Number Theory Homework \#1

1. (a) Show that an integer is divisible by 9 if and only if the sum of its digits is divisible by 9 .
(b) Show that an integer is divisible by 11 if and only if the alternating sum of its digits is divisible by 11. (If $A=a_{0}+a_{1} 10^{1}+a_{2} 10^{2}+\ldots$, with $0 \leq a_{i} \leq 9$, then the alternating sum of digits is $a_{0}-a_{1}+a_{2}-\ldots$)
2. Compute $\operatorname{gcd}(1369,2597)$ and write this number as a linear combination of 1369 and 2597.
3. (a) Define $\operatorname{gcd}(a, b, c), a, b, c \in \mathbf{Z}$.
(b) Prove that $\operatorname{gcd}(a, b, c)=\operatorname{gcd}(a, \operatorname{gcd}(b, c))$.
(c) Compute $\operatorname{gcd}(499,731,1751)$.
4. (a) Define a least common multiple of $a, b \in \mathbf{Z}$ similar to the definition of a greatest common divisor. (We write $\operatorname{lcm}(a, b)$ for the non-negative least common multiple of a, b.)
(b) Prove that if

$$
a=(-1)^{\varepsilon} \prod_{p} p^{\alpha_{p}}, \quad b=(-1)^{\delta} \prod_{p} p^{\beta_{p}},
$$

then

$$
\operatorname{lcm}(a, b)=\prod_{p} p^{\gamma_{p}}, \text { where } \gamma_{p}=\max \left(\alpha_{p}, \beta_{p}\right) .
$$

5. (a) Prove that the remainders r_{1}, r_{2}, \ldots in the Euclidean algorithm satisfy $r_{i+2}<r_{i} / 2$. (Hint: consider separately the cases $r_{m+1}<r_{m} / 2, r_{m+1}=r_{m} / 2, r_{m+1}>r_{m} / 2$.)
(b) Prove that if $a, b \in \mathbf{Z}, a>b>0, b<2^{n}$, then in the Euclidean algorithm for $\operatorname{gcd}(a, b)$ the number of steps (divisions) is not more than $2 n$.
