0. Example of non-unique factorization

We denote by \mathbf{Z} the set of integers, $\mathbf{Z}=\{0,1,-1,2,-2,3,-3, \ldots\}$. Recall that prime numbers are $2,3,5,7,11,13,17,19,23,29, \ldots$

Consider the set of numbers

$$
\mathbf{Z}[\sqrt{-5}]=\{a=x+y \sqrt{-5} \mid x, y \in \mathbf{Z}\}
$$

We can add, subtract and multiply these numbers:

$$
(x+y \sqrt{-5})\left(x_{1}+y_{1} \sqrt{-5}\right)=\left(x x_{1}-5 y y_{1}\right)+\left(x y_{1}+y x_{1}\right) \sqrt{-5}
$$

We define the norm map

$$
N: \mathbf{Z}[\sqrt{-5}] \rightarrow \mathbf{Z}, N(x+y \sqrt{-5})=x^{2}+5 y^{2}
$$

The norm map has the following properties:

- $N(a) \in \mathbf{Z}$ (indeed, $x^{2}+5 y^{2} \in \mathbf{Z}$);
- $N(a) \geq 0$ (indeed, $x^{2}+5 y^{2} \geq 0$);
- $N(a)=0$ if and only if $a=0$ (indeed, if $x^{2}+5 y^{2}=0$, then $x=0$ and $y=0$);
- $N(a b)=N(a) N(b)$ (indeed, this is true for complex numbers; one can also check immediately that

$$
\left.\left(x x_{1}-5 y y_{1}\right)^{2}+5\left(x y_{1}+y x_{1}\right)^{2}=\left(x^{2}+5 y^{2}\right)\left(x_{1}^{2}+5 y_{1}^{2}\right)\right)
$$

Definition 0.1. A number $a \in \mathbf{Z}[\sqrt{-5}]$ is called invertible, if there exists $b \in \mathbf{Z}[\sqrt{-5}]$ such that $a b=1$.

Lemma 0.2. A number $a \in \mathbf{Z}[\sqrt{-5}]$ is invertible if and only if $a= \pm 1$.
Proof. Clearly 1 and -1 are invertible. Conversely, assume that $a b=1$. Then

$$
N(a b)=N(1)=1
$$

hence

$$
N(a) N(b)=1
$$

hence $N(a)=1$. Write $a=x+y \sqrt{-5}$, then $N(a)=x^{2}+5 y^{2}$. We obtain

$$
x^{2}+5 y^{2}=1
$$

hence $y=0$ and $x= \pm 1$. Thus $a=1$ or $a=-1$.
Definition 0.3. A number $a=x+y \sqrt{-5}$ is called irreducible (in $\mathbf{Z}[\sqrt{-5}]$) if in any decomposition

$$
a=b c
$$

either b is invertible (i.e $b= \pm 1$) or c is invertible (i.e $c= \pm 1$).
Example 0.4. In \mathbf{Z} the numbers 2 and -2 are irreducible, while 6 and -6 are reducible, $-6=2 \cdot(-3)$.

Amazing example 0.5.

$$
6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})
$$

By the way, in \mathbf{Z} we also have

$$
4 \cdot 9=6 \cdot 9
$$

But 4, 9, and 6 are reducible, and we obtain

$$
2^{2} \cdot 3^{2}=(2 \cdot 3)(2 \cdot 3)-
$$

the same decomposition into irreducibles! And for 6 in \mathbf{Z} we have

$$
6=2 \cdot 3=(-2)(-3)
$$

Here

$$
-2=2 \cdot(-1), \quad-3=3 \cdot(-1)
$$

and -1 is invertible. Again we have essentially the same decomposition. But in our Example 0.5 we have two different decompositions. What is amazing is that they are two different decompositions into irreducibles!

Claim 0.6. The four numbers $2,3,1+\sqrt{-5}, 1-\sqrt{-5}$ are irreducible in in $\mathbf{Z}[\sqrt{-5}]$.
Proof. We prove that 3 is irreducible. Assume that $3=a b$. Then

$$
N(3)=N(a b)=N(a) N(b)
$$

But $N(3)=3^{2}+5 \cdot 0^{2}=9$. Thus

$$
N(a) N(b)=9
$$

It follows that $N(a)=1,3,9$.
If $N(a)=1$, then a is invertible. If $N(a)=9$, then $N(b)=1$ and b is invertible. At last, if $N(a)=3, a=x+y \sqrt{-5}$, then

$$
x^{2}+5 y^{2}=3
$$

and we obtain that $y=0$, hence $x^{2}=3$, which is clearly impossible. Thus the case $N(a)=3$ is impossible. We have proved that 3 is irreducible in $\mathbf{Z}[\sqrt{-5}]$.

We prove that 2 is irreducible. Assume that $2=a b$. Then

$$
N(a) N(b)=4
$$

Since the equation

$$
x^{2}+5 y^{2}=2
$$

has no solutions in integers $x, y \in \mathbf{Z}$, we conclude that either $N(a)=1$ or $N(b)=1$. Thus 2 is irreducible in $\mathbf{Z}[\sqrt{-5}]$.

We prove that the numbers $1 \pm \sqrt{-5}$ are irreducible. Assume that $1 \pm \sqrt{-5}=a b$. Then

$$
N(a) N(b)=6
$$

Since $N(a) \neq 2,3$, we see that either $N(a)=1$ or $N(a)=6$ (then $N(b)=1)$. Thus the numbers $1 \pm \sqrt{-5}$ are irreducible.

Claim 0.6 shows that in $\mathbf{Z}[\sqrt{-5}]$ the number 6 has two essentially different decompositions into irreducible factors. We see that there is no unique factorization into irreducibles in $\mathbf{Z}[\sqrt{-5}]$.

Now consider the set of Gaussian integers

$$
\mathbf{Z}[i]=\{a=x+y i \mid x, y \in \mathbf{Z}\}, \text { where } i=\sqrt{-1}
$$

What are the invertible elements of $\mathbf{Z}[i]$? We will prove later that $\mathbf{Z}[i]$ has unique factorization into irreducibles and describe the irreducible elements in $\mathbf{Z}[i]$.

We see that it is not evident that even \mathbf{Z} has unique factorization into irreducibles (primes). We will prove this assertion in the next section.

