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Introduction

We deal with the general issue of handling statistical data in archaeology for 
the purpose of deducing sound, justified conclusions. The employment of various 
quantitative and statistical methods in archaeological practice has existed from its 
beginning as a systematic discipline in the 19th century (Drower 1995). Since this 
early period, the focus of archaeological research has developed and shifted several 
times. The last phase in this process, especially common in recent decades, is the 
proliferation of collaboration with various branches of the exact and natural sci-
ences. Many new avenues of inquiry have been inaugurated, and a wealth of infor-
mation has become available to archaeologists. In our view, the plethora of newly 
obtained data requires a careful reexamination of existing statistical approaches 
and a restatement of the desired focus of some archaeological investigations. We 
are delighted to dedicate this article to Israel Finkelstein, our teacher, adviser, col-
league, and friend, who is one of the father figures of this ongoing scientific revo-
lution in archaeology (e.g., Finkelstein and Piasetzky 2010, Finkelstein et al. 2012, 
2015), and wish him many more fruitful years of research.

The Legacy of New Archaeology

The last major methodological attempt to formulate a positivistic statistical ap-
proach to archaeological research can be attributed to the “Processual,” or “New,” 
school of archaeology, which has profoundly influenced the form and content of 
archaeological studies since the 1960s. The proponents of the New Archaeology 
suggested that archaeological data can be analyzed on a deeper level, beyond the 
mere description of unearthed artifacts. Most of the advocates of the new theory 
were oriented toward the social sciences—in particular, anthropology. Indeed, this 
fact is epitomized by the title of one of its founding articles, “Archaeology as An-
thropology” (Binford 1962). The New Archaeologists imported sociological and an-
thropological tools and formulations in order to arrive at conclusions concerning 
ancient societies and, hopefully, deduce laws affecting humanity in general.

The debate regarding the scientific (or “scientific”) nature of processual archaeol-
ogy, which began shortly after its appearance (Flannery 1982), is still ongoing. This 
also concerns its proposed improvements and substitutes, often collectively labeled 
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“post-processual archaeology” (e.g., VanPool and VanPool 1999; Hutson 2001; Ar-
nold III and Wilkens 2001; VanPool and VanPool 2001). The existence of such a 
lively methodological dispute may be explained by the fact that the premises and 
the means of the New Archaeology pertain to the “soft,” rather than the “hard,” 
sciences and therefore can often be questioned.

Recent years have seen a rapid growth in employment of methods pertaining to 
the exact, earth, and life sciences in archaeological practice (e.g., Finkelstein et al. 
2015). In our view, the application of such hard sciences in archaeology necessi-
tates a revision in its underlying theory and the types of questions it attempts to 
address. In the current paper, we will concentrate on statistical methods that can 
be used by archaeologists. In particular, we shall contrast descriptive statistics, com-
monly applied in archaeology, with statistical inference methods (see details and 
examples below). It is our conviction that certain techniques of statistical inference 
should become the preferred modus operandi of archaeological inquiry, guiding its 
research questions and methods. In fact, the possibility of utilizing statistical inference 
methods may present the core requirement of modern, truly scientific archaeology.

The last statement echoes the opinion of the late Sir Karl Popper (1960), who 
anticipated difficulties in the application of “quantitative methods, and especially 
methods of measurement” in the social sciences. Nevertheless, he admitted that 

Some of these difficulties can be, and have been, overcome by the application of sta-
tistical methods, for example in demand analysis. And they have to be overcome if, for 
example, some of the equations of mathematical economics are to provide a basis even 
of merely qualitative applications; for without such measurement we should often not 
know whether or not some counteracting influences exceeded an effect calculated in 
merely qualitative terms.

Popper warns that 

merely qualitative considerations may well be deceptive at times; just as deceptive, 
to quote Professor Frisch (Frisch 1933), ‘as to say that when a man tries to row a boat 
forward, the boat will be driven backward because of the pressure exerted by his feet’.

 In other words, only accurate quantitative data, supplemented with sound statisti-
cal analysis, may counter the peril of unsubstantiated qualitative conclusions.

Descriptive Statistics versus Statistical Inference

In general, statistical methods can be roughly divided into descriptive and in-
ferential (or inductive). Descriptive statistics deals with summarizing the assembled 
information. For instance, given a sample of ceramic sherds found in a survey, we 
can count sherds and derive relative proportions of each type—for example, 75% 
of Chalcolithic and 25% of Late Byzantine pottery. One may be tempted to derive 
conclusions based on these summaries—for example, that the site was larger dur-
ing the Chalcolithic period than in the Late Byzantine period. This can be seen as a 
deduction of facts based on statistics, but this judgment is interpretive rather than 
statistical. In fact, this kind of reasoning can often be critiqued, since other factors 
may be taken into consideration, possibly hindering the conclusion (e.g., the total 
number of sherds, the relative length of the periods, occupational duration of each 
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site within the period, the quality and the uniqueness of the ceramics, preserva-
tional factors, as well as survey parameters).

On the other hand, inferential statistics supplements the raw summary with a 
score, allowing one to quantify the certainty of the results or at least to choose the 
most likely “scenario,” after articulating some relevant assumptions. We provide a 
short summary of three common procedures of statistical inference:

• Confidence interval estimation: In this procedure, several empirical results 
are taken into account in order to estimate a required statistical parameter. 
Additional information, either pre-existing or estimated from the sample 
itself, is then used in order to establish a confidence interval—that is, a range 
within which the true parameter is located with confidence level probability. 
For example, a sample of several 14C dates, belonging to a well-defined 
archaeological stratum (e.g., a destruction layer), may yield an uncalibrated 
confidence interval of 3000±30 years BP. A pre-existing 14C calibration curve 
can then be utilized to derive a confidence interval of 1129–1275 BCE, within 
which the proper date is located, with a confidence level of 95%. For other 
types of samples, when no external probabilistic data akin to the calibration 
model exists, the sample itself can be used to estimate the confidence interval 
via procedures such as “bootstrap” (Efron 1979) or “jackknife” (Quenouille 
1949).

• P-value estimation: This technique is based on contrasting two competing 
hypotheses. Commonly, hypothesis H1 claims the “uniqueness” or 
“significance” of the sample. An alternative hypothesis H0 usually claims 
that the results were obtained by mere chance. The p-value represents 
the probability of obtaining the observed sample under the H0 (“null”) 
hypothesis. Therefore, a low p-value represents high significance of H1. For 
example, the sample may contain 75% Chalcolithic and 25% Late Byzantine 
pottery. H1 would be “the site was larger during the Chalcolithic period than 
in the Late Byzantine period.” Alternatively, H0 would claim that the site 
had similar size during the two periods, and that the result was obtained 
at random. How “extraordinary” is the 75%–25% result? It depends on the 
actual amount of sherds of each type. If the sample consists of 3 Chalcolithic 
versus 1 Late Byzantine sherd, the p-value is 0.625, which is quite high, 
indicating an insignificant result. On the other hand, 30 Chalcolithic versus 
10 Late Byzantine sherds yields a p-value of 0.002, which indicates high 
significance of H1 hypothesis (again, when other assumptions are met).

• Maximum likelihood estimation: In certain situations, it is challenging to derive 
a statistical parameter directly. However, we can define a score indicating 
the “goodness” of this parameter in representing the statistical data at our 
disposal. Thus, in some sense, maximizing the score yields the “best” estimate 
of the parameter value (adhering to some underlying assumptions). For 
example, two types of Herodian oil lamps are found at the same stratum, with 
5 lamps of Type A and 15 lamps of Type B. Assuming similar preservational 
characteristics, what was the original relative proportion of Type A lamp? Of 
course, it could have been 5% or 50% or even 99%, as any given assemblage 
is accidental. However, we can provide a statistical score quantifying the 
likelihood of each proportion. Such a procedure would yield 25% as the most 
likely result for the original Type A proportion. Although this is not always 
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the case, in our example, the estimation correlates with a common-sense 
intuition.

In many types of archaeological inquiry, the discussion is based on excavated 
finds. There either was an altar excavated within a specific stratum of a given site, 
or there wasn’t one. But in other cases, the reasoning is based on statistical analysis 
of empirical data—for example, the date of an olive seed or proportions of various 
types or periods within a given ceramic assemblage. We believe that the purely 
descriptive approach is insufficient. With no statistical inference tools backing the 
empirical quantitative estimations, such data cannot be considered trustworthy.

Test Cases

Our joint endeavors with Prof. Finkelstein have produced several research 
threads. At the core of all of these studies lies a utilization of inferential statistics. 
Below, we provide several examples of our results and methods.

14C Dating

Carbon-based dating is inherently a confidence interval estimation procedure. 
The method may be quite sensitive to the input data. Therefore, a strict data-
handling protocol is necessary. Such a procedure is detailed in Finkelstein and Pia-
setzky 2010; what follows is a short summary.

• The sources: The data comes exclusively from strata with well-defined ceramic 
phases, in sequential horizons; see Finkelstein and Piasetzky 2015 for the 
importance of this point.

• Selection of data for the model: All available determinations from loci that 
are both safely assigned stratigraphically and well classified from the point 
of view of ceramic typology. Some of the strata that provided samples for 
radiocarbon dating had come to an end in heavy conflagrations that resulted 
in a thick collapse that had buried pottery vessels and other finds as well as 
clusters of charred grain seeds and olive pits. These cases provide the most 
secure provenance for radiocarbon dating. Due to the risk of “old wood 
effect,” only short-lived samples are included (see Finkelstein and Piasetzky 
2010 for methodological discussion on this topic). Only determinations that 
differ by more than 5 standard deviations from the weighted average of the 
other measurements in their group are excluded as outliers.

• Exclusion of data by the model: A Bayesian analysis using the OxCal program 
(Bronk Ramsey 1995, 2001) is performed. The individual agreement index 
calculated by OxCal checks how soundly the initial model agrees with each 
individual datum. In order to achieve a high level of agreement between the 
data and the model, the samples indicated as being extremely inconsistent 
with the model are removed until a high level of agreement is reached.

In addition to these careful data-cleansing steps, the resulting model contains over-
lapping confidence intervals for the different periods. Moreover, fig. 1 (adapted from 
Finkelstein and Piasetzky 2010) demonstrates not only the confidence intervals of 
each period but also confidence intervals for transitions between each two consecu-
tive phases. This approach allows for some fine-grained, and at the same time quite 
cautious, statistically sound dating.
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Estimation of Number of Writers within a Corpus of Ostraca

In the paper Faigenbaum-Golovin et al. 2016, we focused on finding a minimal 
number of writers within the short-lived corpus of Iron Age inscriptions unearthed 
at the Arad fortress (Aharoni 1981). The issue was handled on a pair-wise basis. 
On this level, the question was: what is the probability that two given texts were 
written by the same author? Similar questions are frequently addressed by posing 
an alternative null hypothesis H0 and attempting to reject it. In our case, for each 
pair of ostraca, the H0 is: “both texts were written by the same author.” At the first 
stage, various features were extracted from the characters of the inscriptions under 
examination (SIFT, Zernike coefficients, DCT, Kd-trees, projections, as well as L1 and 
CMI distances. Regarding the last measure, specifically designed for ostraca, see 
Shaus et al. 2010, 2012a, 2012b). Subsequently, a statistical experiment testing the 

Fig. 1. A graphic depiction of confidence intervals for distinct chronological phases, beginning 
with Late Bronze III and ending with Iron II A/B. The figure shows not only the confidence 
intervals of each period but also confidence intervals for transitions between each two 
consecutive phases (adapted from Finkelstein and Piasetzky 2010).
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plausibility of the null hypothesis was carried out for each letter independently (i.e., 
alep, waw, etc), and an appropriate p-value indicating the probability of obtaining 
an affirmative answer to H0 was calculated. Upon obtaining several independent 
p-values (one for each letter), they were combined via the classic Fisher’s method. 
Finally, the resulting “combined” p-value was considered. If the experiment’s result 
was unlikely under the H0 premise (p-value ≤ 0.2), we concluded that the two docu-
ments were written by two different individuals (i.e., we rejected the null hypoth-
esis). On the other hand, if the occurrence of H0 was probable (i.e., p-value > 0.2), 
we remained agnostic. Thus, in the latter case, we could not determine whether the 
two texts were in fact written by a single author or not.

A table summarizing the results of the experiment on the Arad corpus, with quite 
a few successful “hands” separations (i.e., rejected null hypotheses), can be seen at 
Table 1.

In the article Shaus and Turkel 2017, this methodology was advanced further 
with even more fine-grained “binary pixel patterns” features, providing an ample 
amount of additional experiments (per letter and per each feature!). This resulted in 
more significant results—similar to, but achieved independently from Faigenbaum-
Golovin et al. 2016. The results of the experiment on the Arad corpus, again with 
many “hands” separations, can be observed in Table 2.

The outputs of both algorithms can be further assessed by analyzing the overall 
results, summarized by the corresponding tables. Initially, we can ask: how many 
pair-wise distinct authors can be found in the corpus (without taking the inscrip-
tions’ content into consideration)? It turns out that the answer is 4 in the case of 
Faigenbaum-Golovin et al. 2016 and 5 in case of Shaus and Turkel 2017. Moreover, 
in the former case, we observe six pair-wise distinct “quadruplets” of texts (namely, 
7, 17a, 24, and 40; 5, 17a, 24, and 40; 7, 18, 24, and 40; 5, 18, 24, and 40; 7, 18, 24, 
and 31; 5, 18, 24, and 31), while in the latter case three pair-wise distinct “quin-
tuplets” of inscriptions is demonstrated (1, 2, 18, 38, and 40; 1, 18, 24, 38, and 
40; 5, 18, 24, 38, and 40). Now, on a meta-analysis level, we can ask: what is the 
probability for obtaining this number of quadruplets and quintuplets at random? 
Statistical simulations demonstrate that, in the former case, the probability (i.e., a 
“meta” p-value) is 2.17×10–4, while in the latter, case it is 8×10–7. Hence statistical 
significance of the results is very high in the former case, and is in fact much higher 
in the latter. Moreover, the results of these studies, with at least 4 unique writers in 
Faigenbaum-Golovin et al. 2016 and at least 5 unique writers in Shaus and Turkel 
2017, independently confirm each other.

Raman-Based Image Acquisition Method

Our team inspected several research directions potentially allowing for image ac-
quisition of ancient ostraca. Among the techniques studied were the multispectral 
imaging (see examples in Faigenbaum et al. 2012, 2014, 2015, Sober et al. 2014, 
Faigenbaum-Golovin et al. 2015a), as well as methods based on XRF (Nir-El et al. 
2015) and Raman (Faigenbaum-Golovin et al. 2015b; Faigenbaum-Golovin et al. 
2017) spectroscopies.
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Our initial Raman spectroscopy experiments showed a clear distinction between 
clay and ink spectra, which was utilized to construct a macroscale mapping de-
vice. The spectral differences recorded by the device and detected by specially engi-
neered algorithms allowed for production of new automated facsimiles (black and 
white images) of the inscriptions. Our method circumvented the preparatory ink 
composition analysis (common in Raman spectroscopy), allowing for a straightfor-
ward detection of indicative Raman lines (wavelengths). Utilizing these lines, the 
most legible facsimiles were obtained.

Table 2. Comparison between Various Arad Inscriptions, Adapted from (Shaus and Turkel 2017). 
A p-value ≤0.1, highlighted in gray, indicates rejection of “single writer” null hypothesis,

Text 1 2 3 5 7 8 16 17a 17b

1 0.000104451 0.794037056 0.997286098 0.835555244 0.999986905 0.145123589 0.999994862 0.345685406

2 0.000104451 0.999999997 0.230810507 0.23103925 0.999837107 0.782882802 0.999377805 0.121018637

3 0.794037056 0.999999997 0.99999999 1 0.999999995 1 1 0.999917956

5 0.997286098 0.230810507 0.99999999 0.999999996 0.999999979 0.829655242 0.955254622 0.093782225

7 0.835555244 0.23103925 1 0.999999996 0.999049432 0.974036343 0.938473936 0.543854905

8 0.999986905 0.999837107 0.999999995 0.999999979 0.999049432 0.996867196 0.999999995 0.26481398

16 0.145123589 0.782882802 1 0.829655242 0.974036343 0.996867196 0.914322562 0.989523149

17a 0.999994862 0.999377805 1 0.955254622 0.938473936 0.999999995 0.914322562 0.98838179

17b 0.345685406 0.121018637 0.999917956 0.093782225 0.543854905 0.26481398 0.989523149 0.98838179

18 0.012774181 1.96989×10–08 4.13858×10–07 2.78436×10–17 6.1151×10–25 0.000160748 6.53819×10–37 0.999824883 0.989432496

21 0.012535286 0.677687539 1 0.996839946 0.953218488 0.99999487 0.99999911 0.989761454 0.987354188

24 3.65925×10–12 0.907018003 1 4.38907×10–10 0.01448862 0.995623889 0.050144018 0.916602116 0.397038359

31 0.016073174 0.460683411 0.51882444 0.026192004 0.15146191 0.490501387 1.82513×10–08 0.999934002 0.997936364

38 0.078182536 1.45921×10–07 0.960818768 0.026797057 0.651369422 0.028988689 0.017541713 0.971750814 0.994674672

39a 0.038794364 0.999999999 1 0.942902756 0.973278889 0.999933169 0.999999999 0.999957681 0.690349079

39b 0.308694925 0.004777329 0.999999219 0.867249786 0.381286518 0.610834495 0.752972486 0.999885898 0.989449919

40 2.97103×10–06 0.011757086 0.983116915 0.040887838 0.999602961 0.999979451 0.986154478 0.750470353 0.469371025

111 0.000119896 0.918537018 1 2.1339×10–05 0.072003619 0.818431322 0.999998263 0.999999995 0.976381275
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The method was tested on an Edomite ostracon from Ḥorvat ʿUza (Beit-Arieh 
2007). The scans were performed on a character level. In fig. 2, a mapping result of 
one character, as well as facsimiles created after various postprocessing steps, can 
be seen.

Given the intricacies of signal acquisition and processing procedures, a legitimate 
question still remains: could the obtained binary mapping have been obtained “at 
random”? This brings us back to the concept of p-value. Indeed, no type of spec-
tral noise can produce a meaningful Raman mapping. The resulting binarization 

[Table 2, cont.] hence accepting a “two different authors” alternative. Note the typically 
high statistical significance, i.e., very low p-values upon rejection of null hypothesis.

18 21 24 31 38 39a 39b 40 111

0.012774181 0.012535286 3.65925×10–12 0.016073174 0.078182536 0.038794364 0.308694925 2.97103×10–06 0.000119896

1.96989×10–08 0.677687539 0.907018003 0.460683411 1.45921×10–07 0.999999999 0.004777329 0.011757086 0.918537018

4.13858×10–07 1 1 0.51882444 0.960818768 1 0.999999219 0.983116915 1

2.78436×10–17 0.996839946 4.38907×10–10 0.026192004 0.026797057 0.942902756 0.867249786 0.040887838 2.1339×10–05

6.1151×10–25 0.953218488 0.01448862 0.15146191 0.651369422 0.973278889 0.381286518 0.999602961 0.072003619

0.000160748 0.99999487 0.995623889 0.490501387 0.028988689 0.999933169 0.610834495 0.999979451 0.818431322

6.53819×10–37 0.99999911 0.050144018 1.82513×10–08 0.017541713 0.999999999 0.752972486 0.986154478 0.999998263

0.999824883 0.989761454 0.916602116 0.999934002 0.971750814 0.999957681 0.999885898 0.750470353 0.999999995

0.989432496 0.987354188 0.397038359 0.997936364 0.994674672 0.690349079 0.989449919 0.469371025 0.976381275

1.74207×10–37 2.85314×10–23 0.872302919 6.42961×10–05 0.000351619 3.9727×10–05 4.06656×10–14 0.016251091

1.74207×10–37 0.004905952 0.002746089 0.122737346 0.999999846 0.982566541 0.957807456 0.999809072

2.85314×10–23 0.004905952 2.93422×10–09 0.009250254 0.999999991 0.405106241 6.4106×10–12 0.684834031

0.872302919 0.002746089 2.93422×10–09 0.856161514 0.99999999 0.999884872 1.70082×10–09 0.772576882

6.42961×10–05 0.122737346 0.009250254 0.856161514 0.600342228 0.112003203 0.067411667 0.09199445

0.000351619 0.999999846 0.999999991 0.99999999 0.600342228 0.999985794 0.046450883 1

3.9727×10–05 0.982566541 0.405106241 0.999884872 0.112003203 0.999985794 0.839063568 0.90756289

4.06656×10–14 0.957807456 6.4106×10–12 1.70082×10–09 0.067411667 0.046450883 0.839063568 0.113447052

0.016251091 0.999809072 0.684834031 0.772576882 0.09199445 1 0.90756289 0.113447052
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implies that the results possess an 
extremely high statistical signifi-
cance. Namely, the probability of 
obtaining a binarization with simi-
lar (or better) correlation to the os-
tracon at random (i.e., the p-value) 
is estimated to be less than 10–30! In 
fact, the probability of obtaining a 
“random” binary image depicting 
a legitimate written ligature is of 
similar order of magnitude to that 
of a monkey accidentally typing 
the introduction to this article. In 
other words, the binarization re-
sults are by all means significant.

Conclusions (versus “Conclusions”)

Archaeology is a respected and well-established branch of learning. In recent 
years, it has slowly absorbed new and effective techniques from other disciplines, 
mainly from the life and exact sciences. This provides a suitable opportunity for the 
reassessment of the desired focus of archaeological research. Indeed, it is our view 
that, instead of being utilized as auxiliary devices, exact and inferential approaches 
ought to be essential in archaeological study. Research questions should allow for 
precise data collection and employment of inferential statistical analysis.

Admittedly, some archaeological research is performed in this vein even today. A 
random sample of relatively recent papers (Drennan and Peterson 2004, Markofsky 
2014, de Pablo and Barton 2015) shows that some scholars are indeed aware of the 
possibilities that statistical inference has to offer. However, this is an exception, 
rather than the norm. Indeed, even in the “Proceedings of the 43rd Annual Confer-
ence on Computer Applications and Quantitative Methods in Archaeology” (Campana 
et al. 2015), a venue that one would expect to be suitable for inferential statistics, 
out of 116 papers in 13 different sessions, only two (1.72%) mentioned “signifi-
cance interval”; two (1.72%) mentioned “p-value” (one of them claimed a p-value 
of 0, which is impossible in statistics, since however unlikely, any results could have 
been obtained accidentally); and only one (0.86%) mentioned “significance” in its 
statistical meaning. In other words, statistical inference was significantly under-
represented (in both colloquial and statistical meanings), even in this apparently 
appropriate event.

Nevertheless, it is our conviction that this deficiency is about to, and ought to, 
be changed. If archaeology as a discipline wishes to proceed further, it needs to 
be able to quantify the validity of its conclusions and to center its investigation 
around this point. We envisage future inquiries, including excavations, as tightly 
controlled sampling mechanisms, designed specifically to provide diverse, unbi-
ased, and representative samples. The end goal would be the possibility of conduct-
ing statistical tests supporting (or refuting) the deductions.

Fig 2. Raman mapping of a single character 
(adapted from Faigenbaum-Golovin et al. 
2015b). (A) photograph of the mapping area; 
(B) mapping result for Raman line ~1460 cm-1 
overlaid; (C) mapping result after post-processing, 
configuration I: median filter, window of 7×7 pixels 
and unifying 5 neighboring images with respect to 
the selected wavelength; (D) mapping result after 
post-processing, configuration II: percentile filter, 
window of 9×9 pixels, percentile=20%.
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Thus, although it may seem that the current paper deals with complicated sta-
tistical procedures and their application to archaeological research, in fact it is all 
about the conclusions. What’s at stake here is the possibility to quantify the validity 
of archaeological conclusions. Preferably, this quantification will pertain to the prob-
ability of obtaining an incorrect conclusion. If such a possibility is lacking, the “conclu-
sions” of such research might be unwarranted. Alternatively, the existence of such 
a procedure may represent the core requirement of modern scientific archaeology.
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