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Homogeneous spaces

k is an algebraically closed field of characteristic 0.

G is a connected linear algebraic group over k .

X is a right homogeneous space of G :

X is an algebraic variety over k ,
we have a map X ×k G → X ,
and G acts transitively on X .
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X(G ) := Hom(G ,Gm,k), the character group of G .

Let x ∈ X (k) and H = StabG (x), then X = H\G ,
and we consider the character group X(H).

We have a restriction map

res : X(G )→ X(H).
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I always assume that Pic(G ) = 0. I explain what it means.

G u is the unipotent radical of G .
G red = G/G u, it is reductive.
G ss = [G red,G red], it is semisimple.

Then Pic(G ) = 0 if and only if G ss is simply connected.

If Pic(G ) 6= 0, one can find an epimorphism

G ′ → G

with Pic(G ′) = 0.

Now our X is a homogeneous space of the new group G ′ with
Pic(G ′) = 0.
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Van Hamel’s program

Having in mind the application in Step 3 below, Joost van
Hamel proposed the following program:

Van Hamel’s program

Step 1. Generalize the complex X(G )→ X(H) to any smooth
irreducible variety X , to get a complex of abelian groups
UPic(X ) = (C 0 → C 1).

Step 2. Prove that for a homogeneous space X of G with
Pic(G ) = 0, the complex UPic(X ) is indeed “the same” as
X(G )→ X(H).

Step 3. Apply Steps 1 and 2 to compute the algebraic Brauer
group of a homogeneous space over a not algebraically closed
field.
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Actually I assume that X and G are defined
over some not algebraically closed subfield k0 ⊂ k,
and k is an algebraic closure of k0.

I do not assume that the point x is defined over k0.

The Galois group Gal(k/k0) acts on X(G ) and X(H),
and so we obtain a complex of Galois modules X(G )→ X(H).

I want to constuct a complex of Galois modules UPic(X ),
generalizing X(G )→ X(H), for any smooth variety X , defined
over k0 (and irreducible over k).
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Step 1: Generalize the complex X(G )→ X(H) to any smooth
irreducible variety X .

Seems crazy: a general variety X has neither X(G ) nor X(H).
But it does have

ker[X(G )→ X(H)] and coker[X(G )→ X(H)] .
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Notation:
O(X ) is the ring of regular functions on X ,
K (X ) is the field of rational functions on X .

U(X ) = O(X )×/k×.

Rosenlicht’s Lemma. U(G ) ∼= X(G ).

The map: X(G ) ↪→ O(G )× → O(G )×/k× = U(G ).

Corollary. For a homogeneous space X we have
U(X ) = U(H\G ) ∼= ker[X(G )→ X(H)].

Popov’s theorem. For a homogeneous space X ,
when Pic(G ) = 0, we have
Pic(X ) = Pic(H\G ) ∼= coker[X(G )→ X(H)].
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Definition of UPic(X )

We can define U(X ) and Pic(X ) for any variety X . We must
glue them to a complex!

Recall that Pic(X ) is the group of isomorphism classes of line
bundles on X , and there is a canonical exact sequence

K (X )×
div−−→ Div(X )→ Pic(X )→ 0.

Definition (van Hamel)

UPic(X ) = K (X )×/k×
div−−→ Div(X ).

Then ker UPic(X ) = U(X ) and coker UPic(X ) = Pic(X )
(this explains the notation U-Pic).

We have done Step 1: defined UPic(X ) for any X .
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Note the complex UPic(X ) was independently introduced by
David Harari and Tamás Szamuely.
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Step 2

Step 2. For a homogeneous space X with Pic(G ) = 0, the
complex

UPic(X ) := K (X )×/k× → Div(X )

is “the same” as
X(G )→ X(H).

The same? They are clearly not isomorphic, because X(H) is a
finitely generated abelian group, while Div(X ) is an infinitely
generated free abelian group.

We claim that these complexes are isomorphic in the derived
category of Galois modules.
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Quasi-isomorphisms

By definition, a morphism of complexes

ϕ : C • = (C 0 → C 1)→ D• = (D0 → D1)

is a commutative diagram

C 0 //

ϕ0

��

C 1

ϕ1

��
D0 // D1

Such a morphism defines morphisms on the cohomology
ϕker : ker C • → ker D• and ϕcoker : coker C • → coker D•.

Definition

A morphism of complexes ϕ : C • → D• is called a
quasi-isomorphism if ϕker and ϕcoker are isomorphisms.
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Example of a quasi-isomorphism

Example.

C 0 � � //

��

C 1

��
0 // C 1/C 0

This is a quasi-isomorphism which is not an isomorphism of
complexes.
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Isomorphism in the derived category

Definition

If there exists a diagram

C •
1

qi

~~~~
~~

~~
~~ qi

  A
AA

AA
AA

C •
2

qi

~~}}
}}

}}
} qi

  A
AA

AA
AA

AA
C •

m

qi

~~}}
}}

}}
}}

}
qi

  A
AA

AA
AA

A

A• D•
1

. . . B•

where all the arrows are quasi-isomorphisms, we say that
complexes A• = (A0 → A1) and B• = (B0 → B1) are
isomorphic in the derived category.

This is not the standard definition.
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Later I shall construct a diagram

D•

qi

zzuuuuuuuuu
qi

&&MMMMMMMMMMM

UPic(X ) X(G )→ X(H)

for a homogeneous space X of G with Pic(G ) = 0.

This will prove the following theorem:
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Main Theorem

Main Theorem

For a homogeneous space X with stabilizer H,
of a connected linear group G over a field k0 of characteristic 0,
with Pic(G ) = 0, we have a canonical isomorphism in the
derived category of Galois modules

UPic(X )
∼−−→ ( X(G )→ X(H) ).
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Equivariant Picard group PicG (X )

Equivariant Picard group

A G -line bundle on a G -variety X is a pair (L, α), where L is a
line bundle, and α is a G -linearization of L, i.e. an action of G
on L compatible with the action on X .

Definition. The equivariant Picard group PicG (X ) is the group
of classes of G -line bundles on X .

We have a canonical homomorphism

PicG (X )→ Pic(X ), [L, α] 7→ [L]
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Proposition (Popov 1974). If X is a homogeneous space and
Pic(G ) = 0, then the canonical homomorphism

PicG (X )→ Pic(X )

is surjective, i.e. any line bundle on X admits a G -linearization.
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Popov’s theorem

A fundamental observation:

Theorem (Popov, 1974)

Let X be a homogeneous space of a connected linear algebraic
group G with stabilizer H. Then

PicG (X ) ∼= X(H)

A map PicG (X )→ X(H): Let [L, α] ∈ PicG (X ).
The stabilizer H of x acts on the 1-dimensional fibre Lx of L
over x , giving us a character of H.

Now we see that Gal(k/k0) indeed acts on X(H),
because it acts on PicG (X ).
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Extended equivariant Picard complex UPicG (X )

Joost van Hamel:

If there is an equivariant Picard group PicG (X ),
then there must be
an extended equivariant Picard complex

UPicG (X ),

a complex in degrees 0 and 1 with

coker UPicG (X ) = PicG (X ).
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Double complex

In order to define the complex UPicG (X ), we consider the
following double complex for any irreducible G -variety X of a
connected linear k-group G :

· · · · · ·

K (X × G × G )×
div2

//

d2
K

OO

Div(X × G × G )

d2
Div

OO

K (X × G )×
div1

//

d1
K

OO

Div(X × G )

d1
Div

OO

K (X )×
div0

//

d0
K

OO

Div(X ).

d0
Div

OO

We interprete the groups in this diagram as algebraic cochains
of G , using an idea of a paper by Knop, Kraft, and Vust (1989).
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K (X × G × G )×
div2

// Div(X × G × G )

K (X × G )×
div1

//

d1
K

OO

Div(X × G )

d1
Div

OO

K (X )×
div0

//

d0
K

OO

Div(X ).

d0
Div

OO

Here K (X )× is in bidegree (0, 0).

The horizontal arrows div0, div1, . . . , associate to a rational
finction its divisor.

.
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K (X × G × G )×
div2

// Div(X × G × G )

K (X × G )×
div1

//

d1
K

OO

Div(X × G )

d1
Div

OO

K (X )×
div0

//

d0
K

OO

Div(X ).

d0
Div

OO

The vertical differentials are given by the usual formulas:

d0
K (f )g (x) = (g f /f )(x) = f (xg)/f (x) for f ∈ K (X ),

d1
K (c)g1,g2(x) = (g1cg2 · (cg1g2)−1 · cg1)(x) =

cg2(xg1)cg1(x)

cg1g2(x)

for c ∈ K (X × G )×, and similar for d0
Div and d1

Div.

.



Extended
Picard

complexes

Hom. spaces

Van Hamel’s
program

Step 1: UPic

Step 2

Quasi-Isoms

Derived Cat.

Main Thm.

Pic-G

UPic-G

Double complex

UPic G 1

ker and coker

Proof of M.Th.

Step 3

Bra-X0

K (X × G × G )×
div2

// Div(X × G × G )

K (X × G )×
div1

//

d1
K

OO

Div(X × G )

d1
Div

OO

K (X )×
div0

//

d0
K

OO

Div(X ).

d0
Div

OO

We denote by C • the total complex of this double complex,
and we set:

UPicG (X ) = τ≤1C •/k×.

.
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This means the following. Set

Z 1
alg(G ,K (X )×) := {z ∈ K (X×G )× | zg1g2(x) = zg1(x)·zg2(xg1)}

Then
UPicG (X ) = UPicG (X )0 ∂−−→ UPicG (X )1,

where

UPicG (X )0 = K (X )×/k×,

UPicG (X )1 =

{(z ,D) ∈ Z 1
alg(G ,K (X )×)⊕ Div(X ) | div(z) = d0

Div(D)}

∂([f ]) = (d0
K (f ), div(f ))

.
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Lemma. H 0(C •) = (O(X )×)G .

Corollary.
ker UPicG (X ) := H 0( UPicG (X ) ) = (O(X )×)G/k×.

Corollary. When X is a homogeneous space,
ker UPicG (X ) = 0.
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Theorem

H 1(C •) = PicG (X ).

Corollary

coker UPicG (X ) := H 1( UPicG (X ) ) = PicG (X ).

The cokernel of our UPicG (X ) is indeed PicG (X ) !

Using UPicG (X ), we define an isomorphism in the derived
category, see the diagram below, assuming that X is a
homogeneous space and Pic(G ) = 0.
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Isomorphism in the derived category

Both rectangles in the following diagram are
quasi-isomorphisms:

X(G )

σ

��

X(G )⊕K (X )×/k×

��

oo //K (X )×/k×

div
��

PicG (X ) Div(X )

.

.
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Isomorphism in the derived category

Both rectangles in the following diagram are
quasi-isomorphisms:

X(G )

qiσ

��

X(G )⊕K (X )×/k×

ψ
��

oo //

qi

K (X )×/k×

div
��

PicG (X ) UPicG (X )1oo // Div(X )

.
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Isomorphism in the derived category

Both rectangles in the following diagram are
quasi-isomorphisms:

X(G )

qiσ

��

X(G )⊕K (X )×/k×

ψ
��

oo //

qi

K (X )×/k×

div
��

PicG (X ) UPicG (X )1oo // Div(X )
.

where the arrow σ takes a character χ ∈ X(G ) to the class of
the trivial line bundle A1 × X over X with the G -action given
by χ,
and the arrow ψ is given by

ψ(χ, [f ]) = (χ · d0
K (f ), div(f )) ∈ UPicG (X )1

⊂ Z 1
alg(G ,K (X )×)⊕ Div(X ).

.
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Since by Popov’s theorem we have a commutative diagram

X(G )

res

��

X(G )

σ

��
X(H)

∼= // PicG (X ),

where X(H) ∼= PicG (X ),
the diagram in the previous screen gives a canonical
isomorphism in the derived category

( X(G )→ X(H) )
∼−−→ UPic(X ) :
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X(G )

qires

��

X(G )⊕K (X )×/k×

ψ
��

oo //

qi

K (X )×/k×

div
��

X(H) UPicG (X )1oo // Div(X )

which completes the proof of the Main Theorem.
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Step 3

We apply the Main Theorem to computing the algebraic
Brauer group of a homogeneous space.

Let X0 be an algebraic variety over a field k0 with algebraic
closure k. Set X = X0 ×k0 k . Let

Br(X0) = H2
ét(X0,Gm)

be the cohomological Brauer-Grothendieck group of X0.

Let

Bra(X0) = ker[Br(X0)→ Br(X )]/im[Br(k0)→ Br(X0)]

be the algebraic Brauer group of X0,
it is a subquotient of Br(X0).

One needs Bra(X0) when working with the Brauer-Manin
obstruction to the Hasse principle, when k0 is a number field.
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UPic(X ) and Bra(X0)

Proposition

Let X0 be a smooth geometrically integral variety over a field
k0 of characteristik 0. If H3(k0,Gm) = 0 (e.g. when k0 is a
number field, or a p-adic field, or R), then there is a canonical
isomorphism

Bra(X0) ∼= H2(k0,UPic(X )).

Here H2(k0,UPic(X )) denotes the second Galois
hypercohomology with coefficients in the complex of Galois
modules UPic(X ).
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Bra(X0)

From the above results we obtain:

Theorem

Let X0 be a homogeneous space with geometric stabilizer H of
a connected linear k0-group G0 with Pic(G ) = 0.
If H3(k0,Gm) = 0
(e.g. k0 is a number field, or a p-adic field, or R),
we have a canonical isomorphism

Bra(X0) ∼= H2(k0,X(G )→ X(H) ).
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Step 3

Bra-X0

Proof. By the proposition, Bra(X0) ∼= H2(k ,UPic(X )). By the
Main Theorem we have a canonical isomorphism in the derived
category of Galois modules

UPic(X )
∼−−→ (X(G )→ X(H) ),

hence a canonical isomorphism

H2(k0,UPic(X ))
∼→ H2(k0,X(G )→ X(H) ),

which gives us the required isomorphism

Bra(X0)
∼→ H2(k0,X(G )→ X(H) ).

We have computed Bra(X0) in terms of X(G ) and X(H), when
k0 is a number field.
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This result was recently generalized by Cyril Demarche, who,
for a homogeneous space X0 of a connected group G0 over k0,
computed the group Bra(X0,G0) defined by

Bra(X0,G0) =

ker[Br(X0)→ Br(X )→ Br(G )]/im[Br(k0)→ Br(X0)]

when the geometric stabilizer H is connected. One needs this
group for the Brauer-Manin obstruction to
strong approximation for X0.
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