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Using Quadratic Programming to Solve High
Multiplicity Scheduling Problems on Parallel Machines1

F. Granot,2 J. Skorin-Kapov,3 and A. Tamir4

Abstract. We introduce and analyze several models of schedulingn different types (groups) of jobs onm
parallel machines, where in each group all jobs are identical. Our main goal is to exhibit the usefulness of
quadratic programming approaches to solve these classes of high multiplicity scheduling problems, with the
total weighted completion time as the minimization criterion. We develop polynomial algorithms for some
models, and strongly polynomial algorithms for certain special cases. In particular, the model in which the
weights are job independent, as well as the generally weighted model in which processing requirements are job
independent, can be formulated as an integer convex separable quadratic cost flow problem, and therefore solved
in polynomial time. When we specialize further, strongly polynomial bounds are achievable. Specifically, for
the weighted model with job-independent processing requirements if we restrict the weights to be machine
independent (while still assuming different machine speeds), anO(mn+ n logn) algorithm is developed. If it
is also assumed that all the machines have the same speed, the complexity of the algorithm can be improved to
O(m logm+ n logn). These results can be extended to related unweighted models with variable processing
requirements in which all the machines are available at time zero.
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Introduction. We consider scheduling problems in which the set of jobs can be par-
titioned into a relatively small number of types or groups of identical jobs, i.e., jobs
having the same characteristic parameters. Such problems are calledhigh multiplicity
problems. The paper by Hochbaum and Shamir (1991) studied a variety of high multi-
plicity scheduling problems on a single machine. Strongly polynomial algorithms were
presented therein for minimizing several measures of efficiency, e.g., weighted number
of tardy jobs and maximum weighted tardiness.

In this paper we focus on efficient algorithms for solving high multiplicity models on
parallel machines with the total weighted completion time as the minimization criterion.
Our main goal is to exhibit the usefulness of quadratic programming approaches to solve
these classes of high multiplicity scheduling problems.

The general problem we consider is defined as follows. There aren types of jobs,
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J1, . . . , Jn, and there arenj identical jobs of typeJj , j = 1, . . . ,n. We refer tonj as
themultiplicity of type Jj . There arem (parallel) machines,M1, . . . ,Mm, to process the
jobs. Fori = 1, . . . ,m, machineMi is released at timeri , and it can process at mostci

jobs. (The latter bound might reflect a constraint on the total setup cost associated with
switching jobs onMi .) We denoteN = ∑n

j=1 nj andC = ∑m
i=1 ci , and assume that

N ≤ C. In what follows we simplify the notation and refer to a job of typej , and to
machinei . Each job must be processed in its entirety by one of them machines. All the
jobs are available for processing at time zero. The processing requirement of a job of type
j on machinei is pi j time units. With each job of typej, j = 1, . . . ,n, we associate a
set of nonnegative weights,wi j , i = 1, . . . ,m. (wi j represents the weight factor applied
to a type j job if it is processed by machinei .) The objective is to schedule the set
of jobs and sequence them on them machines so that the total weighted completion
time (flow time) is minimized. We note that the above model is NP-hard even for the
simple case where there is only one job of each type(nj = 1, j = 1, . . . ,n), there are
two identical machines released at time zero,c1 = c2 = n, and pi j = wi j = wj , for
i = 1, 2; j = 1, . . . ,n. (See Garey and Johnson, 1979.) In view of the above NP-hardness
result we have to limit our discussion of polynomial solvability to restricted models,
where all job types have the same weight or all job types have the same processing
requirement.

Consider first the case where the weights are job independent but machine dependent,
i.e.,wi j = vi , for all job types j, j = 1, . . . ,n, and machinesi, i = 1, . . . ,m. In what
follows we refer to this case as the (job)unweightedcase. The single multiplicity case,
i.e., nj = 1, for j = 1, . . . ,n (with ri = 0 andci = n for each machinei ), is
solved as an assignment problem in Horn (1973) and Brunoet al. (1974). We prove
in Section 1 that the high multiplicity case can be formulated as an integer convex
separable quadratic cost flow problem, and as such it can be solved in polynomial time.
Secondly, in Section 2 we consider the followingweightedmodel. It is assumed that
all the jobs, from each type, have the same processing requirement (normalized to one
unit), but the machines have varying speeds. Fori = 1, . . . ,m, machinei has a speed
of si . (In the literature this model is called theuniformparallel machine case.) Thus, the
processing time of any job onMi is 1/si time units. For a general set of weight factors
wi j , again we formulate the model as an integer separable quadratic cost flow problem.
If we specialize further, strongly polynomial bounds are achievable. When the weights
are job and machinedecomposable, i.e.,wi j = viwj for j = 1, . . . ,n, i = 1, . . . ,m,
the problem reduces to an assignment model: There areC = ∑m

i=1 ci slots on them
machines for theN =∑n

j=1 nj jobs. The problem then amounts to matching the earliest-
finishing slots with the highest-weighted jobs. In particular, a greedy algorithm would
solve the problem inO(m+ N log N) time. The latter bound is not polynomial for the
high multiplicity problem. However, the greedy approach can easily be modified to the
latter case, and be implemented inO(mnlogm+n logn) time. We show how to improve
this bound toO(mn+ n logn) by using quadratic programming techniques. Finally, in
Section 2.1 we consider the identical machine case(si = vi = 1, i = 1, . . . ,m),
and present a very efficientO(m logm+ n logn)-time algorithm. We also observe the
mathematical equivalence of these strongly polynomially solvable weighted models
with identical processing requirements, and related unweighted models with variable
processing requirements where all the machines are available at time zero.
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1. Unweighted Models with Variable Processing Requirements: Integer Separable
Convex Quadratic Formulations. In this section we consider the (job) unweighted
case wherewi j = vi , for all job types j, j = 1, . . . ,n, and machinesi, i = 1, . . . ,m.
The processing time of each one of thenj jobs of typej on thei th machine ispi j units,
i = 1, . . . ,m; j = 1, . . . ,n.

We first note that the single multiplicity case can be formulated as the following
linear assignment problem. The cost of assigning thej th job, j = 1, . . . ,n, to thekth
place (from the end),k = 1, . . . , ci , on machinei , i = 1, . . . ,m, is vi (ri + kpi j ). (See
Horn, 1973; Brunoet al., 1974). Forri = 0 andci = n, i = 1, . . . ,m, a bound of
O(mn+ n3) is reported in Lawleret al. (1993). Applying this approach to the high
multiplicity case yields a nonpolynomial formulation. However, we show that the high
multiplicity problem can be formulated as an integer convex separable quadratic cost
flow problem, and as such can be solved in polynomial time.

Clearly, since our objective is to minimize the total flow time of theN jobs, all the
jobs assigned to thei th machine will be processed in a nondecreasing order of their
processing timespi j , j = 1, . . . ,n.

For i = 1, . . . ,m, letσi be a permutation of{1, . . . ,n}, which arranges then types of
jobs in a nonincreasing order of their processing times. Specifically, supposepi,σi (1) ≥
pi,σi (2) ≥ · · · ≥ pi,σi (n). For i = 1, . . . ,m; j = 1, . . . ,n, let xi j be the number of jobs
of typeσi ( j ) scheduled to be processed on thei th machine. For notational simplicity
we define

∑0
l=1 ≡ 0. Thus, the scheduling problem minimizing the total flow time is

formulated as

min
x

m∑
i=1

n∑
j=1

ri vi xi j +
m∑

i=1

n∑
j=1

vi pi,σi ( j )

xi j∑
k=1

(
j−1∑
l=1

xil + k

)

s.t.
n∑

j=1

xi j ≤ ci , i = 1, . . . ,m,∑
(i,k)

i=1,...,m;σi (k)= j

xik = nj , j = 1, . . . ,n,

xi j ≥ 0, integral, i = 1, . . . ,m; j = 1, . . . ,n.

(1)

Note that the first term in the objective function represents the total weighted flow time
until the machines are released, while the second term represents the weighted flow
time until all jobs are completed. A similar formulation, but in the context of the high
multiplicity total weighted tardiness problem on a single machine, can be found in
Hochbaumet al. (1992) and Granot and Skorin-Kapov (1993).

We show first how to replace the nonseparable objective function in (1) by an
equivalent separable one. (See also Granot and Skorin-Kapov (1993) for a similar
transformation applied to the minimum total weighted tardiness problem.) For each
i , i = 1, . . . ,m, let pi,σi (n+1) = 0 andyi 0 = 0. Also, for i = 1, . . . ,m; j = 1, . . . ,n,
defineyi j =

∑ j
k=1 xik . Problem (1) can now be rewritten as

min
x,y

m∑
i=1

n∑
j=1

vi (ri + 1
2 pi,σi ( j ))xi j + 1

2

m∑
i=1

n∑
j=1

vi (pi,σi ( j ) − pi,σi ( j+1))y
2
i j



Using Quadratic Programming to Solve High Multiplicity Scheduling Problems 103

s.t. yin ≤ ci , i = 1, . . . ,m,∑
(i,k)

i=1,...,m;σi (k)= j

xik = nj , j = 1, . . . ,n,

yi j = yi, j−1+ xi j , i = 1, . . . ,m; j = 1, . . . ,n,
xi j , yi j ≥ 0, integral, i = 1, . . . ,m; j = 1, . . . ,n.

(2)

The objective function in (2) is clearly a convex separable quadratic function, and the
linear constraints represent the conservation constraints of a flow problem with flow
variables{xi j }, {yi j }. Thus, we can use the results in Granot and Skorin-Kapov (1993),
Hochbaum and Shanthikumar (1990), Minoux (1986), and Tamir (1993), to conclude
that problem (2) can be solved in polynomial time. Specifically, if we letn̄ = max{nj :
j = 1, . . . ,n} andV P = max{vi pi j : i = 1, . . . ,m; j = 1, . . . ,n, }, it follows from
the above references that Problem (2) can be solved in eitherP1(m, n, log n̄) time or
P2(m, n, logV P) time, whereP1 andP2 are polynomials.

2. Weighted Models with Identical Processing Requirements. We first note that the
single multiplicity case of the weighted model, i.e.,pi j = 1/si and general weightswi j ,
can be formulated as the following linear assignment problem. The cost of assigning the
j th job, j = 1, . . . ,n, to thekth place,k = 1, . . . , ci , on machinei , i = 1, . . . ,m, is
(r i + k(1/si ))wi j .

We next consider the high multiplicity version and apply the transformation used
in Section 1 to show that this model can also be solved in polynomial time. Since our
objective is to minimize the total weighted flow time of theN jobs, all the jobs assigned
to the i th machine will be processed in a nonincreasing order of their weightswi j ,
j = 1, . . . ,n. For i = 1, . . . ,m, let σi be a permutation of{1, . . . ,n}, which arranges
the n types of jobs in a nonincreasing order of their weights. Specifically, suppose
wi,σi (1) ≥ wi,σi (2) ≥ · · · ≥ wi,σi (n). For i = 1, . . . ,m; j = 1, . . . ,n, let xi j be the
number of jobs of typeσi ( j ) scheduled to be processed on thei th machine. Thus, the
scheduling problem minimizing the total weighted flow time is formulated as

min
x

m∑
i=1

n∑
j=1

riwi,σi ( j )xi j +
m∑

i=1

n∑
j=1

1

si
wi,σi ( j )

xi j∑
k=1

(
j−1∑
l=1

xil + k

)

s.t.
n∑

j=1

xi j ≤ ci , i = 1, . . . ,m,∑
(i,k)

i=1,...,m;σi (k)= j

xik = nj , j = 1, . . . ,n,

xi j ≥ 0, integral, i = 1, . . . ,m; j = 1, . . . ,n.

(3)

With the exception of a slight variation in the linear term of the objective, this formulation
is mathematically equivalent to formulation (1) in Section 1. Therefore, the analysis in
Section 1 is applicable to this model as well.

REMARK 1. We can assume without loss of generality that the inequality of the con-
straint

∑n
j=1 xi j ≤ ci in (3) can be replaced by equality, since we can always introduce

an additional type of job, sayn+ 1, wherewi,n+1 = 0.
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REMARK 2. Comparing formulations (1) and (3) we note that both are mathematically
equivalent when the release times are equal to zero.

The above bounds for the high multiplicity model are polynomial but not strongly
so. However, when this model is specialized further, strongly polynomial bounds are
achievable. When the weights are job and machine decomposable, i.e.,wi j = viwj , the
problem amounts to matching the earliest-finishing slots with the highest-weighted jobs.
We have developed a very simple greedy-type algorithm which executes this matching
in O(mnlogm + n logn) time (see Granotet al. 1994). Here we prefer to present a
solution approach based on the above quadratic programming formulation, and reduce
the complexity ofO(mn+ n logn) time.

We assume thatw1 ≥ w2 ≥ · · · ≥ wn. Referring to (3) we note that in this caseσi

will be the identity permutation for eachi, i = 1, . . . ,m. Letwn+1 ≡ 0;yik ≡
∑k

t=1 xit ,
yi 0 ≡ 0, i = 1, . . . ,m. We then obtainxi j = yi j − yi, j−1, j = 1, . . . ,n. (The objective
function of (3) can thus be stated only in terms of they variables.) DefiningNj =

∑ j
l=1 nl ,

for j = 1, . . . ,n, rearranging terms, omitting constant terms, and using Remark 1 above,
we obtain an equivalent formulation of Problem (3) in terms of them(n−1) y variables
(for simplicity we denoteai ≡ (ri + 1/2si )vi ):

min
y

n−1∑
j=1

1
2(wj − wj+1)

m∑
i=1

si

vi

(
1

si
vi yi j + ai

)2

s.t.
m∑

i=1

yi j = Nj , j = 1, . . . ,n− 1,

yi, j−1 ≤ yi j ≤ ci , i = 1, . . . ,m; j = 1, . . . ,n− 1,
yi j integral, i = 1, . . . ,m; j = 1, . . . ,n− 1.

(4)

Consider next the relaxation of (4) obtained by omitting the constraintsyi, j−1 ≤ yi j ,
i = 1, . . . ,m; j = 1, . . . ,n−1. Since, forj = 1, . . . ,n−1, (wj−wj+1) is a nonnegative
constant, the solution to the relaxed problem can be found by solving(n−1) independent
quadratic knapsack problems of the form

min
y

m∑
i=1

si

vi

(
1

si
vi yi j + ai

)2

s.t.
m∑

i=1

yi j = Nj ,

0≤ yi j ≤ ci , i = 1, . . . ,m,
yi j integral, i = 1, . . . ,m.

(Pj )

The right-hand side coefficientsN1, N2, . . . , Nn−1, corresponding to Problems (P1),
(P2), . . . , (Pn−1), respectively, form a monotonically increasing sequence. Therefore, it
follows from the validity of the general, so-called “marginal allocation” or “incremental”
algorithm (see Section 4.2 of Ibaraki and Katoh, 1988), that for eachj, j = 1, . . . ,n−2,
if {y∗i j }, i = 1, . . . ,m, is an optimal solution to Problem(Pj ), there exists an optimal
solution{y∗i, j+1}, i = 1, . . . ,m, to Problem(Pj+1) such thaty∗i j ≤ y∗i, j+1, i = 1, . . . ,m.
In particular, for j = 1, . . . ,n − 1, these solutions{y∗i j }, i = 1, . . . ,m, to Problems
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(P1), . . . , (Pn−1), respectively, satisfy the relaxed constraints and, therefore, constitute
an optimal solution to (4). This result implies that the solution to Problem (4) depends on
the ordering of the weightswj , but not their magnitudes. To generate the above solutions
to Problems (Pj ), we definey∗i 0 = 0, i = 1, . . . ,m, and inductively solve the following
equivalent version of (Pj ) for j = 1, . . . ,n− 1,

min
y

n∑
i=1

si

vi

(
1

si
vi yi j + ai

)2

s.t.
m∑

i=1

yi j = Nj ,

y∗i, j−1 ≤ yi j ≤ ci , i = 1, . . . ,m,
yi j integral, i = 1, . . . ,m.

(P∗j )

Problem (P∗j ) can be solved inO(m) time as follows. First apply the linear-time algorithm
of Brucker (1984) to solve the continuous relaxation of (P∗

j ). (See also Pardalos and
Kovoor, 1990.) Then use theO(m) rounding scheme given in Ibaraki and Katoh (1988,
Theorem 4.6.2, p. 76) to obtain the optimal integral solution. The above discussion
implies the following result.

THEOREM1. Problem(4) can be solved in O(mn) time. Moreover, the solution de-
pends on the order of the weights{wj } but not on their magnitudes. If we include the
preprocessing time, i.e., the time to sort the weights{wj } in a nonincreasing order, the
total computational complexity is O(mn+ n logn).

2.1. The Identical Processing Rate Case. In the instance discussed here all the ma-
chines have identical processing rates and machine-independent weights (i.e.,pi j =
1, wi j = wj ; i = 1, . . . ,m, j = 1, . . . ,n). Following the above notation (see Problem
(Pj )), and lettingN̄ be a nonnegative integer, consider the uniform parametric integer
quadratic effort allocation problem:

f (N̄) = min
z

m∑
i=1

(zi + ai )
2

s.t.
m∑

i=1

zi = N̄,

0≤ zi ≤ ci , i = 1, . . . ,m,
zi integral, i = 1, . . . ,m.

(5)

Let {z∗i (N̄)}, i = 1, . . . ,m, denote an optimal solution yielding an optimal valuef (N̄).
From the discussion above we may assume that for eachi , i = 1, . . . ,m, z∗i (N̄) is
a monotonically nondecreasing function ofN̄. Moreover, an optimal solution to the
identical rates version of (4) is given byz∗i (Nj ) for i = 1, . . . ,m; j = 1, . . . ,n − 1.
We now construct inO(m logm) time a compactO(m)-space representation of the
parametric functionf (N̄). The representation is in terms of (at most 2m) critical values of
the integer parameter̄N, and it enables us to computef efficiently for any given sequence
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of n values ofN̄, say,N1 < N2 < · · · < Nn, in O(min(m2 + n;m logm+ n logm))
time.

To facilitate the discussion substituteyi = zi + ai , i = 1, . . . ,m, to obtain the
equivalent problem:

f (N̄) = min
y

m∑
i=1

y2
i

s.t.
m∑

i=1

yi = N̄ +
m∑

i=1

ai ,

ai ≤ yi ≤ ci + ai , i = 1, . . . ,m,
yi − ai integral, i = 1, . . . ,m.

(6)

Let {y∗i (N̄)} denote an optimal solution of (6), that isf (N̄) = ∑m
i=1(y

∗
i (N̄))

2. The
following algorithm generates the compact representation of the functionf (N̄). It finds
a sequence of 2m critical values 0= N(1) ≤ N(2) ≤ · · · ≤ N(2m) =∑m

i=1 ci , and for
each interval [N(k), N(k+1)], k = 1, . . . ,2m−1, it produces the necessary information
to interpolate and computef (N̄) and the corresponding optimal solution for any integer
N̄ in this interval.

The algorithm has (at most 2m) stages. At each stagek the index set of the variables,
M = {1, . . . ,m}, is partitioned into three subsets:I1(k) which consists of all indices
of variablesyi that are already fixed at their upper bounds,I2(k) which contains the
indices of the variables that are fixed at their lower bounds, andI3(k) which consists of
the remaining indices inM . The critical valueN(k+ 1) is determined at statek.

We assume without loss of generality thatci , i = 1, . . . ,m, is integral. (Note, however,
thatai , i = 1, . . . ,m, is not assumed to be integral, since the release timeri might be
any real number in this model.) Fori, i = 1, . . . ,m, let āi be defined bȳai ≡ ai (mod 1),
0 ≤ āi < 1. We show that ifN(k) < N(k + 1), thenN(k + 1) = N(k)+ δ|I3(k)|, for
some positive integerδ. Moreover, for alli ∈ I3(k), y∗i (N(k+ 1)) = α(k)+ δ + āi for
some positive integerα(k).

THE PARAMETRIC ALGORITHM

To initiate the algorithm set:I1(1) = ∅, I3(1) = {i : ai ≤ aj for all j ∈ M},
I2(1) = M − I3(1), andα(1) = ai − āi for some indexi ∈ I3(1).
Let N(1) = 0 andy∗i (N(1)) = ai , i = 1, . . . ,m. (Note thaty∗i (N(1)) =
α(1)+ āi for any i ∈ I3(1).)

Stage k, k = 1, 2, . . .

Step1
If I2(k) = ∅ setβ = ∞ and go to Step 2.
If I2(k) 6= ∅ selecti2 ∈ I2(k) such thatai2 = min{ai : i ∈ I2(k)}.
If ai2 < α(k)+ 1, then setN(k+ 1) = N(k), α(k+ 1) = α(k),

y∗i (N(k+1)) = y∗i (N(k)), i ∈ M, I3(k+1) = I3(k)+{i2}, I2(k+1) =
I2(k)− {i2}, I1(k+ 1) = I1(k) and return to Step 1.
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If ai2 > α(k)+ 1, then setβ = ai2 − āi2 − α(k), and go to Step 2. (β is the
largest possible simultaneous increase in the variablesyi , i ∈ I3(k),
before we start increasing the variableyi2, i.e., move the indexi2 from
I2(k) to I3(k).)

Step2
Selecti3 ∈ I3(k) satisfyingci3 + ai3 = min{ci + ai : i ∈ I3(k)}.
Let γ = (ci3 + ai3)− (α(k)+ āi3). (γ is the largest possible simultaneous

increase in the variablesyi , i ∈ I3(k), due to the upper bounds{ci + ai },
i ∈ I3(k)}.) Note thatγ ≥ 1.

Step3 (Increasing the variablesyi , i ∈ I3(k), by δ ≥ 1)
Let δ = min(β, γ ). SetN(k+ 1) = N(k)+ δ|I3(k)|,

y∗i (N(k+ 1)) =
{

y∗i (N(k))+ δ, i ∈ I3(k),
y∗i (N(k)), otherwise.

Setα(k+ 1) = α(k)+ δ.
Step4
SetJ2 = J3 = ∅.
If δ = γ , let J3 = {i ∈ I3(k) : ci + ai = y∗i (N(k+ 1))}. If δ = β, let J2

= {i2}. SetI1(k+ 1) = I1(k)+ J3, I2(k+ 1) = I2(k)− J2, I3(k+ 1)
= I3(k)− J3+ J2.

Step5
If I1(k+ 1) = M , stop. If I3(k+ 1) = ∅ set I3(k+ 1) = {i2} andα(k+ 1)
= ai2 − āi2.

Return to Step 1.

We claim that the above algorithm has at most 2m stages. Furthermore, an optimal
solution yielding f (N(k+ 1)), k = 1, 2, . . . , is defined in Step 3. (Note thatN(2m) =∑m

i=1 ci .) To establish the 2m bound on the number of stages note thatI1(k) ⊆ I1(k+1)
andI2(k+ 1) ⊆ I2(k), for k = 1, 2, . . . . Also

∑
k |I3(k+ 1)− I3(k)| ≤ 2m, since each

i ∈ M entersI3 at some iteration and departs toI1 at a later iteration. At each iteration
k, k = 1, 2, . . . ,

y∗i (N(k)) =
α(k)+ āi , i ∈ I3(k),

ai , i ∈ I2(k),
ci + ai , i ∈ I1(k).

To validate the algorithm consider an integerN̄, N̄ <
∑m

i=1 ci . Let ȳi (N̄), i ∈ M , be
an optimal solution yieldingf (N̄). Definei0 ∈ M by ȳi0(N̄) = min{ȳi (N̄) : ȳi (N̄) <
ci+ai }. Since the objective is to minimize the symmetric function

∑m
i=1 y2

i the “marginal
allocation” algorithm (Ibaraki and Katoh, 1988) guarantees that an optimal solution
resulting with f (N̄ + 1) is obtained by increasinḡyi0(N̄) by one unit. More generally,
define

I3 = {i : ȳi (N̄)− ȳi0(N̄) < 1, ȳi (N̄) < ci + ai }.
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Letδ be any positive integer such thatȳi (N̄)+δ ≤ ci+ai , for all i ∈ I3, andȳi0(N̄)+δ ≤
ȳj (N̄) for all j ∈ M with Ȳi0(N̄) + 1 ≤ ȳj (N̄). Then an optimal solution yielding
f (N̄ + δ|I3|) is defined by

ȳi (N̄ + δ|I3|) =
{

ȳi (N̄)+ δ, if i ∈ I3,

ȳi (N̄), otherwise.

The later observation justifies the claim that the algorithm presented above does indeed
produce the optimal solution for all values ofN(k), k = 1, 2, . . . .

The parametric algorithm can be implemented inO(m logm) time and inO(m)
space by applying conventional data structures. We use one priority queue (see Ahoet
al., 1974) to store the elements{ai : i ∈ I2(k)}, and a second one for the elements
{ci + ai : i ∈ I3(k)}. Since the total number of insertions and deletions performed
by the algorithm isO(m), the total effort of computing the minima in Steps 1 and
2 is O(m logm). For eachk, k = 1, 2, . . . , the algorithm outputsα(k) and the sets
I1(k)− I1(k−1), I2(k)− I2(k−1), andI3(k)− I3(k−1). The additional effort needed
to computef (N(k)), for all values ofk, k = 1, 2, . . . , is only O(m).

Suppose thatN(k+ 1) = N(k)+ δ|I3(k)| for some positive integerδ. Then

f (N(k+ 1)) = f (N(k))+
∑

i∈I3(k)

((y∗i (N(k))+ δ)2− (y∗i (N(k)))2)

= f (N(k))+ 2δ
∑

i∈I3(k)

y∗i (N(k))+ δ2|I3(k)|

= f (N(k))+ 2δ
∑

i∈I3(k)

āi + (2δα(k)+ δ2)|I3(k)|.

Returning now to the identical rates version of Problem (4), that is, where 1/si = vi = 1,
i = 1, . . . ,m, we need to evaluatef (N̄) for each element of the sequenceN1 < N2 <

· · · < Nn−1, whereNj =
∑ j

l=1 nl . We present two approaches to perform this latter
task.

Suppose without loss of generality thatā1 ≤ ā2 ≤ · · · ≤ ām. We first merge the
sequence{N1, . . . , Nn−1} with the sequence of critical valuesN(1), N(2), . . . , N(2m)
produced by the parametric algorithm. The effort needed is clearlyO(m+ n).

Consider now somej, 1≤ j ≤ n− 1, and suppose thatN(k) < Nj < N(k+ 1). Let
b, d be nonnegative integers such thatNj − N(k) = b|I3(k)| + d and 0≤ d < |I3(k)|.
Let Jd(k) be a subset ofI3(k) consisting of the smallestd indices in I3(k). With our
supposition that̄a1 ≤ ā2 ≤ · · · ≤ ām, we have

y∗i (Nj ) =
y∗i (N(k))+ b, if i ∈ I3(k)− Jd(k),

y∗i (N(k))+ b+ 1, if i ∈ Jd(k),
y∗i (N(k)), otherwise.

Therefore,

f (Nj ) = f (N(k))+ 2b
∑

i∈I3(k)−Jd(k)

y∗i (N(k))+ 2(b+ 1)
∑

i∈Jd(k)

y∗i (N(k))

+ b2|I3(k)− Jd(k)| + (b+ 1)2|Jd(k)|
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= f (N(k))+ 2b
∑

i∈I3(k)−Jd(k)

(α(k)+ āi )+ 2(b+ 1)
∑

i∈Jd(k)

(α(k)+ āi )

+ b2|I3(k)− d| + (b+ 1)2d.

Hence,

f (Nj ) = f (N(k))+ 2b
∑

i∈I3(k)

āi(7)

+ 2
∑

i∈Jd(k)

āi + |I3(k)|(b2+ 2bα(k))+ d(2b+ 2α(k)+ 1).

The first solution procedure to computef (Nj ), j = 1, . . . ,n − 1, requiresO(m2)

time of preprocessing. Since|I3(k)| ≤ m, for any k it takes a total ofO(m) time
to compute

∑
i∈Jd(k) āi for all d = 0, 1, . . . , |I3(k)| − 1. Thus, the total processing

time of computing
∑

i∈Jd(k) āi for all k = 1, . . . ,2m, andd = 0, 1, . . . , |I3(k)| − 1 is
O(m2). It then follows from (7) thatf (Nj ) can be computed in constant time for each
j, j = 1, . . . ,n− 1. Thus, the total time to solve this model using the above approach
is O(m logm+m2+ n) = O(m2+ n).

We note that ifāi = e for some constante for all i, i = 1, . . . ,m (e.g., whenri , the
release time of thei th machine, is integral fori, i = 1, . . . ,m), then no preprocessing is
required since

∑
i∈Jd(k) āi = de for any integerd. The total time in this case reduces to

O(m logm+ n).
The second solution procedure is based on an application of a data structure described

in Galil et al. (1986). Throughout the execution of the parametric algorithm we dynam-
ically maintain the setI3(k) as follows: If i ∈ I3(k) is thedth smallest index inI3(k),
it is associated with the real number2d(k) ≡ ∑q∈Jd(k) āq. Suppose that at some state
of the algorithm an indexi has to be deleted fromI3(k). If i is thedth smallest index
in I3(k), then, in addition to deletingi , we have to subtract the realāi from2q(k) for
all q = d + 1, . . . , |I3(k)|. Similarly, when an indexi is to be inserted intoI3(k) the
following update is needed. Suppose thati is to become thedth smallest index inI3(k).
Theni is associated with2d−1(k)+ āi , and for eachq, q = d+ 1, . . . , |I3(k)| + 1, we
have to add̄ai to2q(k).

The data structures described in Galilet al. (1986) can be used dynamically to maintain
the elements2q(k), q = 1, . . . , |I3(k)|. These data structures need onlyO(logm) time
to perform any deletion or insertion of the above nature. Also, for any value ofq,
q = 1, . . . , |I3(k)|, it takesO(logm) time to compute the entry2q(k).

We now return to the computation off (Nj ), j = 1, . . . ,n−1. Suppose thatN(k) <
Nj < N(k+1) and consider (7). Clearly, using the above data structures eachf (Nj ) can
be computed inO(logm) time at the end of thekth stage of the parametric algorithm.

Thus, the total time to solve the problem with the second procedure isO(m logm+
n logm). Including theO(n logn) time for initially ordering then job types by their
weight factorswj , j = 1, . . . ,n, the total complexity bound of the first procedure is
O(m2+n logn), while the respective bound for the second scheme is onlyO(m logm+
n logm+n logn) = O(m logm+n logn). The above discussion can thus be summarized
in the following theorem.

THEOREM2. The total time needed to solve the identical rates version of Problem
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(4) (i.e., pi = 1, wi j = wj ), is O(m logm + n logn). If the job types are already
sorted by the weight factor, the identical rates version of Problem(4) is solvable in
O(min(m2+ n; (m+ n) logm)) time.

Finally, using Remark 2 we note that the complexity bounds of Theorems 1 and 2 can
also be obtained for related unweighted models with variable processing requirements
in which all the machines are available at time zero.
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