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Abstract. Chan-Vese is an important and well-established segmentation meth-
od. However, it tends to be challenging to implement, including issues such as
initialization problems and establishing the values of several free parameters.
The paper presents a detailed analysis of Chan-Vese framework. It establishes a
relation between the Otsu binarization method and the fidelity terms of Chan-
Vese energy functional, allowing for intelligent initialization of the scheme. An
alternative, fast, and parameter-free morphological segmentation technique is
also suggested. Our experiments indicate the soundness of the proposed algo-
rithm.

1 Introduction

Since its introduction at the beginning of this millennia, Chan-Vese (CV) segmenta-
tion [1] has become one of the most widely used algorithms in the field of Computer
Vision. In fact, currently, with more than 8000 citations at Google Scholar, this meth-
od is almost twice as popular as the Mumford-Shah framework [2], upon which it is
founded.

The power of CV technique lies within its ability to elegantly take into account the
most important segmentation criteria. These include the length of the boundary curve
between the segmented areas, the variance of gray-levels within each area, as well as
the size of the “foreground” area. All these are handled within the scope of a single
variational framework, leading to Euler-Lagrange equations, and thenceforth to nu-
merical Gradient Descent PDE scheme. Straightforward extensions of this theme to
vector-valued (e.g. RGB) images [3] (peculiarly published before [1]), as well as a
multi-phase level set framework [4], were proposed by the same authors, based on the
same natural formulation.

Nonetheless, CV segmentation presents its own share of challenges. Among these
are several “free” parameters of the algorithm (g ,v,4,4,,&,h,At; e.g. in experi-

mental results of [1], u# ranges from 0.0000033x255% to 2x2552!), its initialization

problem, as well as the intricate and sometimes computationally-intensive PDE
scheme, based upon re-calculating the level set function on each step (an approach
advanced by Osher and Sethian [5]). Although some of these hindrances might be
handled by heuristic approaches (e.g. random re-initializations, as proposed by [1]),
these are ad-hoc solutions, which add an overhead to the algorithm’s implementation —
with no guaranteed and sometimes difficult to forecast outcome.
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Various approaches to these issues have been proposed. The method in [6] initial-
izes using a modification of Canny edge detector [7], [8] chooses an initial level set
via Gradient Descent over a thresholding criterion, [9] substitutes the level set formu-
lation with curve evolution driven by Gaussian smoothing, [10-11] replace the energy
functional with different ones working on a local level, while [12] suggests another
adjustment to the functional, possessing convexity properties.

We propose a new approach: a combination of an initialization based on Otsu’s bi-
narization method [13] (proposed “heuristically” yet not justified in [14]), supple-
mented by a morphological non-PDE energy minimization framework. Indeed, mor-
phological methods have been suggested in the past for minimization of energy func-
tionals pertaining to Computer Vision in general [15-17] and CV in particular. Among
the latter are: [18], replacing the energy minimization with three compound morpho-
logical operators; [19], taking into consideration some pre-computed morphological
data; [20-21], utilizing various structuring elements; [22], applying morphological
filters a-posteriori; and [23], adjusting CV energy functional by morphological gradi-
ent difference (MGD) term. The citation statistics of [13-23] suggests such methods
did not win wide acceptance, possibly due to their tendency to supplement one intri-
cate solution with another.

The main contribution of the current article is an establishment of surprising rela-
tion between CV and Otsu’s method, allowing for a simple initialization procedure.
We also suggest a replacement of CV’s PDE with a parameter-free morphological
framework. The rest of the article is organized as follows: The CV algorithm is ex-
plained, and its individual components are analyzed. An alternative algorithm is pro-
vided and tested in different settings. We conclude with summary remarks and possi-
ble future research directions.

2 The Chan-Vese algorithm

In their seminal paper [1], CV proposed the following segmentation energy functional:

F(c,,c,,C) = u-Length(C)+v - Area(inside(C)) + (€))
+A4 j |u, (%, Y) —c1|2 dxdy + 4, j |uo (X, y) —(:2|2 dxdy °
inside(C) outside(C)

where U,(X,Y) is a given image; C,, C, are constants; C(S) is a parameterized curve
partitioning the image domain Q into disjoint inside(C) and outside(C) sets; while
H,v, A and A, are parameters. Eq. 1 is closely related to the energy functional of
Mumford and Shah [2], which can be written as:

F“(u,C) = u-Length(C) +ﬂf|uo(x, y)—u(x, y)|2 dxdy + o I [Vu(x, y)|2 dxdy )

Q o\C

where u(X,y) is the estimated image, and « is a parameter. Assuming @ —> o, a
piece-wise-constant U(X,y) is necessitated, eliminating the last term of F“° . Assum-
ing further that u(X,y) has only two values, ¢, and C,, and adding the area term, we
arrive at CV functional (Eq. 1). Using the level set formulation ¢ (zero on C, posi-
tive on inside(C) and negative on outside(C) ), the Heaviside function H and Di-

rac’s function 4, :
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1 0< 3)
H(z)={0 Zj; 50(2):%H(z),

Eq. 1 can be reformulated in the following fashion:

F(c,C,8)=u j S, ($(x, V) [V(x, y)| dxdy +v j H (#(x, y))dxdy + “)
+ﬂ1£|uo(x. y)—c| H(g(x, y))dxdy + 4, j [us (%, Y) =, " (1= H (4(x, y)) ) dxdly
The first variation with respect to ¢, results in:
OE j Uy (%, Y)H (#(x, y))dxdly / j H (#(x, y))dxdy , (5)
while the first variation with respect to ¢, yields:
¢, ()= j Uy (X, y) (1= H (#(x, y))) dxdy / j (1= H(#(x, y)))dxdy . (6)

On the other hand, the variation with respect to ¢ is less trivial. First, [1] presents

an altered version of Eq. 4, introducing regularized H_ and &, functions:
F(€, G, 9) = 1] 8, (g%, Y[V #(x, y)| dxdly +v [ H, (4(x, y))dxdly + ™
Q Q
+2: Uy (%, Y) = e[ H, (@0x, yD)axdy + 4, [lus (%, y) —¢,[ (1—H, (#(x, ¥)) ) dxdy
Q Q

Next, an Euler-Lagrange equation for ¢ is derived and parameterized by an artifi-
cial time in the Gradient Descent direction:

®

9 _ divl Y2 o u e Y P
at—55(¢)|:,u d|V[|V¢|J v ﬂl(uo Cl) +}“z(uo Cz)

A numerical scheme for Eq. 8 is also suggested, for further details see [1].

3 From Chan-Vese to Alternative Solution

We now analyze the CV algorithm, and suggest its restatement in alternative terms. In
particular, we prefer not to use the level set framework. Similarly to [1], we strive to
achieve a partition of the image domain Q into two disjoint sets of pixels, denoted
herein as A and A,. Unlike [1], we have no prior assumptions and no limitations

regarding their location within U, . An additional preference would be to avoid a regu-

larized version of the algorithm, which tends to smooth some of the image features
(cf. the criticism of CV on Gaussian smoothing in [1]).

Constants: Already in [1], it was noted that Eqs. 5 and 6 represent the averages:

c,(¢) =average(u,) in{0<¢} , c,(¢)=average(u,)in{p <0} . ©)
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Our alternative (and symmetric) formulation retains the constants ¢, and c,, associat-

ed respectively with A and A,, and calculates them in a similar fashion:

c, =average(u,)on A, c,=average(u,)on A, . (10)

Localization: Eq. 8 defines the evolution of the level set, and subsequently the sets
inside(C) and outside(C). We substitute this scheme with its morphological coun-

terpart. We first consider the multiplicand &, (¢) , where &, is a regularization of &, .
Since &, =1 at a zero-level {¢ =0}, and 5, =0 at {¢ # O}, the term limits the evolu-

tion only to pixels belonging to C (optionally including their immediate neighbors for
0, ). Agreeing with this strategy, we denote as “borderline” pixels the pixels of A

adjacent to at least one pixel in A, , or vice versa.

Curvature-driven evolution: We next consider the first term of the second multipli-
cand of Eq. 8, ,u~diV(V¢/|V¢|)—v — A (U, _C1)2 +2, (U, — ¢, )2 . As explained in [4-

5], k= div(V¢/ [V4|) is the curvature at zero level, which induces a minimization of

the curve’s length. This theoretical construction may be supplemented by a low-level
analysis. Assuming 4-connectivity (radius of 1 around the central pixel), and taking
various symmetries into account, there exists only 5 possible neighborhoods of an A

borderline pixel (borderline pixels of A, admit similar analysis). These options are
presented on Fig. 1. It can be seen, that given a non-negligible x , only Figs. 1a and
1b necessitate a re-assignment of the center pixel to A, - in both of these cases the
radius of the osculating circle is r =1, hence x =1/r =1. Additionally, ignoring the
central pixel, Figs. 1c and 1d present a symmetry between pixels assigned to A and
A, , thus no re-assignment is needed (otherwise an oscillatory behavior is expected),
while Fig. le presents a case of clear A majority. The morphological operator per-

fectly representing such pixel assignment is the median filter. While the presented
analysis represents a radius of 1 around the central pixel, if some kind of regulariza-
tion is desired, a different median filter radius can be chosen (cf. [15,20,21] for the
median filter in related contexts).

4] 4] 4] 4] 4]

Ax | A Az‘ ‘Az Ar Az‘ ‘Az Ar Al‘ ‘Az Ar Az‘ ‘Az A Al‘
A2 A2 A2 Ai Al
() (b) (c) (d) (e)

Fig. 1. Five options of neighborhood of an A borderline pixel. Only (a,b) require a re-
assignment of the central pixel, due to a positive curvature.

Area-driven evolution: The next term to be analyzed within Eq. 8 is —v . If O<v,
this represents a constant reduction in the size of inside(C) , which is difficult to justi-

fy (unless a human operator fancies a specific result). If for some reason the initial sets
inside(C) and outside(C) are switched, the dynamics is reversed, as outside(C) is

now expected to constantly grow, breaking the symmetry between the sets. Moreover,
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given images with small or zero curvature, and 4,, A chosen to be small, the shrink-
ing might continue until inside(C) disappears completely! It seems that the dubious

benefits of this term were understood by CV, since v is mostly set to 0 in [1], and the
term is no longer mentioned in [4]. We also advise against using this term, but in case
it is desired, its morphological substitution would be an erosion in case of 0 <v, and
dilation in case of v <0, with A or A, chosen as a target.

Fidelity-driven evolution: The last terms to be considered within Eq. 8 are
2 (uy =€)+ 24, (up —C,)*, presenting a balance between reducing the size of
inside(C) due to its gray-levels variance, and its enlargement due to the variance of
gray-levels within outside(C) . Reversing our steps shows these terms originate from

A J |u0(x,y)—cl|2dxdy+/12 I |u0(x,y)—cz|2dxdy in Eq. 1, or

inside(C) outside(C)

A I |u0 x,y) —Cl|2 dxdy + 4, I |u0 x,y) —Cz|2 dxdy in our case. Using the recommenda-
A A

tion of A4, = A, =1 [1], this has a surprising relation to Otsu binarization method [13]

(also cf. [14]). Otsu minimizes the thresholding quality criterion @,0,” + ®,0,”, where
k

L k L
512:Z(i_/ﬁ)2'pi/w15 UZZZZ(i_,uz)Z'pi/wz; a’lzzpi5 a’zzz p, and
i-1

i i=k+l ikl

p;, represents the value of the gray-level i <[l 2,...,L] within the normalized histo-
gram of U, . The image is thresholded by k and partitioned into disjoint sets A and
A, , respectively containing gray-levels [1,...,k] and [k +1,...,L]. Thus,

w0 +w,0,° = I|uo(x, y)—c,| dxdy + _[|uo(x, y)—c,| dxdy . 11
A S

Eq. 11 presents us with two opportunities. Firstly, it provides an excellent option
for initialization of the algorithm, since Otsu’s method efficiently handles the needed
minimization of this energy functional, with only the curve length remaining to be
optimized. Secondly, it offers an explanation of the inner machinery of the fidelity
term. Indeed, if all the other terms are negligible, the fidelity term would “strive” to
lower the energy until the minimum, corresponding to optimal Otsu’s thresholding, is
reached. Therefore, several options for fidelity-driven evolution strategies can be
proposed:

1. The “original” rule: eroding A if —(u,—¢,)’ +(u, —c,)’ <O and dilating it
if —(up —¢,)" +(u, —c,)* >0.

2. The “Otsu-aware” rule: At initialization, A and A, are associated with
their “optimal” partitioning (calculated only once). Even if changes in A

and A, occur due to other terms, it is still possible to immediately recognize

the “misattributed” borderline pixels, which need to be re-assigned.

3. The “no-rule” rule (our preference): Since the initialization already used
Otsu’s criterion in an optimal manner, it would be better to drop the fidelity
from further consideration, allowing other factors to properly influence the
calculations.
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Proposed algorithm: Our recommendations are summarized in Table 1.

Table 1. Description of the algorithm, including various options

Step Recommendation Additional options
Initialization Otsu’s method in order to partition
U, into A and A,.

Evolution Median filter with radius 1* on Median filters with other radii* on
label ( A and A,) map. label map, for regularization purposes.
No area term (v =0). If desired, dilation/erosion of A or

A, (and vice versa).

No fidelity term (4, = 4, =0). ¢ Dilation/erosion depending on
fidelity term
e Re-assigning “misattributed” Otsu
borderline pixels
Stopping Convergence of A and A,.
criterion

* Please note, that due to certain challenges in implementing median filters utilizing Euclid-
ean neighborhoods, a more convenient maximum norm is used in the experimental section
below. E.g., radius 1 neighborhood now includes 9 and not 5 pixels.

4 Experimental Results

In the following experiments, a segmentation is demonstrated on non-trivial images,
some of which resembling the ones used by [1]. Fig. 2 presents an object with a
smooth contour, Fig. 3 shows satellite image of Europe night-lights, Fig. 4 demon-
strates a spiral art-work, while Fig. 5 represents a noisy inscription from the ancient
biblical fort of Arad (for further details and analysis, see [24-26]). It can be observed
that in general, the default or slightly regularized parameters produce high-quality
segmentation, superior to Otsu with no curvature evolution. We omit comparisons
with the CV algorithm, due to the high dependence of its results on the various param-
eters in use, as explained above.
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Fig. 2. Segmentation of an object of smooth contour: original image (leff), vs. result with de-
fault setting (center), vs. result with radius=11 (right)

Fig. 3. Segmentation of a satellite image of Europe night-lights: original image (/eff), vs. Otsu
binarization (center), vs. result with the default setting (right). Image courtesy NASA/Goddard
Space Flight Center Scientific Visualization Studio, public domain

Fig. 4. Segmentation of a spiral art-work: original image (upper left), vs. Otsu binarization
(upper right), vs. result with the default setting (lower left), vs. result with radius=2 (lower
right). Image courtesy José-Manuel Benito Alvarez, public domain
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Fig. 5. Segmentation of an ancient and noisy inscription (Arad ostracon No. 1): original image
(upper left), vs. Otsu binarization (upper right), vs. result with the default setting (lower left),
vs. result with radius=2 (lower right). Image courtesy Institute of Archaeology, Tel Aviv Uni-
versity and Israel Antiquities Authority

S Summary and Future Directions

The paper presents a detailed analysis of the CV segmentation framework. Among the
main novelties of the article are the surprising relation between the Otsu binarization
method and the fidelity terms of CV energy functional (which may explain the results
of [12], resembling binarization), allowing for intelligent initialization of the function-
al. This is accompanied by a suggestion of a very fast, parameter-free morphological
framework, substituting the CV PDE-based segmentation method. The experimental
results demonstrate the soundness of our approach. Future research direction may
include further experiments, as well as the extension of our method into vector-valued
images and multi-phase segmentation.
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