## Number Theory Homework \#5

1. Let $g$ be a primitive root modulo $m$. Prove that $g^{k}$ is a primitive root modulo $m$ if and only if $\operatorname{gcd}(k, \varphi(m))=1$. Deduce that if there exists a primitive root modulo $m$, then the number of primitive roots modulo $m$ is $\varphi(\varphi(m))$.
2. (a) Show that 2 is a primitive root modulo 29.
(b) Compute all primitive roots for $p=11,13,17$, and 19.
3. (a) Find the four primitive roots modulo 26 and the eight primitive roots modulo 25.
(b) Determine all the primitive roots modulo $3^{2}, 3^{3}$, and $3^{4}$.
4. (a) Prove that 3 is a primitive root for all integers of the form $7^{k}$ and $2 \cdot 7^{k}$.
(b) Find a primitive root for any integer of the form $17^{k}$.
5. Prove that if $p$ and $q=2 p+1$ are both odd primes (for example $p=5$ and $q=11$ ), then -4 is a primitive root $\bmod q$.
6. Show that 4 is not a primitive root modulo $n$ for any $n \geq 2$.
7. Let $p \geq 3$ be a prime number, let $r \in \mathbb{N}$, and let $x$ be a primitive root modulo $p^{r}$. Show that $x$ is a primitive root modulo $p$.
