five hundred for exponents to be
tried. I have no idea of the actual amount of computation required for such an
undertaking, but I should think it would be terrific. There is no doubt in my mind
that anyone who knows anything about the Theory of Numbers would say that
this work ought to be done while there is a man not only able to do it, but also
willing. If in one of these exponents the computations should give a negative
result, you will set a problem to exasperate generations of arithmeticians. I rather
hope that it does turn out that way.20

20 Bell to Vandiver: January 15, 1929. All letters cited in this article are kept in the Vandiver Collection,
Archives of American Mathematics, Center for American History, The University of Texas at Austin. They
are quoted with permission of the CAH.
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By 1964 Vandiver had already surpassed the limit of five hundred and more was to
come, but it was not the high values checked that could dispel his doubts. Also con-
cerning the validity of the Vandiver conjecture, he felt now less sure than he was in
1934, precisely because of its close relationship with and possible dependence on
the validity of FLT. Commenting on the frequency with which apparently promising
conjectures in number theory are eventually abandoned, he wrote:

When I visited Furtwängler in Vienna in 1928 he mentioned that he had con-
jectured the same thing before I had brought up any such topic with him. As he
had probably more experience with algebraic numbers than any mathematician
of his generation, I felt little more confident. (p. 576)

And, he added:

However it would probably be best if I were wrong about this. I can think of
nothing more interesting from the standpoint of the development of number the-
ory, than to have it turn out the Fermat relation has solutions, for a finite number
> 0, of primes l.

At this point in his career, Vandiver had already been investigating FLT for more
than thirty years and, as already said, he was the world-leading expert on the ques-
tion. He had well-formed opinions about the theorem and of what could be expected
in terms of proofs for ever higher values of the exponent p. And yet, he could not
imagine the completely new stage into which research on this, as well as on other
number-theoretical questions, would enter in a few years from now with the advent
of electronic digital computers. The then unimagined capabilities for fast-speed num-
ber crunching that these computers would provide was not really of much relevance
to the kind of conceptual, structural research that had developed as a main trend in
number theory under the influence of Dedekind and Hilbert. But for the kind of com-
putation-intensive approach of which Vandiver was a main representative they would
be of real interest, and would open a trend of research that started in a limited way
and within a few decades became a most active a fruitful thread in number theory at
large.

7 FLT and SWAC (1950–1960)

If Vandiver was a natural choice for writing an expository article on FLT for the
Monthly, it turned out in retrospect that also the timing for its publication was perfect.
The advent of electronic computers in the post-war era would also bring significant
changes to work on FLT, so that in many senses 1946 was a good time for summa-
rizing work done so far. On the other hand, the forthcoming changes would not bring
about dramatic conceptual changes in the way it was approached. Rather, the changes
would consist mainly in harnessing the enormous power of this new tool on behalf
of an old approach. As we will see, the basic algorithms and calculation methods
were refined but they were not superseded by completely innovative ones. Initially
it was basically more of the same, though with truly powerful tools for making the
computations.
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Nor was it at all an obvious matter that the new tool would be indeed used for
this particular problem, certainly not so soon. Problems in pure mathematics, and
especially in fields like number theory, were by no means among the first to be ad-
dressed during the early years of electronic computers. Mainstream mathematicians
working in “pure” fields, did not show much interest in the possibilities opened for
their disciplines by this new technology. In addition, operational costs of the new
machines had to be justified with more mundane pursuits than those provided by,
say, number theory. And yet, some classical problems in mathematics were soon
seen as a challenging test for computing power as well as for programming skills
with the new machines. Thus, for instance, as early as 1949 John von Neumann sug-
gested using ENIAC in order to calculate the values of π and e to many decimal
places. The idea was to develop tests for measuring randomness in the distribution
of digits appearing in these two cases [Reitwiesner 1950]. The problem of Mersenne
Primes, Mn = 2n − 1, and the Riemann Conjecture also attracted attention from
very early on. Alan Turing (1912-1954) addressed both problems at Manchester in
1951–1952. The Lehmers were of course natural candidates to pursue these kinds of
problems with electronic computers. In 1952 they joined forces with Raphael Rob-
inson (1911–1995), and found with the help of an electronic computer that M521
was prime. Soon, the additional results for M607, M1279, M2203, and M2281, were
also achieved. Robinson was happy to declare that: “Each minute of machine time
is equivalent to more than a year’s work for a person using a desktop calculator”
[Robinson 1954, 844].

To a large extent, the fact that precious processing time of an electronic computer
was devoted to FLT already in the early 1950s was the consequence of a series of
fortuities. In 1945 Dick was invited to work at the ENIAC project at the Aberdeen
Proving Ground. Most of his time was devoted to the task of computing trajectories for
ballistics problems, but the Lehmers used some of the available time over the weekends
to questions related with number theory. Above all, this period served as an important
training for Emma and Dick in the use of electronic computers. Some years later,
during the McCarthy era, Dick refused to take the loyalty oath, and he lost his position
at Berkeley for a while. This did not become as acute a problem for him as it was for
some others, since he became director of the Institute for Numerical Analysis (INA) at
the National Bureau of Standards [Todd 1990]. In particular, Emma and Dick had here
the opportunity to work with SWAC, the Standards Western Automatic Computer at
the NBS. Particularly Emma, who was not officially employed at NBS, “had the good
fortune to do quite a bit of the actual drudgery of coding and therefore enjoy the thrill
of seeing the SWAC, so to speak, ‘dance to my tune,’ often after many false starts and
blind alleys” [Lehmer E 1956]. Given their past collaboration on FTL, using now the
power of SWAC to carry on with this work could be seen as a natural path to follow.

SWAC was one of the early stored program computers and the first to be built on
the West Coast. In 1950, when it became active, it was the fastest computer in the
world. It featured some of the most innovative technologies known at the time, such
as the Williams tube memory, as well as an auxiliary magnetic drum memory of 256
words and a punched card I/O system. A main innovation of SWAC derived from the
unique design of its command structure that considerably saved programs space and
made program writing more concise. Also the magnetic drum memory was by that
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time a well-known technology, but the way it was implemented in SWAC constituted
an important innovation that brought it close to what is known nowadays as direct
memory access. Its designer was Harry Huskey (1916–), who had previously worked
with Alan Turing in England, and had been involved in previous computer projects
in the USA, such as EDVAC and SEAC. SWAC was used primarily by the INA, but
also by local aircraft companies. At the institutional level, SWAC demonstrated that a
computer could be built by smaller establishments and with less intimidating amounts
of money [Huskey 1997, Huskey et al 1997, Rutland 1995].

From the extant correspondence and testimonies one gets the clear impression that
Emma was the driving force behind the use of SWAC for number-theoretic problems.
Emma found that certain technical features of SWAC were especially well suited to
this field of enquiry. SWAC worked with a word size that allowed for 36 binary (or
11 decimal) digits. The binary approach was found useful for expressing two-valued
number-theoretical properties such as residuacy and primality. SWAC could perform
1,600 additions and 2,600 multiplications per second, which was way beyond any-
thing that mathematician, even like the Lehmers, have ever come across or thought
about. Given their prior experience, the Lehmers soon addressed the problem of how
to program an all-purpose computer so as to turn it into a number sieve. They realized
that they could process at the rate of 100,000 numbers per minute. The first number-
theoretical problem they addressed was to find solutions for the Diophantine equation
x3 + D = y2 for −100 < D < 100. They found no solutions for x less than one
million [Lehmer DH 1953].

The idea of using SWAC for possible results connected with FTL was rather off-
handedly suggested sometime during 1952. When news reached Vandiver of the suc-
cess achieved with the Mersenne primes he hastily wrote to the Lehmers to congratulate
them for the achievement:

Wotinel do you and Dick mean by not wiring me as soon as you discovered those
new Mersenne primes? . . . Too bad the number theorists can’t all get together
and properly celebrate the Mersenne discoveries.21

Emma answered immediately suggesting that SWAC could be used for other number
theoretical questions, but even these mathematicians that had devoted their efforts to
FLT seemed not to think of this problem as a natural candidate for that. Thus Emma
wrote:

The Mersenne chase was exciting and is in fact still going on. Robinson coded
it up to about p = 2300 and it has not quite reached the 2000 mark yet. They
are running it off and on at odd times. The Robinsons [Raphael and Julia] came
down and stayed with us between terms and we put in some long night vigils,
but nothing new showed up after the first memorable night of Jan. 30th . I am
taking a class in coding now, so if you have some pet problem you would like to
run, I might try my hand at coding it and maybe we can run it after hours. The
machine seems to be performing quite well lately.22

21 Vandiver to Emma Lehmer: March 4, 1952.
22 Emma Lehmer to Vandiver: March 7, 1952.
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And Vandiver’s answer about three months later does not leave room for interpretation.
Vandiver simply did not think that it might be interesting to use SWAC for looking
into FLT:

Have you found any new Mersenne primes? At the moment no particularly
numerical problem occurs to me that may be handled by the machine; but if one
does, I’ll let you know.23

The first extant letter in which we find FLT explicitly mentioned is on June 1st, 1953.
Emma wrote to Vandiver the following:

In connection with FLT we thought it may be fun to try finding some more
irregular primes on the SWAC. We have just finished coding up a program for
it. It looks like we should be able to do a prime of the order of 1000 in about
3 minutes. The question is where should we start? Would you feel happier if we
went back to Kummer’s 167 as the first try. That would probably take 5 or 10 sec.
Have you gone beyond 607? Have you published a list of the irregular primes
indicating which Bernoulli numbers they divide, and if so where? . . . How about
coming out and watching SWAC knock out the irregulars. Let us know what you
think of the project.24

And nine days later:

We rather plan to run it first for all primes, except the obvious ones like 257
which will give too many exceptions. As soon as we get our things sent back to
Berkeley next week we will move into a little beach house near here, where there
will be practically no housekeeping for me to do, I will get busy and code up the
more elaborate formula you mention in your letter using the drum, which has
just been put into operation on the SWAC. This will be an interesting experience,
as I have not tried to use the drum before and should give us plenty of room so
that fairly large primes could be run, time permitting.
Unfortunately due to the new administration’s economy measures the Institute’s
budget has been curtailed very drastically so that all we can offer is some free
time on the SWAC these days. Even that is hard to come by sometimes. We have
hopes that after July 1st when several of the current problems are supposed to
be finished we will be able to get in a few innings.25

From Emma’s letter we learn that devoting machine time to a problem like FLT was
not precisely a first priority, and that without the personal interest by the Lehmers and
their friendship with Vandiver, no effort would have been devoted to this at the time.
And as already indicated, even Vandiver did not think at the beginning of suggesting
FLT as a possible project to undertake with the help of the Lehmers at SWAC. Now,
in June 1953, it seems that he had already started to work out the improved algorithms

23 Vandiver to Emma Lehmer: April 3, 1952.
24 Emma Lehmer to Vandiver: June 1, 1953. Actually the year 1953 is not typed as part of the date in this
letter, but there are several contextual matters that make it clear that this is the year of the letter.
25 Emma Lehmer to Vandiver: June 10, 1953.
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that would be used, and that are described below. On June 16, the Lehmers cabled
Vandiver and announced:

SWAC DISCOVERS NEW IRREGULAR PRIMES 389, 491, 613, 619, COR-
RESPONDING TO BERNOULLI SUBSCRIPTS 100, 168, 261, 214. PRIMES
LIKE 619 REQUIRE 90 SECONDS.26

Work was now under way, and it looked as a natural continuation of the earlier collab-
oration of 1935–40, only with a new and much more powerful technology at hand. The
results of this joint research were published in 1954. Work was done in two parts: (a)
identifying all the irregular primes < 2000; and (b) checking that each irregular prime
thus found satisfies necessary criteria for ensuring that FLT is valid in that case. The
criteria introduced by Vandiver in 1929, and that improved on Kummer’s, were not
easily turned into programmable algorithms. Thus, Vandiver was required to modify
them accordingly, which he did very successfully.

The first step is to look at the set B p of Bernoulli numbers Bi , i = 1, . . . , (p−3)/2,
and to find the indexes ai of Bai within that set that are divisible by p. In the case of
regular primes, there are no such indexes. In the case of irregular primes, the exist-
ing criteria would be checked for those indexes. One way to find the indexes was to
use any of several known congruences that allowed expressing Bernoulli numbers as
sums of like powers. Vandiver himself had developed various such congruences in
his previous work on FLT. Among these, the one involving the least number of terms
is:

Sa =
∑

p/6 < s < p/4

s2a−1 ≡ (−1)a fa Ba/4a, (mod p) (p > 7, 2a < p − 1) (33)

where fa = (2p−2a − 1)(3p−2a − 2p−2a − 1). This formula has the advantage that if
for all a, Sa is not divisible by p, then p is regular. On the other hand, for some a’s the
factor fa may itself be divisible by p and thus, the divisibility of Ba may sometimes
remain doubtful and may require further checking. In these terms, the algorithm that
SWAC was programmed to perform was the following:

(SW-1) Calculate Sa (mod p) for a = 1, 2, . . . , (p −3)/2. Write into punched cards
all the values of p and a for which Sa ≡ 0 (mod p). In addition, accumulate
the value of

S =
(l−1)/2∑

a=1

Sa(mod p). (34)

This was used as a check before moving to the next step, since it should yield
S ≡ 0 (mod p).

(SW-2) If it turned out that S was not congruent with 0 (mod p), then SWAC would
stop. (This never happened, however.)

26 Lehmer to Vandiver (Cable), June 16, 1953. This document is found at the Emma & Dick Lehmer’s
Archive, UC Berkeley, and is quoted with permission.
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(SW-3) With the relevant values of p and a, calculate fa (mod p). Write into a
punched card all values for which the result was not divisible by p, together
with an indication that p was irregular with index a.

(SW-4) For values for which fa ≡ 0 (mod p) it was necessary to further check to
see if this was not a false alarm. This was done with the help of yet another
known congruence:

Sa =
∑

p/6 < s < p/5

s2a−1 +
∑

p/3 < s < 2 p/5

s2a−1

≡ (−1)a f ′
a Ba/4a (mod p) (p > 5, 2a < p − 1). (35)

where f ′
a = (6p−2a − 5p−2a − 2p−2a + 1). We start with the case: f ′

a is
not divisible by p. In this case S′

a contains [p/10] terms. Now, if S′
a is not

divisible by p, neither is Ba , and thus this was actually a false alarm caused
by the divisibility of fa .

(SW-5) Now, if S′
a ≡ 0 (mod p) (and still f ′

a is not divisible by p), then p is irregular
with index a, and this is recorded on a punched card as in step (SW-3).

(SW-6) If, however, f ′
a ≡ 0 (mod p), and since at the same time fa ≡ 0 (mod p),

then it is not yet certain that Ba is divisible by p. In this case yet a third
congruence is used, which dispels any remaining uncertainty but is much
longer than the previous two, since it comprises [p/2] terms:

S′′
a =

(p−1)/2∑

r=1

(p − 2r)2a ≡ (−1)a−12p−2al Ba (mod p3).27 (36)

The actual congruence here is mod p3 but it was considered sufficient to
check mod p2. For each case it was first checked if S′′

a ≡ 0 (mod p) and
if it this was the case, then every time that S′′

a ≡ 0 (mod p2) the card was
punched indicating that p was irregular with index a.

At this point, SWAC had produced its output of punched cards indicating all irregular
primes with their indexes or “degrees of irregularity”. The largest index found was
three. For values of p < 619 the results could be were checked against those obtained
back in 1937 by Vandiver and the Lehmers. In principle, the results coincided, but
with some exceptions: p = 389 and p = 613 were now found to be irregular. In
addition, for p = 491, which was already known as irregular, a new index a was
found, a = 119. These results were rechecked and found to be correct.

The second part of the procedure involved applying any of various existing criteria
for checking that FLT is valid for each of the irregular primes identified in the first
part. The criteria formulated by Vandiver in his earlier work were not easy to code
as a program for SWAC. Thus, the need arose to formulate a modified version of
(Theorem 9), as follows:

Theorem 11 Case II of FLT is true for l, if the following assumption is satisfied:

27 This was based on an idea of Mirimanoff and then developed in [Stafford & Vandiver 1930].
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(11.1) None of the units Ea, a = a1, a2, . . . , as, is congruent to the pth power of an
integer in the field Q(ζp) mod L.

Here we have: (i) L is a prime ideal divisor of l; (ii) l is a prime number, l <

(p2 − p), l ≡ 1 (mod p); (iii) a1, a2, . . . as are the subscripts of the Bernoulli num-
bers in B p which are divisible by p.

Some additional definitions were needed here. Let t be any integer such that tk

is not congruent with 1 (mod l), where l is a prime, l = kp + 1, l < p2 − p. Let
µ = (p − 1)/2. Let d = 1p−2a + 2p−2a + . . . + µp−2a . Define Qa as follows:

Qa = t−kd/2
µ∏

b=1

(tkb − 1) bp−1−2a
. (37)

The following lemma holds: the unit Ea is congruent to the pth power of an integer in
the field Q(ζp) modulo a prime ideal L that divides l, if and only if Qk

a ≡ 1 (mod l).
Let Qa be defined as above, and let Ba1, Ba2, . . . , Bas , the list of Bernoulli numbers,
with indexes less than (p −1)/2, which are divisible by p. Then, FLT is valid for p, if
for i = 1, 2, . . . , s, it is not the case that Qk

ai ≡ 1 (mod l). Let now p be an irregular
prime with index a, as appearing in the output of the first part of the procedure. The
following algorithm was programmed in SWAC in order to check if FLT is valid for p:

(SWI-1) Calculate the least prime l, of the form kp + 1.
(SWI-2) Find out whether 2k ≡ 1 (mod l). If it is: find out whether 3k ≡ 1 (mod l),

etc., until a negative answer is found. The basis thus obtained will be used
as the t in (37). As it happened, all cases checked give a negative answer
for 2, so that in all cases t = 2 was used.

(SWI-3) Calculate d. This was done modulo p, without loss of generality. Calculate
2−kd/2 (mod l). Iteratively multiply this by each of the successive factors
in (+), and, after each iteration, reduce the product mod l. This yields the
value of Qa (mod l).

(SWI-4) Raise Qa (mod l) to the k-th power, and compare to 1.

It should be noticed that if the test had failed for a given value of l, it might yet be
possible that it would succeed with a different l. The algorithm worked by trying first
the smallest possible l, and it turned out that in all cases the test worked already with
that l. Moreover, all these values of l satisfied the required condition l < p2 − p.
A recent article by the he Finnish mathematician Kusta Inkeri (1908–1997) [Inkeri
1947], however, showed that the criteria would still be valid if l < 3

2 (p2 − p).
The correspondence indicates that the summer of 1953 was the most intense period

of activity in computing with SWAC, and on checking on the side of Vandiver and his
collaborators. For instance, on August 3, Emma wrote to Vandiver:

You will be glad to know that the drum is rolling over at a good clip. On the last
25 minutes it has shown that 1693 and 1697 are regular. We hope to be able to
push this to 2000 while we are here. This will take 10 SWAC hours. Then run
the Kummer criterion again and get a new listing to 2000 which we hope will
agree with the old one to 1669. Meanwhile I think we will all feel better if you
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let your computer do p = 389, 2a = 200 the SWAC way and check us step by
step.28

In Vandiver’s various letters we read about the progress of checking of all values sent
to him. This he did with the help of various collaborators, an electric machine, and
Jacobi’s Canon. It seems that by the end of the month of August, most of the results
were already essentially at hand. The new algorithms were indeed quite complicate,
but they yield clear results when applied to the various new values of irregular primes
found. The outcome was unambiguous and the double checking confirmed it: the cri-
teria were satisfied by all irregular prime exponents under 2000 and thus FLT was
valid for all exponents less than that value.

The distribution of regular and irregular primes between 1 and 2000 was indeed a
very interesting and even surprising fact to ponder about. If the primes are grouped
into sets of 250 the following table is obtained:

1–250 251–500 501–750 751–1000 1001–1250 1251–1500 1501–1750 1751–2000 Total

No. of irregular primes 9 19 20 16 11 14 11 18 118
No. of primes 52 42 37 36 36 35 33 31 302
% of irregular primes 17 45 54 44 31 40 33 58 39

The high percentage of irregular primes within the primes under 2000 was rather
surprising for Vandiver. While Jensen had proved in 1915 the infinity of the irregular
primes, Vandiver did not find in this table a suggestion that there may be only a finite
number of regular primes. This could be an important result (“a permanent addition”)
not only in this particular context but also in the theory of cyclotomic fields, where,
as Vandiver explained, several theorems were known which do not appear to extend
to irregular fields. The information provided by this table, he said, “will greatly sim-
plify and facilitate the study of the units and ideals in such fields as defined for any
p < 2000” [Vandiver, Lehmer & Lehmer 1954, 33].

As the overall picture started to consolidate, Vandiver was evidently in an upbeat
mood and he wrote a long letter to the Lehmers that brought together many of the
topics in which he alone, and the three together, had been working for years. The letter
deserves being quoted in extenso. Vandiver thus wrote:

In your letter of the 14th you say, “What is your feeling about publishing the
SWAC output? Where, when, and how much, etc.” . . . I hope that after a couple
of years you will be able to announce that result that F.L.T. is true for all primes
less than, say, 20,000 with possibly a few exceptions which will be doubtful.
You will then have a mass of information not only about Fermat’s Last Theorem
but the theory of cyclotomic fields which will amount, in effect, to a consider-
able addition to Reuschle’s book.29 Your work with the SWAC so far increases
greatly, in my opinion, the theory of properly irregular cyclotomic fields. On the
other hand, if you find a case where QK ≡ 1 (mod l) for a number of values of l

28 Emma Lehmer to Vandiver: August 3, 1953. In this an other letters quoted I make slight notational
changes so as to make them fit the text of the article.
29 See above footnote 9.
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(say for example 10), I would begin to suspect that the second factor of the class
number is divisible by p in that case. Such a possible eventuality reminds me
of a statement that Bell made in a letter to me dated 1929.30 . . . I am inclined
to agree, based on my experience with it, that the problem of the divisibility
of the second factor of the class number by p is just as difficult as Bell thinks.
You will probably recall that we defined a properly irregular cyclotomic field
defined by a pth root of unity as properly irregular if the first factor of its class
number is divisible by p, but the second is not. So far, your work holds open the
possibility that cyclcotomic fields are either regular (that is, defined by regular
primes) or properly irregular. Maybe the dreams of Mirimanoff, Furtwängler and
myself will come true! If there exists any improperly irregular cyclotomic field,
we can at the present time say very little about the properties of its units and
ideals (belonging to powers of p). On the other hand, the properties of the prop-
erly irregular cyclotomic fields are much simpler than what you might expect in
advance, and I regard some of them as quite beautiful.31

And another letter that deserves being quoted at length was written exactly one month
later. Vandiver makes patent and explicit his views about the primacy of question
related to cyclotomic fields over those of FLT. Thus he wrote:

I should like to state in detail what I think of the significance of the work you have
so far done on the SWAC concerning F.L.T. So fart in the work for exponents <
2000 several of the things that have stood out which I do not think any specialist
in algebraic number theory would have predicted are: First, the persistence of
the regular primes. If there is only a finite number of these, I should be more
than surprised considering the way they have been turning up. Now this is quite
significant. In case there are an infinite number, then a lot of Kummer’s theory
assumes much more importance than, I think, mathematicians have attached to
it, since, in particular, Furtwängler discovered his law of reciprocity. The fact is,
the latter’s law of reciprocity does not generalize Kummer’s law and the latter
was restricted to regular fields. I have heard several number theorists state in the
past that they thought the number of regular primes was finite. As you know,
the cyclotomic fields considered are regular or properly irregular either. So this
points up to the possibility that if there are any improperly regular cyclotomic
fields, that list would appear to form quite a restricted class. To me this is an
astonishing situation. You may recall that when I talked to you in L.A. several
times, I expressed some doubt about continuing a project of testing Bernoulli
numbers for regularity alone. At that time I had not studied your tables up to 2000
in detail, and I imagined that because the irregular primes appeared so dense in
the 600’s, that the regular primes would fade out later. Also, when I left you in
L.A., I thought it quite probable that before you carried your computations much
further [than] that what would appear to be an improperly irregular cyclotomic

30 See above footnote 20.
31 Vandiver to Emma and D.H. Lehmer: August 22, 1953.
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field would turn up. You will recall that we discussed at some length the ideas
as to what to do if our criteria broke down consistently.
Fortunately, I spent some years studying the property of the properly irregular
cyclotomic fields and the results in the main turn out to be simpler than I had
ever expected them to be. I do not think this work ever attracted very much
attention, as the readers would imagine that because of the assumptions I made
that this work was of a very special nature. Well, it certainly doesn’t appear to
be so special!
Another point, someone may prove Fermat’s Last Theorem tomorrow, but unless
his proof contains a demonstration that the second factor of the class number of
a cyclotomic field defined by e2iπ/p with p an odd prime is prime to p, I certainly
would not recommend that the F.L.T. work be stopped. The main point is that
every prime we test throws more light on this key problem of cyclotomic fields,
that it, the possible divisibility of the second factor by p.32

Interesting also in this regard are Vandiver’s comments on current interest in cyclo-
tomic integers and what he saw as problematic in the current interest in more abstract
approaches to algebra:

I forgot how unfashionable the theory [of cyclotomic fields] is at the present
time. The tendency seems to be nowadays to take the viewpoint of abstract alge-
bra and strive always for generality and immerse the cyclotomic field in some
more general system. Thus, for example, some recent writer stated a result of this
kind and observed that it was known previously “merely” for the special case
of the cyclotomic field. Such birds are not consistent, however. No doubt the
same man made a great fuss about the work of Erdös and Selberg on the prime
number theorem. This would be curious from the first viewpoint I mentioned,
as the rational field would be only a special case of the cyclotomic.
At the present time I can only think of a handful of living mathematicians
who ever paid any attention to the cyclotomic field in itself aside from myself.
There are F. Pollaczek, Morishima, Inkeri, and Denes. So, anyone interested in
cyclotomic fields must be a very exclusive group, and you or anybody else could
not be criticized for not belonging to it.33

In terms of the right strategy for writing the paper where the results of the
SWAC computations were to be presented, this meant for Vandiver that it would
be better to “avoid as much of the theory of cyclotomic fields as possible at the
beginning of the paper.”

One matter that proved to be really stimulating for Vandiver and the Lehmers was
the rather efficient way in which SWAC, with a proper codification of the algorithms,
made all computations: for the largest prime tested it took SWAC to run for three
minutes. Emma Lehmer was quick to understand the significance of the new situation
created in number theory by the use of high-speed computers. Because of her involve-
ment with actual coding, on the one hand, and with detailed theoretical research in

32 Vandiver to Emma and D.H. Lehmer: September 22, 1953. Emphasis in the original.
33 Vandiver to Emma and D.H. Lehmer: October 7, 1953.
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number theory, on the other hand, she was perhaps among the first to call attention to
some broader implications of the use of computers that nowadays may seem obvious
to many. Speaking soon after the publication of the article to an audience of applied
mathematicians, she said [Lehmer E 1956, 104]:

I have found coding an exacting science as well as an intriguing art. Not only
does one learn a new language, but one has to speak it perfectly to be understood
at all. The proverbial mathematician, whom Professor Pólya likes to describe,
who thinks that something is A, says that it is B, writes down C , while it sould
have been D, would get rapidly nowhere as a coder. The machine is a very
exacting taskmaster. It acts dumb and fails to understand what you are trying to
say until you are forced to say it just right. In this process it is not the machine
but the coder who gets a liberal education in the art of straight thinking and
invincible logic. All Sunday supplements to the contrary, machines do not think
and machines do not learn; but in spite of this, they are exacting and relentless
teachers having no sympathy or understanding for human foibles and frailties.

Vandiver published two additional articles where this line of attack was further pur-
sued. This meant both further refinements of the Kummer-like criteria and, of course,
additional computations with SWAC. First, with SWAC coded and operated by John
Selfridge, Vandiver computed the relevant values for checking that FLT is valid for
prime exponents p, 2000 < p < 2521. Selfridge was at that time a graduate student
at UCLA, and had been assisting Vandiver and the Lehmers from 1953.34 At this
point it was clear that about 40% of the primes were irregular and that no irregular
prime existed with irregularity index greater than 2 [Vandiver 1954]. In a follow-up
article published in 1955 in collaboration with Selfridge and Charles Nicol (Vandiv-
er’s doctoral student). Work with SWAC was supervised by Charles Brown Tompkins
(1912–1971), then director of the INA. This time, the values of p examined were in the
range 2520 < p < 4002, and about hundred hours of machine time were employed in
the computations. As in the pervious range the percentage of irregular primes found
here was around 40%. On the other hand, it was pointed out, “if we take a compar-
atively short range and examine the number of irregular primes therein, percentages
differ widely” [Vandiver, Selfridge & Nicol 1955, 971]. Also, only one prime number
had been found with irregularity index 3 (this is 491, but this is not explicitly said in the
article). In addition, all irregular primes thus far discovered were properly irregular.

8 Computers and FLT after SWAC

The situation created in the aftermath of the early application of electronic computers
to FLT was similar in various respects to that existing close to hundred years earlier,
after Kummer’s proof of FLT for all exponents under 100. Like then, now in 1955
lower bounds for the validity of FLT were known separately for case I and case II
(4003 being the lower bound for case II and hence for FLT at large). Much compu-
tation had been done in the meantime, and several significant conceptual advances

34 See Vandiver to E. and D.H. Lehmer: September 1, 1953.
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had been achieved, but no real conceptual breakthrough was reached. Kummer’s cri-
teria for the validity of FLT for exponents that are irregular prime numbers had been
refined. The technical limitations in computing values of irregular primes and check-
ing the various criteria for those cases were overcome by various techniques. First it
was division of labor among human computers, then the help of mechanical devices,
and finally with electronic digital computers. The accelerated pace of development
in the processing and memory capacities of these latter devices in the decades to
come could not even be imagined at this time. But from the point of view of the
mainstream research in number theory the kind of results provided by the work of
Vandiver and his associates was not properly at the center of attention, except to
the extent that it satisfied the natural curiosity of any mathematician to be updated
about current developments related to FLT. Thus, it did not become a main topic of
research and it was left for a relatively small group of researchers that continued to deal
with it.

And yet, unlike immediately after Kummer, a much shorter time was need now
before a series of new papers started to appear where extended computations were
actively pursued. Of course, this was closely connected to the more general phenom-
enon whereby intensive computations with electronic devices became increasingly
common also in a field like number theory. Thus, in 1964 Selfridge and Pollack
announced their computations indicating that FLT was true for any exponent up to
25,000 [Selfridge & Pollack, 1964]. Several additional computations were performed
in the early 1970s with third-generation, minicomputers. In 1975, using a DEC PDP-
10, Wells Johnson determined all irregular primes p less than 30,000 and showed that
FLT is true for these primes. In his work, however, Johnson had broader aims than just
FLT, and he also computed new values of Iwasawa invariants as well other properties
of Bernoulli numbers [Johnson 1975].

A significant leap forward in this thread came the following year when Samuel
Wagstaff announced the proof, mentioned at the beginning of this article, that FLT is
true for p < 100, 000 [Wagstaff 1978]. This proof was soon improved to reach values
of p < 125, 000. Wagstaff’s computations identified all irregular primes up to that
limit, 125,000, and led to many additional, illuminating results. In Wagstaff’s opinion
the most exciting one of this was the discovery of two primes with irregularity index
5: 78233 and 94693. Selfridge and Pollack had found in their work two primes with
index 4, and to these Wagstaff added now another fourteen. On the other hand, no
primes with index greater than 5 were found. The computations were all carried on
four IBM 360/75 computers, the standard powerful computer at the time. They took
about 80 min to complete for each prime near 125,000. The programs were written
partly in 360 assembler language and partly in FORTRAN [Wagstaff 1978].

Wagstaff’s work was followed by many other highly intensive computational
efforts, some of which deserve being mentioned here. These works displayed an
increasingly sophisticated use of algorithms and criteria taken from a broad spec-
trum of different number-theoretical works, an increasing understanding of problems
related with the computational complexity of the algorithms implemented, and the
use of ever more powerful machines. In 1988 Granville and Monagan used a gen-
eralized version of Wieferich criteria, together with many additional and extensive
computations performed in a VAX machine to prove that case I of FLT is true for
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prime exponents up to 714,591,416,091,389 [Granville & Monagan 1988]. This was
followed by another computation of Wagstaff, in collaboration with Jonathan Tanner,
that extended this result to prime exponents up to 156,442,236,847,241,729. This time
a personal computer was already used for the calculations, but, for greater accuracy, the
results were further checked with a CYBER 205 machine, a super computer produced
by Control Data Corporation in 1979 as a truly powerful number-cruncher.

Work on case II also continued, and one interesting result was achieved in 1993,
namely, that case II is valid for prime exponents p up to 4,000,000 [Buhler et al.
1993]. The mathematicians involved in this complex calculation dedicated their arti-
cle to “the computational genius of Derrick Lehmer”. They praised the Lehmers and
Vandiver for their statement in 1954 that their calculations were relevant not only
to FLT, but rather that they constituted “a permanent addition to our knowledge of
cyclotomic fields”. Indeed, the enduring interest in their calculations was evident for
the many publications that came in their sequel over thirty years and in the work of
Iwasawa on the structure of cyclotomic class groups. The very intensive computa-
tions involved here had been done over the course of several months using idle time
of about one hundred NeXT workstations. They estimated that about 1015 arithmetic
operations were involved, which is the equivalent of what a single such workstation
could calculate in 10 years time. Of course, the question of the reliability of calcu-
lations needed to be addressed, and the authors expressed their reasons to believe in
the accuracy of the results achieved, especially because “several entirely different pro-
grams written at different times by different programmers were used to check the data”
(p. 153). Although the attempt to find ever higher values for the validity of FLT is still
mentioned in an article like this, it is obvious that the real motivations for the effort
invested here went well beyond this very circumscribed problem. This is clear, among
other things, from the simple observation that these efforts continued in various ways
even after Wiles’ general proof of FLT. The same group of mathematicians sent their
new results in 1996 (but they were corrected in 1999 and published only in 2001)
reaching to values of irregular primes and cyclotomic invariants up to 12 millions.
The computers involved and the algorithms implemented here reached a truly high
degree of sophistication and power. In this latter article, FLT was not even mentioned
[Buhler et al. 2001].

Developments related with work on FLT after SWAC, however, were not limited to
calculations of this kind and included further results that connected with many of the
ideas already mentioned here. One very important result in the mid-1980s, for instance,
developed directly from ideas of Sophie Germain. It appeared in the joint contribu-
tions of Len Adleman, Roger Heath-Brown and Étienne Fouvry, which implied that
there exist infinitely many primes for which case I of Fermat’s last theorem holds
[Fouvry 1985; Adleman & Heath-Brown 1985]. If we recall the quotation of Edwards
at the beginning of this article, we realize that this result dispelled the main concern
expressed there about the status of research in1977, and that all existing calculations,
even those of Wagstaff, did not remove, namely that “one cannot rule out the possibility
that the Theorem is false for all primes beyond some large bound.”
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9 Summary and concluding remarks

Considering the history of FLT from the point of view of the role and nature of the
related calculations on individual cases offers interesting vistas on the development of
the problem and of its place within the discipline of number theory. The relationship
between number crunching and theory development changed over the years, as did
the relationship between number crunchers and number theoreticians (sometimes, but
not frequently, both roles appearing in one and the same person).

An early milestone discussed above touched upon the work of Kummer. As was
seen, this mathematician performed intensive calculations and set up tables for himself
as part of his efforts to gain direct insights on the inner workings of the new kinds
of domains of numbers he undertook to investigate. This provided a solid basis that
helped formulate his theory of ideal complex numbers in order to address the problem
of higher reciprocity which was at the center of his agenda. As a side benefit, it also
provided new tools to deal with FLT, and Kummer pursued this direction with some
interest, but only inasmuch as the calculations involved required a reasonable amount
of effort. Proving FLT for prime exponents up to one hundred was definitely a respect-
able result, but Kummer did not see any point in performing further calculations that
had already become considerably complex. Nor did most of his successors. On the
one hand, the most significant progress in number theory in the following generations,
especially in Germany, focused on the development of abstract, general theories along
the lines of both Dedekind and Kronecker. These developments neither encouraged
the pursuit of computations for particular cases nor elicited any kind of particular
attention towards FLT. Hilbert, while extolling the great achievements of Kummer,
called to pursue research in number theory while avoiding calculations wherever pos-
sible. As for FLT, since Kummer’s way was the only one open at the time to attack
the problem, almost no efforts were devoted to deal with it beyond Kummer’s own
results.

Over the nineteenth century, mathematical table-making became an activity to
which significant efforts were devoted at both the individual and the institutional
levels. At some point, mechanization became central to this activity. Number theory
received some degree of attention as part of these efforts, but much less than other,
more applied pursuits that were the main motivation behind all these efforts. New work
related to individual cases of FLT would eventually benefit from the values of Bernoulli
numbers calculated in this framework, but these calculations were themselves in no
way related to FLT nor motivated but this problem.

At the turn of the twentieth century a new avenue for research on FLT was opened
with the results of Wieferich and Mirimanoff. This avenue brought a new motivation
for computations with individual cases, as lower bounds for case I could now be cal-
culated. Ever improving theorems that were added along this line over the following
decades in the work of Dickson, Morishima and others only helped encourage this
thread. Calculating machines were harnessed to these tasks, as were new tables of
increased accuracy, including those that had been prepared with different purposes in
mind. This line of attack on FLT also led to original work along the analytical tra-
dition, especially by Rosser and the Lehmers, in which other kinds of computations
with individual cases were involved. While all of these computations visibly helped
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extend the domain of validity of case I, it is easy to see in retrospect that the com-
plex network of mutually cross-referenced results underlying the support for these
results was not always clear, and it contained many lacunae that were not always duly
clarified.

Vandiver’s early contributions to FLT were part of this thread, but he soon opened his
own new direction of attack in which Kummer’s results were refined and increasingly
high values for case II were thus calculated. Vandiver himself was directly involved
in these calculations but, since the calculations were long, complex and tedious, he
assisted himself with groups of collaborators and with all kinds of devices, from
mechanical ones all the way up to electronic computers.

The Lehmers were Vandiver’s more important collaborators. Their eclectic math-
ematical background, their willingness to try all possible ways of attack on a given
problem, and their institutional connections, placed them in a unique position to lead
FLT into the electronic era. When this happened, it happened in a somewhat incidental
way. Calculations related to FLT were for the Lehmers part of a much broader hori-
zon of interests that at some point led to the use of computers for intensive number
crunching in number theory in general and in which the art of computing program-
ming became of intrinsic interest in ways that anticipated many questions later to be
addressed by computer scientists and programmers.

The work of Vandiver and the Lehmers took place in the pioneering period of the
electronic computer. Number theory entered this era somewhat hesitantly, but it grad-
ually embraced computational methods as one of its central threads. With ever more
powerful machines and with constantly improving programming techniques available,
number-theoretical computations constantly extended the horizon of known results for
many interesting open conjectures. This was the case for FLT too. But even by the
mid-1980s, with the lower bound of certainty for FLT already well over 100,000 no
new real conceptual breakthrough seemed to have been achieved. And then, when
it was achieved with the thread that eventually led to Wiles’ proof, it came from a
completely different direction. In the case of FLT, number theory defeated number
crunching, in spite of the very sophisticated methods and tools already available to
the latter. And yet, there still seems to be plenty of motivation for number crunchers
of the new generation to continue with their pursuits, including in relation with FLT,
as material and conceptual tools continue to evolve and reach ever new heights.
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