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Abstract

This paper presents a simple procedure for accelerating convergence in a generalized Fermat–Weber problem with lp
distances. The main idea is to multiply the predetermined step size of the Weiszfeld algorithm by a factor which is a function
of the parameter p. The form of this function is derived from the local convergence properties of the iterative sequence.
Computational results are obtained which demonstrate that the total number of iterations to meet a given stopping criterion
will be reduced substantially by the new step size, with the most dramatic results being observed for values of p close to 1.
c© 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Fermat–Weber problem concerns the siting of
a new facility on the plane in order to minimize the
sum of weighted distances to a set of �xed points. For
the case where distances are given by the lp norm, the
problem may be formulated as follows:

minW (x)=
n∑
i=1

wilp(x − ai); (1)

where n is the number of �xed points (also referred
to as customers); ai=(ai1; ai2)T is the known po-
sition of customer i; i=1; : : : ; n; x=(x1; x2)T is the
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unknown position of the new facility; wi is a positive
weighting constant which converts distance travelled
between the new facility and customer i into a cost,
i=1; : : : ; n; and the distance between any x; ai ∈R2 is
given by

lp(x − ai)= [|x1 − ai1|p + |x2 − ai2|p]1=p; p¿ 1:

(2)

The restriction on the parameter p to values greater
than or equal to unity ensures that lp(·) has the prop-
erties of a norm. In a practical setting, the factor wi
would be proportional to the demand at customer i,
and the term wilp(x− ai) would be an estimate of the
cost of serving the demand at customer i by the facil-
ity at x. Thus, the objective in Eq. (1) is to minimize
the total service (or distribution) cost, W (x).
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Problem (1) is a basic model in continuous location
theory which has received much attention in the lit-
erature. For a detailed review, see for example, [14],
Ch. 2 and [19]. The most popular method of solution
of the unconstrained problem is given by a one-point
iterative procedure which was �rst proposed for Eu-
clidean distances (p=2) by Weiszfeld [18]. The pro-
cedure is readily generalized to lp distances (e.g., [14],
Ch. 2).
Despite the long history of the single-facility min-

isum location problem, there still appears to be much
to say about it as evidenced by several recently pub-
lished articles on this topic. For example, Brimberg
and Love [4, 5] discuss local and global convergence
properties of the generalized Weiszfeld procedure for
lp distances. These results are extended by Frenk et
al. [11] under more general assumptions of quasicon-
vexity of the objective function. However, these au-
thors use a hyperbolic approximation of the lp norm
in order to avoid the problem of singularities in the it-
eration functions. The issue of singularities is treated
in [1, 6] for Euclidean distances, and Brimberg and
Chen [3] for lp distances.
The notion of accelerating the convergence of de-

scent methods such as the Weiszfeld procedure re-
quires an investigation of alternate step sizes (e.g. [8]).
A �rst attempt at accelerating the Weiszfeld procedure
may be attributed to Katz [13], who suggested the use
of Ste�ensen’s iteration. This method is not known
to be globally convergent, but it may be used to ac-
celerate the local convergence rate of the Weiszfeld
procedure from linear to quadratic. However, the gain
in convergence rate may be o�set by the larger com-
putational time of the Ste�ensen iterations. Drezner
[10] applies a factor (�) to multiply the step size of
the Weiszfeld procedure for the case of Euclidean
distances (p=2). It is known that convergence will
occur for a step size not exceeding double the orig-
inal ([16]). However, Drezner uses an approxima-
tion function of W (x) to calculate a � at each itera-
tion which may take on values considerably greater
than 2. Computational results reported by Drezner
appear to indicate, in general, only a modest reduc-
tion in the number of iterations using his acceleration
method as compared with a �xed � of 2. The net ef-
fect on running time is unclear due to the increased
computations associated with the variable step size
factor.

Frenk et al. [11] recommend the use of a step size
factor between 0 and 2 for the generalization to lp
distances, after showing that the descent property is
still maintained for all p∈ [1; 2]. The authors note that
the optimal � must be determined empirically, but do
not pursue this direction. Our objective then is to con-
sider the e�ect of various step sizes on the Weiszfeld
procedure applied to problem (1). To the best of our
knowledge, this is the �rst attempt to accelerate the
Weiszfeld algorithm for lp distances.
In the next section, the local convergence proper-

ties of the iterative sequence are examined when the
original step size is multiplied by a �xed factor �. This
leads to a formula for � as a simple monotonically
decreasing function of p. An interesting outcome of
this analysis is that as the parameter p decreases to
a value of 1, � may be increased to +∞ in the limit
with local convergence of the sequence maintained.
Furthermore, the new step-size factor guarantees local
convergence for all p¿1, a condition not generally
true in the original method with p¿2 (see [4, 5, 11]).
The proposed step size is investigated with several

others in an empirical study reported in the subsequent
section. The main conclusion drawn from the empir-
ical results is that signi�cant savings in computation
time may be obtained using a �xed step-size factor,
and further, these savings tend to increase dramati-
cally as p is decreased towards 1.

2. Analysis of local convergence

In this section, we study a revised Weiszfeld pro-
cedure where the original step size is multiplied by a
constant �. The e�ect on local convergence of the new
parameter � is investigated. As noted previously, the
analysis is restricted to problems in the plane (R2),
which is typically the case of practical interest. We
also assume for the purposes of this analysis that the
optimal solution of Eq. (1) occurs at a nonsingular
point of the iteration functions. (The singularities of
the iteration functions may be avoided alternatively by
introducing a smoothing function such as the hyper-
bolic approximation of the lp norm. (e.g., see [14]. For
a detailed discussion of the singularities, see Brimberg
and Love [4, 5].)
The Weiszfeld procedure is derived by setting the

�rst-order partial derivatives of W (x) to zero. For lp
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distances we obtain the following one-point iterative
scheme (e.g., see [4, 5]):

xq+1t =
∑n

i=1 wi|xqt − ait |p−2ait=[lp(xq − ai)]p−1∑n
i=1 wi|xqt − ait |p−2=[lp(xq − ai)]p−1

;

t=1; 2; (3)

where the superscript q=0; 1; 2; : : : ; denotes the iter-
ation number, and the starting point x0 may be any
point in R2. Introducing the following notation:

yit(x)=wi|xt − ait |p−2=[lp(x − ai)]p−1; ∀i; t; (4)

St(x)=
n∑
i=1

yit(x); ∀t (5)

and letting ∇t := @=@xt , we can rewrite Eq. (3) in an
equivalent form,

xq+1t = xqt −
1

St(xq)
∇tW (xq); t=1; 2: (6)

Thus, the Weiszfeld procedure for lp distances is seen
to be a modi�ed gradient descent method with prede-
termined step size.
A more general scheme introduces a step size factor

�¿0 to obtain

xq+1t = xqt −
�

St(xq)
∇tW (xq); t=1; 2: (7)

The e�ect of the new step size on the local conver-
gence properties of the iteration sequence is examined
next. The aim of this analysis is to determine a suit-
able range of values of � to use in an empirical study.
The analysis extends the local convergence results of
[4] for the original step size (�=1).
The modi�ed scheme in Eq. (7) may be rewritten

as follows,

Jt(x)=�t(x)− (�− 1)
St(x)

∇tW (x); t=1; 2; (8)

where �t(x)= xt −∇tW (x)=St(x) is the original iter-
ation function for the xt ordinate de�ned in Eq. (6)
(or Eq. (3)), and Jt(x) is the new iteration function.
Let J (x)= (J1(x); J2(x)) denote the vector of itera-
tion functions given by Eq. (8). To study the local
convergence properties of the new step size, we need
to examine the Jacobian matrix of �rst-order partial
derivatives of J (x). Element (t; k) of this matrix is

given by

∇kJt(x)=∇k�t(x)− (�− 1)S−1t (x)∇2
k tW (x)

−(�− 1)∇k(S−1t (x))∇tW (x); ∀k; t; (9)

where ∇2
k t denotes the second-order partial derivative

with respect to xk and xt . However, at the optimal
solution x∗ we have

∇k�t(x∗)=−S−1t (x∗)∇2
k tW (x

∗); ∀k; t; k 6= t; (10)

∇t�t(x∗)= 1− S−1t (x∗)∇2
ttW (x

∗); ∀t; (11)

[4], and furthermore,

∇tW (x∗)= 0; ∀t: (12)

Combining Eqs. (9)–(12), it follows that the Jacobian
matrix evaluated at x∗ is given by

J ′(x∗)= I − �B(x∗); (13)

where I is a 2× 2 identity matrix, and

B(x∗)=




1
S1(x∗)

@2W (x∗)
@x21

1
S1(x∗)

@2W (x∗)
@x2@x1

1
S2(x∗)

@2W (x∗)
@x1@x2

1
S2(x∗)

@2W (x∗)
@x22


 : (14)

The matrix B(x∗) resembles the Hessian matrix of
the objective function evaluated at x∗, namely, H (x∗).
Since the optimal solution is assumed to occur at a
nonsingular point of the iteration functions, it readily
follows that H (x∗) and B(x∗) are both well de�ned.
It is well known that if p¿1 and the �xed points ai
are noncollinear, then W is a strictly convex function
of x. Furthermore, except for the collinear case and a
special geometry when p¿2, the Hessian matrix can
be shown to be positive de�nite ∀x where it is de�ned
(see [2]). More speci�cally, the following are assumed
to apply in order to ensure the positive de�niteness of
H (x∗):
Condition 1: 1¡p6 2, and the �xed points

a1; : : : ; an are noncollinear;
Condition 2: p¿2, and at least two indices

r; s∈{1; : : : ; n} exist such that x∗1 =∈{ar1; as1};
x∗2 =∈{ar2; as2}, and ar; as; x∗ are noncollinear.
The positive de�niteness of H (x∗) implies that the

eigenvalues of B(x∗) are all positive-valued (e.g., see
[4] for a proof). From Eq. (13) it follows that

vj =1− �uj; j=1; 2; (15)
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where u1; u2 are the eigenvalues of B(x∗) and v1; v2 are
the eigenvalues of J ′(x∗). Also, recalling that �¿0,
we conclude that

vj¡1; ∀j: (16)

Relation (16) provides the following result for lo-
cation in the plane.

Property 1. Let tr[J ′(x∗)] denote the trace of J ′(x∗).
Then a su�cient condition for local convergence at
x∗ of the modi�ed iteration procedure J : x → J (x)
is given by

tr[J ′(x∗)]¿ 0: (17)

Proof. Since tr[J ′(x∗)]= v1 + v2, we obtain from Eq.
(17), v1¿− v2. But v1¡1 by Eq. (16). It immedi-
ately follows that v2¿− 1. Likewise we conclude that
v1 is also ¿− 1. Thus, the spectral radius of J ′(x∗),
�= maxj |vj|¡1, and local convergence is guaranteed
(e.g., see [9], or [15]). Furthermore, the local conver-
gence rate will be linear or better, since � equals the
upper asymptotic convergence bound.

Using the derivatives calculated in [4], it is readily
shown that

tr[J ′(x∗)]= 2− �(p− 1)(2− Q∗); (18)

where

Q∗=
2∑
t=1

1
St(x∗)

n∑
i=1

yit(x∗)|x∗t − ait |p
[lp(x∗ − ai)]p : (19)

It is clear that Q∗¿0. Also, observe that

Q∗¡
2∑
t=1

1
St(x∗)

n∑
i=1

yit(x∗)= 2; (20)

(where condition 2 is invoked for p¿2). Thus,
Q∗ ∈ (0; 2), 2 − Q∗¿0, and we conclude from Eq.
(17) and (18) that local convergence is guaranteed
by the following upper bound on �:

�6
2

(p− 1)(2− Q∗)
: (21)

Relation (21) is of little practical use, since x∗ is
unknown and hence, Q∗ cannot be evaluated before-

hand. However, a more conservative bound may be
imposed on � as shown by the following result.

Property 2. Local convergence at x∗ is guaranteed if
the step size factor �6 1=(p− 1).

Proof. Since 0¡Q∗¡2, it follows that 1=(2−Q∗)¿ 1
2 .

Thus, �6 1=(p − 1) implies that the upper bound in
Eq. (21) is strictly satis�ed. We conclude that local
convergence will occur for any �∈ (0; 1=(p−1)].

Property 2 provides an interesting insight on local
convergence for di�erent values of the parameter p.
We see that for p close to 1, the step size may be in-
creased substantially and still maintain local conver-
gence. For example, if p=1:1, the step size may be
augmented by a factor of 10. Sluggish convergence
rates, approaching sublinear, have been observed with
the original step size for p values close to 1 (see [4]).
Thus, we may anticipate substantial improvements in
the convergence rate when large values of � are used.
The bound 1=(p−1) suggests a factor �¿1 be used

when p is between 1 and 2, and a �¡1 when p¿2.
Brimberg and Love [4, 5] show that convergence with
the original step size (�=1) is not guaranteed for suf-
�ciently large values of p exceeding 2. Property 2
now provides a step-size factor as a simple monotonic
function of p which guarantees at least local conver-
gence for all values of p.
As a �nal observation, we note that for p=2,

Q∗ =
2∑
t=1




n∑
j=1

wj
l2(x∗ − aj)




−1

×
n∑
i=1

wi
l2(x∗ − ai)

(x∗t − ait)2
[l2(x∗ − ai)]2

=




n∑
j=1

wj
l2(x∗ − aj)




−1

×
n∑
i=1

wi
[l2(x∗ − ai)]3

2∑
t=1

(x∗t − ait)2 = 1:

Assuming thatQ∗ ≈ 1 for other values ofp, we obtain
as an approximation of the upper bound in (21),

�=2=(p− 1): (22)
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Alternatively, we might consider as a compromise a
step-size factor,

�=p=(p− 1); (23)

which falls between the two bounds suggested above
for 1¡p6 2 .

3. Computational results and discussion

In this section we present some empirical results
of the numerical solution of the lp problem. Typi-
cally, problems were of 10; 30; 100 and 1000 demand
points distributed randomly, using a uniform distribu-
tion, over a 100× 100 square. The weights (wi) as-
sociated with the demand points were equal in some
cases, and randomly chosen between 1 and 100 in the
others. The pseudo-random numbers were generated
using a built-in standard method. The idea was to re-
peat the computations for a given set of chosen points
with di�erent step sizes, and change at will the set of
points and weights by changing the seed in the gener-
ating program, once we wished to make a di�erent set
of computational experiments with varying step size.
We also solved problems on a 100× 500 rectangle, as
well as problems with demand points arranged in clus-
ters which themselves were distributed over a square.
No signi�cant di�erences were observed between the
di�erent geometries, except that in the weighted prob-
lems, a coincidence between a demand point and the
optimal facility location was more common.
This possibility of coincidence deserves a further

discussion. In these cases, the algorithm with the orig-
inal step size converged, though relatively slowly,
whereas with larger step sizes, typically, no conver-
gence was reached. A common behavior in these cases
was that after a number of steps, there was a hopping
between two attraction points around the optimal so-
lution. Hopping among the neighborhoods of two or
more attraction points results when the descent prop-
erty is violated by too large step size. This situation of
oscillations between several nonoptimal points rather
than convergence to the optimum is common in other
iterative procedures such as Newton’s method. (For an
illustration, see p. 93 in [17]. Also, [5] for an example
with the standard Weiszfeld procedure and p¿2.) A
remedy to the preceding problem is given, however,
by Juel and Love [12] who showed that a coincidence

of the optimally located facility with a demand point
r with coordinates (ar1; ar2) will occur if, and only if,

(|Rr1|p=(p−1) + |Rr2|p=(p−1))(p−1)=p6wr; (24)

where

Rrk =
n∑

j=1; j 6=r

wj · sign(ark − ajk)|ark − ajk |p−1
(lp(ar − aj))p−1 ;

k =1; 2: (25)

In cases where no convergence is reached, it is rec-
ommended to check the demand points for optimality
using Eqs. (24) and (25), or simply revert to the orig-
inal step size.
The sequence of iterations was terminated when two

successive iterates were within an ”-distance of each
other. This is a standard stopping criterion for such
procedures. We speci�ed an ” of 10−7, which was
considered su�ciently precise for our purposes. Alter-
nate stopping criteria may use the di�erence between
two successive values of the objective function, or an
acceptable deviation from a calculated bound on the
optimal value of the objective function.
It is to be noted that in most of the problems where

the optimal solution does not coincide with a demand
point, the saving in the number of iterations is sub-
stantial, whereas a negligible computational e�ort is
required for changing the step size in the direction de-
termined by the original method. Table 1 shows a set
of results for a sample problem of 100 demand points
distributed over a 100× 100 square with equal weights
and with di�erent values of p varying between 1.2
and 10.0.
Unfortunately, for p=1:1, nonconvergence oc-

curred for all but the original step size. Once again,
an oscillation between two attraction points was ob-
served for the larger step sizes even though the opti-
mal facility location did not coincide with a demand
point. This illustrates a second type of ill-conditioned
case which takes place when the optimal facility
location has one or more of its coordinates nearly
coinciding with a coordinate of a demand point. Such
a situation normally exists as p approaches a value of
1.0. However, it turns out that if the iteration process
starts in these cases from a point su�ciently close to
the optimal solution, convergence will occur for the
larger step sizes. Moreover, either �=1=(p − 1) or
p=(p− 1) accelerates the convergence substantially.



156 J. Brimberg et al. / Operations Research Letters 22 (1998) 151–157

Table 1
The number of iterations required for reaching the optimal solution within a given stopping criterion speci�ed
in the text for di�erent values of p, and for di�erent step size multipliers �: (1) �=1; (2) �=2; (3)
�=1=(p− 1); (4) �=p=(p− 1); (5) �=Q

Time(s) No. of iterations

p (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

1.2 4.45 2.20 0.71 0.55 0.99 105 52 17 12 9
1.3 3.03 1.42 0.77 0.50 0.93 72 34 18 12 9
1.4 2.25 0.99 0.72 0.44 0.93 53 24 18 11 9
1.5 1.59 0.71 0.72 0.38 0.83 38 17 17 9 9
1.6 1.54 0.65 0.82 0.39 1.09 37 16 20 9 10
1.7 1.43 0.61 0.94 0.44 1.10 35 14 23 10 10
1.8 1.32 0.50 1.05 0.39 1.05 32 12 25 10 10
1.9 1.27 0.44 1.15 0.44 1.15 30 11 27 10 11
2.0 0.33 0.11 0.38 0.11 0.33 29 10 29 10 11
2.5 0.99 0.93 1.64 0.49 1.04 24 23 40 12 12
3.0 0.33 0.55 0.71 0.16 0.39 22 42 50 13 13
3.5 0.88 2.91 2.53 0.55 1.15 21 70 61 13 13
4.0 0.28 1.48 1.04 0.16 0.44 21 106 73 13 13
5.0 0.27 2.52 1.38 0.22 0.44 20 177 97 14 14
7.0 0.33 3.24 2.25 0.22 0.50 22 222 151 17 15
10.0 0.39 4.95 3.79 0.33 0.60 26 336 259 23 17

This behavior should not be too surprising since, af-
ter all, the proof given above concerns only local con-
vergence. One may even be surprised about the empir-
ical result that in most cases, convergence is reached
so quickly even while starting from very far away.
Since the preceding case cannot be identi�ed at the
outset, the only practical solution is that in the rare
cases of no convergence with the larger step size, and
no coincidence between a demand point and the opti-
mal solution, one should resort to the original, shorter
step size.
Table 1 represents a typical example of the run

times and the number of iterations required to reach
the given stopping criterion. The di�erent step-size
factors used are indicated in the caption. With the ex-
ception of column (5), the number of iterations and
run times are proportional to each other since the ex-
tra computational e�ort of multiplying the step size
by a constant is minimal. As for column (5), even
when the number of steps was the smallest, the run
times were not, due to the extra computational e�ort
required to evaluate Q (formula (19) with the current
iterate xq replacing x∗). The unusually low run times
found with p=2 and other integer values of p can be
ascribed to the more e�cient manner which is used by

the computer for raising numbers to integer powers.
It is also to be noted that in all the cases reported in
the table, the step size multiplier of p=(p− 1) turned
out to be more e�cient than 1=(p − 1); this will be
discussed below. The �=1=(p − 1) factor was con-
sistently better than the original factor of �=1 for p
values up to 2, whereas as compared to the factor of
�=2, it was superior only up to p=1:5. Also, note
that for the smaller values of p, the number of iter-
ations increases substantially for step size multipliers
(1); (2), whereas the number of iterations remains rel-
atively stable for the others.
For values of p¿2, the use of �=1=(p − 1) was

found in most cases to be inferior to the original step
size with �=1. The empirical use of �=p=(p − 1)
turned out to be better, but of course, when p gets
very large, this advantage diminishes as p=(p − 1)
approaches unity. In a few isolated cases, the original
step size (�=1) failed to converge. This is not sur-
prising, since global convergence is only guaranteed
for p∈ [1; 2] (see [4,5]). It should, however, be noted
that the smaller step size obtained with �=1=(p− 1)
managed to converge in all problems tested having
p¿2. This corroborates the local convergence results
of the preceding section.
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A conjecture can be made that a step-size multiplier
of �=p=(p−1) may be an optimal one. This is based
on the fact that it turned out to be the best overall in
our numerous test problems, and that for p=2, the
optimal step-size multiplier is �=2 as suggested by
Ostresh [16] and further discussed in a broader context
by Chen [7].
In the numerical examples, two classes of hard-to-

solve problems were identi�ed. One is where the opti-
mal solution coincides with a demand point. This dif-
�culty can easily be overcome, for example, by using
Eq. (24) to identify the optimal point, in which case
one would not have to resort to the iterative procedure.
A more troublesome situation has been found in which
one of the coordinates of the solution nearly coincides
with the corresponding coordinate of one of the de-
mand points. In these cases, only starting the iterations
from a point close to the optimal solution results in
convergence. It is to be noted that once a close enough
point is selected, the local convergence is still sub-
stantially accelerated by using �=1=(p−1) and even
more so with �=p=(p− 1).
In spite of the di�culties mentioned here, the reduc-

tion, which becomes increasingly dramatic for smaller
p, in the number of iterations and the run times as
compared to the original method, has to be considered
seriously. This is especially important in the multi-
source location–allocation problem, where the single
facility iterative process may be repeated many, some-
times several thousands of, times.
Finally, for future research we can think of two key

issues.
1. To prove the conjecture that �=p=(p − 1) is op-
timal and to �nd its advantages and limitations for
local and global convergence.

2. To try to identify the problematic cases of the sec-
ond kind, namely, cases in which there is a near co-
incidence of one of the coordinates, or to devise a
method to solve these cases e�ciently. One option
to consider is to use a sliding step-size multiplier,
starting, for 1¡p6 2, from �=1 and increasing
toward p=(p−1) as the iterations approach the op-
timal solution.
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