
Supporting Information
Faigenbaum-Golovin et al. 10.1073/pnas.1522200113
Introduction
Themain goal of the current research was to estimate theminimal
number of authors involved in the scripting of theArad corpus. To
deal with this issue, we had to differentiate between authors of
different inscriptions. Although relevant algorithms have been
proposed in the past (e.g., ref. 34 for incised lapidary texts), our
experience shows that most of the solutions are tailor-made for
specific corpora. The poor state of preservation of the Arad First
Temple period ostraca, and the high variance of their cursive texts
of mundane nature, presented difficulties that none of the available
methods could overcome (see Fig. 2). Therefore, novel image
processing and machine learning tools had to be developed.
The input for our system is the digital images of the inscriptions.

The algorithm involves two preparatory stages, leading to a third
step that estimates the probability that two given inscriptions were
written by the same author. All of the stages are fully automatic,
with the exception of the first, semiautomatic, preparatory step.
The basic steps of the algorithm are as follow:

i) Restoring characters via approximation of their composing
strokes, represented as a spline-based structure, and esti-
mated by an optimization procedure (for further details
see Description of the Algorithm, Character Restoration).

ii) Feature extraction and distance calculation: creation of fea-
ture vectors describing the characters’ various aspects (e.g.,
angles between strokes and character profiles); calculating
the distance (similarity) between characters (see Description
of the Algorithm, Feature Extraction and Distance Calculation).

iii) Testing the hypothesis that two given inscriptions were writ-
ten by the same author. Upon obtaining a suitable P value
(the significance level of the test, denoted as P), we reject
the hypothesis of a single author and accept the competing
proposition of two different authors; otherwise, we remain un-
decided (see Description of the Algorithm, Hypothesis Testing).

The next section will present an in-depth description of each of
the stages. This will be followed by an experimental section that
describes the application of our algorithm to both modern and
ancient texts. We verify the validity of our approach by applying
the algorithm to modern texts (with a number of contemporary
texts written by individuals known to us).

Description of the Algorithm
Character Restoration. The state of preservation of most ostraca is
poor at best. After more than two and a half millennia buried in
the ground, the inscriptions are often blurry, partially erased,
cracked, and stained. However, to analyze the script, clear black
and white (“binary”) images are required. Theoretically, such
depictions of the inscriptions do exist, in the form of manually
created facsimiles (drawings of the ostraca), created by epigraphic
experts. However, these have been shown to be influenced by the
prior knowledge and assumptions of the epigrapher (32). A po-
tential solution for this problem could have been provided by
automatic binarization procedures from the domain of image
processing. Unfortunately, in our experimentations, various bi-
narization methods produced unsatisfactory results (12).
We finally substituted these initial attempts with a semi-

automatic approach of individual character restoration. Restoring
a character is equivalent to reconstructing its strokes, which are the
character’s building blocks, and then combining them. Accord-
ingly, henceforth we will discuss the problem of stroke restoration
rather than complete character reconstruction. Stroke restoration
aims at imitating the reed pen’s movement using several manually

sampled key points. An optimization of the pen’s trajectory is
performed for all intermediate sampled points, taking into
account information from the noisy character image. A short
mathematical description of the procedure follows; for more de-
tails and analysis see ref. 14.
A stroke could be referred to as a 2D piecewise smooth curve

ðxðtÞ, yðtÞÞ, depending on the parameter t∈ ½a, b�. However, such a
representation ignores the stroke’s thickness, which is related to
the stance of the writing pen toward the document (in our case, a
potshard) and to the characteristics of the pen itself. In the case
of Iron Age Hebrew, it is well accepted that the scribes used reed
pens, which have a flat, rather than pointed, top. This fact makes
the writing thickness even more essential to the process of stroke
restoration. Therefore, we denote the stroke as a set-valued
function:

SðtÞ=
n
ðp, qÞjðp− xðtÞÞ2 + ðq− yðtÞÞ2 ≤ rðtÞ2

o
t∈ ½a, b�,

where xðtÞ and yðtÞ represent the coordinates of the center of the
pen at t, and rðtÞ stands for the radius of the pen at t (Fig. S1).
The corresponding stroke curve is thus

γðtÞ= ðxðtÞ, yðtÞ, rðtÞÞ  t∈ ½a, b�,

whereas the skeleton of the stroke will accordingly be the curve

βðtÞ= ðxðtÞ, yðtÞÞ t∈ ½a, b� .

We note that our model of a written stroke is an approximation,
because in reality the top of the reed pen was not necessarily a
perfect circle.
Borrowing the idea of minimizing an energy functional (35, 36),

we produce an analytic reconstruction of a stroke with respect to
a given image Iðp, qÞ (ðp, qÞ∈ ½1,N�× ½1,M�). This reconstructed
stroke SpðtÞ is defined as corresponding to the stroke curve γpðtÞ,
minimizing the following functional:

F½γðtÞ�= c1

Zb

a

GIðtÞ
rðtÞ2 dt+ c2

Zb

a

1ffiffiffiffiffiffiffi
rðtÞp dt+ c3

XJ−1
j=0

Ztj+1−«

tj+«

jKð _x, _y, €x, €yÞj dt

γpðtÞ= argmin
γðtÞ

F½γðtÞ�,

where GIðtÞ=
P

ðp, qÞ∈SðtÞ
Iðp, qÞ is the sum of the gray level values of

the image I inside the disk SðtÞ; γðtjÞ= ðxðtjÞ, yðtjÞ, rðtjÞÞ j= 0, ..., J
are manually sampled points on the stroke curve γðtÞ, with respect
to the natural parameter t; _x, €x and _y, €y denote the first and second
derivatives of x and y; Kð _x, _y, €x, €yÞ= ð _x€y− _y€xÞ=ð _x2 + _y2Þ3

=

2 stands for
the curvature of the skeleton of the stroke βðtÞ; 0< c1, c2, c3, «∈R

are parameters, set to c1 = 2, c2 = 2,000, c3 = 50, «= 0.01 in our
experiments.
The reconstruction is subject to initial and boundary conditions

at (a) the beginning and end of strokes; (b) intersections of
strokes; (c) significant extremal points of the curvature; and (d)
points with no traces of ink. These conditions are supplied by
manual sampling.
The energy minimization problem described above is solved

by performing gradient descent iterations on a cubic-spline

Faigenbaum-Golovin et al. www.pnas.org/cgi/content/short/1522200113 1 of 8

www.pnas.org/cgi/content/short/1522200113


representation of the stroke (for more details see ref. 14). The end
product of the reconstruction is a binary image of the character,
incorporating all its strokes.
Fig. S2 presents a restoration of an entire character, stroke by

stroke. It can be seen that although the original character image
contains several erosions (Fig. S2A), the reconstructed strokes
(Fig. S2C) look both smooth and complete, and their union re-
sults in a clear letter, adhering to the character image (Fig. S2D).

Feature Extraction and Distance Calculation. Commonly, automatic
comparison of characters relies upon features extracted from the
characters’ binary images. In this study, we adapted several well-
established features from the domains of computer vision and
document analysis. These features refer to aspects such as the
character’s overall shape, the angles between strokes, the char-
acter’s center of gravity, as well as its horizontal and vertical
projections. Some of these features correspond to characteristics
commonly used in traditional paleography (21).
The feature extraction process includes a preliminary step of

the characters’ standardization. The steps involve rotating the
characters according to their line inclination, resizing them ac-
cording to a predefined scale, and fitting the results into a
padded (at least 10% on each side) square of size aL × aL (with
L= 1, ..., 22 the index of the alphabet letter under consideration).
On average, the resized characters were 300 × 300 pixels.
Subsequently, the proximity of two characters can be measured

using each of the extracted features, representing various aspects
of the characters. For each feature, a different distance function is
defined (to be combined at a later stage; discussed below).
Table S1 provides a list of the features and distances we use, along

with a description of their implementation details. Some of the ad-
justments (e.g., replacement of the L2 norm with the L1 norm) were
required due to the large amount of noise present in our medium.
After the features are extracted, and the distances between the

features are measured, there arises a challenge of combining the
various distances. Several combination techniques [e.g., AdaBoost
(37) and Bag of Features (38)] were considered. Unfortunately,
boosting-related methods are unsuitable due to the lack of training
statistics, and the Bag of Features performed poorly in preliminary
experiments using a modern handwritten character dataset (details
regarding this dataset are given below). Hence, we developed a
different approach for combining the distances.
Our main idea was to consider the distances of a given char-

acter from all of the other characters, with respect to all of the
features under consideration (i.e., two characters closely re-
sembling each other ought to have similar distances from all other
characters). Namely, they will both have small distances from
similar characters and large distances from dissimilar characters.
This observation leads to a notion of a generalized feature vector
(defined here for the first time to our knowledge).
The generalized feature vector is defined by the following

procedure (for each letter L= 1, ..., 22 in the alphabet). First, we
define a distance matrix for each feature. For example, the SIFT
distance matrix is

USIFT =

0
@ DSIFTð1,1Þ ⋯ DSIFTð1, JLÞ

« ⋱ «
DSIFTðJL, 1Þ ⋯ DSIFTðJL, JLÞ

1
A=

0
B@− ~u1SIFT −

«
− ~uJLSIFT −

1
CA,

where JL represents the total number of characters, DSIFTði, jÞ
is the SIFT distance between characters i and j, and ~uiSIFT =ðDSIFTði, 1Þ⋯DSIFTði, JLÞÞ is the vector of SIFT distances be-
tween the character i and all of the others.
In addition, we denote the SD of the elements of the matrix

USIFT by σSIFT = stdfDSIFTði, jÞjði, jÞ∈ f1, ..., JLg× f1, ..., JLgg. Ma-
trices of all of the other features (UZernike,UDCT, and so forth) and

their respective SDs (σZernike, σDCT, etc.) are calculated in a similar
fashion.
Therefore, each character k is represented by the following

vector (of size 7 · JL), concatenating the respective normalized
row vectors of the distance matrices:

~uk =

0
@~ukSIFT
σSIFT

jj~u
k
Zernike

σZernike
jj~u

k
DCT

σDCT
jj~u

k
Kd−tree

σKd−tree
jj~u

k
Proj

σProj
jj~u

k
L1

σL1
jj~u

k
CMI

σCMI

1
A∈R7·JL .

In this fashion, each character is described by the degree of its
kinship to all of the characters, using all of the various features.
Finally, the distance between characters i and j is calculated

according to the Euclidean distance between their generalized
feature vectors:

chardistði, jÞ=
���~ui −~uj

���
2
.

The main purpose of this distance is to serve as a basis for clus-
tering at the next stage of the analysis.

Hypothesis Testing. At this stage we address the main question
raised above: What is the probability that two given texts were
written by the same author? Commonly, similar questions are
addressed by posing an alternative null hypothesis H0 and at-
tempting to reject it. In our case, for each pair of ostraca, the H0

is both texts were written by the same author. This is performed
by conducting an experiment (detailed below) and calculating
the probability (P∈ ½0,1�) of an affirmative answer to H0. If this
event is unlikely (P≤ 0.2), we conclude that the documents were
written by two different individuals (i.e., reject H0). However, if
the occurrence of H0 is probable (P> 0.2), we remain agnostic.
We reiterate that in the latter case we cannot conclude that the
two texts were in fact written by a single author.
The experiment, which is designed to test H0, is composed of

several substeps (illustrated in Fig. S3):

i) Initialization: We begin with two sets of characters of the
same letter type (e.g., alep), denoted A and B, originating
from two different texts (Fig. S3A).

ii) Character clustering: The union A∪B is a new, unlabeled set
(Fig. S3B). This set is clustered into two classes, labeled I
and II, using a brute-force (and not heuristic) implementa-
tion of k-means (k = 2). The clustering uses the generalized
feature vectors of the characters, and the distance chardist,
defined above (Fig. S3C).

iii) Cluster labels consistency: If jIj> jIIj, their labels are swapped.
iv) Similarity to cluster I: For each of the two original sets, A

and B, the maximal proportion of their elements in class I
(their “similarity” to class I) is defined as

MPI =max
�jA∩ Ij

jAj ,
jB∩ Ij
jBj

�
.

v) Counting valid combinations: We consider all of the possible
divisions of A∪B into two classes i and ii, s.t. jij= jIj. The
number of such valid combinations is denoted by NC.

vi) Significance level calculation: The P value is calculated as

P=
jfi jMPi ≥MPIgj

NC
.

That is, P is the proportion of valid combinations with at least the
same observational MP. This is analogous to integrating over a
tail of a probability density function.

Faigenbaum-Golovin et al. www.pnas.org/cgi/content/short/1522200113 2 of 8

www.pnas.org/cgi/content/short/1522200113


The rationale behind this calculation is based on the scenario of
two authors (negation of H0). In such a case, we expect the k-
means clustering to provide a sound separation of their charac-
ters (Fig. S3D), that is, I and II would closely resemble A and B
(or B and A). This would result in MPI being close to 1. Fur-
thermore, the proportion of valid combinations with MPi ≥MPI
will be meager, resulting in a low P. In such a case, the H0 hy-
pothesis would be justifiably rejected.
In the opposite scenario of a single author:

• If a sufficient number of characters is present, there is an
arbitrary low probability of receiving clustering results resem-
bling A and B. In a common case, the MPI will be low, which
will result in high P.

• Alternatively, if the number of characters is low, the clustering
may result in a high MPI by chance. However, in this case NC
would be low, and the P will remain high.

Either way, in this scenario, we will not be able to reject the H0
hypothesis.
Notes:

• We assume that each given text was written by a single author.
If multiple authors wrote the text, both H0 and its negation
should be altered. We do not cover such a case.

• In substep iii, the swapping is performed for regularization
purposes, because the measurement on substep iv is not sym-
metric. Substep iii verifies that I is a minority class, and thus
the value of MPI = 1 is achieved only if the clustering resem-
bles the original sets A and B.

• In cases where jIj= jIIj (substep iii), the results of substeps iv–
vi can be affected by swapping the classes. To avoid such in-
frequent inconsistencies, we perform the calculations for both
alternatives, and choose the lower P.

• Note that in any case, the definition of P in substep vi results
in P> 0.

• Not every text provides a sufficient amount of characters for
every type of letter in the alphabet. In our case, we do not per-
form comparisons for sets A and B such that: jAj= 1& jBj≤ 6 or
jBj= 1& jAj≤ 6 or jAj= 2& jBj= 2.

As specified, substeps i–vi are applied to one specific letter of
the alphabet (e.g., alep) present (in sufficient quantities) in the
pair of texts under comparison. However, we can often gain
additional statistical significance if several different letters (e.g.,
alep, he, waw, etc.) are present in the compared documents. In
such circumstances, several independent experiments are con-
ducted (one for each letter), resulting in corresponding Ps. We
combine the different values into a single P via the well-estab-
lished Fisher method (ref. 33; in case no comparison can be
conducted for any letter in the alphabet, we assign P = 1). This
end product represents the probability that H0 is true based on
all of the evidence at our disposal.

Experiment Details and Results
Our experiments were conducted on two large datasets. The first
is a set of samples collected from contemporary writers of
Modern Hebrew (www-nuclear.tau.ac.il/∼eip/ostraca/DataSets/
Modern_Hebrew.zip). This dataset allowed us to test the
soundness of our algorithm. It was not used for parameter-tuning
purposes, however, because the algorithm was kept as parameter-
free as possible. The second dataset contained information from
various Arad Ancient Hebrew ostraca, dated to ca. 600 BCE,
described in detail in the main text (www-nuclear.tau.ac.il/∼eip/
ostraca/DataSets/Arad_Ancient_Hebrew.zip). Following are the
specifications and the results of our experiments for both datasets.

Modern Hebrew Experiment. The handwritings of 18 individuals
i= 1, ..., 18 were sampled. Each individual filled in a Modern

Hebrew alphabet table consisting of 10 occurrences of each
letter, out of the 22 letters in the alphabet (the number of
letters and their names are the same as in Ancient Hebrew; see
Fig. S4 for a table example). These tables were scanned and
their characters were segmented. For a complete dataset of
the characters, see www-nuclear.tau.ac.il/∼eip/ostraca/DataSets/
Modern_Hebrew.zip.
From this raw data, a series of “simulated” inscriptions were

created. Owing to the need to test both same-writer and differ-
ent-writer scenarios, the data for each writer were split. Fur-
thermore, to imitate a common situation in the Arad corpus,
where the scarcity of data is prevalent (Table S3), each simulated
inscription used only three letters (i.e., 15 characters, 5 charac-
ters for each letter). In total, 252 inscriptions were “simulated” in
the following manner:

• All of the letters of the alphabet except for yod (because it is
too small to be considered by some of the features) were split
randomly into seven groups (three letters in each group)
g= 1, ..., 7: gimel, het, resh; bet, samek, shin; dalet, zayin, ayin;
tet, lamed, mem; nun, sade, taw; he, pe, qop; alep, waw, kap.

• For each writer i, and each letter belonging to group g, five
characters were assigned into simulated inscription Si,g,1, with
the rest assigned to Si,g,2.

In this fashion, for constant i and g, we can test whether our
algorithm arrives at wrong rejection of H0 for Si,g,1 and Si,g,2 (FP
indicates “false-positive” error; 18 writers and 7 groups producing
126 tests in total). Additionally, for constant g, 1≤ i≠ j≤ 18, and
b, c∈ f1,2g, we can test whether our algorithm fails to correctly
reject H0 for Si,g,b and Sj,g,c (FN indicates “false-negative” error
[(18 × 17)/2] × 7 × 2 × 2 = 4,284 tests in total).
The results of theModern Hebrew experiment are summarized

in Table S2. It can be seen that in modern context the algorithm
yields reliable results in ∼98% of the cases (about 2% of both FP
and FN errors). These results signify the soundness of our al-
gorithmic sequence. The successful and significant results on the
Modern Hebrew dataset paved the way for the algorithm’s ap-
plication on the Arad Ancient Hebrew corpus.

Arad Ancient Hebrew Experiment.As specified in the main text, the
core experiment addresses ostraca from the Arad fortress, located
on the southern frontier of the kingdom of Judah. These in-
scriptions belong to a short time span of a few years, ca. 600 BCE,
and are composed of army correspondence and documentation.
The texts under examination are 16 ostraca: 1, 2, 3, 5, 7, 8, 16,

17, 18, 21, 24, 31, 38, 39, 40, and 111. Ostraca 17 and 39 contain
writing on both sides of the potshard and were treated as separate
texts (17a and 17b and 39a and 39b), resulting in 18 texts under
examination. As stated in the algorithm description, we assume
that each text was written by a single author. A short summary of
the content of the texts can be seen in Table 1.
The seven letters we used were alep, he, waw, yod, lamed, shin,

and taw, because they were the most prominent and simple to
restore. In the abovementioned ostraca, out of the 670 deciphered
characters of these types in the original publication (6), 501 legible
characters were restored, based upon computerized images of the
inscriptions. These images were obtained by scanning the nega-
tives taken by the Arad expedition (courtesy of the Israel Antiq-
uities Authority and the Institute of Archaeology of Tel Aviv
University). After performing a manual quality assurance pro-
cedure (verifying the adherence of the restored characters to the
original image; Fig. S2D), 427 restored characters remained. The
resulting letters’ statistics for each text are summarized in Table
S3. For a complete dataset of the characters, see www-nuclear.
tau.ac.il/∼eip/ostraca/DataSets/Arad_Ancient_Hebrew.zip. In ad-
dition, a comparison between several specimens of the letter lamed
is provided in Fig. S5.

Faigenbaum-Golovin et al. www.pnas.org/cgi/content/short/1522200113 3 of 8

http://www-nuclear.tau.ac.il/~eip/ostraca/DataSets/Modern_Hebrew.zip
http://www-nuclear.tau.ac.il/~eip/ostraca/DataSets/Modern_Hebrew.zip
http://www-nuclear.tau.ac.il/~eip/ostraca/DataSets/Arad_Ancient_Hebrew.zip
http://www-nuclear.tau.ac.il/~eip/ostraca/DataSets/Arad_Ancient_Hebrew.zip
http://www-nuclear.tau.ac.il/~eip/ostraca/DataSets/Modern_Hebrew.zip
http://www-nuclear.tau.ac.il/~eip/ostraca/DataSets/Modern_Hebrew.zip
http://www-nuclear.tau.ac.il/~eip/ostraca/DataSets/Arad_Ancient_Hebrew.zip
http://www-nuclear.tau.ac.il/~eip/ostraca/DataSets/Arad_Ancient_Hebrew.zip
www.pnas.org/cgi/content/short/1522200113


We reiterate that our algorithm requires a minimal number of
characters to compare a pair of texts. For example, when we
compared ostraca 31 and 38, the letters in use were he (7:1
characters), waw (6:2 characters), and yod (4:2 characters). The
three independent tests respectively yielded P= 0.125, P= 0.25,
and P= 1. Their combination through Fisher’s method resulted
in the final value of P= 0.327, not passing the preestablished
threshold. Therefore, in this case, we remain agnostic with re-
spect to the question of common authorship. However, the
comparison of texts 1 and 24 used all possible letters, alep, he,
waw, yod, lamed, shin, and taw, resulting in Ps of 0.559, 0.00366,
0.375, 0.119, 0.0286, 0.429, and 0.0769, respectively. The
combined result was P= 0.003, passing the threshold of
0.2. Therefore, in the latter case, we reject the H0 hypothesis

and conclude that these texts were written by two different
individuals.
The complete comparison results are summarized in Table 1.

We can observe six pairwise distinct “quadruplets” of texts: (i) 7,
17a, 24, and 40; (ii) 5, 17a, 24, and 40; (iii) 7, 18, 24, and 40; (iv) 5,
18, 24, and 40; (v) 7, 18, 24, and 31; and (vi) 5, 18, 24, and 31. The
existence of no less than six such combinations indicates the high
probability that the corpus indeed contains at least four different
authors. As specified in the main text, additional (contextual) con-
siderations can raise this number up to at least six distinct writers.
Among these, the different authors of the prosaic lists of names in
ostraca 31 and 39 were most likely located at the tiny fort of Arad,
implying the composition by authors who were not professional
scribes. For the full implications of our results, see the main text.

Fig. S1. The Latin character “e” as unification of discs. The discs painted in red over the character were created using the stroke restoration algorithm.

Fig. S2. Example of a semiautomatic stroke restoration of the character waw from Arad ostracon 24. (A) Image of the character to be reconstructed.
(B) Manually sampled key points (of top and bottom strokes, respectively). (C) The semiautomatic stroke restorations (of top and bottom strokes, respectively).
(D) The reconstructed character (Top: the contour of the reconstructed character overlaid on top of the original image; Bottom: the binary image of the
restored character). Images are courtesy of the Institute of Archaeology, Tel Aviv University, and of the Israel Antiquities Authority.

Faigenbaum-Golovin et al. www.pnas.org/cgi/content/short/1522200113 4 of 8

www.pnas.org/cgi/content/short/1522200113


Fig. S3. Artificial illustration of H0 rejection experiment (containing only alep letters). (A) Two compared documents. (B) Unifying their sets of characters.
(C) Automatic clustering. (D) The clustering results vs. the original documents. Images are courtesy of the Institute of Archaeology, Tel Aviv University, and of
the Israel Antiquities Authority.

Faigenbaum-Golovin et al. www.pnas.org/cgi/content/short/1522200113 5 of 8

www.pnas.org/cgi/content/short/1522200113


Fig. S4. An example of a Modern Hebrew alphabet table, produced by a single writer (with 10 samples of each letter).

Fig. S5. Comparison between several specimens of the letter lamed, stemming from Arad 1 (A and B), Arad 7 (C and D), and Arad 18 (E and F). Note that our
algorithm cannot distinguish between the author of Arad 1 and the author of Arad 7, or the authors of Arad 1 and Arad 18. However, Arad 7 and Arad 18 were
probably written by different authors (P = 0.015 for the letter lamed and P = 0.004 for the whole inscription, combining information from different letters).
Images are courtesy of the Institute of Archaeology, Tel Aviv University, and of the Israel Antiquities Authority.

Faigenbaum-Golovin et al. www.pnas.org/cgi/content/short/1522200113 6 of 8

www.pnas.org/cgi/content/short/1522200113


Table S1. Features and distances used in our algorithm

Feature (ref.) Feature implementation details Distance implementation details

SIFT (28) For each character j, we use the normalized SIFT
descriptors ~di ∈R128 (with

��~di

��
2 = 1) and the

spatial locators~li ∈ ½1,aL�2 for at most 40 significant
key points ki = ð~di ,~liÞ, according to the original SIFT
implementation. The resulting feature is a
set fSIFTj = fkig40i=1.

The distance between fSIFT1 and fSIFT2 is determined as follows:
i) For each key point k1

i ∈ fSIFT1 , find a matching key point
m2

i ∈ fSIFT2 s. t. m2
i = argmin

ðd2
j , l

2
j Þ∈fSIFT2

distðk1
i ,k

2
j Þ; where

distðk1
i , k

2
j Þ=arccosðhd1

i ,d
2
j iÞ ·

��l1i −l2j ��22. Thus, our definition
augments the original SIFT distance by adding
spatial information.

ii ) The one-sided distance is D1,2
SIFT = median

i
fdistðk1

i ,m
2
i Þg.

iii ) The final distance is DSIFT ð1,2Þ= D1,2
SIFT +D2,1

SIFT
2 .

Zernike (29) An off-the-shelf (39) implementation was used.
Zernike moments up to the fifth order
were calculated.

DZernike is the L1 distance between the Zernike feature vectors.

DCT MATLAB (R2009a) default implementation was used. DDCT is the L1 distance between the DCT feature vectors.
Kd-tree (30) An off-the-shelf (40) implementation was used. Both

orders of partitioning are used (first height, then
width, and vice versa)

DKd−tree is the L1 distance between the Kd-tree feature vectors.

Image projections (31) The implementation results in cumulative
distribution functions of the histogram
on both axes.

DProj is the L1 distance between the projections’ feature
vectors; this is similar to the Cramér–von Mises criterion
(which uses L2 distance).

L1 Existing character binarizations. DL1 is the L1 distance between the character images.
CMI (32) Existing character binarizations, with values in f0,1g. The CMI computes a difference between the averages

of the foreground and the background pixels of ℑ,
marked by a binary mask M, CMIðM,ℑÞ= μ1 − μ0, where

μk =meanfℑðp,qÞjMðp,qÞ=kg k=0,1
In our case, given character binarizations B1,B2, the one-sided

distance is D1,2
CMI =1−CMIðB1,B2Þ.

The final distance is DCMIð1,2Þ= D1,2
CMI +D2,1

CMI
2 .

Table S2. Results of the Modern Hebrew experiment

Group of letters
(corresponding to
g-index of simulated
inscriptions)

False positive
(FP out of all
same-writer
comparisons)

False negative
(FN out of all

different-writer
comparisons)

False positive, %
(FP out of all
same-writer
comparisons)

False negative, %
(FN out of all

different-writer
comparisons)

Gimel, het, resh 0/18 8/612 0 1.31
Bet, samek, shin 1/18 5/612 5.56 0.82
Dalet, zayin, ayin 1/18 18/612 5.56 2.94
Tet, lamed, mem 0/18 22/612 0 3.59
Nun, sade, taw 0/18 3/612 0 0.49
He, pe, qop 0/18 16/612 0 2.61
Alep, waw, kap 1/18 11/612 5.56 1.80

Total 3/126 83/4,284 2.38 1.94

The percentages of false-positive and false-negative errors are about 2% each.

Faigenbaum-Golovin et al. www.pnas.org/cgi/content/short/1522200113 7 of 8

www.pnas.org/cgi/content/short/1522200113


Table S3. Letter statistics for each text under comparison

Alphabet letters

Text Alep He Waw Yod Lamed Shin Taw

1 4 5 3 7 3 3 8
2 6 3 3 5 3 1 7
3 2 4 5 4 4 3 3
5 5 3 1 3 4 2 4
7 1 2 1 4 6 8 5
8 2 1 2 1 4 4 2
16 6 3 9 5 10 3 2
17a 2 4 2 2 2 1 2
17b 1 2 1 1 2
18 2 4 4 5 6 6 3
21 5 4 6 6 12 5 2
24 9 10 5 8 4 4 7
31 3 7 6 4 1 1
38 1 1 2 2 2 1
39a 3 3 3 5 2 1 1
39b 3 1 1 4 1
40 4 5 3 4 3 2
111 4 3 3 3 1 3 2

Faigenbaum-Golovin et al. www.pnas.org/cgi/content/short/1522200113 8 of 8

www.pnas.org/cgi/content/short/1522200113

