Extended
Picard
complexes

Extended Picard complexes
and homogeneous spaces

Mikhail Borovoi
Joint work with Joost van Hamel (1969-2008)

Tel Aviv University and MPIM-Bonn

Edinburgh, January 14, 2011



Homogeneous spaces

Extended
Picard
complexes

Hom. spaces

k is an algebraically closed field of characteristic 0.

G is a connected linear algebraic group over k.



Homogeneous spaces

Extended
Picard
complexes

Hom. spaces . . . . .
i k is an algebraically closed field of characteristic 0.

G is a connected linear algebraic group over k.

X is a right homogeneous space of G:

X is an algebraic variety over k,
we have a map X x, G — X,
and G acts transitively on X.



Extended
Picard
complexes

Hom. spaces X(G) :== Hom(G, G, k), the character group of G.

Let x € X(k) and H = Stabg(x), then X = H\G,
and we consider the character group X(H).

We have a restriction map

res: X(G) — X(H).



Extended
Picard . . .
complexes | always assume that Pic(G) = 0. | explain what it means.

G" is the unipotent radical of G.
rom: spaces G = G/G", it is reductive.
G = [G™4, G™], it is semisimple.
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Hom. spaces

| always assume that Pic(G) = 0. | explain what it means.

G" is the unipotent radical of G.
G4 = G/G", it is reductive.
G = [G™4, G™], it is semisimple.

Then Pic(G) = 0 if and only if G* is simply connected.
If Pic(G) # 0, one can find an epimorphism

G —G
with Pic(G") = 0.

Now our X is a homogeneous space of the new group G’ with
Pic(G’') = 0.
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Step 1. Generalize the complex X(G) — X(H) to any smooth
irreducible variety X, to get a complex of abelian groups
UPic(X) = (C° — CY).
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Step 1. Generalize the complex X(G) — X(H) to any smooth

irreducible variety X, to get a complex of abelian groups
UPic(X) = (C° — CY).

Step 2. Prove that for a homogeneous space X of G with
Pic(G) = 0, the complex UPic(X) is indeed “the same” as
X(G) — X(H).
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Having in mind the application in Step 3 below, Joost van
Hamel proposed the following program:

Van Hamel’s program

Van Hamel's
program

Step 1. Generalize the complex X(G) — X(H) to any smooth
irreducible variety X, to get a complex of abelian groups
UPic(X) = (C° — CY).

Step 2. Prove that for a homogeneous space X of G with
Pic(G) = 0, the complex UPic(X) is indeed “the same” as
X(G) — X(H).

Step 3. Apply Steps 1 and 2 to compute the algebraic Brauer
group of a homogeneous space over a not algebraically closed
field.
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Van Hamel's . .

s and k is an algebraic closure of kg.

| do not assume that the point x is defined over kg.
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Actually | assume that X and G are defined
over some not algebraically closed subfield kg C k,
and k is an algebraic closure of kg.

Van Hamel's
program

| do not assume that the point x is defined over kg.

The Galois group Gal(k/ko) acts on X(G) and X(H),
and so we obtain a complex of Galois modules X(G) — X(H).

| want to constuct a complex of Galois modules UPic(X),
generalizing X(G) — X(H), for any smooth variety X, defined
over ko (and irreducible over k).
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Step 1: Generalize the complex X(G) — X(H) to any smooth

irreducible variety X.
Step 1: UPic

Seems crazy: a general variety X has neither X(G) nor X(H).
But it does have

ker[X(G) — X(H)]| and | coker[X(G) — X(H)]|
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Step 1: UPic

Notation:
O(X) is the ring of regular functions on X,
J(X) is the field of rational functions on X.

UX)=0(X)*/k*.
Rosenlicht’s Lemma. U(G) = X(G).
The map: X(G) — 0(G)* — 0(G)*/k* = U(G).

Corollary. For a homogeneous space X we have
U(X) = U(H\G) = ker[X(G) — X(H)].
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Step 1: UPic

Notation:
O(X) is the ring of regular functions on X,
J(X) is the field of rational functions on X.

UX)=0(X)*/k*.
Rosenlicht’s Lemma. U(G) = X(G).
The map: X(G) — 0(G)* — 0(G)*/k* = U(G).

Corollary. For a homogeneous space X we have
U(X) = U(H\G) = ker[X(G) — X(H)].

Popov’s theorem. For a homogeneous space X,
when Pic(G) = 0, we have
Pic(X) = Pic(H\ G) = coker[X(G) — X(H)].
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i glue them to a complex!

Recall that Pic(X) is the group of isomorphism classes of line
bundles on X, and there is a canonical exact sequence

Step 1: UPic H(X)* v, Div(X) — Pic(X) — 0.



Definition of UPic(X)

Extended

Picard We can define U(X) and Pic(X) for any variety X. We must
complexes
i glue them to a complex!

Recall that Pic(X) is the group of isomorphism classes of line
bundles on X, and there is a canonical exact sequence

Step 1: UPic H(X)* v, Div(X) — Pic(X) — 0.

Definition (van Hamel)

UPic(X) = #(X)* /k* —2% Div(X).



Definition of UPic(X)

xtended . . .
e We can define U(X) and Pic(X) for any variety X. We must
complexes

i glue them to a complex!

Recall that Pic(X) is the group of isomorphism classes of line
bundles on X, and there is a canonical exact sequence

Step 1: UPic H(X)* v, Div(X) — Pic(X) — 0.

Definition (van Hamel)

UPic(X) = #(X)* /k* —2% Div(X).

Then ker UPic(X) = U(X) and coker UPic(X) = Pic(X)
(this explains the notation U-Pic).

We have done Step 1: defined UPic(X) for any X.
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Step 1: UPic Note the complex UPic(X) was independently introduced by
David Harari and Tamds Szamuely.
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Step 2. For a homogeneous space X with Pic(G) = 0, the
complex

UPic(X) := #(X)* /k™* — Div(X)

is “the same” as
X(G) — X(H).
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Step 2. For a homogeneous space X with Pic(G) = 0, the

complex
UPic(X) := #(X)* /k™* — Div(X)

is “the same” as
X(G) — X(H).

The same? They are clearly not isomorphic, because X(H) is a
finitely generated abelian group, while Div(X) is an infinitely
generated free abelian group.
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Step 2. For a homogeneous space X with Pic(G) = 0, the
complex

UPic(X) := #(X)* /k™* — Div(X)

is “the same” as
X(G) — X(H).

The same? They are clearly not isomorphic, because X(H) is a
finitely generated abelian group, while Div(X) is an infinitely
generated free abelian group.

We claim that these complexes are isomorphic in the derived
category of Galois modules.
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@: C*=(C°— Y - D* = (D° — DY)
is a commutative diagram

o — ¢t

0 1
Quasi-lsoms ¥ i l ¥

DO —= D!
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I r

complexes

@: C*=(C°— Y - D* = (D° — DY)
is a commutative diagram

O —?

0 1

DO —= D!

Such a morphism defines morphisms on the cohomology
Vker : ker C* — ker D* and @coker: coker C* — coker D°.



Quasi-isomorphisms

Extended By definition, a morphism of complexes
I r

complexes

@: C*=(C°— Y - D* = (D° — DY)
is a commutative diagram

O —?

0 1

DO —= D!

Such a morphism defines morphisms on the cohomology
Vker : ker C* — ker D* and @coker: coker C* — coker D°.

A morphism of complexes ¢: C* — D* is called a
quasi-isomorphism if e, and @Ycoker are isomorphisms.
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Example.
CO(—> Cl

|

0—C/C°

Quasi-Isoms

This is a quasi-isomorphism which is not an isomorphism of
complexes.
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Definition

If there exists a diagram

C G Chn
y Y y \ % x
Derived Cat. A' DI N BO

where all the arrows are quasi-isomorphisms, we say that
complexes A* = (A® — A!) and B* = (B® — B?) are
isomorphic in the derived category.

This is not the standard definition.
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Later | shall construct a diagram

Dot Co UPic(X) X(G) — X(H)

for a homogeneous space X of G with Pic(G) = 0.

This will prove the following theorem:
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For a homogeneous space X with stabilizer H,

of a connected linear group G over a field kg of characteristic 0,
with Pic(G) = 0, we have a canonical isomorphism in the
derived category of Galois modules

UPic(X) -~ (X(G) — X(H)).
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Equivariant Picard group

A G-line bundle on a G-variety X is a pair (L, ), where L is a
line bundle, and « is a G-linearization of L, i.e. an action of G
on L compatible with the action on X.
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Equivariant Picard group

A G-line bundle on a G-variety X is a pair (L, ), where L is a
line bundle, and « is a G-linearization of L, i.e. an action of G
on L compatible with the action on X.

Definition. The equivariant Picard group Picg(X) is the group
of classes of G-line bundles on X.

We have a canonical homomorphism

Picg(X) — Pic(X), [L,a] — [L]
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Proposition (Popov 1974). If X is a homogeneous space and
Pic(G) = 0, then the canonical homomorphism

Picg(X) — Pic(X)

is surjective, i.e. any line bundle on X admits a G-linearization.



Popov's theorem
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Theorem (Popov, 1974)

Let X be a homogeneous space of a connected linear algebraic
group G with stabilizer H. Then

Pice(X) 2 X(H)
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Theorem (Popov, 1974)

Let X be a homogeneous space of a connected linear algebraic
group G with stabilizer H. Then

Picg(X) = X(H)
A map Picg(X) — X(H): Let [L, a] € Picg(X).

The stabilizer H of x acts on the 1-dimensional fibre L, of L
over x, giving us a character of H.
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Theorem (Popov, 1974)

Let X be a homogeneous space of a connected linear algebraic
group G with stabilizer H. Then

Picg(X) = X(H)

A map Picg(X) — X(H): Let [L, a] € Picg(X).
The stabilizer H of x acts on the 1-dimensional fibre L, of L
over x, giving us a character of H.

Now we see that Gal(k/ko) indeed acts on X(H),
because it acts on Picg(X).
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Joost van Hamel:

If there is an equivariant Picard group Picg(X),
then there must be
an extended equivariant Picard complex

UPiCG(X),
a complex in degrees 0 and 1 with

coker UPicg(X) = Picg(X).



Double complex

Extended

Ktende In order to define the complex UPicg(X), we consider the

complexes following double complex for any irreducible G-variety X of a
connected linear k-group G:

2 2
d.)i’ dDiv

H(X % G x G)* I Div(X x G x G)

d}%’ dI]jiv
L1
Double complex <}((()( X G)X div DIV(X X G)
dgf’ dlgiv

(XY — . Div(X).



Double complex

Extended

Ktende In order to define the complex UPicg(X), we consider the
following double complex for any irreducible G-variety X of a

complexes

connected linear k-group G:

2
d.)f’

2
dDiv

H(X % G x G)* I Div(X x G x G)

o #
S col H (X x G)X — - Div(X x G)

&, &,

(XY — . Div(X).

We interprete the groups in this diagram as

algebraic cochains

of G, using an idea of a paper by Knop, Kraft, and Vust (1989).
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szg Tdéiv

H(X % G)* —I Div(X x G)

Td‘oxf legiv

A (X) —— I Div(X).

S Here 7 (X)* is in bidegree (0, 0).

The horizontal arrows div?, div!, ... associate to a rational
finction its divisor.
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complexes e%/()< X G X G)X dl*\ﬂ> DIV(X X G X G)

szg Tdéiv

H(X % G)* —I Div(X x G)

Td‘o%’ legiv

A (X) —— I Div(X).

The vertical differentials are given by the usual formulas:
dgg(f)g(x) = (8f/f)(x) = f(xg)/f(x) for f € (X)),
Ce (Xgl)cgl (X)
Cor (%)
for c € # (X x G)*, and similar for d3,, and d3, .

Double complex

d;{(c)gl,gz(x) = (gl Cen * (Cglgz)_l ’ Cgl)(X) =
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szg Tdéiv

H(X % G)* —I Div(X x G)

Td‘o%’ legiv

A (X) —— I Div(X).

We denote by C* the total complex of this double complex,
and we set:

Double complex

UPiCG(X) == T§1C'/k><.
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complexes

Z3ig(G, A (X)) 1= {z € H (XX G)* | 2g,5,(x) = 25, (x)- 251 (x€1)}

alg

Then
UPice(X) = UPicg(X)? —2— UPicg(X)?,
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complexes

Z3ig(G, A (X)) 1= {z € H (XX G)* | 2g,5,(x) = 25, (x)- 251 (x€1)}

alg

Then
UPice(X) = UPicg(X)? —2— UPicg(X)?,

where
UPicg(X)? = 7 (X)*/k*,
UPicg(X)! =
{(z,D) € Z3jy(G, # (X)*) @ Div(X) | div(2) = dp;,(D)}

O(If]) = (d5(F). div(f))
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Lemma. #°(C*) = (0(X)*)C.

Corollary.
ker UPicg(X) := #°(UPicg(X)) = (0(X)*)¢/k*.

ker and coker
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Lemma. #°(C*) = (0(X)*)C.

Corollary.
ker UPicg(X) := #°(UPicg(X)) = (0(X)*)¢/k*.

Corollary. When X is a homogeneous space,
ker UPicg(X) = 0.

ker and coker
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HL(C*) = Picg(X).

ker and coker
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HL(C*) = Picg(X).

Corollary

coker UPicg(X) := #(UPicg(X)) = Picg(X).
The cokernel of our UPicg(X) is indeed Picg(X) !

ker and coker
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HL(C*) = Picg(X).

Corollary

coker UPicg(X) := #(UPicg(X)) = Picg(X).
The cokernel of our UPicg(X) is indeed Picg(X) !

ker and coker

Using UPicg(X), we define an isomorphism in the derived
category, see the diagram below, assuming that X is a
homogeneous space and Pic(G) = 0.



Isomorphism in the derived category

Extended Both rectangles in the following diagram are
(=14

complexes quasi-isomorphisms:

X(G) @ A (X)) k™ ——= A (X)* /K™

- o

Picc(X) Div(X)

Proof of M.Th



Isomorphism in the derived category

Extended Both rectangles in the following diagram are
(=14

complexes quasi-isomorphisms:

X(G)® #(X)*k* —= 2 (X)*/k*

A

UPicg(X)! Div(X)

Proof of M.Th
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Proof of M.Th

Isomorphism in the derived category

Both rectangles in the following diagram are
quasi-isomorphisms:

X(G)s #(X)*k* — (X)) /k*

N

Picg(X) UPicg(X)! Div(X)

where the arrow o takes a character x € X(G) to the class of
the trivial line bundle A' x X over X with the G-action given

by X,
and the arrow v is given by

P0G ) = (- dgg(f),diV(f)) € UPicg(X)*
C Zg(G, (X)) @ Div(X).
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Since by Popov's theorem we have a commutative diagram

~

X(H) —— Picg(X),

where X(H) = Picg(X),
the diagram in the previous screen gives a canonical
isomorphism in the derived category

Proof of M.Th

(X(G) = X(H)) -~ UPic(X) :
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X(G) ~— X(G) & A (X)* kX —= A (X)* /K>

RN

X(H) UPicg(X)! Div(X)

which completes the proof of the Main Theorem.

Proof of M.Th
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Br(Xo) = H2 (X0, Gpm)

be the cohomological Brauer-Grothendieck group of Xj.
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closure k. Set X = Xp xy, k. Let

Br(Xo) = H2 (X0, Gpm)

be the cohomological Brauer-Grothendieck group of Xj.

Let
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be the algebraic Brauer group of Xp,
it is a subquotient of Br(Xp).
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We apply the Main Theorem to computing the algebraic
Brauer group of a homogeneous space.

Let Xp be an algebraic variety over a field kg with algebraic
closure k. Set X = Xp xy, k. Let

Br(Xo) = H(Xo, Gm)
be the cohomological Brauer-Grothendieck group of Xj.
Let
Bra(Xo) = ker[Br(Xo) — Br(X)]/im[Br(ko) — Br(Xo)]

be the algebraic Brauer group of Xp,
it is a subquotient of Br(Xp).

One needs Br,(Xp) when working with the Brauer-Manin
obstruction to the Hasse principle, when kg is a number field.
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Proposition

Let Xo be a smooth geometrically integral variety over a field
ko of characteristik 0. If H3(ko, Gm) = 0 (e.g. when kg is a
number field, or a p-adic field, or R), then there is a canonical
isomorphism

Br.(Xo) = H2(ko, UPic(X)).
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Proposition

Let Xo be a smooth geometrically integral variety over a field
ko of characteristik 0. If H3(ko, Gm) = 0 (e.g. when kg is a
number field, or a p-adic field, or R), then there is a canonical
isomorphism

Br.(Xo) = H2(ko, UPic(X)).

Here H2(ko, UPic(X)) denotes the second Galois
hypercohomology with coefficients in the complex of Galois
modules UPic(X).
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From the above results we obtain:

Theorem

Let Xy be a homogeneous space with geometric stabilizer H of
a connected linear ky-group Go with Pic(G) = 0.

If H3(ko,Gpm) =0

(e.g. ko is a number field, or a p-adic field, or R),

we have a canonical isomorphism

Br.(Xo) = H2(ko, X(G) — X(H)).
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Proof. By the proposition, Br,(Xo) = H2(k, UPic(X)). By the
Main Theorem we have a canonical isomorphism in the derived
category of Galois modules

UPic(X) —— (X(G) — X(H)),
hence a canonical isomorphism
H?(ko, UPic(X)) = H?(ko, X(G) — X(H)),
which gives us the required isomorphism

Br.(Xo) = H2(ko, X(G) — X(H)).

We have computed Br,(Xp) in terms of X(G) and X(H), when
ko is a number field.
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This result was recently generalized by Cyril Demarche, who,
for a homogeneous space Xp of a connected group Gp over ko,
computed the group Br,(Xp, Gp) defined by

Bra(Xo, Go) =
ker[Br(Xp) — Br(X) — Br(G)]/im[Br(ko) — Br(Xo)]
when the geometric stabilizer H is connected. One needs this

group for the Brauer-Manin obstruction to
strong approximation for Xg.
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