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Abstract

The main focus of this article is to present and relate four different frameworks in which spatially explicit
individual-based models (IBMs) can be defined. These frameworks differ in the way space and time are modeled; each
can be treated either discretely or continuously. The emphasis is put on constructing and simulating one of the
simplest single-species IBMs in each spatio-temporal framework, discussing some of their technical subtleties, and
deriving corresponding mean-field models when the homogeneous mixing conditions are assumed to hold. The four
frameworks are more supplements than competitors. Since at almost every step of IBM construction several
alternatives are a priori plausible I discuss the most important ones in more details. This article seems to be the first
attempt to collect and synthesize information of this kind that is scattered over the literature. © 2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Not only the ‘What to study?’ and ‘What has
been found?’ questions are vital for a good scien-
tific work. Rather, the ‘How to solve the problem
under consideration?’ question forms the in-
evitable ‘how’ bones for the ‘what’ flesh. Appro-
priate methodology may reveal important insights
into a seemingly banal problem. On the other
hand, techniques that are not adequate enough
may drown topics of prime importance.

Individual-based approach to modeling popula-
tion dynamics, one of the main streams of today’s
theoretical ecology, has already been reviewed
many times (Huston et al., 1988; Hogeweg and
Hesper, 1990; Lomnicki, 1992; DeAngelis et al.,
1994; Judson, 1994; Uchmanski and Grimm,
1996; Grimm, 1999). The point of interest in all
these works has been either the role of individual-
based models (IBMs) in ecology as a whole or an
attempt to discuss potentials and summarize pre-
dictions of the existing IBMs. The present article
aims at reviewing fundamental techniques under-
lying construction, simulation, and mean-field
analysis of spatially explicit IBMs, including
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means of summarizing and visualizing vast
amount of model data generated. Non-spatial
IBMs also exist (Botkin et al., 1972; DeAngelis et
al., 1979; Grist and des Clers, 1999) but are not
the subject of this article.

Spatially explicit models of population dynam-
ics can be classified according to whether popula-
tion sizes, space, and time are treated as discrete
or continuous entities (Table 1). For the purposes
of this review, I define IBMs as such models in
which a discrete individual that has at least one
feature unique is the fundamental modeling unit.
This is the case of the last four groups enlisted in
Table 1; the feature that makes each individual
unique is simply at least its spatial location. I refer
to just these four model types as the spatially
explicit IBMs. There is some controversy in the
literature about what should be considered the
IBM par excellence (Murdoch et al., 1992; Uch-
manski and Grimm, 1996; Grimm, 1999). The
IBM definitions and underlying arguments pro-
posed in these articles are philosophical; tech-

niques used to build and work with such models
are not affected by them at all. I note here that
the concept of ‘individual’ need not always coin-
cide with that of ‘individual organism’. Models
with more general population units such as local
populations (Dytham, 1994), ant colonies (Britton
et al., 1996), and bird flocks (Fahse et al., 1998)
do not differ technically from models treating
individual organisms.

Time seems to be mature enough to collect and
synthesize chips of information scattered over a
multitude of articles, and review techniques un-
derlying spatially explicit IBMs. In all four model
groups of interest the methodologies are relatively
well established though elaborated to various de-
grees. They have been used to address both theo-
retical and practical aspects of population
dynamics, working with both single-species and
multi-species populations of both motile and ses-
sile organisms. I aim at extracting their common
conceptual and methodological background. This
may help to reveal artifacts of particular modeling

Table 1
Eight possibilities of how spatially explicit models can be classified according to whether population size (P), space (S), and time
(T) are treated as discrete (D) or continuous (C) entities

Common label FormulationP S T References

System of difference eq.D Coupled mapDC Hassell et al. (1991), Kaneko, 1998
latticesa

Reaction-dispersalCDC System of ODEs Levin, 1974; Takeuchi, 1996
networks

C DC Reaction-dispersal Neubert et al., 1995; Kot et al. (1996), Veit and Lewis, 1996Integrodifference eq.
models

C PDEs, integrodifferentialC Reaction-dispersal Okubo, 1980; Britton, 1986; Murray, 1990; Wilson, 1998C
eq.modelsb

Individual-basedD Set of rules de Roos, McCauley and Wilson; see the next sectionD D
modelsc

Durrett and Levin; see the next sectionSet of rulesD Interacting particleD C
systems
NeighborhoodD Set of rules Pacala and Silander; see the next sectionDC
models

C CD Spatial point Set of rules Bolker and Pacala; see the next section
processes

Abbreviations, eq., equations; ODEs, ordinary differential equations; PDEs, partial differential equations.
a Coupled map lattices can also be considered discrete-space IBMs under specific conditions, e.g. when the value at each site

represents mass of the plant individual present (Hendry et al., 1996); they are used to evolve individuals’ characteristics rather than
their spatial distribution.

b Reaction–dispersal models defined in continuous time cover widely used reaction-diffusion models.
c Some instances of individual-based models are sometimes referred to as (probabilistic) cellular automata or artificial ecologies.
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approaches as well as areas of particular model
group applicability. Further on, unless specified
otherwise, I refer to the spatially explicit individ-
ual-based models as IBMs or simply models.

The comparison studies that have been pub-
lished and involved IBMs (DeAngelis and Rose,
1992; Durrett and Levin, 1994a; Wilson, 1998)
exclusively concentrated on, say, an inter-ap-
proach comparison (i-state distribution versus i-
state configuration models in DeAngelis and
Rose, 1992; mean-field models, patch models, re-
action–diffusion models, and interacting particle
systems in Durrett and Levin, 1994a; IBMs, de-
terministic and stochastic reaction–dispersal
models in Wilson, 1998). I propose an intra-ap-
proach comparison study, contrasting different
methodologies used to formulate IBMs, and want
to focus on technical means needed to run and
analyze them.

This article is intended as the first one in a
series of three. The next article that is currently
under preparation should review techniques (both
statistical and analytical) used to analyze IBMs
when the homogeneous mixing conditions under-
lying mean-field models do not hold. The final
article should present some of the software pack-
ages available that were developed to simulate
myriads of interacting organisms of various spe-
cies sharing the common environment, and dis-
cuss some IBM representatives found in the
literature in view of the techniques reviewed in
the first two papers.

2. Simple single-species IBMs

All four spatio-temporal frameworks of IBMs,
listed in the last four rows of Table 1, have more
or less established methodologies. In other words,
for each framework there is a series of articles in
which modeling aspects, that is, issues of model
construction, simulation, and analysis, are at least
as important as ecological problems studied.
These series are due to de Roos, McCauley and
Wilson (D-space, D-time IBMs; de Roos et al.,
1991; McCauley et al., 1993; Wilson et al., 1993,
1995; McCauley et al., 1996; Wilson, 1996, 1998),
Durrett and Levin (D-space, C-time IBMs; Dur-

rett, 1988, 1993; Durrett and Levin, 1994a,b,
1998; Durrett, 1999), Pacala and Silander (C-
space, D-time IBMs; Pacala and Silander, 1985;
Pacala, 1986, 1987; Pacala and Silander, 1990),
and Bolker and Pacala (C-space, C-time IBMs;
Bolker and Pacala, 1999; Bolker et al., 2000). The
respective methodologies have been motivated by
various ecological problems and elaborated to
various degrees. To introduce them in a concise
and unified manner, I first construct and simulate
probably one of the simplest IBMs of single-spe-
cies population growth in a two-dimensional
habitat in each spatio-temporal framework, and
then attempt at making (some) general comments.
I (subjectively) order the frameworks so that their
technical complexity increases. Sets of rules de-
scribe performance and thus determine the fate of
every single individual. The processes of mortal-
ity, reproduction (including offspring dispersal
and establishment), and movement (in case of
motile organisms) drive evolution of population
size (temporal pattern) and distribution (spatial
pattern) in the environment.

2.1. D-space, D-time

The two-dimensional, physically homogeneous
environment is modeled as a lattice of M×N
identical square sites, with periodic boundary
conditions (BC; the left and right edges and the
top and bottom edges of the lattice are joined
together so that it forms the surface of a torus).
Time runs in discrete steps. At any time step, at
most one individual is allowed to occupy each
site. Initially, x0 (�M×N) individuals are scat-
tered uniformly randomly over the lattice. The
processes that determine the fate of each individ-
ual are as follows.

2.1.1. Mortality
Every time step, each individual dies with a

probability Pm (density-independent, uniform
mortality).

2.1.2. Reproduction
Every time step, each individual gives birth to

one offspring with a probability Pr (asexual
reproduction).
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2.1.2.1. Offspring dispersal and establishment. Re-
specting BC, the conceived offspring is instanta-
neously and equiprobably placed to a site in a
square neighborhood (excluding the original site)
of side 2e+1 (e=1, 2, …) centered at its par-
ent’s site, and is discarded provided that an
adult individual occupies the selected site. If two
or more offspring attempt to recruit to the same
adult-free site at the same time step, only one of
them is uniformly randomly chosen and allowed
to do it, the rest discarded. Thus, reproduction
is density dependent. Any established offspring
becomes the adult able of reproduction at the
next time step.

2.1.3. Mo�ement
Every time step, respecting BC, each individ-

ual moves equiprobably to a site in a square
neighborhood (including the original site) of side
2d+1 (d=0, 1, 2, …) centered at its current
site unless another individual occupies the se-
lected site. In case the individual cannot move it
remains in its original site. The order in which
individuals attempt to move is modeled as uni-
form random. For sessile species, one may for-
mally set d=0.

I order the demographic processes concur-
rently in the actual IBM implementation. That
is, the mortality and reproduction rules are ap-
plied independently to each adult individual: the
reproduction rule takes place before the dead
individuals are removed from the lattice, and
the established offspring are not subject to the
mortality rule at the actual time step. Bookkeep-
ing is then made by superposing the lattices of
newborns and surviving adults. Finally, the
movement rule is applied to each individual of
the updated population. The reproduction rule
includes the so-called ‘collision rule’ which de-
termines what happens if two or more events try
to simultaneously influence a site.

2.2. D-space, C-time

The introductory assumptions are identical to
the above model, yet time is considered to run
continuously now. The model rules differ in
their formulation and are as follows.

2.2.1. Mortality
Each individual dies at a rate m (density-inde-

pendent, uniform mortality).

2.2.2. Reproduction
Each individual gives birth to one offspring at

a rate r (asexual reproduction).

2.2.2.1. Offspring dispersal and establishment. Re-
specting BC, the conceived offspring instanta-
neously disperses equiprobably to a site in a
square neighborhood (excluding the original site)
of side 2e+1 (e=1, 2, …) centered at its par-
ent’s site, and is discarded provided that another
adult individual occupies the selected site. Thus,
reproduction is density dependent. Any estab-
lished offspring immediately becomes the adult
able to reproduce.

2.2.3. Mo�ement
Respecting BC, each individual moves at a

rate w equiprobably to a site in a square neigh-
borhood (including the original site) of side
2d+1 (d=0, 1, 2, …) centered at its current
site unless another individual occupies the se-
lected site. In case the individual cannot move it
remains in its original site. For sessile species,
one may formally set w=0 and/or d=0.

There is no place for explicit ordering of mor-
tality and reproduction rules in this model.
Rather, the ordering is determined by the actual
occurrence of particular events. In this way,
even the movement rule is mingled with the oth-
ers. The rules are more concise now as at each
continuous-time instant at most one event takes
place (with probability one) and no ‘collision
rules’ are thus required.

I make a few notes concerning the actual
computer implementation of the model. First,
events are said to occur at a rate a if the occur-
rence times are described by a Poisson process
with the parameter a ; see, for example, Mangel
and Clark (1988) for details. The important con-
sequence is that the time intervals � between the
occurrence of two successive events are indepen-
dent and identically exponentially distributed
random variables: P [�� t ]=1−exp(−at),
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where P [A ] stands for a probability of an event A.
Second, the above rules prescribe that three Pois-
son processes should run for each individual
(mortality, reproduction, and movement); three
running processes vanish when an individual dies,
and three new processes appear when an offspring
is successfully established on the lattice. Although
using techniques of object-oriented programming
would enable one to keep track of multiple Pois-
son processes for each individual, it is unnecessary
and would introduce unnecessary overhead. In-
stead, the so-called ‘thinning of Poisson processes’
technique can be applied which keeps one back-
ground Poisson process only (Durrett, 1995). This
single process generates time instants at which
events may occur. Let S=MN be the number of
lattice sites and let the background Poisson pro-
cess generate time instants at a rate cS, where
c�m+r+w. Upon each time instant generated
a lattice site is uniformly randomly chosen; if
occupied the individual dies with the probability
m/c, gives birth to one offspring with the proba-
bility r/c, attempts to move with the probability
w/c, and does nothing with the probability 1−
(m+r+w)/c. If the chosen site is empty, nothing
happens to the lattice configuration at that time
instant. Thus, each site is independently trying to
change at the rate c, as cS×1/S=c, 1/S being the
probability that a particular site is uniformly ran-
domly selected.

In the literature, one can find at least some of
the rules defined from different viewpoints. For
example, in the above single-species model one
may use the viewpoint of either an individual
(above) or a vacant site (Durrett, 1999) to specify
the reproduction rule. The latter gives the follow-
ing rule: vacant sites become occupied at a rate
r× f, where f is the fraction of occupied neigh-
bors. Note that when individuals give birth at a
rate r, vacant sites are filled at a rate at most r,
since births onto occupied sites are discarded.
Simulation of this rule works as follows. Upon a
time instant generated by the background Poisson
process a lattice site is uniformly randomly chosen
and if vacant one of its neighbors is picked at
random; if this neighbor is occupied (this event
has the probability f ) the vacant site is made
occupied with the probability r/c. Analogous rule

duality can be found in an example from epi-
demics. Sites can be vacant or occupied by suscep-
tibles or infecteds. The local disease transmission
rule can be defined as: (i) infecteds emit disease at
a rate r equiprobably to a nearest neighbor and if
that site is occupied by a susceptible, it becomes
infected, otherwise nothing happens, or (ii) sus-
ceptible individuals become infected at a rate r×
f, where f is the fraction of nearest neighbors
occupied by infecteds. Such rules are substitutes
and use of one or another has no simulation or
analytical consequences. Rather, the choice is
more a matter of biological plausibility and
interpretation.

2.3. C-space, D-time

The two-dimensional, physically homogeneous
environment is modeled as a continuous plot of
size M×N, with periodic BC. Time runs in dis-
crete steps. Initially, x0 individuals (now not lim-
ited a priori) are scattered uniformly randomly
over the plot. The processes that determine the
fate of each individual are as follows.

2.3.1. Mortality
Every time step, each individual dies with a

probability Pm.

2.3.2. Reproduction
Every time step, each individual gives birth to

one offspring with a probability Pr.

2.3.2.1. Offspring dispersal and establishment. The
conceived offspring instantaneously disperses to a
position generated by an offspring dispersal ker-
nel, specified by a probability density function
(pdf). In the physically homogeneous environ-
ment, this pdf is typically radial and non-increas-
ing with increasing distance between the new
offspring position (x �, y �) and its parent’s position
(x, y). I assume here that this pdf is uniform on a
circle of radius � centered at the parent’s position.
That is, I generate a point u from the uniform pdf
on (0, � ] and a point � from the uniform pdf on
[0, 2 �), and set:

x �=x+u cos �, y �=y+u sin �, (1)



L. Berec / Ecological Modelling 150 (2002) 55–8160

respecting BC. The offspring dispersal kernel is
supplemented by an establishment probability de-
termining whether the offspring is actually estab-
lished in the selected position or is discarded. I
assume that this probability depends on the num-
ber n of individuals located in a circle of radius e
centered at (x �, y �), decreases linearly from unity
at n=0 to zero at some n=E, and stays zero for
all n�E. The newborns are not counted to n.
Any established offspring becomes the adult able
of reproduction at the next time step.

2.3.3. Mo�ement
Every time step, each individual moves to a

position generated by a movement kernel. I as-
sume here that this kernel is specified by the
uniform pdf on a circle of radius � centered at the
current individual’s position (x, y). That is, I
generate a point z from the uniform pdf on [0, � ]
and a point � from the uniform pdf on [0, 2 �),
and set:

x �=x+z cos �, y �=y+z sin � (2)

respecting BC. The movement kernel is supple-
mented by a movement probability determining,
for z�0, whether the individual actually moves
to the selected position or remains in the original
one. I assume that this probability depends on the
number n of individuals in a circle of radius d
centered at (x �, y �), decreases linearly from unity
at n=0 to zero at some n=D, and stays zero for
all n�D. If an individual moves, only its new
position counts to n. The order in which individu-
als attempt to move is implemented as uniform
random. For sessile species, one may formally set
�=0.

As time is considered discrete and all individu-
als act at once, the ordering of mortality and
reproduction processes has to be specified exter-
nally. I assume they are ordered concurrently as
in the ‘D-space, D-time’ case. The movement rule
is applied after mortality and reproduction rules
are accomplished. No ‘collision rules’ are required
here as at each time step each location is affected
(with probability one) by at most one event.

The uniform random initial distribution of x0

individuals in the plot implies that the number
0�n�x0 of individuals located in a region of

area 0�A�S (=MN) is binomially distributed
with the event probability A/S,

P [there are n individuals in an area A ]

=
�x0

n
��A

S
�n�

1−
A
S
�x0−n

(3)

This probability distribution is valid no matter
what the shape of the region is and where the
region is located within the plot. If S�� and
x0�� so that x0/S is (or converges to) a con-
stant, then A/S�0 for a fixed A, and the proba-
bility that a region of area A�0 contains n�0
individuals is Poisson distributed in this limit:

P [there are n individuals in an area A ]

=
�n

n !
exp(−�), �=�0A, (4)

where �0=x0/S has the meaning of initial popula-
tion density.

An important technical problem in model im-
plementation is to identify each individual’s
neighbors in a relatively short time; Pacala and
Silander (1985) suggested a very efficient data
structure to achieve this goal.

2.4. C-space, C-time

The introductory assumptions are identical to
the previous model, yet time is considered to run
continuously now. The model rules differ in their
formulation and are as follows.

2.4.1. Mortality
Each individual dies at a rate m.

2.4.2. Reproduction
Each individual gives birth to one offspring at a

rate r.

2.4.2.1. Offspring dispersal and establishment. Re-
specting BC, the produced offspring instanta-
neously disperses to a position generated by an
offspring dispersal kernel, and an establishment
probability is used to decide whether the offspring
is actually established in that position or is dis-
carded. I assume both the kernel and the proba-
bility to be the same as in the previous model.
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Any established offspring immediately becomes
the adult able to reproduce.

2.4.3. Mo�ement
Respecting BC, each individual moves at a rate

w into a position generated by a movement ker-
nel, and stays there with a movement probability;
otherwise, it remains in its original position. Both
the kernel and the probability are assumed to be
the same as in the previous model. Bolker et al.
(2000) simulated plant population growth (no
movement) as follows. ‘Starting with a random
initial distribution of individuals, the simulator
takes small time steps to approximate a continu-
ous-time process. In each time step, the simulator
picks pseudo-random numbers to see if each plant
has died or reproduced. If it has reproduced, the
simulator picks a random point from the dispersal
kernel to see where its offspring disperses to. It
then calculates the local density around that point
to determine the offspring’s establishment proba-
bility, and picks another random number to see if
it establishes’.

There is no a priori need to approximate con-
tinuous time by discrete steps. Last but not least,
the model then looses its explicit ‘C-time’ charac-
ter. One may rigorously simulate this IBM by
running a background Poisson process with den-
sity-dependent rate x(m+r+w), x being the ac-
tual population size at the time an event is
expected to occur. Once a time instant is gener-
ated an individual is uniformly randomly chosen:
it dies with the probability m/(m+r+w), gives
birth to one offspring with the probability r/(m+
r+w), and attempts to move with the remaining
probability w/(m+r+w). Reproduction/move-
ment event is followed by generating a position in
the environment according to the respective ker-
nel where the offspring disperses/adult moves.
Finally, local density around the landing point
determines the offspring establishment/adult
movement probability.

2.5. Output �isualization

An appropriate summarization and visualiza-
tion of the large amount of model data generated
by IBMs is important to a priori assess popula-

tion dynamics and, in turn, formulate and test
hypotheses and/or select adequate tools for a
more rigorous analysis. An obvious entity to look
at is temporal course of population size. Spatially
explicit models are appreciated for generating spa-
tial patterns which evolve in time. These patterns
can be seen by taking snapshots of the environ-
ment at either all times population size changes or
at specific times a distance apart; see Wilson et al.
(1995), Berec et al. (2001). A kind of picture being
somewhere in between these two extremes and
created for ‘D-space, D-time’ systems, is the xt-
plot of Wilson (1998); it is built up by appending
a fixed but uniformly randomly chosen row of the
lattice to the bottom of the picture each time step.
Analogous ‘spatio-temporal’ pictures can be de-
veloped for the other frameworks, too. For ‘C-
space, D-time’ systems, one may superimpose a
lattice on the continuous plot and follow the
xt-plot technique, with different numbers of indi-
viduals in discrete sites corresponding to different
levels of grey color. ‘C-time’ IBMs may be sam-
pled at regular time instants, for example.

To show how model outcomes depend on vari-
ous parameter values, one may exploit diagrams
of Fryxell and Lundberg (1994). A grid of points
is laid on a two-dimensional parameter space and
the model is run for each of the selected combina-
tions. Different marking of the grid points can be
used to distinguish different types of model be-
havior (e.g. highly probable extinction, moder-
ately probable extinction, lowly probable
extinction (Berec et al., 2001), Grimm (1999) used
a slight generalization of this type of picture in
which the same marks were of different sizes
depending on the strength of the observed phe-
nomenon (e.g. probability of extinction in the
‘moderately probable extinction’ group).

2.6. A short discussion

At the qualitative level, all model formulations
and simulation outputs are essentially the same.
The models describe behavior of each individual
organism in a spatially explicit habitat, and in-
clude the fundamental processes. Fig. 1 shows
sigmoidal population growth under all four spa-
tio-temporal frameworks. The most rapid growth
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Fig. 1. Single-species population growth curves corresponding to the four spatio-temporal frameworks. (A). D-space, D-time;
M=128, N=128, x0=10, Pm=0.05, Pr=0.5, e=1; simulation under the homogeneous mixing conditions (HM) virtually
coincides with the solution of the mean-field model (5) (dotted line). (B). D-space, C-time; M=128, N=128, x0=10, m=0.05,
r=0.5, w=1, c=1.6, e=1; HM virtually coincides with the solution of the mean-field model (8) (dotted line). (C). C-space, D-time;
M=128, N=128, x0=10, Pm=0.05, Pr=0.5, �=3, e=2, E=11, d=2, D=11; HM virtually coincides with the solution of the
mean-field model (9) (dotted line). (D). C-space, C-time; M=128, N=128, x0=10, m=0.05, r=0.5, w=1, �=3, e=2, E=11,
d=2, D=11; HM virtually coincides with the solution of the mean-field model (12) (dotted line).

is achieved under the homogeneous mixing condi-
tions (see the next section), and the rate of ap-
proach of the ‘stable’ population size decreases
with decreasing the movement rate of individuals.
The explanation for this behavior is as follows.
The slower is the movement the closer offspring
stay relative to their parents. As a consequence,
spatial clustering evolves in the environment
which results in a decreased reproductive success
within the clusters due to overcrowding. The re-

productive success on the cluster boundaries is
higher and the clusters grow. Eventually, the habi-
tat is filled and the number of individuals ‘stabi-
lized’ at a carrying capacity. Pacala (1986),
Tilman et al. (1997), and others reported a de-
crease in ‘equilibrium’ population size for small
movement rates. Law and Dieckmann (2000)
demonstrated that the carrying capacity may be
larger or smaller than that obtained under the
homogeneous mixing conditions, and that it de-
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pends on an intricate interplay between intraspe-
cific competition and movement in single-species
models. I observed an increase in the ‘equilibrium’
population size with respect to the mean-field
carrying capacity with decreasing movement rate
in both ‘C-space’ models.

At the technical level, no two models are the
same. Table 2 summarizes the fundamental tech-
nical differences between ‘D-time’ and ‘C-time’
modeling frameworks. I used the concurrent or-
dering of demographic processes, followed by
movement, in the above ‘D-time’ IBMs. There are
alternative possibilities. The processes of mortal-
ity, reproduction, and movement may be ordered
in any sequential manner, and the ordering even
made independent for each individual. I discuss
this issue in more details below.

Likewise, Table 3 summarizes the technical dif-
ferences between the ‘D-space’ and ‘C-space’
frameworks. The ‘interaction’ characteristic de-
serves some explanation. In ‘D-space’ models cov-
ering more individual types (such as predators
and prey in de Roos et al. (1991) or males and
females in Berec et al. (2001)) the interaction is
often direct: individuals of both types have to
occupy the same site for the interaction to take
place. In analogous ‘C-space’ models an interac-
tion neighborhood has to be defined (indirect
interaction) as two individuals occupy the same
position with zero probability. In the above sin-
gle-species IBMs, offspring establishment and
adult movement demonstrate direct interaction
between individuals in ‘D-space’ models and indi-
rect interaction in ‘C-space’ models.

3. Mean-field analysis

Apart from their significant contribution to the
issues of spatial pattern formation, IBMs provide
a way to determine population-level consequences
of specific individual-level behavior. In order to
be reliable, computer simulations must be run
repeatedly to provide information about average,
or typical, population responses. Given often a
large dimensionality of model parameter space,
computer simulations are more suitable to address
specific questions about the model rather than
uncover complete model behavior. Mean-field
models reside on the other side of the individually
oriented modeling spectra: they are analytical
models that take no account at all of space and
possible individual variability. As such, construc-
tion of mean-field models forces one to admit
assumptions about individual biology that are
rarely plausible in natural systems; I formulate
these ‘homogeneous mixing conditions’ in this
section. Mean-field models take the form of (a
system of) ordinary differential/difference equa-
tions (ODEs). This brings at least one advantage
of building them: an agreement between mean-
field models and IBMs simulated under the homo-
geneous mixing conditions provides an important
starting point from which to explore complexities
brought about by assumptions destroying these

Table 2
A technical comparison of ‘D-time’ and ‘C-time’ IBMs

D-time (t=0,1,2,Characteristic C-time (t�0)
….)

Formulation Relatively simple More difficult
Rates‘Dynamic’ Probabilities

parameters
Analysis More difficult Simpler

(more complex
dynamics)

OrdinaryMean-field Difference
equationsmodel differential

equations
Updating Asynchronous (oneSynchronous (all

site updated at asites updated at
time)once)

System state Changes abruptly Changes gradually
InternalProcess External

ordering

Table 3
A technical comparison of ‘D-space’ and ‘C-space’ IBMs

D-spaceCharacteristic C-space (plot)
(lattice)

InfinitesimalFiniteIndividual volume
InfinitesimalFiniteSmallest

heterogeneity level
IndirectPossibly directInteraction
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conditions. Moreover, information obtained from
a stability analysis of mean-field models allows
one to choose parameter values for IBMs that
yield stable or unstable population dynamics un-
der the homogeneous mixing conditions, and to
see whether these features change when these
assumptions are not met. Still the mean-field
models are rather regular companions to the pub-
lished IBMs. That is why I now review rigorous
techniques of mean-field model construction in
each spatio-temporal framework.

3.1. D-space, D-time

I show in Appendix A that if � and �� represent
population densities at the beginning and at the
end of a time step, respectively, the rigorous
mean-field model corresponding to the above ‘D-
space, D-time’ IBM is:

��=�(1−Pm)+ (1−�)
�

1−
�

1−�
Pr

N
�Nn

(5)

For small enough Pr or � the expression in
square brackets can be well approximated by the
term Pr �, giving:

��=�(1−Pm)+�Pr(1−�)=�+r�
�

1−
�

K
�

(6)

which is a discrete-time version of the Verhulst
logistic equation, with the intrinsic growth rate
r=Pr−Pm and the carrying capacity (with re-
spect to the maximal admissible density �=1)
K=1−Pm/Pr. For large enough N one may ap-
proximately write

��=�(1−Pm)+ (1−�)(1−e−�Pr), (7)

as limN�� (1+z/N)N=ez for any real number z.
To be precise, mean-field model (5) assumes

that individuals are,
� identical in their parameters;
� uniformly randomly distributed on the lattice

(each site has an equal probability of being
occupied by an individual);

� members of an infinite population (thus living
on an infinite lattice).
These assumptions are called the ‘homoge-

neous mixing conditions’ in the literature. In
other words, if individuals are more or less iden-

tical in their relevant characteristics, more or less
uniformly randomly distributed on the lattice at
each time instant, and forming a relatively large
population, difference Eq. (5), and possibly Eq.
(6), is a good approximation of the population
density evolving according to the above defined
IBM with discrete space and discrete time. In
simulations, the lattice size is always finite. The
first assumption is guaranteed here by the sim-
plicity of IBM rules. For motile species, the mid-
dle assumption can be technically approached by
giving individuals a high movement rate (large d)
and/or letting the offspring disperse over large
neighborhoods (large e). The assumption is ex-
actly fulfilled by taking up all individuals at the
end of each time step and scattering them uni-
formly randomly over the lattice, under the con-
straint that at most one individual lands in a
site. For sessile species, uniform random initial
distribution and uniform random offspring dis-
persal guarantee the middle assumption at each
time step, with large e approximating it quite
well.

3.2. D-space, C-time

I show in Appendix B that the rigorous mean-
field model corresponding to the above ‘D-space,
C-time’ IBM is:

�� =r�(1−�)−m�= r̃�
�

1−
�

K
�

(8)

This is the well-known Verhulst logistic equa-
tion describing single-species population growth,
with the intrinsic growth rate r̃=r−m and the
carrying capacity (with respect to the maximal
admissible density �=1) K=1−m/r.

To be precise, mean-field model (8) assumes
that individuals are subject to the homogeneous
mixing conditions specified above. All the com-
ments are valid here, too, with the high movement
rate characterized by large d or w much greater
than r. If the alternative rule for reproduction is
applied (see above), one arrives at the same mean-
field model (8) since the fraction of occupied
neighbors f becomes the mean fraction of occu-
pied neighbors x/S under the homogeneous mix-
ing conditions.
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3.3. C-space, D-time

I show in Appendix C that the rigorous mean-
field model corresponding to the above ‘C-space,
D-time’ IBM is:

��=�(1−Pm)

+�Pr
�

PL �
+�

n=0

(�A)n

n !
exp(−�A)

�
1−

n+1
E

n
+

+ (1−PL) �
+�

n=0

(�A)n

n !
exp(−�A)

�
1−

n
E
n

+

n
(9)

PL is the probability that if an offspring lands
in a distance from its parent, the latter lies within
the establishment neighborhood of the former
(PL=e/� if e�� and PL=1 otherwise); for a real
number z, [z ]+ =z if z�0 and zero otherwise.
Provided that � is small in the course of time
and/or E is large, Eq. (9) will not stay far from
that in which [z ]+ is replaced just by z (for a real
number z). The latter sums to:

��=�+r�
�

1−
�

K
�

(10)

which is a discrete-time version of the Verhulst
logistic equation, with the intrinsic growth rate
r=Pr(1−PL/E)−Pm and the carrying capacity
(with respect to the maximal admissible density
�=1):

K=
E−PL

A
�

1−
Pm

Pr(1−PL/E)
�

(11)

To be precise, mean-field model (9) assumes
that individuals are subject to the homogeneous
mixing conditions that are just ‘C-space’ ana-
logues of those specified for the ‘D-space’ cases,
� identical in their parameters;
� uniformly randomly distributed on the plot;
� members of an infinite population living in an

infinite plot.
In other words, if individuals are more or less

identical in their relevant characteristics, more or
less uniformly randomly distributed on the plot at
each time instant, and forming a relatively large
population, the ordinary difference Eq. (9) is a
good approximation of the population density
evolving according to the above defined IBM with

continuous space and discrete time. In simula-
tions, the plot size is always finite. The first as-
sumption is guaranteed here by the simplicity of
IBM rules. For motile species, the middle assump-
tion can be technically approached by giving indi-
viduals a high movement rate (large �) and/or
letting the offspring disperse over large neighbor-
hoods (large �). The assumption is exactly fulfilled
by taking up all individuals at the end of each
time step and scattering them randomly over the
plot. For sessile species, uniform random initial
distribution and uniform random landing of the
offspring guarantee the middle assumption at each
time step, with large � approximating it quite well.

3.4. C-space, C-time

I show in Appendix D that the rigorous mean-
field model corresponding to the above ‘C-space,
C-time’ IBM is:

�� = −m�

+r�
�

PL �
+�

n=0

(�A)n

n !
exp(−�A)

�
1−

n+1
E

n
+

+ (1−PL) �
+�

n=0

(�A)n

n !
exp(−�A)

�
1−

n
E
n

+

n
(12)

Analogously to the previous case, if � is small in
the course of time and/or E is large, Eq. (12) will
not stay far from that in which [z ]+ is replaced
just by z (for a real number z). The latter sums to:

�� = r̃�
�

1−
�

K
�

, (13)

which is the Verhulst logistic equation, with the
intrinsic growth rate r̃=Pr(1−PL/E)−Pm and
the carrying capacity (with respect to the maximal
admissible density �=1):

K=
E−PL

A
�

1−
Pm

Pr(1−PL/E)
�

(14)

To be precise, mean-field model (12) assumes
that individuals are subject to the homogeneous
mixing conditions specified for the ‘C-space, D-
time’ case. All the comments are valid here, too,
with the high movement rate characterized by
large � or w much greater than r.
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3.5. A short discussion

Formally, mean-field models are systems of or-
dinary differential equations (C-time) or differ-
ence equations (D-time) that describe temporal
dynamics generated by the IBM rules under the
homogeneous mixing conditions. These condi-
tions do not differ in principle for the four spatio-
temporal model frameworks and can be generally
formulated as follows: (i) populations are to be
divided into a finite number of groups within
which individuals are supposed to be identical
(averaging over individuals within respective
groups), (ii) populations are well-mixed so that
any individual may equally interact with any
other (averaging over space), and (iii) populations
are sufficiently large so that individuals respond
only to means (averaging over system
realizations).

Any deviation from the homogeneous mixing
conditions causes that the mean-field (non-spatial,
population-level) models have only an approxi-
mate power. Pair and moment approximations
that are going to be reviewed in the next article
are promising alternatives as better analytical
IBM counterparts (Bolker et al., 2000; Law and
Dieckmann, 2000; van Baalen, 2000).

In small populations (relaxation of the condi-
tion (iii)) at least variance starts to play a role,
too. IBM simulations then may demonstrate
strong demographic stochasticity that always
gives a population a chance to go extinct at any
time instant. If interactions are only local (relax-
ation of the condition (ii)) due to, for example,
slow movement or small interaction neighbor-
hoods, clusters of individuals are usually formed
in the environment. Spatial pattern of individuals
is then no more uniform random. Condition (i)
may be relaxed by enabling model parameters to
vary with individuals; then, parameter variance
and higher moments start to play the role in
mean-field models. This influence can be dimin-
ished by forming a larger number of groups and
averaging the parameters within them. The more
groups we form, however, the more we deviate
from the condition (iii) within the individual
groups.

As for the simple IBMs formulated and ana-
lyzed in this article, their rigorous mean-field
models take forms of different complexity. Never-
theless, under some mild assumptions, all these
forms are well approximated by the Verhulst lo-
gistic model of single-species population growth,
showing that even at this level the four spatio-
temporal frameworks are more alternatives rather
than competitors.

4. Alternatives and complexities

The use of spatially explicit IBMs demands
description of the environment and each individ-
ual living in it, together with its individual– indi-
vidual and individual–environment interactions.
At (almost) every step of this description at least
a few alternatives are a priori plausible. Some
make the models possibly more realistic yet prob-
ably more complex to formulate, simulate and
analyze. Others are just technical alternatives.
Knowledge of whether and how a choice from
among the alternatives changes spatio-temporal
patterns should help to separate effects of model
artifacts and biological processes. Some authors
claimed that IBMs are rather robust against at
least some of these alternatives (Durrett and
Levin, 1994b; McGlade, 1999; Wilson et al.,
1999), causing no qualitative change in popula-
tion-level behavior, but a few works only ad-
dressed these questions explicitly (McCauley et
al., 1993; Wilson et al., 1993).

One may ask whether a (discrete) lattice should
be modeled as regular or irregular, and in the
former case if it should be composed of squares,
triangles or hexagons. Environment can be as-
sumed homogeneous or heterogeneous in its phys-
ical characteristics, movement may be directed as
opposed to diffusive, initial population distribu-
tion may be random or admit a specific spatial
pattern, etc. Individuals need not be identical in
their behavior; IBM rules may (and usually do)
depend on various individual characteristics such
as age, size, sex, genotype, etc. In particular, in
evolutionary models different genotypes may have
different parameter values, leading to differences
in their respective reproductive success (Keeling
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Fig. 2. (A) Projection of a hexagonal lattice and the nearest neighbors of its two sites onto a square lattice. (B) Projection of a
triangular lattice and the nearest neighbors of its two sites onto a square lattice.

and Rand, 1995). This section discusses these and
other model features in more details.

Finally, I note that most published IBMs are
problem-specific, and applied issues often drive
the choice of an appropriate alternative. For ex-
ample, particular BC are used to study specific
habitable environments, specific initial conditions
allow for a study of species invasions, and partic-
ular spatio-temporal variations in environmental
conditions can be used to investigate effects of
harvesting and habitat degradation.

4.1. Discrete space topology

Any habitat is characterized by its shape and
size (see below). Additionally, ‘D-space’ environ-
ments require a topology, regular lattices made up
of squares being by far the most common choice.
The fundamental reason is no doubt their easy
computer implementation (the lattice sites are
simply represented as pairs of non-negative in-
tegers). Nevertheless, the lattices composed of
hexagons (which probably capture better an idea
of circular individual neighborhood) or triangles
can be technically represented as square lattices,
with properly transformed interaction neighbor-
hoods. As an example, consider an individual that
interacts with its nearest neighbors only (Fig. 2).
For the hexagonal lattice with six nearest neigh-
bors, an equivalent square lattice may be obtained
by shifting hexagon rows half the hexagon diame-
ter (Fig. 2A). Note that there are two types of
neighborhoods, and no one is of the von Neu-
mann type (i.e. containing four square-lattice
nearest neighbors). Triangular lattices may be
transformed analogously (Fig. 2B). In fact, even
irregular space tessellation’s can be projected onto

square lattices, with interaction neighborhoods
generally differing for each site. To summarize,
though the a priori lattice choice should always
respect specific system properties, its subsequent
computer coding and formal treatment can be
done via a square lattice with adequate (possibly
site-specific) interaction neighborhoods. In this
way, one may formally view the study of impacts
of various space tessellation’s on population dy-
namics as covered by the study of influences of
various interaction neighborhoods (see below).

4.2. Boundary conditions

The assumption of an infinite habitat simplifies
derivation of many mathematical results (Durrett
and Levin, 1994b). However, finite habitats are
what one encounters in applications and com-
puter simulations. BC are then a necessary com-
ponent of IBM formulation; they describe the fate
of an individual that hits the habitat boundary.
The individual ‘leaving’ the habitat may be ‘lost’
and thus reduce the population size (a phe-
nomenon termed the boundary effect) or may
‘reappear’ elsewhere in the habitat. Also, an indi-
vidual that is located near the boundary may have
incomplete interaction neighborhoods and thus
tend to have fewer neighbors than it would have
in the middle of the habitat (a phenomenon
termed the edge effect); this effect is often a model
artifact which may result in higher survivorship
and fecundity of annual plants (Pacala and Silan-
der, 1985) and faster tree growth (Moravie et al.,
1997) than actually observed.

Absorbing, reflecting, and periodic BC have
been proposed in the literature. Under absorbing
BC, individuals can step off the habitat and be
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removed from the system. Absorbing BC do not
deal with the boundary and edge effects at all,
and do not allow for immigration. To reduce the
effects one typically focuses on population dy-
namics in a central portion of a model environ-
ment (Pacala and Silander, 1985). Under
reflecting BC, individuals that hit the boundary
ricochet back into the habitat in a random or
determinate direction. Keitt (1997) implemented
them in such a way that no movement occurred
when an individual attempted to move off the
lattice. Reflecting BC are realistic, for example,
for ground animals living on an island or water
animals living in a pond. They seem unrealistic,
e.g. for plant seeds unless one interprets the
‘reflected’ seed as another seed that ‘immigrates’
into the studied area. Therefore, reflecting BC
remove the boundary effect (do not change the
population size), but do not modify the edge
effect. Pacala and Silander (1985) claimed that in
the examples they considered the dynamics on
small habitats with reflecting BC are very similar
to the dynamics on small portions that are embed-
ded in large habitats with absorbing BC. In this
way one may considerably lessen computational
costs as computer runs for small habitats are
relatively inexpensive. However, before this strat-
egy is adopted one has to exemplify a congruence
between results of these two approaches for the
system under study. Under periodic BC, the op-
posite edges of the habitat are connected together
(the form of the habitat has to allow for such a
wrapping). There is no system with periodic BC in
nature. The only plausible argument for their use
is just the same as for plant seeds and reflecting
BC: an individual returning from the other side of
the habitat is another individual; this may mimic
dynamics in large habitats. Periodic BC have,
however, nice technical properties: they remove
the boundary effect, remove the edge effect (inter-
action neighborhoods are always complete), and
above all they are easily implementable in com-
puters. That is why they are by far the most used
BC in IBMs. Britton et al. (1996) got similar
results with periodic and reflecting BC. One could
probably notice that the choice of BC (and in fact
of any other IBM attribute) for a given applica-
tion is always a trade-off between realism and
computational simplicity.

4.3. Scales

An important question in any modeling effort is
that of scales. In spatially explicit IBMs, size of
the time step in ‘D-time’ models, size of the site in
‘D-space’ models (with regular lattices), and size
of the habitat (lattice/plot) are of a primary inter-
est. All these scales are strongly influenced by
biological questions being addressed, modeled
processes, and information available as model
input. In many IBMs describing actual ecosystems
scales naturally follow from the interactions stud-
ied and life histories of species involved; models
of population dynamics of army ants (Britton et
al., 1996), red grouse (Hendry et al., 1997), and
wild daffodils (Durrett and Levin, 1994b) are just
a few examples. In IBMs describing artificial
ecologies where the stress is put on interactions in
general, these scales should be considered model
parameters; in other words, it is important to view
the system at all admissible scales.

Problem to be addressed, scale of spatial het-
erogeneity in physical characteristics, area covered
by or under control of an individual, and compu-
tational simplicity all play a role in choosing an
adequate size of the lattice site (Keeling, 1999).
Systems to be modeled are so diverse that it is
virtually impossible to formulate any general rule.
Any lattice site should be physically homoge-
neous; hence its size should be smaller than the
smallest scale of relevant heterogeneities. It
should be large enough to contain at least one
individual (often just a single individual) or an
area under its direct control (such as its territory);
the latter is often related to the movement rate of
motile organisms and the size of time step in
‘D-time’ IBMs. A balance must be struck between
too fine a scale in which case the model will be
computationally intensive, and too coarse a scale
in which relevant heterogeneities or interactions
may be ignored. The choice is less clear and more
intricate if two or more individual types with
different spatial characteristics are considered,
such as in many predator–prey and host–para-
sitoid systems. Use of separate lattices for each
type, with rules that relate them, is probably an
appropriate way. In some systems, where one
individual type is very small with respect to the
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other, a continuous plot could even be considered
for the former. Last but not least, the question of
the size of each site is tightly linked to the range
over which spatial interactions take place. For
simplicity of model formulations and speed of
computations the best way is to only allow inter-
actions in small neighborhoods, but this may be
in a direct conflict with taking a small enough
scale, so these two factors need to be balanced
(see below for more on interaction
neighborhoods).

Once a ‘D-space’ topology and a site size are
fixed, or when one decides to use ‘C-space’ mod-
els, the question of habitat size arises. Smaller
habitats support smaller populations in which de-
mographic stochasticity as well as individual mix-
ing are stronger. As a result, spatially
homogeneous distributions and rapid extinctions
are often observed in IBMs with small habitats.
On the other hand, if the habitat is too large,
interesting dynamics may be averaged out (Keel-
ing, 1999). Spatial patterns are commonly ob-
served for larger (and even physically
homogeneous; see below) environments (Wilson
et al., 1995). Moreover, de Roos et al. (1991)
demonstrated stabilization of temporal popula-
tion dynamics in a two-dimensional, predator–
prey system. Where lies the border between these
types of model behavior? Some authors have al-
ready tried to address this question, with a char-
acteristic length scale as an emergent,
system-specific scale at which system dynamics are
most informative (de Roos et al., 1991; Keeling,
1999).

The choice of a time step in ‘D-time’ models is
not so important in artificial ecologies. It is inti-
mately related to life cycle details that are mod-
eled, and respective model parameters. For many
time-step dependent parameters, such as the prob-
ability of death or reproduction of an individual
per time step, doubling the time step virtually
means doubling these probabilities. The care has
to be taken to keep these probabilities in between
zero and one. Also, keeping these probabilities
low may enable one to use simplifying assump-
tions in mean-field model derivation (see ‘D-
space, D-time’ framework above). Last but not
least, use of large time steps may lead to igno-

rance of important processes and interactions that
possibly take place within them.

4.4. Initial conditions

Knowledge of initial population sizes is not
sufficient to uniquely determine outcomes of spa-
tially explicit IBMs. Rather, complete spatial dis-
tribution of involved populations is required. This
issue has a strong practical appeal and can be
exemplified on a problem of species (re)intro-
duction or invasion. What consequences has a
release of a number of individuals from a point
source and how they differ if this number is
divided and multiple releases made from different
spatial points? Imagine, for example, a population
that demonstrates the Allee effect, with a negative
per capita growth rate at low sizes (Stephens et
al., 1999). Then, a threshold population size exists
such that below it the probability of population
extinction is inproportionately higher than above
the threshold (Dennis, 1989). Population dynamic
consequences of such a system could be totally
different provided that the point source size is
above this threshold while all the multiple source
local sizes fall below it; see Groom (1998) for a
real example. Silvertown et al. (1992) explored
effects of various initial distributions in five-spe-
cies plant community on outcomes of interspecific
competition. Although the ultimate fate of the
community did not depend on the order of plants
in the initial patterns with different species ar-
ranged in monospecific bands, transient dynamics
differed significantly.

An important question is how to define initial
conditions for established populations. Techni-
cally, the easiest way is to assume that individuals
are uniformly randomly distributed in their habi-
tat, and this choice is by far the most common in
the literature. This case can easily be set up in
laboratory experiments; it may also be observed
at the beginning of some ecological successions
and for trees in older forest stands (Szwagrzyk
and Czerwczak, 1993). When this assumption
does not hold, populations may be clustered or
overdispersed in space. Then, for ‘C-space’ IBMs
initial conditions may be generated from appro-
priate spatial point process models. Cressie (1993)
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made a review of such models and methods of
their estimation from the observed patterns of
individuals. These models also cover situations in
which non-uniform characteristics such as age and
size have to be assigned to each individual at the
start of simulations. Lepš and Kindlmann (1987)
suggested a flexible generator of clustered patterns
in a ‘C-space, D-time’ IBM. If the number of
lattice sites is sufficiently large these methods can
be used (as an approximation at least) to gain an
insight into ‘D-space’ IBMs, too, as exemplified
by Wiegand et al. (1998).

4.5. En�ironmental heterogeneity

Spatial and/or temporal heterogeneity in envi-
ronmental characteristics is one of the principal
determinants of observed spatio-temporal popula-
tion patterns. One may distinguish heterogeneity
in physical characteristics of the environment as
opposed to that in biological characteristics where
non-random spatial patterns of individuals are
formed in the environment that is physically ho-
mogeneous (McCauley et al., 1993; Keeling, 1999;
Herben et al., 2000). Patterns due to the former
type are imposed via extrinsic factors such as
temperature, moisture, light, nutrients, topo-
graphic heterogeneity, and habitat unsuitability or
destruction; spatial heterogeneity in physical char-
acteristics of the environment can be described
either phenomenologically (describing a cumula-
tive effect of all potential sources of heterogene-
ity) or mechanistically (separately describing
individual sources). Patterns due to the latter type
are emergent via intrinsic factors such as limited
dispersal and local interactions of the studied
populations; although these patterns are hard to
detect in natural systems, Wilson et al. (1999)
suggest its presence in a system composed of
western tussock moth feeding on perennial lupines
in coastal California.

Influence of individuals and the environment is
mutual. The latter determines vital rates of popu-
lations while the former contribute to the spatial
heterogeneity by influencing, for example, dynam-
ics of resource renewal and depletion. Britton et
al. (1996) constructed a ‘D-space, D-time’ IBM in
which army ant colonies exploited patches of

food, thus reducing their efficiency for and growth
rate of other colonies; left exploited patches re-
covered in a number of time steps. Doi et al.
(1998) considered an IBM of a microorganic
closed ecosystem where each individual consumes
a nutrient from the environment and excretes its
metabolic products to the environment as de-
tritus. Models of forest growth that are intended
to have a high predictive power describe spatial
heterogeneity in a big detail (Busing, 1991; Pacala
et al., 1996).

In ‘D-space’ IBMs, spatial heterogeneity in
physical characteristics of the environment is eas-
ily modeled by defining a variable giving each site
a value of its state. Britton et al. (1996) gave this
variable a meaning of the state of recovery of the
site after a recent army ant raid. Dytham (1994)
and Keitt (1997) distinguished destroyed and hab-
itable sites in a two-species competition system
and a general food web, respectively. In ‘C-space’
IBMs, a variable describing physical state of a
location is spatially continuous and hence more
difficult to define and handle. Pacala (1987) pre-
sented two ways of dealing with it in one-dimen-
sional environments of a finite length: the
environment is divided into a finite number of
connected intervals (patches), and physical char-
acteristics of these patches are either fixed or vary
stochastically with time. In two-dimensional sys-
tems a question arises how to handle possibly
non-rectangular patches. A possible solution
seems to be a use of a Geographic Information
System (GIS) model as a background description
of the physical environment. The statistical
method of kriging can also be exploited in ‘C-
space’ models; it estimates a spatially continuous
distribution of an environmental variable from a
finite number of measured samples (Cressie,
1993). Interpolation of environmental variables in
‘C-space’ IBMs can also be coupled with GIS
(Briggs et al., 1997).

4.6. Process ordering

In ‘D-time’ models ordering of acting processes
is not implied by them but has to be specified
externally. Yet it is not always obvious how the
processes should be ordered in a time step. Move-
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ment (for motile organisms) is mostly separated
from mortality and reproduction processes in the
literature, and put at the end (or equivalently at
the beginning) of the time step. I distinguish three
cases concerning ordering of mortality and repro-
duction in the above single-species, ‘D-time’
IBMs, and give them the following labels, CC for
concurrent ordering (individuals reproduce and
die simultaneously, newborns cannot die nor es-
tablish to the sites occupied by actually deceased
adults, individuals that are marked dead may still
reproduce in the current time step); RM for re-
production preceding mortality (population first
reproduces, then all individuals (including new-
borns) are exposed to death); and MR for repro-
duction following mortality (individuals are first
exposed to death and those that die removed from
the habitat, only surviving individuals are able to
reproduce); see Fig. 3.

Which ordering to choose for a particular sys-
tem? This issue is by no means a mere technical
detail, since it can profoundly alter population
dynamics by introducing specific density-depen-
dent relationships and/or by modifying parameter
values. McCauley et al. (1993) showed that for a
‘D-space, D-time’, predator–prey IBM prey

growth is a function of prey density if the process
ordering is concurrent, but that it depends on the
predator density as well provided that the demo-
graphic processes and predation are ordered in a
sequential way. Hence, an assumption made in
this regard is important. In some systems such as
plants reproducing by seeds and animals with
non-overlapping generations or short reproduc-
tive periods, mortality and reproduction are more
or less temporally separated processes. The RM
and MR cases are equivalent if applied to sessile
species. On the other hand, if movement is added
at the end of each time step it is placed in
qualitatively different points of the RM and MR
loops (Fig. 3); as movement may considerably
modify spatial patterns of individuals in the habi-
tat, the RM and MR cases may now produce
different results. Concurrent ordering is a way to
model situations where mortality and reproduc-
tion processes overlap. Some examples of process
ordering in more complex IBMs can be found in
McCauley et al. (1993) for predator-prey systems
and in Durrett and Levin (1994b) for competition
among plants.

For a more quantitative insight, I now derive
mean-field models for the CC, RM, and MR

Fig. 3. Ordering of mortality (M) and reproduction (R) processes in a time step. (A) Concurrent ordering. (B) Reproduction
preceding mortality. (C) Reproduction following mortality.
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Fig. 4. Effects of ordering of mortality and reproduction
processes in a time step on mean-field model dynamics in the
‘D-space, D-time’ framework. Concurrent ordering ( Eq. (20);
solid line), reproduction preceding mortality (Eq. (21); dashed
line), reproduction following mortality (Eq. (22); dotted line).
Parameter values: S=128×128, Pr=0.5, Pm=0.05, N=4,
x0=10, �0=x0/S.

no more independent events. In particular, adults
that currently die enable offspring to be estab-
lished in the respective emptied sites. Conse-
quently, two expectation equations have to be
composed:

E(X� �X=x)=x(1−Pm),

E(X ��X� = x̃, X=x)

=x(1−Pm)+ (S− x̃)
�

1−
�

1−
x̃
S

Pr

N
�Nn

(17)

where X� is a random variable giving the number
of surviving adults before reproduction starts.
One may be tempted to combine these equations
to get:

E(X ��X=x)=x(1−Pm)

+ (S−x(1−Pm))�
1−

�
1−

x
S

(1−Pm)
Pr

N
�Nn

(18)

This is, however, not correct mathematically. It
can be easily shown that:

E(X ��X=x)=E [E(X ��X� = x̃,X=x)�X=x ] (19)

and unless one assumes that P(x̃ �x)=�(x̃−
x(1−Pm)), where P(·�·) is a pdf and �(·) the Dirac
delta function, that is, unless the mortality process
is deterministic, the combined expectation in Eq.
(18) does not hold. Yet it may be a good approx-
imation if variance of X� is small, such as in large
populations. Going through the same steps as
when deriving the mean-field model within the
‘D-space, D-time’ framework, one may get the
following equations for the evolution of popula-
tions densities,

��=�(1−Pm)+ (1−�)
�

1−
�

1−�
Pr

N
�Nn

CC

(20)

��=�(1−Pm)+ (1−�)
�

1−
�

1−�
Pr

N
�Nn

(1−Pm) RM (21)

��=�(1−Pm)

+ (1−�(1−Pm))
�

1−
�

1−�(1−Pm)
Pr

N
�Nn

MR (22)

scenarios in the above ‘D-space, D-time’ IBM.
Analogous, yet slightly more laborious calcula-
tions can be made for the ‘C-space, D-time’ case.
The CC case has been analyzed above; the mor-
tality and reproduction processes are independent
events starting with the same number of individu-
als. Under the homogeneous mixing conditions,
this implies (see above):

E(X ��X=x)=x(1−Pm)

+ (S−x)
�

1−
�

1−
x
S

Pr

N
�Nn

(15)

In the RM case, in order to be counted in the
next generation, offspring has to be conceived,
placed successfully on the lattice, and survive to
the end of the time step. The adult survival and
offspring establishment processes are still inde-
pendent events. Therefore:

E(X ��X=x)=x(1−Pm)

+ (S−x)
�

1−
�

1−
x
S

Pr

N
�Nn

(1−Pm) (16)

The MR case is the most complex as the adult
survival and offspring establishment processes are
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Typical behavior of these three mean-field mod-
els is shown in Fig. 4. Note that the MR model
attains the highest carrying capacity, the CC
model demonstrates the most rapid growth, and
the RM and MR models coincide for low popula-
tion densities.

All the above orderings can be referred to as
temporal as they define an order of demographic
processes in a time step. Ruxton (1996) and above
all Ruxton and Saravia (1998) pointed out that an
order in which sites are processed in ‘D-space’
models (spatial ordering) may also affect model
output. In particular, they considered random site
processing order and ‘top-left to bottom-right’ site
processing order in precisely the above ‘D-space,
D-time’ IBM with e=1 and d=0 (no movement),
together with a triplet of temporal process order-
ings (including the above MR case). Moreover,
they compared the ‘time type’ scenarios in which
changes in the states of the lattice sites were
registered immediately or at the end of a time step.
Based on a couple of simulation experiments they
came with a hierarchical classification of these
ordering alternatives: temporal ordering had the
most pronounced effect, followed by time type and
finally spatial ordering. Although this ranking can
be model specific, the important consideration is
that the model output depends critically on as-
sumptions made about process ordering. Ruxton
and Saravia (1998) ended up with two general
warnings: first, spatio-temporal ordering must be
carefully selected to match the biological charac-
teristics of the system to be modeled rather than
led by programming expediency, and second, a
complete description of the details of this ordering
should be specified in the publications using IBMs.

4.7. Interaction neighborhoods

The interaction neighborhood is an area about
an individual circumscribing a part of the habitat
(possibly containing some other individuals) that
influences its current behavior. In the above single-
species IBMs, I defined such neighborhoods for
the processes of offspring establishment and indi-
vidual movement. Mortality and/or reproduction
probabilities could also be made neighborhood
dependent (see below).

Interaction neighborhoods may be formulated
as regular or irregular. In the former case, one
may adopt ��z �� as a distance function and let
N={z :��z ���r} be the set of sites or locations
within a distance r from the origin. The interaction
neighborhood for a process and an individual
located at x is then the set {x+z :z�N}. The
functions ��z ��1= �z1�+ �z2� and ��z ���=
max{�z1�,�z2�}, z= (z1,z2), probably most suit to
two-dimensional ‘D-space’ IBMs with lattices
composed of squares, giving diamond- and
square-shaped neighborhoods, respectively (Dur-
rett and Levin, 1994b); the most popular von
Neumann (or nearest neighbor) and Moore neigh-
borhoods can be expressed as N={z :��z ��1=1}
and N={z :��z ���=1}, respectively. For two-di-
mensional ‘D-space’ IBMs with hexagonal and
triangular lattices one usually formulates regular
interaction neighborhoods in terms of rings of
nearest neighbors, second-nearest neighbors etc.
(Tilman et al., 1997). When these lattices are
projected onto square lattices, these neighbor-
hoods have to be transformed accordingly (see
above). For two-dimensional ‘C-space’ IBMs, cir-
cular neighborhoods due to the Euclidean norm
��z ��2= (�z1�2+ �z2�2)1/2 are probably the most com-
mon choice.

Durrett and Levin (1994a) claimed that ‘one
should not worry too much about what neighbor-
hood to choose. In most cases the qualitative
behavior of the model does not depend on the
neighborhood used’. This statement concerns
neighborhood shape but not its size. The observa-
tions from many IBMs show and the above mean-
field model derivations confirm that when the
interaction neighborhoods increase in size the sys-
tem behaves more and more like a well-mixed
system: spatial distribution of individuals resem-
bles the uniform random distribution and tempo-
ral evolution of density approaches mean-field
model dynamics.

An important question concerns choice of
neighborhood sizes for the system under study.
Generally, the adequate choice depends on the
individual life history and physiology. For ‘D-
space’ IBMs this question is intimately related to
the site size. In ‘D-time’ IBMs the time step is also
important. Britton et al. (1996) derived the move-



L. Berec / Ecological Modelling 150 (2002) 55–8174

ment neighborhood size of the army ant colonies
from the actual observations of distances crossed
per defined time step. Pacala and Silander (1985),
Silander and Pacala (1985), Pacala and Silander
(1990) touched this problem in a ‘C-space’ IBM
of plant communities. Their seed set (or fecun-
dity) predictor and survivorship predictor relate
the average number of seeds per plant and the
probability of reaching adulthood from seed, re-
spectively, to a number of neighbor plants in
respective circular neighborhoods. The ‘best’
neighborhood sizes were estimated by fitting the
predictors evaluated for a finite number of neigh-
borhood radii to the observed data on seed sets
and survivorship, and choosing such a radius for
each predictor that minimizes residual variance.

4.8. Life cycles

No two individuals are the same. Rather, they
differ in age, size, stage, sex, genotype, and many
other physiological and behavioral traits. The
above simple, single-species IBMs do not take this
uniqueness into account; various individuals differ
just by their location in space. Some of these traits
can be technically considered as system states and
the model parameters (such as reproduction and
mortality probabilities/rates) or even the whole
model rules made dependent on them; in other
words, the same local environment may have
different effects on the individual performance
depending on its state. One may also be interested
in the population-level distribution of these states
(mostly age, size and sex) and its temporal dy-
namics. Evolutionary models assume that differ-
ent genotypes may have different parameter
values, which leads to differences in their respec-
tive reproductive success (Keeling and Rand,
1995). Temporal variation may be included in
IBMs by altering the model rules from time to
time (e.g. from generation to generation in annual
plants).

Almost all published IBMs assume that move-
ment is local but diffusive (equiprobable in all
directions). Yet often it may be directed: actively
to water, sexual partner, sward etc. passively by
wind or river stream (Fahse et al., 1998; Berec et
al., 2001). A predator may direct its movement to

areas with a higher local density of prey; likewise,
a prey may direct it to areas with a lower predator
density.

Although the vast majority of theoretical stud-
ies considers the same mortality risk for each
individual, non-uniform mortality scenarios are
more the rule than an exception in nature. Ad-
verse environmental conditions, density depen-
dence, and starvation are just a few forces
determining the unique mortality probability/rate
for each individual. As opposed to the above
IBMs, Law and Dieckmann (2000) considered
density-independent reproduction and density-de-
pendent mortality in single-species populations in
the ‘C-time, C-space’ framework. Dieckmann and
Law (2000) modeled both processes as density
dependent. Starvation component of reproduction
and mortality has been considered, for example,
by Wilson and Keeling (2000).

Models may be constructed that allow for non-
zero (‘C-time’) and non-unit (‘D-time’) develop-
ment times for juveniles or production of two or
more offspring per reproductive event, that de-
scribe ‘C-space’ individuals with a volume or at
least an area so that they could not overlap, and
that enable more than one ‘D-space’ individual
occupy a site. Such realistic features are even a
necessity in many applied issues.

Last but not least, no population lives alone in
its habitat, but rather interacts with other popula-
tions. Spatially explicit IBMs can also be con-
structed for multi-species systems such as
predator–prey systems (McCauley et al., 1993),
competition systems (Durrett and Levin, 1998;
Pacala, 1986), or one-predator two-prey optimal
foraging systems (Berec, 2000; Berec and Křivan,
2000). In such systems, a number of alternatives
can also be considered to model inter-population
interactions.

5. Conclusions

This article reviews spatially explicit IBMs from
a methodological point of view. My focus is pri-
marily on showing technical as well as conceptual
differences between the four frameworks for such
models, differing by whether time and space are
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each modeled discretely or continuously. For
each of these frameworks I formulate one of the
simplest single-species IBMs and discuss its sim-
ulation subtleties and mean-field analysis. All
four mean-field models resemble the Verhulst lo-
gistic model of single-species population grow
and are exact under the homogeneous mixing
conditions. These conditions can be generally
formulated as follows: (i) populations are to be
divided into a finite number of groups within
which individuals are supposed to be identical
(averaging over individuals within respective
groups), (ii) populations are well-mixed so that
any individual may equally interact with any
other (averaging over space), and (iii) popula-
tions are sufficiently large so that individuals re-
spond only to means (averaging over system
realizations). No one can probably claim that
one framework is better than another. This arti-
cle shows that they are more supplements than
competitors, and probably any system can be
described in any of the frameworks. Yet for a
given system, some frameworks may perhaps be
more suitable for implementing a given rule or
feature than the others.

I also discuss some alternatives in construc-
tion of IBMs in more details. Some of them are
just technical but some make the model more
complex yet possibly more realistic. One should
note at this point that finding an appropriate
level of aggregation in a model is a decisive part
of modeling procedure. This is exactly the rea-
son why Murdoch et al. (1992) suggested build-
ing a suite of models with increasing complexity
and hence deciding on the adequate model reso-
lution for a given purpose.

Finally, I cannot forbear one specific note.
The only complete description of any IBM is its
computer code. Its publication inside any article
is impossible, yet any conceptual description of
model rules is, due to an effort to save an ex-
pensive space, in most cases incomplete, particu-
larly in more complex systems. Hendry et al.
(1997) published at least a flow chart of their
model, but even this practice is, in my opinion,
unsatisfactory. Any modeller may implement the
flow chart differently and when the system is at
least a bit more complex, the probability of

making an error increases. Moreover, every
reader should be allowed to check published
simulations. I am fully aware that there are
many possible computer languages available,
some of them even specific to some model envi-
ronments. But no reader should be a priori dis-
allowed to view the code. Imagine how many of
us have to code the same or at least quite simi-
lar IBMs simultaneously. Sharing our codes
would make the modeling much more effective,
even though not always. Last but not least, this
would force modelers to write clear, understand-
able codes, and possibly create standardized
model outputs, which is useful by itself. That is
why I suggest to describe models roughly by
words in the articles, putting stress on the most
important parameters and interactions, and en-
able anyone downloading of IBM codes from
authors’ web pages or at least sending the codes
on request by e-mail. I do this just now. Any-
one can download the codes of the above single-
species IBMs, implemented in C-language, from
my personal web page http://www.entu.cas.cz/
berec/ibm.html I hope this helps.

Some more issues have to be addressed to
make IBM analysis more reliable, i.e. able to
satisfactorily describe systems even when the ho-
mogeneous mixing conditions do not hold.
These include,
� statistical descriptions of spatial population

patterns;
� non-spatial, population-level models that track

temporal population dynamics;
� spatial, population-level models that track spa-

tio-temporal dynamics, etc.;
These issues are going to be reviewed in the next
article.
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Appendix A. Mean-field model derivation in the
‘D-space, D-time’ case

Let X � and X be random variables representing
numbers of occupied lattice sites at the beginning
and at the end of a time step, respectively (note
that the model rules are stochastic). Let Xs and Xr

be two more random variables, representing num-
bers of survived adult individuals and newly estab-
lished offspring, respectively, at the end of the time
step. Obviously, X �=Xs+Xr. Hence:

E(X ��X=x)=E(Xs�X=x)+E(Xr�X=x), (23)

where I denote by E (Y �X=x) the mean value of
a random variable Y conditioned on the event
X=x. Clearly:

E(Xs�X=x)=x(1−Pm) (24)

as the number of individuals that die every time
step is binomially distributed. Similarly:

E(Xr�X=x)=xPrP [conceived offspring is estab-
lished on the lattice] (25)

Yet I use an alternative expression for E(Xr�X=
x) as the involved probability is easier to evaluate:

E(Xr�X=x)= (S−x)P [site that is vacant now
becomes occupied at the next time step], (26)

where S−x is the current number of vacant sites.
Provided that the individuals are uniformly ran-
domly distributed on the lattice, it is:

P [site that is vacant now becomes occupied at

the next time step]=1−
�

1−
x
S

Pr

N
�N

, (27)

where N= (2e+1)2−1 is the number of sites in
the establishment neighborhood. Eq. (27) is due to
the fact that each neighbor of the vacant site
independently sends an individual with the proba-
bility that the neighbor site is occupied (x/S) times
the probability that the individual present there
reproduces (Pr) times the probability that it sends
offspring to the focal vacant site (1/N). To sum
up:

E(X ��X=x)=x(1−Pm)

+ (S−x)
�

1−
�

1−
x
S

Pr

N
�Nn

(28)

Due to the concurrent ordering of mortality and
reproduction rules, Xs and Xr are independent
random variables. Hence, variance in the number
of individuals at the end of the time step is:

Var(X ��X=x)=Var(Xs�X=x)+Var(Xr�X=x)
(29)

with (binomial distributions):

Var(Xs�X=x)=x(1−Pm)Pm (30)

and:

Var(Xr�X=x)= (S−x)
�

1−
�

1−
x
S

Pr

N
�Nn

�
1−

x
S

Pr

N
�N

(31)

Now, divide Eq. (29) by S2 and send x�� and
S�� so that x/S remains (or converges to) a
constant �. Hence:

Var(V ��V=�)�0 (32)

where the random variable V=X/S stands for the
population density. This implies:

��=E(V ��V=�) (33)

in the limit, with �� being the actual population
density at the end of the time step. Consequently:

��=�(1−Pm)+ (1−�)
�

1−
�

1−�
Pr

N
�Nn

(34)

in the above limit. Eq. (34) can be alternatively
derived by means of the (strong) law of large
numbers.

Appendix B. Mean-field model derivation in the
‘D-space, C-time’ case

Through the technique of thinning of Poisson
processes, one background Poisson process is
made running at a rate cS, c�m+r+w (Durrett,
1995). Lengths of intervals between two successive
event times are thus independent and identically
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exponentially distributed random variables with
parameter cS. At every event time generated, a
site is uniformly randomly chosen and if occupied
a random number is picked uniformly from the
interval [0, 1] to decide on the particular event:
death, birth, movement (for motile organisms) or
nothing (see above).

Consider a small time interval h. By definition,
probability that just one event time is generated in
h is cSh+o(h) as h�0 (probability that two or
more event times are generated in h is o(h),
probability that no event time is generated in h is
1−cSh+o(h); the term o(h) has a precise mathe-
matical meaning and for practical purposes can be
treated as a quantity that is negligible in compari-
son with h), and probability that the chosen site is
occupied is x/S, provided that individuals are
uniformly randomly distributed on the lattice.
The particular event may result in the increase of
population by one individual (birth and successful
offspring establishment), the decrease by one indi-
vidual (death), or no change in abundance (no
event, reproduction but unsuccessful offspring es-
tablishment, or movement [with uniform random
positioning of the individual]). Also, an empty site
may be chosen or no event time generated in h.
The event of birth and successful offspring estab-
lishment takes place with the probability r/c(1−
x/S), while the event of death with the probability
m/c. To sum up, the mean change in the number
of individuals in a small time interval h is:

By computing variance in the number of indi-
viduals and letting h�0, S��, and x�� so
that x/S is (or converges to) a constant �, one
may show that:

Var(V(t+h)�V(t)=�)�0 as h�0 (36)

Time evolution of the population density � thus
converges to the solution of ODE:

�� =r�(1−�)−m�= r̃�
�

1−
�

K
�

(37)

Appendix C. Mean-field model derivation in the
‘C-space, D-time’ case

With the notation established for the ‘D-space,
D-time’ case,

E(Xs�X=x)=x(1−Pm), (38)

and similarly:

E(Xr�X=x)=xPrP [conceived offspring is estab-
lished on the plot] (39)

The probability that the conceived offspring is
established on the plot depends on the place it
lands and the number of neighbors around that
place. The probability PE(n) of successful estab-
lishment given n neighbors is:

PE(n)=
�

1−
n
E
n

+

�
�1−n/E if n�E,

0 if n�E.
(40)

If the offspring lands in such a distance from its
parent so that the latter lies within the establish-
ment neighborhood of the former (an event with
the probability PL, PL=e/� if e�� and PL=1
otherwise), the parent influences the establishment

probability of its offspring. Therefore, one may
write:

P [conceived offspring is established on the plot]

=PL �
x−1

n=0

PN(n, x−1, e, �̃)PE(n+1)

+ (1−PL) �
x

n=0

PN(n, x, e, �̃)PE(n) (41)

E(X(t+h)�X(t)=x)= x+ (−1)
�

cSh
x
S

m
c
n

+1
�

cSh
x
S

r
c
�

1−
x
S
�n

+0

×
�

cSh
x
S
�1− (m+r+w)

c
+

r
c

x
S

+
w
c
n

+cSh
�

1−
x
S
�

+ (1−cSh)
n

+o(h)

=x+
�

rx
�

1−
x
S
�

−mx
n

h+o(h) as h�0 (35)
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where PN(m, y, e, �̃) is the probability that
the offspring located at �̃ has m adult neighbors
out of y possible in its e-neighborhood, and
equals:

PN(m, y, e, �̃)=
�y

m
��A

S
�m�

1−
A
S
�y−m

(42)

under the assumption of uniform random distri-
bution of the individuals on the plot, with
A=�e2. One may easily show that for x��
and S�� (S=MN, the plot size) such
that x/S is (or converges to) a constant �
variance Var (V ��V=�)�0, which implies
��=E(V ��V=�) in the limit. Moreover, the
binomial terms PN converge to the Poisson
counterparts with the parameter �A. Hence:

��=�(1−Pm)

+�Pr
�

PL �
+�

n=0

(�A)n

n !
exp(−�A)

�
1−

n+1
E

n
+

+ (1−PL) �
+�

n=0

(�A)n

n !
exp(−�A)

�
1−

n
E
n

+

n
(43)

Appendix D. Mean-field model derivation in the
‘C-space, C-time’ case

The background Poisson process is made
running at the rate x(m+r+w), x being the
current population size. Mean-field model
derivation is a combination of the ‘D-space,
C-time’ and ‘C-space, D-time’ cases. In part-
icular, consider a small time interval of length h,
starting at time t at which X(t)=x. The pro-
bability that just one event time is gener-
ated within this interval is x(m+r+w)h+o(h)
as h�0. Provided it is generated, an individ-
ual is uniformly randomly selected; it dies
with the probability m/(m+r+w), reprodu-
ces with the probability r/(m+r+w),
and moves with the probability w/(m+r+w).
The mean change in the number of individuals
in h is:

E(X(t+h)�X(t)=x)=x+ (−1)

×
�

x(m+r+w)h
m

m+r+w
n

+1×
�

x(m+r+w)h
r

m+r+w
P [conceived off-

spring is established on the plot]
n

+0×
�

x(m+r+w)h
� w

m+r+w
+

r
m+r+w

(1−P [conceived offspring is established on

the plot])
�

+ (1−x(m+r+w)h)]+o(h)=x+ [rxP
[conceived offspring is established on the plot]

−mx ]h+o(h) as h�0, (44)

where:

P [conceived offspring is established on the

plot PL= �
x−1

n=0

PN(n, x−1, e, �̃)PE(n+1)

+ (1−PL) �
x

n=0

PN(n, x, e, �̃)PE(n) (45)

Meaning of the involved probabilities in the
last expression is exactly the same as in the ‘C-
space, D-time’ case. One may show that for h�
0, x�� and S�� such that x/S is (or
converges to) a constant � variance Var (V ��V=
�)�0, which implies ��=E (V ��V=�) in the
limit. Altogether, time evolution of the popula-
tion density � thus converges to the solution of
ODE:

�� = −m�

+r�
�

PL �
+�

n=0

(�A)n

n !
exp(−�A)

�
1−

n+1
E

n
+

+ (1−PL) �
+�

n=0

(�A)n

n !
exp(−�A)

�
1−

n
E
n

+

n
(46)
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