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Abstract. A binarization of challenging historical inscription is improved by means of sparse methods. The 
approximation is based on a binary dictionary learned by k-medians and k-medoids algorithms from a clear 
source. Some preliminary results show superiority to the existing binarization with respect to fine features 
such as strokes continuity, deviations from a straight line, edge noise and the presence of stains. The k-
medians dictionary-learning scheme shows a robust behavior when initial patches database is reduced. 

 
1. Introduction 
Binarization of First Temple Period ostraca (ink written on clay sherds, see Fig 1a) inscriptions is a challenging 
problem even for the state-of-the-art algorithms in the field of Historical Document Analysis (Shaus & al., 
2012a). Currently, Iron Age palaeographers prefer to use manually produced binary images, termed facsimiles 
(Shaus & al., 2010 and 2012b). Following our previous research, we aim at laying the ground for automatic 
production of such binary images, with the aid of already existing binarizations of unsatisfactory quality. 

In the last decade, there has been a rapid development in the field of sparse coding methods, for various 
Image Processing tasks. We explore the possibility of using similar techniques in order to produce an improved 
inscription binarization. 

Let n KD   be an over-complete dictionary that contains K  atoms 1{ }K

j jd   for columns. A signal 
ny  can be represented or approximated by a sparse linear combination of these atoms, y Dx , Kx . 

The approximation is chosen in the sense that 
p

y Dx    ( p  is commonly selected to be 1, 2 or  ), with 

the sparsity of x  minimized by the 0l  norm, counting the number of nonzero coefficients. In other words: 
 
 

0
min

x
x  subject to 

p
y Dx    (1) 

 
Since an exact determination of the sparsest representation is an NP-hard problem (Davis & al., 1997), 

there arises a need for reducing the size of the dictionary D . This can either be performed prior to solving the 
minimization problem in Eq. 1, or in parallel. The most prominent methods for dictionary training and 
quantization are k-means (Gersho & al., 1991), ML - Maximum Likelihood methods (Olshausen & al., 1996 and 
Lewicki & al., 1999), MOD - Method of Optimal Directions (Engan & al., 1999), MAP - Maximum A-Posteriori 
Probability (Kreutz-Delgado & al., 2000), UONB - Union of Orthonormal Bases (Lesage & al., 2000) and the 
highly popular k-SVD (Aharon & al., 2006). 

In order to produce a binarization, we would like to use a dictionary containing black and white patches. 
In addition, the representation should avoid any combinations of such atoms in order to maintain the binary 
property of the resulting approximation. Only one atom jd  from the dictionary, with a corresponding coefficient 

of 1jx   should be used for each approximated patch, while 0ii j x   . Therefore, the problem is 

slightly changed: we set the 0l  norm of x  exactly to 1, while we wish to find the best approximation of y . 
Though it is tempting to approximate the inscription image by itself (using it as a source for y ), empirically its 
imperfect binarized images perform much better in this role. 

Thus, using the above-mentioned formalism, our problem is composed of two steps: 
1. Learn an over-complete binary dictionary {0,255}n KD  , representing black and white patches. 

2. For each patch y  in an existing imperfect binarization, find min
px

y Dx  subject to 0
1x  . 

 
2. Proposed Solution 
The most demanding task is the first step of dictionary learning. It would seem that after obtaining a large 
database of patches, one would be able to plug-in any of the above mentioned off-the-shelf solutions. However, 
this is not the case. Almost all of these methods can be essentially interpreted as generalizations of the k-means 
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algorithm. Thus, the constructed dictionary would almost certainly result in gray level, rather than black and 
white values. Moreover, most of the methods assume that jd  are part of a linear space (possibly coupled with an 
inner product), which is untrue in our case. 

One possible solution may be applying “extensive” methods, avoiding the need for quantization 
altogether and using a large patches database as a dictionary. This may not always be feasible. A more elegant 
suggestion would be the utilization of the k-medians (Jain & al., 1981) or k-medoids (Kaufman & al., 1987) 
methods, which results in K  atoms with appropriate values of 0 or 255 (the uncommon case of 127.5 can be 
assigned to either one of them). 

The formal description of the algorithm, for each inscription, is: 
1. Collect a large database of clean black and white patches. We use the above mentioned hand-made 

facsimiles as the primary source. 
2. Learn a dictionary based on the database, using either k-medians or k-medoids method. Alternatively (if 

allowed computationally), use the whole database as a dictionary. 
3. For each patch y  in the existing imperfect binarization, find the most suitable replacement jd D , 

chosen by the solution of 
0 1

min
px

y Dx


 . If the patches y  overlap, construct the binarization by 

prioritizing the patches with a better score. 
 
3. Preliminary Experimental Results 
Our experiments tested the soundness and performance of the technique with respect to different algorithm 
parameters and various ostraca inscriptions. The following parameters were kept constant: patch size = 11x11 
pixels (in the initial database, patches are sampled on 3 pixels grid, with at most 73% overlap), dictionary size = 
100 atoms (except for the extensive dictionary solution, where a typical number of atoms was 1000 up to 30000), 
number of repeated random initializations for k-medians and k-medoids = 100. 

The first experiment tested the relationship between the best binary images available for our medium 
(Shaus & al., 2012a), and the improved binarization obtained by k-medians, k-medoids and extensive dictionary 
methods. The results for the ostracon of Arad #1 can be seen in Fig. 1, while the results for the ostracon of Arad 
#34 can be seen on Fig. 2. 

 

 
 (a) (b) (c) (d) (e) 

 
 (f) (g) (h) (i) 

 
Figure 1. Arad #1 (a) ostracon image (b) best available binarization (c) k-medians result (d) k-medoids result

 (e) extensive dictionary result; zoom on right-center: (f) best available binarization (g) k-medians result 
(h) k-medoids result (i) extensive dictionary result 
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 (a) (b) (c) (d) 

 
 (e) (f) (g) (h) 

 
Figure 2. Arad #34 (a) best available binarization (b) k-medians result (c) k-medoids result (d) extensive dictionary result  

Zoom on top-left: (e) best available binarization (f) k-medians result (g) k-medoids result (h) extensive dictionary result 
 

The results show that the performance of the sparse models rivals that of the best binarization. In fact, 
when looking on a fine-grained details like strokes continuity, deviations from straight line, edge noise and the 
presence of stains, k-medians (on Fig. 1) and k-medoids (on Fig. 2) outcomes are superior to the available 
binarization, though not by a far margin. We note that despite its heavy computational burden, the extensive 
dictionary solution does not surpass the k-medians and k-medoids in both cases. It may be that the optimally 
fitting patches of the extensive dictionary result lack the robustness of the k-medians and the k-medoids 
solutions. 

 
 (a) (b) (c) 

 
 (d) (e) (f) 

 
Figure 3. Arad #1, robustness of k-medians, initial DB size reduced by a factor of: (a) 3 (b) 21 (c) 75.  

Robustness of k-medoids, initial DB size reduced by a factor of: (d) 3 (e) 21 (f) 75. 
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The robustness of the different methods was put to a test in the second experiment. The initial patches 
database was reduced by a factor of 3 by removing duplicate patches (in a non-robust scenario, this may bias the 
selection of the dictionary atoms). It was then further reduced by 9 and by 25 by changing the sampling ratio. 
The results of this test can be seen on Fig. 3. 

The results show that the k-medians algorithm has an impressively robust behaviour, even under 
relatively strenuous initial database shrinkage. On the other hand, the performance of k-medoids is less robust 
and hard to predict. It may be that the medoids are prone to be altered upon changes in database (since medoids 
are database members) or in the random initialization. 

 
4. Summary and Future directions 
We presented a method to improve an already existing unsatisfactory binarization utilizing a sparse model. A 
database of black and white patches was created from a clean source. Existing dictionary learning methods were 
found to be unsuitable for our needs. Therefore, a dictionary was created via k-medians, k-medoids and 
extensive dictionary techniques. The results of k-medians and k-medoids were found to be sound, with fine-
grained details superior to the available binarization, though not by a far margin. Further tests revealed that k-
medians algorithm is more robust to initial database shrinkage than k-medoids. 

This paper presents on-going research on binary sparse methods. Many future research directions are 
envisioned: different parameters tuning, learning a global dictionary suitable for various inscriptions; an 
adaptation of Maximum Likelihood dictionary learning methods; and shifting from 1-atom fit to non-linear 
combinations. 
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