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Abstract. Chan-Vese is an important and well-established segmentation meth-

od. However, it tends to be challenging to implement, including issues such as 

initialization problems and establishing the values of several free parameters. 

The paper presents a detailed analysis of Chan-Vese framework. It establishes a 

relation between the Otsu binarization method and the fidelity terms of Chan-

Vese energy functional, allowing for intelligent initialization of the scheme. An 

alternative, fast, and parameter-free morphological segmentation technique is 

also suggested. Our experiments indicate the soundness of the proposed algo-

rithm. 

1   Introduction 

Since its introduction at the beginning of this millennia, Chan-Vese (CV) segmenta-

tion [1] has become one of the most widely used algorithms in the field of Computer 

Vision. In fact, currently, with more than 8000 citations at Google Scholar, this meth-

od is almost twice as popular as the Mumford-Shah framework [2], upon which it is 

founded. 

The power of CV technique lies within its ability to elegantly take into account the 

most important segmentation criteria. These include the length of the boundary curve 

between the segmented areas, the variance of gray-levels within each area, as well as 

the size of the “foreground” area. All these are handled within the scope of a single 

variational framework, leading to Euler-Lagrange equations, and thenceforth to nu-

merical Gradient Descent PDE scheme. Straightforward extensions of this theme to 

vector-valued (e.g. RGB) images [3] (peculiarly published before [1]), as well as a 

multi-phase level set framework [4], were proposed by the same authors, based on the 

same natural formulation. 

Nonetheless, CV segmentation presents its own share of challenges. Among these 

are several “free” parameters of the algorithm (  , ,
1 ,

2 ,  , h , t ; e.g. in experi-

mental results of [1],   ranges from 0.0000033x2552 to 2x2552!), its initialization 

problem, as well as the intricate and sometimes computationally-intensive PDE 

scheme, based upon re-calculating the level set function on each step (an approach 

advanced by Osher and Sethian [5]). Although some of these hindrances might be 

handled by heuristic approaches (e.g. random re-initializations, as proposed by [1]), 

these are ad-hoc solutions, which add an overhead to the algorithm’s implementation – 

with no guaranteed and sometimes difficult to forecast outcome. 
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Various approaches to these issues have been proposed. The method in [6] initial-

izes using a modification of Canny edge detector [7], [8] chooses an initial level set 

via Gradient Descent over a thresholding criterion, [9] substitutes the level set formu-

lation with curve evolution driven by Gaussian smoothing, [10-11] replace the energy 

functional with different ones working on a local level, while [12] suggests another 

adjustment to the functional, possessing convexity properties. 

We propose a new approach: a combination of an initialization based on Otsu’s bi-

narization method [13] (proposed “heuristically” yet not justified in [14]), supple-

mented by a morphological non-PDE energy minimization framework. Indeed, mor-

phological methods have been suggested in the past for minimization of energy func-

tionals pertaining to Computer Vision in general [15-17] and CV in particular. Among 

the latter are: [18], replacing the energy minimization with three compound morpho-

logical operators; [19], taking into consideration some pre-computed morphological 

data; [20-21], utilizing various structuring elements; [22], applying morphological 

filters a-posteriori; and [23], adjusting CV energy functional by morphological gradi-

ent difference (MGD) term. The citation statistics of [13-23] suggests such methods 

did not win wide acceptance, possibly due to their tendency to supplement one intri-

cate solution with another. 

The main contribution of the current article is an establishment of surprising rela-

tion between CV and Otsu’s method, allowing for a simple initialization procedure. 

We also suggest a replacement of CV’s PDE with a parameter-free morphological 

framework. The rest of the article is organized as follows: The CV algorithm is ex-

plained, and its individual components are analyzed. An alternative algorithm is pro-

vided and tested in different settings. We conclude with summary remarks and possi-

ble future research directions. 

2   The Chan-Vese algorithm 

In their seminal paper [1], CV proposed the following segmentation energy functional: 
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where 
0 ( , )u x y  is a given image; 

1c , 
2c  are constants; ( )C s  is a parameterized curve 

partitioning the image domain   into disjoint ( )inside C  and ( )outside C  sets; while 

 , ,
1  and

2  are parameters. Eq. 1 is closely related to the energy functional of 

Mumford and Shah [2], which can be written as: 

 
2 2

0

\
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F u C Length C u x y u x y dxdy u x y dxdy  
 

         (2) 

where ( , )u x y  is the estimated image, and   is a parameter. Assuming   , a 

piece-wise-constant ( , )u x y  is necessitated, eliminating the last term of MSF . Assum-

ing further that ( , )u x y  has only two values, 
1c  and 

2c , and adding the area term, we 

arrive at CV functional (Eq. 1). Using the level set formulation   (zero on C , posi-

tive on ( )inside C  and negative on ( )outside C ), the Heaviside function H  and Di-

rac’s function 
0 : 
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Eq. 1 can be reformulated in the following fashion: 
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The first variation with respect to 
1c  results in: 

1 0( ) ( , ) ( ( , )) / ( ( , ))c u x y H x y dxdy H x y dxdy  
 

    , (5) 

while the first variation with respect to 
2c  yields: 

   2 0( ) ( , ) 1 ( ( , )) / 1 ( ( , ))c u x y H x y dxdy H x y dxdy  
 

     . (6) 

On the other hand, the variation with respect to   is less trivial. First, [1] presents 

an altered version of Eq. 4, introducing regularized H  and   functions: 
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(7) 

Next, an Euler–Lagrange equation for   is derived and parameterized by an artifi-

cial time in the Gradient Descent direction: 

   
2 2

1 0 1 2 0 2( ) div u c u c
t



 
     



   
             

 . 
(8) 

A numerical scheme for Eq. 8 is also suggested, for further details see [1]. 

3   From Chan-Vese to Alternative Solution 

We now analyze the CV algorithm, and suggest its restatement in alternative terms. In 

particular, we prefer not to use the level set framework. Similarly to [1], we strive to 

achieve a partition of the image domain   into two disjoint sets of pixels, denoted 

herein as 
1A  and 

2A . Unlike [1], we have no prior assumptions and no limitations 

regarding their location within 
0u . An additional preference would be to avoid a regu-

larized version of the algorithm, which tends to smooth some of the image features 

(cf. the criticism of CV on Gaussian smoothing in [1]). 

Constants: Already in [1], it was noted that Eqs. 5 and 6 represent the averages: 

1 0 2 0( ) ( ) {0 } , ( ) ( ) { 0}c average u in c average u in        . 
(9) 
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Our alternative (and symmetric) formulation retains the constants 
1c  and 

1c , associat-

ed respectively with 
1A  and 

2A , and calculates them in a similar fashion: 

1 0 1 2 0 2( ) , ( )c average u on A c average u on A   . (10) 

Localization: Eq. 8 defines the evolution of the level set, and subsequently the sets 

( )inside C  and ( )outside C . We substitute this scheme with its morphological coun-

terpart. We first consider the multiplicand ( )  , where 
  is a regularization of 

0 . 

Since 
0 1   at a zero-level { 0}  , and 

0 0   at { 0}  , the term limits the evolu-

tion only to pixels belonging to C  (optionally including their immediate neighbors for 

 ). Agreeing with this strategy, we denote as “borderline” pixels the pixels of 
1A  

adjacent to at least one pixel in 
2A , or vice versa. 

Curvature-driven evolution: We next consider the first term of the second multipli-

cand of Eq. 8,      
2 2

1 0 1 2 0 2/div u c u c             . As explained in [4-

5],  /div      is the curvature at zero level, which induces a minimization of 

the curve’s length. This theoretical construction may be supplemented by a low-level 

analysis. Assuming 4-connectivity (radius of 1 around the central pixel), and taking 

various symmetries into account, there exists only 5 possible neighborhoods of an 
1A  

borderline pixel (borderline pixels of 
2A  admit similar analysis). These options are 

presented on Fig. 1. It can be seen, that given a non-negligible  , only Figs. 1a and 

1b necessitate a re-assignment of the center pixel to 
2A  - in both of these cases the 

radius of the osculating circle is 1r  , hence 1/ 1r   . Additionally, ignoring the 

central pixel, Figs. 1c and 1d present a symmetry between pixels assigned to 
1A  and 

2A , thus no re-assignment is needed (otherwise an oscillatory behavior is expected), 

while Fig. 1e presents a case of clear 
1A  majority. The morphological operator per-

fectly representing such pixel assignment is the median filter. While the presented 

analysis represents a radius of 1 around the central pixel, if some kind of regulariza-

tion is desired, a different median filter radius can be chosen (cf. [15,20,21] for the 

median filter in related contexts). 

 A2    A1    A1    A1    A1  

A2 A1 A2  A2 A1 A2  A2 A1 A1  A2 A1 A2  A2 A1 A1 

 A2    A2    A2    A1    A1  

 (a)    (b)    (c)    (d)    (e)  

Fig. 1. Five options of neighborhood of an 1A  borderline pixel. Only (a,b) require a re-

assignment of the central pixel, due to a positive curvature. 

Area-driven evolution: The next term to be analyzed within Eq. 8 is  . If 0  , 

this represents a constant reduction in the size of ( )inside C , which is difficult to justi-

fy (unless a human operator fancies a specific result). If for some reason the initial sets 

( )inside C  and ( )outside C  are switched, the dynamics is reversed, as ( )outside C  is 

now expected to constantly grow, breaking the symmetry between the sets. Moreover, 
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given images with small or zero curvature, and 
1 , 

1  chosen to be small, the shrink-

ing might continue until ( )inside C  disappears completely! It seems that the dubious 

benefits of this term were understood by CV, since   is mostly set to 0 in [1], and the 

term is no longer mentioned in [4]. We also advise against using this term, but in case 

it is desired, its morphological substitution would be an erosion in case of 0  , and 

dilation in case of 0  , with 
1A  or 

2A  chosen as a target. 

Fidelity-driven evolution: The last terms to be considered within Eq. 8 are 

   
2 2

1 0 1 2 0 2u c u c     , presenting a balance between reducing the size of 

( )inside C  due to its gray-levels variance, and its enlargement due to the variance of 

gray-levels within ( )outside C . Reversing our steps shows these terms originate from 

2 2

1 0 1 2 0 2

( ) ( )

( , ) ( , )
inside C outside C

u x y c dxdy u x y c dxdy      in Eq. 1, or 

1 2

2 2

1 0 1 2 0 2( , ) ( , )
A A

u x y c dxdy u x y c dxdy      in our case. Using the recommenda-

tion of 
1 2 1    [1], this has a surprising relation to Otsu binarization method [13] 

(also cf. [14]). Otsu minimizes the thresholding quality criterion 2 2

1 1 2 2   , where 

 
22

1 1 1

1

/
k

i

i

i p  


   ;  
22

2 2 2

1

/
L

i

i k

i p  
 

   ; 1

1

k

i

i

p


 ; 2

1

L

i

i k

p
 

   and 

ip  represents the value of the gray-level [1,2,..., ]i L  within the normalized histo-

gram of 
0u . The image is thresholded by k  and partitioned into disjoint sets 

1A  and 

2A , respectively containing gray-levels [1,..., ]k  and [ 1,..., ]k L . Thus, 

1 2

2 22 2

1 1 2 2 0 1 0 2( , ) ( , )
A A

u x y c dxdy u x y c dxdy         . (11) 

Eq. 11 presents us with two opportunities. Firstly, it provides an excellent option 

for initialization of the algorithm, since Otsu’s method efficiently handles the needed 

minimization of this energy functional, with only the curve length remaining to be 

optimized. Secondly, it offers an explanation of the inner machinery of the fidelity 

term. Indeed, if all the other terms are negligible, the fidelity term would “strive” to 

lower the energy until the minimum, corresponding to optimal Otsu’s thresholding, is 

reached. Therefore, several options for fidelity-driven evolution strategies can be 

proposed: 

1. The “original” rule: eroding 
1A  if    

2 2

0 1 0 2 0u c u c      and dilating it 

if    
2 2

0 1 0 2 0u c u c     . 

2. The “Otsu-aware” rule: At initialization, 
1A  and 

2A  are associated with 

their “optimal” partitioning (calculated only once). Even if changes in 
1A  

and 
2A  occur due to other terms, it is still possible to immediately recognize 

the “misattributed” borderline pixels, which need to be re-assigned. 

3. The “no-rule” rule (our preference): Since the initialization already used 

Otsu’s criterion in an optimal manner, it would be better to drop the fidelity 

from further consideration, allowing other factors to properly influence the 

calculations. 
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Proposed algorithm: Our recommendations are summarized in Table 1. 

Table 1. Description of the algorithm, including various options 

Step Recommendation Additional options 

Initialization Otsu’s method in order to partition 

0u  into 1A  and 2A . 

 

Evolution Median filter with radius 1* on 

label ( 1A  and 2A ) map. 

Median filters with other radii* on 

label map, for regularization purposes. 

 No area term ( 0  ). If desired, dilation/erosion of 1A  or 

2A  (and vice versa). 

 No fidelity term ( 1 2 0   ). • Dilation/erosion depending on 

fidelity term 

• Re-assigning “misattributed” Otsu 

borderline pixels 

Stopping 

criterion 
Convergence of 1A  and 2A .  

 

* Please note, that due to certain challenges in implementing median filters utilizing Euclid-

ean neighborhoods, a more convenient maximum norm is used in the experimental section 

below. E.g., radius 1 neighborhood now includes 9 and not 5 pixels. 

4   Experimental Results 

In the following experiments, a segmentation is demonstrated on non-trivial images, 

some of which resembling the ones used by [1]. Fig. 2 presents an object with a 

smooth contour, Fig. 3 shows satellite image of Europe night-lights, Fig. 4 demon-

strates a spiral art-work, while Fig. 5 represents a noisy inscription from the ancient 

biblical fort of Arad (for further details and analysis, see [24-26]). It can be observed 

that in general, the default or slightly regularized parameters produce high-quality 

segmentation, superior to Otsu with no curvature evolution. We omit comparisons 

with the CV algorithm, due to the high dependence of its results on the various param-

eters in use, as explained above. 
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Fig. 2. Segmentation of an object of smooth contour: original image (left), vs. result with de-

fault setting (center), vs. result with radius=11 (right) 

   

Fig. 3. Segmentation of a satellite image of Europe night-lights: original image (left), vs. Otsu 

binarization (center), vs. result with the default setting (right). Image courtesy NASA/Goddard 

Space Flight Center Scientific Visualization Studio, public domain 

  

  

Fig. 4. Segmentation of a spiral art-work: original image (upper left), vs. Otsu binarization 

(upper right), vs. result with the default setting (lower left), vs. result with radius=2 (lower 

right). Image courtesy José-Manuel Benito Álvarez, public domain 
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Fig. 5. Segmentation of an ancient and noisy inscription (Arad ostracon No. 1): original image 

(upper left), vs. Otsu binarization (upper right), vs. result with the default setting (lower left), 

vs. result with radius=2 (lower right). Image courtesy Institute of Archaeology, Tel Aviv Uni-

versity and Israel Antiquities Authority 

5   Summary and Future Directions 

The paper presents a detailed analysis of the CV segmentation framework. Among the 

main novelties of the article are the surprising relation between the Otsu binarization 

method and the fidelity terms of CV energy functional (which may explain the results 

of [12], resembling binarization), allowing for intelligent initialization of the function-

al. This is accompanied by a suggestion of a very fast, parameter-free morphological 

framework, substituting the CV PDE-based segmentation method. The experimental 

results demonstrate the soundness of our approach. Future research direction may 

include further experiments, as well as the extension of our method into vector-valued 

images and multi-phase segmentation. 
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