Algorithmica (1997) 17: 100-110

Algorithmica

© 1997 Springer-Verlag New York Inc.

Using Quadratic Programming to Solve High
Multiplicity Scheduling Problems on Parallel Machines'

F. Granot? J. Skorin-KapoV, and A. Tamif

Abstract. We introduce and analyze several models of schedulidifferent types (groups) of jobs an

parallel machines, where in each group all jobs are identical. Our main goal is to exhibit the usefulness of
guadratic programming approaches to solve these classes of high multiplicity scheduling problems, with the
total weighted completion time as the minimization criterion. We develop polynomial algorithms for some
models, and strongly polynomial algorithms for certain special cases. In particular, the model in which the
weights are job independent, as well as the generally weighted model in which processing requirements are job
independent, can be formulated as an integer convex separable quadratic cost flow problem, and therefore solved
in polynomial time. When we specialize further, strongly polynomial bounds are achievable. Specifically, for
the weighted model with job-independent processing requirements if we restrict the weights to be machine
independent (while still assuming different machine speeds@mn+ nlogn) algorithm is developed. If it

is also assumed that all the machines have the same speed, the complexity of the algorithm can be improved to
O(mlogm + nlogn). These results can be extended to related unweighted models with variable processing
requirements in which all the machines are available at time zero.

Key Words. Scheduling, Quadratic programming, Parallel machines.

Introduction. We consider scheduling problems in which the set of jobs can be par-
titioned into a relatively small number of types or groups of identical jobs, i.e., jobs
having the same characteristic parameters. Such problems are lagtechultiplicity
problems. The paper by Hochbaum and Shamir (1991) studied a variety of high multi-
plicity scheduling problems on a single machine. Strongly polynomial algorithms were
presented therein for minimizing several measures of efficiency, e.g., weighted number
of tardy jobs and maximum weighted tardiness.

In this paper we focus on efficient algorithms for solving high multiplicity models on
parallel machines with the total weighted completion time as the minimization criterion.
Our main goal is to exhibit the usefulness of quadratic programming approaches to solve
these classes of high multiplicity scheduling problems.

The general problem we consider is defined as follows. Thera &ypes of jobs,

1 The research of Frieda Granot was partially supported by Natural Sciences and Engineering Research Council
of Canada Grant 5-83998. The research of Jadranka Skorin-Kapov was partially supported by National Science
Foundation Grant DDM-8909206.

2 Faculty of Commerce and Business Administration, The University of British Columbia, Vancouver, British
Columbia, Canada VGT 1Z2.

3 W. A. Harriman School for Management and Policy, State University of New York at Stony Brook, Stony
Brook, NY 11794-3775, USA.

4 School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel.

Received August 25, 1994; revised February 2, 1995. Communicated by N. Megiddo.

Using Quadratic Programming to Solve High Multiplicity Scheduling Problems 101

Ji, ..., Jn, and there are; identical jobs of typeJ;, j = 1,..., n. We refer ton; as
themultiplicity of type J;. There aren (parallel) machinesMy, ..., M, to process the
jobs. Fori =1,..., m, machineM; is released at timg, and it can process at mast

jobs. (The latter bound might reflect a constraint on the total setup cost associated with
switching jobs onM;.) We denoteN = Y"1, n; andC = Y, ;, and assume that

N < C. In what follows we simplify the notation and refer to a job of typeand to
machine . Each job must be processed in its entirety by one ofitmeachines. All the

jobs are available for processing at time zero. The processing requirement of a job of type
j on machiné is p;; time units. With each job of typg, j = 1,..., n, we associate a

set of nonnegative weights;;,i = 1,..., m. (wjj represents the weight factor applied

to a typej job if it is processed by machine) The objective is to schedule the set

of jobs and sequence them on timemachines so that the total weighted completion
time (flow time) is minimized. We note that the above model is NP-hard even for the

simple case where there is only one job of each ype= 1, j = 1, ..., n), there are
two identical machines released at time z&xo= ¢, = n, andp;; = wj; = wj, for
i=12;j=1...,n.(SeeGareyandJohnson,1979.) Inview of the above NP-hardness

result we have to limit our discussion of polynomial solvability to restricted models,
where all job types have the same weight or all job types have the same processing
requirement.

Consider first the case where the weights are job independent but machine dependent,

i.e., wij; = v, forall job typesj, j =1,...,n, and machinegi = 1,..., m. In what
follows we refer to this case as the (jamweightedcase. The single multiplicity case,
ie,n = 1,forj =1...,n (withr, = 0andc¢ = n for each maching), is

solved as an assignment problem in Horn (1973) and Beired. (1974). We prove

in Section 1 that the high multiplicity case can be formulated as an integer convex
separable quadratic cost flow problem, and as such it can be solved in polynomial time.
Secondly, in Section 2 we consider the followingightedmodel. It is assumed that

all the jobs, from each type, have the same processing requirement (normalized to one
unit), but the machines have varying speeds.iFerl, ..., m, machineg has a speed

of 5. (In the literature this model is called th@iformparallel machine case.) Thus, the
processing time of any job oM is 1/5 time units. For a general set of weight factors
wij, again we formulate the model as an integer separable quadratic cost flow problem.
If we specialize further, strongly polynomial bounds are achievable. When the weights
are job and machindecomposabld.e., wijj = viw; for j =1,...,n,i =1,...,m,

the problem reduces to an assignment model: Ther€ate > | ¢; slots on them
machines for thé&l = Z?Zl n; jobs. The problem then amounts to matching the earliest-
finishing slots with the highest-weighted jobs. In particular, a greedy algorithm would
solve the problem ifO(m + N log N) time. The latter bound is not polynomial for the
high multiplicity problem. However, the greedy approach can easily be modified to the
latter case, and be implementeddimnlog m+n logn) time. We show how to improve

this bound toO(mn+ nlogn) by using quadratic programming techniques. Finally, in
Section 2.1 we consider the identical machine cagse= v = 1,i = 1,...,m),

and present a very efficie@(mlogm + nlogn)-time algorithm. We also observe the
mathematical equivalence of these strongly polynomially solvable weighted models
with identical processing requirements, and related unweighted models with variable
processing requirements where all the machines are available at time zero.

102 F. Granot, J. Skorin-Kapov, and A. Tamir

1. Unweighted Models with Variable Processing Requirements: Integer Separable
Convex Quadratic Formulations. In this section we consider the (job) unweighted
case wherey;; = v;, for all job typesj, j = 1,...,n, and machinegi =1,...,m.
The processing time of each one of thgobs of typej on thei th machine isy; units,
i=1...mj=1...,n

We first note that the single multiplicity case can be formulated as the following

linear assignment problem. The cost of assigningjtiheob,] = 1, ..., n, to thekth
place (from the endk = 1,..., ¢, on maching,i = 1,...,m, isv;(r; + kpj). (See
Horn, 1973; Bruncet al., 1974). For; = O andg = n,i = 1,..., m, a bound of

O(mn+ n®) is reported in Lawleet al. (1993). Applying this approach to the high
multiplicity case yields a nonpolynomial formulation. However, we show that the high
multiplicity problem can be formulated as an integer convex separable quadratic cost
flow problem, and as such can be solved in polynomial time.

Clearly, since our objective is to minimize the total flow time of tigobs, all the
jobs assigned to theh machine will be processed in a nondecreasing order of their

processing timeg;j, j =1,...,n.

Fori =1,..., m,leto; be apermutation dfl, ..., n}, which arranges the types of
jobs in a nonincreasing order of their processing times. Specifically, sugpess >
Pio == Piam- FOri =1,...,m; j =1,...,n, letx; be the number of jobs

of type g (j) scheduled to be processed on itie machine. For notational simplicity
we definezloz1 = 0. Thus, the scheduling problem minimizing the total flow time is
formulated as

m n m n Xij j—1
fT}(inZ rivi Xij + Vi Piai(j) Z (Z Xii + k)
k=1

i=1j=1 i=1j=1 = =1

n
) s.t. inij, i=1...,m,

j=1

Z Xik = Nj, j=1,...,n,

@ik

i=1,...moj (k)=j
Xij = 0, integral i=1....m j=1,...,n

Note that the first term in the objective function represents the total weighted flow time
until the machines are released, while the second term represents the weighted flow
time until all jobs are completed. A similar formulation, but in the context of the high
multiplicity total weighted tardiness problem on a single machine, can be found in
Hochbaurmet al. (1992) and Granot and Skorin-Kapov (1993).

We show first how to replace the nonseparable objective function in (1) by an
equivalent separable one. (See also Granot and Skorin-Kapov (1993) for a similar
transformation applied to the minimum total weighted tardiness problem.) For each
i,i=1....,mletp ,nty = 0andyo=0.Also, fori =1,....m; j=1,...,n,
definey;j = Z|J<=1 Xik- Problem (1) can now be rewritten as

m n n
rlnynz X; v (i + 3Pia)X + 3

i=1 j=

m
2
Vi (P () — Pioi(i+2)Yij
i=1 j=1

Using Quadratic Programming to Solve High Multiplicity Scheduling Problems 103

s.t. Vin <0G, i=1,...,m,
Z Xik = hj, i=1...,n,
2 1. (0=
Yij = Wij-1+ Xij,» i=1...,m]= R 1 K
Xij, ¥ij = 0, integral i=1....m j=1,...,n

The objective function in (2) is clearly a convex separable quadratic function, and the
linear constraints represent the conservation constraints of a flow problem with flow
variables{xi; }, {yi; }. Thus, we can use the results in Granot and Skorin-Kapov (1993),
Hochbaum and Shanthikumar (1990), Minoux (1986), and Tamir (1993), to conclude
that problem (2) can be solved in polynomial time. Specifically, if wéilet max(n; :
j=1....,nfandVP =maxuipj :i =1,...,m;j =1,...,n,}, it follows from

the above references that Problem (2) can be solved in eif(er, n, logn) time or

P,(m, n, logV P) time, whereP; and P, are polynomials.

2. Weighted Models with Identical Processing Requirements. We first note that the
single multiplicity case of the weighted model, i.p;;, = 1/s and general weights;

can be formulated as the following linear assignment problem. The cost of assigning the
jthijob,j = 1,...,n, to thekth placek = 1,..., ¢, on maching,i =1, ..., m,is

(ri +k(1/s))wij.

We next consider the high multiplicity version and apply the transformation used
in Section 1 to show that this model can also be solved in polynomial time. Since our
objective is to minimize the total weighted flow time of tNgobs, all the jobs assigned
to theith machine will be processed in a nonincreasing order of their weights

j=1...,n.Fori =1,...,m, leto; be a permutation ofl, ..., n}, which arranges
the n types of jobs in a nonincreasing order of their weights. Specifically, suppose
Wio1) = Wig@ = - = Wigm. FOri =1,...,m; j =1,...,n, letx; be the

number of jobs of type; (j) scheduled to be processed on ittemachine. Thus, the
scheduling problem minimizing the total weighted flow time is formulated as

LD MENIEIED) SEN 3 ey

i= 1 = i=1j=
3) s.t. injgci, i=1,...,m,
j=1
Z Xik = N, j:l,...,n,
(i,k)
i=1...moj (K=j
Xij > 0, integral i=1....m; j=1,...,n

With the exception of a slight variation in the linear term of the objective, this formulation
is mathematically equivalent to formulation (1) in Section 1. Therefore, the analysis in
Section 1 is applicable to this model as well.

REMARK 1. We can assume without loss of generality that the inequality of the con-
:straintZ}‘=1 Xij < G in (3) can be replaced by equality, since we can always introduce
an additional type of job, say+ 1, wherew; n.1 = 0.

104 F. Granot, J. Skorin-Kapov, and A. Tamir

REMARK 2. Comparing formulations (1) and (3) we note that both are mathematically
equivalent when the release times are equal to zero.

The above bounds for the high multiplicity model are polynomial but not strongly
so. However, when this model is specialized further, strongly polynomial bounds are
achievable. When the weights are job and machine decomposable;ji.e- v wj, the
problem amounts to matching the earliest-finishing slots with the highest-weighted jobs.
We have developed a very simple greedy-type algorithm which executes this matching
in O(mnlogm + nlogn) time (see Granogt al. 1994). Here we prefer to present a
solution approach based on the above quadratic programming formulation, and reduce
the complexity ofO(mn+ nlogn) time.

We assume thab; > w, > --- > wy. Referring to (3) we note that in this case
will be the identity permutation for eaghi = 1, ..., m. Letwn 1 = O}k = Z't‘zl Xit
Yio=0,i =1,...,m. We then obtain; = yi; — ¥i,j—1, j = 1,...,n. (The objective
function of (3) can thus be stated only in terms ofytvariables.) DefiningN; = S,
forj = 1,..., n,rearranging terms, omitting constant terms, and using Remark 1 above,
we obtain an equivalent formulation of Problem (3) in terms ofitiie — 1) y variables
(for simplicity we denotey = (r; + 1/25)vj):

n711 m s 1 2
min » S(wj — wj — | Duy + &
DITEIRDIE (Sy a)

m
) st.) i =N, j=1...n-1
i=1
Vi,i-1 =Vij =G, i=1...,m j=1,...,n—1,
yij integral i=1....m j=1,...,n—1

Consider next the relaxation of (4) obtained by omitting the constrgints, < vij,
i=1...,mj=1...,n=1.Since,foj =1,...,n—1, (wj —wj4+1) isanonnegative
constant, the solution to the relaxed problem can be found by sdlwing) independent
quadratic knapsack problems of the form

m S 1 2
min » —(—viyij +&
y ;Ui (Svly” a)

m
(P) s.t. Zyi,- =N;,

i=1

0<yj =<gq, i=1...,m,

yij integral i=1...,m
The right-hand side coefficientd;, N, ..., Ny_1, corresponding to Problems ,(P
(P2), ..., (Ph_1), respectively, form a monotonically increasing sequence. Therefore, it

follows from the validity of the general, so-called “marginal allocation” or “incremental”
algorithm (see Section 4.2 of Ibaraki and Katoh, 1988), that for gagh=1,...,n—2,

if {yfj },i =1,...,m, is an optimal solution to Probleiil;), there exists an optimal
solution{y;";,;},i = 1,..., m, to ProblemP;4) such thatyj <y’ i =1,....m.

In particular, forj = 1,...,n — 1, these solutiongy;},i = 1,..., m, to Problems

Using Quadratic Programming to Solve High Multiplicity Scheduling Problems 105

(P, ..., (Ph_1), respectively, satisfy the relaxed constraints and, therefore, constitute
an optimal solution to (4). This resultimplies that the solution to Problem (4) depends on
the ordering of the weights;, but not their magnitudes. To generate the above solutions

to Problems (P, we defineyj; = 0,i =1, ..., m, and inductively solve the following
equivalent version of (ffor j =1,...,n—1,
n 2
. s (1
min) = | ZvVij +4a
y ; Vi (S iy +a,>
m
i=1
Yij-1 = Vij =G, i=1...,m,
¥ij integral i=1...m

Problem (P) can be solved i (m) time as follows. First apply the linear-time algorithm

of Brucker (1984) to solve the continuous relaxation gf)(RSee also Pardalos and
Kovoor, 1990.) Then use th@(m) rounding scheme given in Ibaraki and Katoh (1988,
Theorem 4.6.2, p. 76) to obtain the optimal integral solution. The above discussion
implies the following result.

THEOREM1. Problem(4) can be solved in @nn) time Moreover the solution de-
pends on the order of the weights;} but not on their magnitudesf we include the
preprocessing timé.e., the time to sort the weightgv; } in a nonincreasing ordethe
total computational complexity is @n—+ nlogn).

2.1. The Identical Processing Rate Casdn the instance discussed here all the ma-
chines have identical processing rates and machine-independent weightg;;(ie.,
Lwj=w;i=1...,m j=1...,n). Following the above notation (see Problem
(Py)), and lettingN be a nonnegative integer, consider the uniform parametric integer
guadratic effort allocation problem:

f(N) = min} (2 +a)?
i=1

m
(5) s.t. Zzi =N,

i=1

0<z <g, i=1...,m,

Z integral i=1...,m
Let {zi*(N)}, i =1,..., m, denote an optimal solution yielding an optimal valu_(é_l).
From the discussion above we may assume that for gach= 1,...,m, z°(N) is
a monotonically nondecreasing function Wt Moreover, an optimal solution to the
identical rates version of (4) is given lzy(N;) fori = 1,....m; j =1,...,n— 1.

We now construct inO(mlogm) time a compactO(m)-space representation of the
parametric functiorf (N). The representationis in terms of (at masfZritical values of
the integer paramett, and it enables us to computeefficiently for any given sequence

106 F. Granot, J. Skorin-Kapov, and A. Tamir

of n values ofN, say,N; < N < --- < Ny, in O(min(m? + n; mlogm + nlogm))
time.

To facilitate the discussion substitug = z + &,i = 1,...,m, to obtain the
equivalent problem:

=1
G) st Y yi= i

i=1 i=1
& <yi<cg+ i=1...,
Vi — & mtegral i=1...,

3 3

Let {y*(N)} denote an optimal solution of (6), that ixN) = Y, (y*(N))2. The
following algorithm generates the compact representation of the funttitin. It finds
a sequence ofr@ critical values 0= N(1) < N(2) <--- < N(2m) = >_", ¢;, and for
eachintervalN(k), N(k+1)], k =1, ..., 2m—1, it produces the necessary information
to interpolate and computiN) and the corresponding optimal solution for any integer
N in this interval.

The algorithm has (at mostd stages. At each staggghe index set of the variables,
M = {1,..., m}, is partitioned into three subsetis(k) which consists of all indices
of variablesy; that are already fixed at their upper bountigk) which contains the
indices of the variables that are fixed at their lower bounds,| atki which consists of
the remaining indices iiM. The critical valueN (k + 1) is determined at state

We assume withoutloss of generalitytbgt = 1, ..., m,isintegral. (Note, however,
thatg,i = 1,...,m, is not assumed to be integral, since the release timéght be
any real number in thismodel.) Foi =1, ..., m, letd be defined by = a (mod 1),
0 <& < 1. We show that iN(k) < N(k + 1), thenN(k + 1) = N(k) + 3|13(k)|, for
some positive integet. Moreover, for alli € 13(k), y*(N(k + 1)) = a(k) + & + & for
some positive integer (k).

THE PARAMETRIC ALGORITHM

To initiate the algorithm setly (1) = @, 13(1) = {i : g < g; forall j € M},
12(1) = M — I3()), anda (1) = & — & for some index € 13(1).
Let N(1) = O0andy(N(1) =a&,i =1,..., m. (Note thaty"(N(1)) =
a(1) + & foranyi € I3(2).)

Stage kk=1,2, ...

Stepl

If 12(k) = ¥ setg = oo and go to Step 2.

If 12(k) # ¥ selecti; € 12(k) such that, = min{a : i € 12(k)}.

If &, < a(k) + 1, thenseN(k+ 1) = N(k), a(k + 1) = a(K),
Yr(N(K+1) = ¥ (N(K). i € M, Is(k+1) = I5(K) +{iz}, la(k+1) =
l2(k) — {iz}, l1(k+ 1) = I1(k) and return to Step 1.

Using Quadratic Programming to Solve High Multiplicity Scheduling Problems 107

If &, > a(k) + 1, then sep = &, — &, — a(k), and go to Step 24(is the
largest possible simultaneous increase in the varigbléss 13(k),
before we start increasing the varialylg i.e., move the indei, from
I2(k) to 13(k).)

Step2

Selecti; € 13(k) satisfyingci, + a, = min{c + & :i € I3(k)}.

Lety = (¢, + &) — (a(kK) + &,). (v is the largest possible simultaneous
increase in the variableg, i € I3(k), due to the upper bounds; + &},
i € 13(k)}.) Note thaty > 1.

Step3 (Increasing the variablag, i € 13(k), by § > 1)
Lets = min(B, y). SetN(k + 1) = N(K) + 8|13(K)],

* CyrINK) +8, i e 13(k),
yr(Ntk+ 1) = {yi*(N(k)), otherwise

Seta(k+ 1) = a(k) + 6.

Stepd

Set), = J3 = 0.

fé=y,letlz={i elsk) ¢ +a =y (Nk+1)}Ifs=pletd
= {iz}. Setly(k + 1) = 11(K) + 3, la(k + 1) = I2(kK) — Jo, Ia(k + 1)

= I3(k) — 3+ Ja.

Step5

If I:(k+1) = M, stop. Iflg(k+ 1) = @ setlz(k + 1) = {i»} anda(k + 1)
=aj, — a;,.

Return to Step 1.

We claim that the above algorithm has at mast #ages. Furthermore, an optimal
solution yieldingf (N(k+ 1)), k=1,2,..., is defined in Step 3. (Note th&t(2m) =
Zim:l Gi.) To establish therd bound on the number of stages note thak) C 11(k+ 1)
andla(k+1) C Ix(k),fork=1,2,.... Also), |Is(k+ 1) — I3(k)| < 2m, since each
i € M enterslz at some iteration and departsltpat a later iteration. At each iteration
k,k=1,2,...,

Ol(k) +éi, i € |3(k),
Yi(NK) = | &, i € 1K),
G +a, i e 11(K).

To validate the algorithm consider an intedérN < > ¢. Letyi(N),i € M, be

an optimal solution yielding (N). Defineig € M by ¥i,(N) = min{y; (N) : i (N) <

ci +a }. Since the objective is to minimize the symmetric funcfiofl, y? the “marginal
allocation” algorithm (Ibaraki and Katoh, 1988) guarantees that an optimal solution
resulting with f (N + 1) is obtained by increasing,(N) by one unit. More generally,
define

l3={i:%(N) =%, (N) <1, % (N) <c +a).

108 F. Granot, J. Skorin-Kapov, and A. Tamir

Lets be any positive integer such thatN)+6 <c+a,foralli € I3, andyi,(N)+8 <
Y (N) forall j € M with Y{;(N) +1 < ¥;(N). Then an optimal solution yielding
f(N + §8]13]) is defined by

. ¥ (N) +38, if iels,
Yi(N+9]ls]) = {yi(l_l), otherwise
The later observation justifies the claim that the algorithm presented above does indeed
produce the optimal solution for all valuesdfk), k =1,2,

The parametric algorithm can be implementedQmlogm) time and inO(m)
space by applying conventional data structures. We use one priority queue (seé Aho
al., 1974) to store the elements; : i € I,(k)}, and a second one for the elements
{ci +a : i € I3(k)}. Since the total number of insertions and deletions performed
by the algorithm isO(m), the total effort of computing the minima in Steps 1 and
2 is O(mlogm). For eachk,k = 1,2, ..., the algorithm outputs(k) and the sets
11(K) = l11(k=1), lI2(k) — I2(k — 1), andlz(k) — I3(k — 1). The additional effort needed
to computef (N (k)), for all values ofk, k = 1, 2, ..., is only O(m).

Suppose thal (k + 1) = N(k) + §|13(k)| for some positive integet. Then

FINK+D) = FINK)+ Y (F(NK) +8)2 = (5 (N(K))D)
i€|3(k)
= F(NK)+25 Y yr(NK) +67[15(K)]
i€|3(k)
= FINK)+25 > & + (2a(k) + 89)[15(K)].
i€|3(k)

Returning now to the identical rates version of Problem (4), that is, whiereslv; = 1,
i=1,...,m we needto evaluaté(N) for each element of the sequernide < N, <

- < Np_1, whereN; = > l_,m. We present two approaches to perform this latter
task.

Suppose without loss of generality that < & < --- < an. We first merge the
sequencgNy, ..., Nn_1} with the sequence of critical valué$(1), N(2), ..., N (2m)
produced by the parametric algorithm. The effort needed is cl&fitg + n).

Consider now som¢, 1 < j < n—1, and suppose that(k) < N; < N(k+1). Let
b, d be nonnegative integers such tigt— N (k) = b|13(k)| +d and 0< d < [I3(K)].
Let J9(k) be a subset ofs(k) consisting of the smallest indices inlz(k). With our
supposition thaf; < a, < --- < ay, we have

y¥ (N(K)) + b, if i elak) — k),
VIIND = qyF(NK)) +b+1, if ieJd9k),
Y (N(K)), otherwise
Therefore,
f(Nj)) = f(NK)+2b Z Y (N(K)) +2(b+ 1) Z Y (N(K))
ielz(k)—Jd(k) ieJd(k)

+b?[13(k) — 39(K)| + (b + 1)?|3%4(K)|

Using Quadratic Programming to Solve High Multiplicity Scheduling Problems 109

= f(Nkp+2b Y (@k+a)+2b+1 > @k +a)

ielz(k)—Jd(k) ieJdd(k)
+b?[13(k) — d| + (b+ 1)2d.

Hence,
7) f(N) = f(Nk)+2b) &
ielz(k)
+2 Z a + |13(k)|(b? + 2ba (K)) + d(2b + 2 (k) + 1).
ieJd(k)

The first solution procedure to compufeN;), j = 1,...,n — 1, requiresO(m?)
time of preprocessing. Sindés(k)| < m, for anyk it takes a total ofO(m) time
to compute) ;. joq @& foralld = 0,1,...,Is(k)| — 1. Thus, the total processing
time of computing _; _ jay, & forallk = 1,...,2m, andd = 0,1,..., [I3(k)| — 1is
O(m?). It then follows from (7) thatf (Nj) can be computed in constant time for each
i, =1,...,n—=1. Thus, the total time to solve this model using the above approach
is O(mlogm + m? + n) = O(M? 4 n).

We note that ifsy = e for some constargfor alli,i = 1,..., m(e.g., wherj, the
release time of theth machine, is integral far i = 1, ..., m), then no preprocessing is

required since _,; . ja, & = defor any integed. The total time in this case reduces to
O(mlogm + n).

The second solution procedure is based on an application of a data structure described
in Galil et al. (1986). Throughout the execution of the parametric algorithm we dynam-
ically maintain the setz(k) as follows: Ifi € I3(k) is thedth smallest index if3(k),
it is associated with the real numbef (k) = 2 qeaék 8q- Suppose that at some state
of the algorithm an indek has to be deleted frory(k). If i is thedth smallest index
in 13(k), then, in addition to deleting we have to subtract the real from ®9(k) for
allg =d+1,...,|lsk)|. Similarly, when an index is to be inserted intd3(k) the
following update is needed. Suppose thatto become thdth smallest index irz(k).
Theni is associated wit® (k) + &, and for eacly, g = d + 1, ..., |13(k)| + 1, we
have to add; to ®9(k).

The data structures described in Getill. (1986) can be used dynamically to maintain
the element®9(k),q = 1, ..., |13(k)|. These data structures need ofllflogm) time
to perform any deletion or insertion of the above nature. Also, for any valug of
g=1,...,|lsKk)|, it takesO(logm) time to compute the ent®(k).

We now return to the computation 6fN;), j = 1,..., n—1. Suppose thall (k) <
N; < N(k+1) and consider (7). Clearly, using the above data structuresfe@gfh can
be computed irD (log m) time at the end of thkth stage of the parametric algorithm.

Thus, the total time to solve the problem with the second proced@érnslogm +
nlogm). Including theO(nlogn) time for initially ordering then job types by their
weight factorsw;j, j = 1,...,n, the total complexity bound of the first procedure is
O(m?+nlogn), while the respective bound for the second scheme is@uiglog m -+
nlogm+nlogn) = O(mlogm+nlogn). The above discussion can thus be summarized
in the following theorem.

THEOREM?2. The total time needed to solve the identical rates version of Problem

110 F. Granot, J. Skorin-Kapov, and A. Tamir

4) (e, p = 1, wj = wj), is O(mlogm + nlogn). If the job types are already
sorted by the weight factothe identical rates version of Problefd) is solvable in
O(min(m? + n; (m + n) logm)) time

Finally, using Remark 2 we note that the complexity bounds of Theorems 1 and 2 can
also be obtained for related unweighted models with variable processing requirements
in which all the machines are available at time zero.

Acknowledgment. The authors wish to thank the referees for helpful suggestions on
improving this paper.

References

Aho, A. V., J. E. Hopcroft, and J. D. Ullman. 1974he Design and Analysis of Computer Algorithms
Addison-Wesley, Reading, MA.

Brucker, P. 1984. An Algorithm for Quadratic Knapsack Probledpzrations Research Lette3€3), 163-166.

Bruno, J. L., E. G. Coffman, Jr., and R. Sethi. 1974. Scheduling Independent Tasks to Reduce Mean Finishing
Time, Communications of the ACII7, 382—387.

Galal, Z., S. Macali, and H. Gabow. 1986. Priority Queues with Variable Priority an® @V logV)
Algorithm for Finding a Maximal Weighted Matching in General GrapgB\M Journal on Computing
15, 120-130.

Garey, M.R.,andD. S. Johnson. 19C®&mputers and Intractabilitya Guide to the Theory of NP-completeness
Freeman, San Francisco, CA.

Granot, F., and J. Skorin-Kapov. 1993. On Polynomial Solvability of the High Multiplicity Total Weighted
Tardiness ProblenDiscrete Applied Mathematietl, 139-146.

Granot, F., J. Skorin-Kapov, and A. Tamir. 1994. On Solvability of High Multiplicity Scheduling Problems on
Parallel Machines, Working Paper, SUNY, Stony Brook, NY.

Hochbaum, D. S., and R. Shamir. 1991. Strongly Polynomial Algorithms for the High Multiplicity Scheduling
Problem Operations ResearcBg, 648-653.

Hochbaum, D. S., and J. G. Shanthikumar, 1990. Convex Separable Optimization is Not Much Harder than
Linear Optimization,Journal of the ACM37(4), 843—-862.

Hochbaum, D. S., R. Shamir, and J. G. Shanthikumar. 1992. A Polynomial Algorithm for an Integer Quadratic
Non-Separable Transportation Problévtathematical Programming5, 359-371.

Horn, W. A. 1973. Minimizing Average Flow Time with Parallel Machin@perations Resear@il, 846-847.

Ibaraki, T., and N. Katoh. 198&esource Allocation Problemalgorithmic ApproachesMIT Press, Cam-
bridge, MA.

Lawler, E. L., J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. 1993. Sequencing and Scheduling:
Algorithms and Complexity, itHandbooks in Operations Research and Management S¢i¢olcene 4,
eds. S. C. Graves, A. H. G. Rinnooy Kan, and P. Zipkin, North-Holland, Amsterdam, pp. 445-522.

Minoux, M. 1986. Solving Integer Minimum Cost Flows with Separable Convex Objective Polynomially,
Mathematical Programming Stud@g, 237—239.

Pardalos, P. M., and N. Kovoor. 1990. An Algorithm for a Singly Constrained Class of Quadratic Programs
Subject to Lower and Upper Bounddathematical Programming6, 321-328.

Tamir, A. 1993. A Strongly Polynomial Algorithm for Minimum Convex Separable Quadratic Cost Flow
Problems on Two-Terminal Series-Parallel NetwoMsathematical Programming9, 117-132.

