Number Theory Homework #6

- 1. Are there integers x, y, z such that $3x^2 + 2 = y^2 + 6z^3$?
- **2.** Show that the congruence $x^3 \equiv a$ (167) has solutions for all $a \in \mathbb{Z}$.

3. Find all solutions to each of the following congruences:

- (a) $x^2 \equiv 9 \pmod{256}$. (b) $x^2 \equiv -7 \pmod{128}$.
- (c) $3x^2 + 6x + 1 \equiv 0 \pmod{19}$. (d) $x^2 + 3x + 7 \equiv 0 \pmod{37}$.
- 4. How many solutions does the congruence $x^2 \equiv 121 \pmod{1800}$ have?
- **5.** Prove that for each prime number p there exist $a, b \in \mathbb{Z}$ such that $-1 \equiv a^2 + b^2 \pmod{p}.$

(Hint: how many values in \mathbb{F}_p do the expressions a^2 and $-1 - b^2$ take?)

6. Evaluate each of the following symbols: (8/11), (7/13), (5/19), (2/383), (-1/113), (-2/773), (71/73), (37/137), (30/199), (1711/1999), (-1/523).

7. Which prime numbers p can divide integers of the form $x^2 - 5$?