Number Theory Homework #5

1. Let g be a primitive root modulo m. Prove that g^k is a primitive root modulo m if and only if $gcd(k, \varphi(m)) = 1$. Deduce that if there exists a primitive root modulo m, then the number of primitive roots modulo m is $\varphi(\varphi(m))$.

2. (a) Show that 2 is a primitive root modulo 29.

(b) Compute all primitive roots for p = 11, 13, 17, and 19.

3. (a) Find the four primitive roots modulo 26 and the eight primitive roots modulo 25.

(b) Determine all the primitive roots modulo 3^2 , 3^3 , and 3^4 .

4. (a) Prove that 3 is a primitive root for all integers of the form 7^k and $2 \cdot 7^k$. (b) Find a primitive root for any integer of the form 17^k .

5. Prove that if p and q = 2p + 1 are both odd primes (for example p = 5 and q = 11), then -4 is a primitive root mod q.

6. Show that 4 is not a primitive root modulo n for any $n \ge 2$.

7. Let $p \ge 3$ be a prime number, let $r \in \mathbb{N}$, and let x be a primitive root modulo p^r . Show that x is a primitive root modulo p.