The Enigma of the Biblical Bath
and the System of Liquid Volume Measurement during the First Temple Period

Oded Lipschits / Ido Koch / Arie Shaus / Shlomo Guil, Tel Aviv

Abstract
In this paper we claim that during the First Temple period, no organized or fixed system of liquid volume measurements existed in Judah. The biblical bath, which has been understood to be the basic measurement of the system, was not a measurement at all but a well-known vessel – the Judahite storage jar – also known as the lmlk jar. The nēḇel and the kaḏ were two other vessels that had other uses. The löḡ, hîn, and 'îššārôn, which are usually termed “measurements” and considered part of the system of liquid volume measurements, were actually vessels that were part of the official Temple cult during the Second Temple period and were never part of the First Temple economy and administration.

Reconstructing and Deconstructing the Liquid Volume Measurement System

The basis of the assumed Judahite First Temple period liquid volume measurement system is the bath, which is comprised of six hîn or 72 löḡ (cf. to de Vaux, 1961, 200–201; Stern, 1962, 851–852; Zapassky et al., 2009, 58; Kletter, 2009, 362). Recently, some scholars (Zapassky et al., 2009, 53, 59; Kletter, 2009, 362) also included the 'îššārôn, classified as one-tenth of a bath, as a liquid volume measurement. Three main sources have been used for reconstructing this liquid
volume measurement system: the biblical text, epigraphic finds, and various vessels discovered during archaeological excavations. Of the three sources, the biblical text is the most important for First Temple reality, and most scholars assume that biblical references testify to fixed measurements of liquid volume. A close analysis of the text reveals, however, that what scholars have termed “measurements” (and cf. to Albright, 1943, 58–59; de Vaux, 1961, 200–201; Scott, 1970, 350–351; Ussishkin, 1978, 87 note 9; Heltzer, 1989; 2008; Eph-al/Naveh, 1993; Zapassky et al., 2008; Kletter, 2009), are actually vessels that were part of the official Temple cult – most in use during the Second Temple period:

- **The term lōḡ** is mentioned five times in the Bible, all in the same chapter in Leviticus (14:10, 12, 15, 21, and 24) (Millgrom, 1991, 846; cf. Cohen, 1978, 60–61). The lōḡ is not a measurement but an oil vessel in the Temple cult, that can be lifted for waving (Leviticus 14:12, 24) or be used for pouring (ibid. 15). Leviticus 14 is well dated to the post-exilic period, and there is no evidence of using the lōḡ within the administration or economy during the First or the Second Temple periods.

- **The term hîn** is mentioned in the Bible 22 times, in all cases in association with the Temple cult. Like the lōḡ, the hîn, too, was not a liquid volume measurement during the First Temple period, but a vessel. The name of this vessel, hîn, may be an Egyptian loanword (Ellenbogen, 1962, 68; Muchiki, 1999, 243) for a containing vessel for oil or wine that was used for cult purposes. The hîn does not occur in the Deuteronomic history or in epigraphic sources, so there is no evidence of its use in the administration or the economy of the First or the Second Temple periods. Besides, there is no reference for interpreting the hîn as a sixth of a bath on the basis of the references in Ezekiel (cf. Cook, 1960, 504; Stern, 1963, 854; Rattray, 1991, 896), mainly because one can only learn from these texts that the hîn was a well-known containing vessel for cult use (Ezekiel, 46:5, 7; and cf. Block, 1998, 673), for libations (Leviticus 23:13; and cf. Noth, 1974, 171), and for concocting ointments (Exodus 30:24; and cf. Noth, 1966, 238; Propp, 2006, 471–472). One can also use a half hîn (Numbers 15:10; 28:14), a third hîn (Numbers 15:6, 7; 28:14; Ezekiel 46:14) or a quarter hîn (Exodus 29:40; Leviticus 23:13; Numbers 15:4, 5; 28:5, 7, 14). Based on the fact that there is no evidence of the use of the hîn within the administration or the economy, it can be speculated that it was a special, probably also a small and open vessel with limited use within the Temple cult.

- **The ʾiṣṣārôn** was not known as a liquid volume measurement, and there is no evidence for its use within the administration or the economy of the Kingdom of Judah during the First Temple period. It is mentioned 33 times

1 Exodus (29:40 [twice]; 30:24), Leviticus (19:36; 23:13), Numbers (15:4, 5, 6, 7, 9, 10; 28:5, 7, 14 [three times] and in two chapters of the Book of Ezekiel (45:24; 46:5, 7, 11, 14).
in the Bible, all in post-exilic texts in the Pentateuch. In all of the ‘issārôn occurrences it is used in reference to the Temple cult, dealing with dry capacity, usually semolina, which was mixed with oil in order to prepare burnt offerings.

- The kōr is mentioned in the Bible eight times, six as a dry capacity measurement, in which semolina, wheat and barley are measured (1 Kings 5:11; 2 Chronicles 2:10; 27:5 [KJV]). In 1 Kings 5:11 it is written, “And Solomon gave Hiram twenty thousand kōr of wheat for food to his household, and twenty kōr of pure oil: thus gave Solomon to Hiram year by year.” Scholars have used this verse as a source in order to understand Ezekiel’s prophecy (45:14; KJV): “Concerning the ordinance of oil, the bath of oil, ye shall offer the tenth part of a bath out of the kōr, which is a hōmer of ten baths; for ten baths are a hōmer.” On the base of this verse, which describes a utopian future, when “You shall have honest balances, an honest ephah, and an honest bath” (v. 10), when the prophet is mixing in purpose the liquid and the dry measures in order to emphasis that “The ephah and the bath shall be of the same measure, the bath containing one-tenth of a hōmer, and the ephah one-tenth of a hōmer; the hōmer shall be the standard measure” (v. 11), the bath was reconstructed as one-tenth of a kōr, and some scholars have even calculated the ratio of these measurements with the hin and the lôḡ (Rattray, 1991). Beside the common assumption that the Book of Ezekiel reflects the exilic or the post-exilic-period reality, primarily of the Temple cult, and not the First Temple reality of the administration and the economy, it is important to note that in the Septuagint and in Book Eight (57) of Josephus’ Antiquities it is written that Solomon gave Hiram “twenty thousand (γόλαδας) baths of fine oil,” and in the light of the data presented above it seems that this is the preferred version of the verse (cf. also Fritz, 1996, 61 note 25).

2 Exodus 29:40; Leviticus 14:10; 21; 15:6, 9; 23:13, 17; Numbers 15:4, 6, 9; 28:9, 12 (twice), 13 (twice), 20 (twice), 21, 28 (twice), 29; 29:3 (twice), 4, 9 (twice), 10, 14 (twice), 15 (twice), 40.

3 While some of the first scholars (Skinner, 1895; Redpath, 1907, xv, 214) accepted that Ezekiel’s prophecy in Chapter 45 is a continuation of previous chapters, dated to “the five and twentieth year of our captivity, in the beginning of the year, in the tenth day of the month, in the fourteenth year after that the city was smitten” (Ezekiel 40:1), other scholars (cf. Torrey, 1970) argued against the connection of this prophecy to Ezekiel himself (but cf. Haran, 1979, 46), and see the earliest layers of the Book of Ezekiel as reflecting the late exilic period, while the book itself was edited during the Persian period (Laato, 1992, 189–196; Tuell, 1992; cf. Also to Block, 1998, 495, with further literature. For a more conservative approach, see Greenberg, 1983, 12–17).

4 And cf. the Pashitta, in which the number “twenty thousand” is preserved.

5 On the other hand, Montgomery (1951, 136) and Mulder (1998, 217–218, after Wevers, 1950, 308), argued that the MS version is the original one, while the translations re-
Further liquid volume measurements have been suggested based on archaeological and epigraphic finds. Aharoni (1981, 16; and cf. Ahituv, 2005, 85; see also: Pardee, 1978, 297–298), based on letter No 2 from Arad, which reads (line 5): ml. hḥmr. yyn (“fill the hōmer with wine”), ascribed the hōmer measurement to the liquid volume measurement system (perhaps in accordance with the prophecy in Ezekiel 45:15; and cf. Stern, 1962, 852). Contra this view, the enormous capacity of this shipment (according to Aharoni: 220 liters), must be emphasized, as well as the lack of recipient and the alternative translation for the term hmr – young/fermenting (hemer). According to Lemaire (1977, 44–45), Mittmann (1993, 43–45) and Dobbs-Allsopp et al. (2005, 14) this is the classification of the type of wine mentioned in line 2 of the same letter, just as the ḫms (sour) in line 7 is the classification of the bread in line 4 (Mittman, 1993, 45; contra Aharoni, 1981, 16). This can be paralleled to other classifications of the wine in letter 1, lines 9–10: myy[n] / h’gnt . ttm (“from the wine of the mixing vessel/ krater you shall give”) (see discussion in Dobbs-Allsopp et al., 2005, 11–12). We may assume that that letter deals with wine that was mixed with water in the krater, for wine is usually not kept in an open vessel.

Aharoni (1981, 20) used another letter from Arad in order to attribute a different measurement: the tithe (ma’āsēr). In letter 5, lines 10–12, Aharoni reconstructed: … šr . y/[šlḥ] . lk . ’t . hm’/[šr] . b[h] 1 11 . b[ṛm (“… Who [will send] to you the t[he], 3 baths before …”). Some scholars accepted this reconstruction, and saw it as evidence of a measurement of one-tenth of a bath (cf. Ahituv, 2005, 20). Nevertheless, the reconstruction of y/[šlḥ] (“will send”) and hm’ /[šr] (“the tithe”) is not certain (Pardee, 1982, 38; Dobbs-Allsopp et al., 2005, 20) and there is a different reconstruction by Aharoni (1981, 20, note 1): šr . y/[šlḥ] . lk . ’th . m’/[XX]ḥ (“Who [will send] to you from ’A[xx]ḥ”). However, Aharoni made it clear that there is no site known as “’A[xx]ḥ,” and therefore this reading is problematic.

Aharoni, in accordance with his findings for Tel Beersheba, also connected the ’iṣṣārôn to the tithe measurement. In a basement of a Stratum II structure at Tel Beersheba, he found a small jug with a pre-firing inscription that reads: hsy lmlk (one-half of royal measurement) (Aharoni, 1975, 160, 162 and fig. 2; Dobbs-Allsopp et al., 2005, 123). The interpretation of this measurement is not well based, and Aharoni (idem, 160) argued that this is one-half of the ’iṣṣārôn, for in his opinion it is “the most common liquid measure.” Because the volume of this jug was measured to be 1.2 liters (idem), and because this was considered by Aharoni as one-half of the ’iṣṣārôn, a complete ’iṣṣārôn would have been 2.4 liters. Aharoni connected the ’iṣṣārôn with the bath, and on this basis calculated the volume of the bath as 24 liters. He referred to a find of an inscription incised on a sherd from the vicinity of the temple in Arad, which reads: “ḥsy” (half) (1981, 114). The inscription is complete, but one cannot tell the original size of
the vessel and whether it was incised when it was complete or after it was fractured. As an inscription on a sherd, it could be associated with the Ugaritic term ḫṣṭ (“luck”), and might have been used for casting lots (Dobbs-Allsopp et al., 2005, 104 with further literature). Contrary to Aharoni’s reconstruction it must be emphasized that the †iśšārôn is not mentioned anywhere in the Bible as a liquid volume measurement, and like the lōḡ it occurs only in the post-exilic literature as a measurement of dry capacity connected with semolina (cf. above). Against this background it is difficult to accept the interpretation of the †iśšārôn as one-tenth of a bath. Therefore, if Aharoni’s reading is correct, then it might be that the jug from Tel Beersheba was used for dry (semolina) storage, and the †iśšārôn is connected to the measurements of the †ēpāh and the hōmer. The reason is that while in some places the †iśšārôn is a measurement for semolina, in other places the semolina is measured as the tenth part of the †ēpāh (Leviticus 5:11; 6:13; Numbers 28:5) and the same measurement is used for flour (Numbers 5:15). It seems that the ratio between the †iśšārôn and the †ēpāh is clear. Nevertheless, all of these occurrences are post-exilic and therefore they cannot be used to describe the economy and administration of the First Temple period.

The review above demonstrates that the method described as the liquid volume measurement system of the First Temple Judah is invalid. The only measurement of the First Temple period that should be discussed is the bath.

The bath is mentioned 13 times in the Bible, and always as a fixed liquid volume measurement for water, oil, or wine. According to 1 Kings 7:26, the molten sea in the Temple court held two thousand bath (and cf. 2 Chronicles 4:5: “three thousand bath”), and according to verse 38 the ten lavers contain forty bath each. According to Isaiah 5:10, “ten acres of vineyard shall yield one bath, and the seed of a hōmer shall yield an †ēpāh.” Ezekiel 45:10 mentions “a just bath” as a liquid measure, together with a “just balance” for weighting payment means (metals) and “a just †ēpāh” for dry measurement (and see the six other occurrences of the bath in verses 11 and 14). In 2 Chronicles 2:10 one can learn the difference between this measurements of the dry and the liquid:

“And behold, I will give to thy servants, the hewers that cut timber, twenty thousand kōr of beaten wheat, and twenty thousand kōr of barley, and twenty thousand bath of wine, and twenty thousand bath of oil.”

In the light of the occurrence in Ezekiel it is acknowledged in the scholarship that the capacity of the bath was equal to the capacity of the †ēpāh (cf. Dobbs-Allsopp, 2005, 123), but it is not clear whether the Ezekiel standardization re-

6 The Septuagint version of Kings has no reference to the molten sea’s capacity, and Josephus (Antiquities, book eight, 3:5) describes the capacity as the Book of Chronicles does: 3,000 baths. On this subject see the literature and discussion in Hognesius, 1994, 249–258; Byl, 1998, 309–314 with further literature.
fects the First Temple period reality in the economy and the administration, or a utopian future.

The conclusion from the above review is that in the administration and economy of First Temple Judah the only known measurement for liquid volume was the bath. With this measurement it was possible to estimate the volume of large vessels – with thousands of bath – and also of smaller ones – with dozens of bath. Nevertheless, there is no evidence of the exact capacity of the bath or of the way the bath itself was calculated by the ancients.

The Biblical Bath – the Judahite Storage Jar?

We propose, on the basis of archaeological finds and parallels from the ancient Near East, that the bath was not a fixed measurement for liquid volume but rather the name of a specific jar – the Judahite storage jar – well-known in archaeological research from the late eighth to the early sixth century BCE. Manufacture of the Judahite storage jar began in Judah in the ninth century BCE, but it was only in the late eighth century that its shape became standardized, diversities within the jar capacity decreased (Mazar, 1990, 509; Zimhoni, 1997, 171; 2004, 1706; Gitin, 2006, 512–517; Katz, 2008, 52–53; Lipschits/Sergi/Koch, 2010, 7; Segi/Karasik/Gadot/Lipschits, forthcoming), and it began to be mass-produced (Mommsen/Perlman/Yellin, 1984). This jar was named bath, in our opinion, during that period, and the name for this type of jar continued in the seventh and early sixth centuries BCE, when the small changes in the shape of the jars (from the so called “lmlk” and “lmlk-like” jars to the rosette jars), did not affect the name of this type of jar.

Early Attempts to Understand the Bath

As mentioned above, some scholars attempted to reconstruct the liquid volume measurement system of First Temple Judah based on epigraphic finds and bibli- cal references. Most who dealt with this subject assumed that the capacity of the bath was 20, 22 or even 24 liters. The genesis of this “scholarly tradition” ap-

7 Most scholars sided with the capacity of 19 to 22 liters: Albright, 1943, 58–59 note 7; Serge, 1945, 357–358; Scott, 1958, 205–214; de Vaux, 1961, 202; Stern, 1962, 854; 1971, 380; Aharoni, 1981, 13; Heltzer, 1986, 161; 1989, 197; 2008, 71*; Mittmann, 1991, 66; 1993, 47; Powell, 1992, 902; Zapassky et al., 2009. Busink (1970, 327, note 611) estimated that the capacity of the bath was 23 liters (and cf. Hognesius, 1994, 357). Powell (1992, 161) estimated the bath as 24 liters, and Kletter (2009, 363) as 19.22 liters. On the contrary, some scholars argued that the bath is equal to the average storage jar capacity (Barrois, 1931, 212; Inge, 1941, 109; Lemaire, 1977, 157). Lemaire based on one storage jar found in Gibeon, measured by Pritchard (1964, 25) as 45 liters. He argued that this is the capacity of the bath measurement, and used also de Vaux (1961, 202–203), who didn’t really take a stand and his estimation that the bath measurement equals 45 liters is based on a find from Qumran, and therefore cannot be sustained.
pears in a footnote in the third Tell Beit-Mirsim Report (Albright, 1943, 58–59, note 7) (fig. 1). In this note, Albright discussed a post-firing incision on a pottery sherd that reads *bt* (Albright, 1932, 78 and fig. 12:1; 1943, 58 note 7, and pl. 60:2). He compared this sherd to the upper part of a storage jar found in Lachish that was incised before firing with the inscription: *bt . lmlk* (“bath of the king?” = a royal bath?) (Locus H17:1078; Field Number 7066, and see Inge, 1938, 248, 253; Diringer, 1953, 356–57 and pl. 49:1) (fig. 2).9

![Fig. 1: The *bt* incision from Tell Beit-Mirsim]

(After Albright, 1943, pl. 60:2)

Diringer (idem, 356) insisted that this jar resembles the *lmlk* jars but that they are not identical, and that there is no possibility to measure the capacity of the broken jar or to reconstruct the capacity of the royal *bath* measurement. Despite Diringer’s opinion, Albright did try to calculate the volume of the Lachish *bt . lmlk* jar, and by that to learn the volume of the biblical *bath*:

1. The proportions of the *bt . lmlk* jar and a typical *lmlk* jar are identical. Thus, the ratio of one dimension to the next is fixed, say C. Therefore, the volume is C^3.

2. What remained was to derive the ratio C, which could be obtained from the diameter of the jar’s rim: 8.15 cm for the *bt . lmlk* jar, and 10.8 cm for a “typical” *lmlk* jar.

8 Contrary to Sukenik’s opinion (in Albright, 1943, 58) it is not clear whether the inscription is complete (Dobbs-Allsopp et al., 2005, 133), and one can compare this sherd to one that was found in Gezer, inscribed after firing with the inscription …*bt*… (Dever, 1986, pl. 62) or a sherd from Hazor, inscribed with *btjh* (Yadin et al., 1960, 71–72 and pl. 169:3; item A382/1, Area A, Locus 151, Stratum VIII – ninth century BCE, but cf. recently Sass, 2005, 85–86). In those three cases it is not clear whether the inscription is complete (idem; Dobbs-Allsopp et al., 2005, 133, 165), and it seems one should not use it for the discussion about the *bath*.

9 In this context, Avigad (1953) read an inscription from Tell en-Nasbeh (Mccown, 1947, 168 and pl. 57:21) as *bt . lmlk*. His reading was not accepted (except Heltzer, 1989, 197), however, and most of the scholars accept Mccown’s reading: *bn . qn[yw]*.
3. Therefore, the ratio between the volumes is $C^3 = (0.7546)^3 = -0.43$.
4. On the basis of the ratio between the different volumes, the *bt. lmlk* jar is smaller than a “typical” *lnlk* jar by half. If so, then the *bath* measurement is one half of the volume of a *lnlk* jar (44 liters), and is therefore 22 liters.

Fig. 2: The *bt. lmlk* jar from Lachish as photographed in the British Museum by S. Guil (14.5.2009), with the kind permission of Dr. Jonathan Tubb, Assistant Keeper for the Ancient Levant in the Middle East Department of The British Museum, and with the kind assistance of Dr. Rupert Chapman, Curator, Middle Eastern Antiquities, British Museum.
Albright’s calculations are flawed. Mathematically, it is impossible to estimate the shape of the bt. lmlk jar from Lachish only according to its rim as the proportions of the vessel are far from being constant, and it is impossible to determine the ratio between it and the lmlk jars. The measurement of 120 Judahite storage jars indicated that the diameter of the jars is between 8.2 and 9.4 cm (smaller than Albright’s assumed “typical” lmlk jar). Furthermore, Albright’s measurements of the bt. lmlk jar from Lachish were proven to be inaccurate. S. Guîl located the bt. lmlk jar at the British Museum (Museum registration number 1980–12–14,16706); the actual diameter of the jar’s rim is 7.3 cm (and cf. to the measures published by Tufnell, 1953, 356). The corrected calculation, therefore, even according to Albright’s method, is

\[C^3 = (7.3:10.8)^3 = (0.6759)^3 = 0.31. \]

According to Albright’s formula, this would result in the bath being equal to approximately 14 liters.

In terms of scholarship, Albright (1943, 58–59, note 7) declared that his calculation was just an endorsement of Gremer-Durand’s assessment of some stone vessels that were exhibited in the Notre Dame Museum in Jerusalem, which he claimed proved that the volume of the bath was 21.25 liters.

Albright did not explain what Germer-Durand’s stone vessels were, or the basis for Germer-Durand’s calculations, nor did he quote his publication, referring instead to an article published by Barrois (1931). In this article, Barrois (1931, 210, note 3) dealt with a few stone vessels described by Germer-Durand in a lecture given on November 24, 1909 under the title Mesures de capacite des Hebreux au temps de l’Evangile. The lecture was published later as a paper in the book Études Palestinienes et Orientales, Conférences de Saint-Étienne, 1909–1910. Germer-Durand (idem, 92) argued that the finds from his excavations at the present day Church of Saint Peter in Gallicantu on Mt. Zion in Jerusalem led him to calculate the measurements that were used during the Gospel period. He mentioned four vessels, found in 1894, 1904, and 1907 (see fig. 3). The second vessel, he maintained, equals three-quarters of the first one; the third equals one-half of the first, and the fourth equals one-quarter of the first. In light of this ratio, Germer-Durand argued that the larger vessel equals the whole measurement, while the remainder equals its three parts. The volumes of the vessels, as they were measured, were

10 In 2008, a study supported by the Early Israel Fund of Tel Aviv University began 3D scanning procedures for reexamining the typology of the Judahite storage jars based on mathematical criteria. The project is conducted by Oded Lipschits, Omer Sergi, Avshalom Karasik and Yuval Gadot, and includes the 3-D imaging of 120 complete or semi-complete Royal Judahite storage vessels (Sergi/Karasik/Gadot/Lipschits, forthcoming).
• the whole unit: 21.250 liters,
• three-quarters of the unit: 15.937 liters,
• one-half of the unit: 10.625 liters,
• one-quarter of the unit: 5.312 liters.

Fig. 3: Four Stone Vessels as discovered by Germer-Durand in his excavations at the present day Church of Saint Peter in Gallicantu on Mt. Zion (Germer-Durand, 1909–1910, 92).

The conclusion of all the above is that Albright was thrice wrong: in the measures and formula he used, as well as in referring to Roman period “stone measures” which supposedly represent the volume unit of the Iron Age bath. Despite this the measure of the bath according to his calculation became a milestone in research and many scholars have treated the 22 liter measure of the bath as an irrevocable fact.

A contrary view regarding the volume of the bath was proposed by Inge (1941, 107), who dealt with the differences between the measurements of the Lachish jar and the impressed lmlk jars, estimating their capacities as equal to about 44 liters. Inge (idem, 108) supposed that the inscription lmlk on the stamp impressions was an abbreviation of bath-lmlk; he was also the first scholar to propose that “bath” was the name of the jar itself (idem, 109). His proposal was highly criticized by Albright (1943, 58–59, note 7), and was rejected by scholars who dealt with the subject in the following years.

Recent Attempts to Understand the Bath

A few recently published papers re-examined the First Temple period liquid volume measurement system (Zapassky et al., 2006; 2009; Benenson, 2009; Kletter, 2009). The major assumption of these papers is that the bath was the basic measurement of liquid volume in the First Temple period and that its ca-
pacity was about 20 liters (22.4/22.5 liters in Zapassky et al., 2009, 53; 19.22 liters in Kletter, 2009, 363). Furthermore, Zapassky et al. assumed that the volume of the lmlk jars was a matter of interest to the administrative system, that the manufacturers of the jars had the option of calculating the vessels’ volumes (and therefore the capacity of the commodities that were stored in them), so that during the production they could accurately reproduce entire series of identical jars (Zapassky et al., 2009, after ibid., 2006).11

These scholars’ preconception (Zapassky et al., 2009, 54) was that the uniformity of the lmlk jars’ volume was a crucial issue for both the potters and the consumers of the commodities stored in the vessels. Furthermore, they assumed that the potters had the ability to control the height and shape of the jars to a 3.4% degree of accuracy. As a result, they maintained, the potters could be accurate in defining volume and in achieving the required measurement (idem, 60).

But Zapassky et al. (idem) were surprised to find out that the actual variation in the jars was 10.4%, and therefore admitted the dissonance between the “need for accuracy” and the potters’ abilities.12 Because of this dissonance and in light of the basic assumption that the jars’ volume accuracy was important to the Judahite administration, despite the variation in their capacity, Zapassky et al. proposed that the administrative system had developed a calculation method to overcome this problem. This assumption is based on a conjecture raised by Eph’al and Naveh (1993) that the central authority monitored the different measurements by placing standard vessels at the city gates: “The Jar of the Gate” that was found at Tel Kinnerot (and see below), and “Stone of the Gate” that was found at Deir Alla (Hofijzer / van der Kooij, 1976, 275).13 Eph’al and Naveh (1993, 63) argued that because the lmlk jars were not identical in their volume, their capacity was measured before they were filled with a special fixed-volume jar, while Zapassky et al. (2009) presented a computational solution according to which the capacity of the jars was measured by the existence of a hypothetical algorithm that enabled the calculation of the capacity of the jars despite the var-

11 While in their first paper the scholars dealt with the calculation of simple cylinder-shaped vessels from the Iron-Age Negev, in their second paper they dealt with the lmlk jars from the late eighth century BCE.

12 The basic assumption, concerning the need for accuracy seems as not well-found. In weights, where the accuracy seems even more important, there is a variation of about 5% (Kletter, 1998, 80–82, 139–140; 2009, 358), and a variation of 10% was not considered as a problem in Egypt (Janssen, 1975; 1988, 14–15, and cf. Powell, 1992, 899). For this matter, cf. Kletter’s answer (2009) to Zapassky et al. (2009).

13 It must be emphasized that the “Gate System” proposed by Eph’al and Naveh is not a fixed and standard system: it is based on two sherds of a vessel, one stone and a non-provenance weight (cf. Kletter, 1998, 147–148; 2009, 360). It might be that officials checked the capacity of the vessels, held by the city merchants, but it is not evidence for a fixed system.
ation of their volumes. In Zapassky’s et al. opinion, the volume of the jars could be measured based on external dimensions, and this algorithm had to be simple and based on adding two measures and subtracting a constant (idem, 61–62). For the presentation of the algorithm Zapassky et al. used the bath as the basic measurement for liquid volume used by the ancients, and an additional measurement – the hypothetical ‘īssārôn (and see above), while for the length measurement they used the finger and the cubit (idem, 62).

According to these guidelines, Zapassky et al. proceed to reconstruct the equation used by the ancients. They first arrive at two different candidate formulae:

1) \(V(a) = P(f) - 16f \)
2) \(V(a) = L(f) - 19f \)

Where
- \(V(a) \) = volume in ‘īssārôn,
- \(P(f) \) = half of the maximal horizontal circumference,
- \(L(f) \) = half of the maximal vertical circumference.

Although these equations are fairly accurate in predicting the volume (3–4 %), the authors admit that the 16f and 19f constants are not “meaningful.” In addition, the calculation is “risky” as it is only dependent on either \(P(f) \) or \(L(f) \), for if there is even a single minor mistake with one of the measurements it will directly affect the calculated volume of the jar.

Therefore, a third formula was proposed by Zapassky et al., with another constant of 2c (= two cubits):

3) \(V(a) = P(f) + L(f) - 2c \)

The calculation using this formula requires three stages: measuring the length \(P \) (the horizontal circumference) and \(L \) (the vertical circumference) in fingers; subtracting 2 cubits; the sum in fingers is approximately the volume in ‘īssārôn. Thus, according to this formula, during the First Temple period it was possible to calculate the volume of a jar in ‘īssārôn with an average accuracy of 3 %–4 %, with the addition of half of the horizontal circumference of the jar with half of its vertical circumference and by subtracting two cubits (idem, 65). Zapassky et al. proposed this formula because it takes into consideration both circumference measures and not only one.

Aside from the preconception that the Kingdom of Judah’s administrative system (or any other ancient Near Eastern kingdom’s administrative system) cared about jar volume accuracy and therefore tried to calculate it, there are many other problems with the above theory. The three formulae that were presented by Zapassky et al., 2009, are actually special cases of the more general family of “linear” equations of the form:

\[V = a \cdot P + b \cdot L - c, \]
Where a, b and c are appropriate constants:

1. \(a = 1, b = 0, c = 16 \rightarrow V = P - 16 \)
2. \(a = 0, b = 1, c = 19 \rightarrow V = L - 19 \)
3. \(a = 1, b = 1, c = 56 \rightarrow V = P + L - 56 \)

This type of formula was probably chosen because of its simplicity. However, one can adjust to these measurements (horizontal and vertical circumference) other similar and “easy to use” formulae, by different usage of the variables a, b and c, for example:

\[0.5P + 0.5L - 17.5 \]

This formula is an average of the formulae (1) and (2), and its ability to avoid measuring mistakes in the jar’s circumference is higher than the third proposed formula. Furthermore, addition of more parameters (like the diameter of the jar rim or its circumference) may improve the accuracy of the formula. Nevertheless, the improvement of the accuracy, even by addition of the third formula, is negligible for P or L, or any other measurement, is a linear variable. The “real” risk in this kind of calculation is not connected to the type or number of the variables. Instead, the estimation of any non-linear function such as volume is doomed as its accuracy will only be high in the mean values of the linear predictors. Unsurprisingly, we see a prediction error of two, three, and even more than four 'issērôn' (more than five liters) in smaller than average vessels (below 22 'issērôn'). In addition to such significant prediction inaccuracies, a simple measurement error of one finger would have resulted by adding or subtracting a whole 'issērôn' from the estimated volume.

Was the Exact Volume of the Storage Jars Necessary to the Administration System in Judah?

The fundamental question, which Zapassky et al. did not answer, is related to the potters’ “ability” (idem, 60). All the potters had to provide the recipient of the jars with the maximal possible accuracy. If this is the case, why then, despite their “abilities,” did the potters not produce identical jars? Zapassky et al., 2009, offer no solution to this question, and their thesis transfers the burden of approximately measuring the volume to some hypothetical ancient inspector, armed with a string marked with finger/cubit units. There is no reference to the need for accuracy of the volume of the jars, which varied by 10% and even more. It is clear, therefore, that the potters’ “ability” had no function within the calculation of the volume of the storage jars. Furthermore, it seems that according to Zapassky et al.’s preconception, the need for accuracy is a reflection of the modern concept, which has no background in the reality of the ancient world (Powell, 1990, 899–900; Kletter, 2009, 361–62), while the position of the concrete reality (that rises also from the measuring of the jars) was taken over by
“Virtual Reality,” based on assumed calculations.14

Hundreds of lmlk jars were used in the administrative system in order to store agricultural commodities (see recently Lipschits/Sergi/Koch, 2010; 2011). The average volume of most of these jars balances the inaccuracy that exists in the margins of the system (about 10%). Therefore, one may ask if the administrative system took into account the variation in the volume of the jars? And if so, was it necessary to know the exact volume of each one of the hundreds of the jars?

Wallace (2004, 429–430) clearly demonstrated that even during the Classical period there was no accuracy in capacities of amphorae. He concluded that while the variation was sometimes over 10% and hence it might be a problem for a costumer who buys a single jar (for he gets less commodity of liquid), it was neglected when a large amount of jars is discussed. Even during the Classic and late Hellenistic periods, with the knowledge of measuring liquid volume (cf. Lang, 1956; Finkielsztejn, 1999; Lawal, 2002), there was no need for accuracy. This is evident by the Rhodian amphorae assemblages, in whom there was a deviation of ca. 20% (Wallace Matheson / Wallace, 1982, 296–297). The amphorae of the Mendaian wine, that were also produced in large quantities and sold all over the Mediterranean (Papadopoulos/Paspalas, 1999), had a capacity of between 8 and 10 choes, which, based on measurements (presented in Wallace, 1986), should amount to between 26 and 32.5 liters. As such, the cargo of ship was not measured by its weight but rather by the number of the jars (Cousteau, 1954).

This wide scale of variation is connected to the bt.lmlk jar from Lachish. The different measurement of the bt.lmlk jars and the lmlk jars was already recognized, as mentioned above, by Diringer (1953, 356), who wrote that the first one “resembles, but is not identical with ‘la-melekh jars.’” Zimhoni (2004, 1797) accepted Diringer and Inge’s assumption, and speculated that the bt.lmlk jar was a two-handled jar, belonging to a different group of storage jar, other than SJ1 (“lmlk jar”) or SJ2 (“lmlk-like jar”) – SJ3 (and cf. type SJO6 in Gitin, 2006, 519, 521) (fig. 4 – Judahite storage jars from Lachish). These conclusions are problematic in two areas: first, the measurements of the bt.lmlk jar are smaller than the “typical” lmlk jar, but one cannot construct the whole shape of it and by doing so determine that it does not belong to the royal storage jar group, or determine the number of its handles simply from the measurements of the rim and half of its shoulder. Furthermore, distinguishing between lmlk jars and lmlk-like jars (Zimhoni, 2004, 1794–1796), merely by using the size and color of the jar, is currently considered insufficient data (Gitin, 2006, 508–509; Sergi/Karasik/Gadot/Lipschits, forthcoming), and as a result one can reject the exclusion of the Lachish bt.lmlk jar from the corpus of the royal Judahite storage jar.

14 Benenson’s response to Kletter (2009, 366), “Our arguments are simple and come from the classroom mathematics”, only strengthens the conclusion that one cannot project modern reality on an ancient one.
Fig. 4: storage jars from Lachish: SJ1 (left; Zimhoni, 1997, fig. 5.8.2), SJ2 (center; Zimhoni, 1990, fig. 8:4), and SJ3 (Zimhoni, 1997, fig. 5.16:3; right).

The *bt.lmlk* jar from Lachish was re-examined at the British Museum in May 2009, revealing that the differences between it and other jars are much more significant than scholars assumed in the past, and it appears that the diameter of the rim of the *bt.lmlk* jar (7.3 cm) is much smaller. The average diameter of the *lmlk* jars is 8.2–9.4 cm, only four jar rims (out of 120) had a diameter smaller than 8 cm, and no other *lmlk* jar was smaller than 7.5 cm. In light of this data, it seems that one should reject the conclusions of Albright, Diriger, Zimhoni and others concerning the *bt.lmlk* jar. Furthermore, we support the view raised by Gitin (2006) to classify the jars according to their shape and not their size. The *bt.lmlk* jar from Lachish, of which only the upper part survived, cannot be classified for certain, but it is, without doubt, a Judahite storage jar. On this basis we point back to Inge’s proposal (1941, 109) that the *bath* was the jar itself, with no connection to its exact size, and during a long period when the average size and the general shape of the jars were changed in a slow and gradual process.

As will be demonstrated below, this conclusion suits the biblical text and the epigraphic finds, according to which oil or wine was measured by the jars that contained them, and not by measurement units.

The Biblical Bath as the Judahite Storage Jar

During the eighth century BCE, processes that had begun during the Iron Age IIa climaxed under Neo-Assyrian imperial dominance. While being a vassal kingdom of Assyria, Judah developed a central administrative system that included royal estates in charge of producing agricultural commodities raised for use as tax to the imperial regime (Katz, 2008, 171–178, with further literature; Lipschits/Gadot, 2008; De-Groot/Greenhut, 2009), along with the development of new technologies of agricultural production (Faust/Weiss, 2005; Katz, 2008, 55–59) and a new weight system (Kletter, 1998, 145–147; Katz, 2008, 78–79, with further literature). In addition, instead of the small pottery workshops that produced a variety of types, the production of one central workshop, producing
storage jars of specific types, was preferred (Lipschits/Sergi/Koch 2010, 7). A major part of this economic system was concentrated in Jerusalem by the central government. The most frequent storage jar of the late-eighth to seventh century BCE, with its two/three types (SJ1 and SJ2 according to Zimhoni [2004, 1794–16]; SJO3 and SJO4 according to Gitin [2006, 514–517]), was common in Judah, and was also preferred by private individuals. This jar was in use during the late monarchy until the destruction of Jerusalem (Type SJO5 according to Gitin, 2006), while in Benjamin and other areas in the Province of Judah it was still in use during the sixth century BCE (Lapp, 1981, 88–89; Lipschits, 2005, 199, with further literature). This uniformity of the pottery is also reflected in the biblical text and the epigraphic finds.

As mentioned above, the bath occurs in the Bible 13 times (1 Kings 7:26, 38; Isaiah 5:10; Ezekiel 45:10, 11, 14; 2 Chronicles 2:9; 4:5); it is not divided into sub-units, and unlike other vessels (such as the kaḏ or the nēḇel) was not used for the transfer of liquids from place to place.

A similar picture emerges from the epigraphic finds, which shows the existence of units of liquids but not of volume measurements. In some cases oil or wine is mentioned without indicating their measurements or vessels, and parallels can be noticed in Akkadian and Ugaritic (ṯl . šmn, “three [jars of] oil,” KTU 4.41.2; mʾyṯ . yn . tb, “a hundred [jars of] fine wine,” KTU 4.213.11; cf. Dobb-Allsopp et al., 2005, 213). In other cases vessels like kaḏ or just “vessel” are mentioned (KTU 4.269). The lack of unit or measurement was usually filled by scholars, according to their preconceptions, their interpretation of the liquid volume measurement system, which they learned from the biblical text, and that never really existed in the First Temple period.15

15 Thus, the ostracon from Tel Qasila (Mazar 1950–1951, pl. 37a; 1951, pl. 11a; surface find) that reads lmlk [p] / šmn wmʾš / ”ḥyw, was reconstructed by Mazar (1951, 265–67) as “Belonging to the king, a thousand and one hundred lōḡ of oil / ḫyw” (cf. Dobbs-Allsopp, 2005, 403). This assumption has no basis within the biblical text or the epigraphic find, and it seems that Mazar’s reconstruction is anachronistic and does not reflect the reality of the First Temple period. Two ostraca, found in Jerusalem by Kenyon (Lemaire, 1978, pls. 23B, D, E; Dobbs-Allsopp, 2005, 212–214, 216–218), bear the word šmn/šmnm, and like the Tel Qasila ostracon, they mention no measurement. Lemaire (1978, 161) dated the ostraca to the late eighth – early seventh century BCE. The first ostracon reads 50 . šmnm I I I I šbrm “ (57 oil, 4 grain). The second mentions oil (šmnm) four times, while on the fifth line there are eight vertical lines, probably counting oil once again (Dobbs-Allsopp, 2005, 218). On the other side of the ostracon there is an inscription that reads gt . prh, probably the origin of the commodities (idem, 218). On another ostracon from the same assemblage, the word nēḇel was reconstructed before the mentioned wine (Dobbs-Allsopp, 2005, 211–212). This way of measuring wine is known from Samaria, and if this is the case, then one can reconstruct the delivery of agricultural commodities from the Jerusalem vicinity to the capital. Heltzer (2008, 70*) argued that these numbers are the counting of the well-known volume measurement called nēḇel. Nevertheless, it must be emphasized that in all cases in which they are mentioned, the numbers are the counting of the vessels themselves (Stern, 1962, 855). In this case, one
It seems that in the late seventh and the early sixth century BCE, oil was measured in well-known units. In Arad ostraca the oil is measured by units (thus, letter 10 reads: … yyn b | | | / \ m’ [] yyn . wšmn | (“3 baths of wine … 1 oil …”); Aharoni, 1981, letter 10, line 3; and cf. 14, line 3; 17, line 4), while the wine is measured by bath (idem, letter 1, line 3; 2, line 2; 3, line 2; 4, line 3; 7, line 22; 8, line 5; 9, line 3; 10, line 2; 11, line 3; 61, line 2). The common formula is “yyn. b\ [no. of vertical lines]”. According to Aharoni (1981, 13; cf. Dobbs-Allsopp et al., 2005, 10), the term b\ is an abbreviation for the word bath, while the vertical lines mark the number of the bath. In the course of this interpretation, Gibson (1971, 51–52) notes that all the lines (the diagonal and the vertical ones) mark the number of the bath, while Naveh (1992, 52–53) argued that only the diagonal line is connected to the bath itself, and the vertical ones mark the amount of the hîn measurement, which he interpreted as one-sixth of a bath (and cf. after him, Aḥituv, 2005, 84). Naveh’s assumption is problematic, for while the interpretation of the b\ as bath is founded, there is no evidence within the Arad ostraca for the use of the hîn. Furthermore, as mentioned above, the hîn is not known from any First Temple sources, and there is no evidence of its usage during that period.16

In the same manner, the abbreviation “b\” appears on a complete jar from Lachish Level II (Ussishkin, 1978, 85–87 and fig. 29). Based on this interpretation, Ussishkin (idem, 87, note 9) argued that the capacity of the jar (20.85–21.15 liters) equals the volume measurement – the bath. To this jar one should add the bt.lmlk jar from the same site (see above), and a jar from Tel Miqneh (Stratum I), with an inscription that reads “bt” (Aḥituv, 2005, 317). The capacity of the jar is 32 liters, and it is difficult to accept that in the seventh century, under the Neo-Assyrian hegemony, when the borders between the kingdoms were open, there would be different volume measurement systems in two bordering kingdoms.

As discussed above, in light of the biblical text, we suggest identifying the bath with the Judahite storage jar. The Bible mentions no other “candidate” and

16 A further strengthening to the interpretation of the bath as a vessel and not a measurement come indirectly from Aharoni’s reading to Arad letter number 32 (1981, 62–64). In the ostraca, the wine (symbol d according to Aharoni, 1981, 64) appears next to a symbol for a pot (symbol e, idem) and not next to the measurement, the hekat, which appears all along the letter. It seems that there is an analogy between the common bath and the pot that is mentioned in letter 32.
in all the texts, as well as in the extra-biblical sources, the *bath* is mentioned in connection with wine or oil, and no other vessel is mentioned with it.\footnote{17}

**Two other Biblical Vessels: *nēbēl* and *kaḏ*\footnote{18}

As a storage jar, the *bath* is comparable to two other vessels that held liquid, and which were used in daily life and the economy: the *nēbēl* and the *kaḏ*. Like the *bath*, these two vessels were also interpreted as liquid volume measurement.

The *nēbēl* was probably used for transporting liquid, mostly wine. It is mentioned 10 times in the Bible, primarily as a vessel for carrying liquid on a journey.\footnote{18} The translation of *nēbēl* as skin is not well founded in the biblical text, for Isaiah 30:14 says explicitly: “And he shall break it as the breaking of the potter’s *nēbēl* that is broken in pieces; he shall not spare,” and therefore it is assumed that the *nēbēl* was made out of clay (Jacobson, 2001; Cline, 2001, 594; Heltzer, 2008, 70*). It might be that the *nēbēl* preserved its prototype, which was made out of skin, but it seems preferable to accept the opinion of Koehler and Baumgartner (1995, 664) and Brandt (1953, 333), that the connection to the skin is secondary and late. It might be that the origin of this connection is in the Greek translation (cf. the Septuagint translation of 1 Samuel 1:24; 2 Samuel 16:1; Jeremiah 13:12), while there was no basis for it in biblical Hebrew. Our view is strengthened by the occurrences of the *nēbēl* in other languages, such as Ugaritic (Gordon, 1965, 19, 1598), Syriac (Brockelmann, 1966, 411), Punic (Jean/Hoftijzer, 1965, 173) and Etruscan (Masson, 1967, 69). In all of these languages the *nēbēl* appears as a clay vessel, not as a skin.

The *nēbēl* occurs 23 times in the Samaria ostraca: 13 occurrences in relation to wine, 10 in relation to oil (Risener et al., 1924). In all these cases, the wine and the oil are measured by *nēbels*.\footnote{19} According to the traditional interpretation, it was accepted that the Samaria *nēbēl* is a containing vessel for liquid (idem, 245; Honeymann, 1939, 84–85; Kelso, 1948, 25; M. Aharoni, 1979; Kaufmann, 1982, 229; Bornstein, 1991, 76). However, some scholars proposed that the *nē*-
The Enigma of the Biblical Bath and the System of Liquid Volume Measurement

The nēḇel was a fixed measurement for liquids during the First Temple period. Bornstein (1991, 76) assumed that the nēḇel was identical to the bath, measuring 45 liters, as was revealed from measuring jars from Gibeon and Lachish. Nevertheless, while the nēḇel was considered a liquid containing vessel (cf. Honeyman, 1939, 81), there is no evidence for identifying the bath with the nēḇel. Jacobson (2001) argued in the same vein, basing his case on extra-biblical sources: the scriptures of the fourth-fifth century CE church fathers Saint Jerome and Epiphanius of Salamis, who claimed that the nēḇel was a liquid volume measurement. Heltzer (2008), who furthered Jacobson’s argument, used the description of the church fathers from the Byzantine period, and estimated the nēḇel to be 11.3 liters (idem, 72*). In addition, Heltzer (idem, 73*) argued that the nēḇel was half of the Phoenician kd and the Judahite bath. To strengthen his argument, he pointed (idem, 72*–73*) to the wreck of the ancient Phoenician ship found near the Ashkelon shore (cf. Stager, 2003); one of the intact jars found among the ruins held 20.4 liters – a measurement close, in Heltzer’s opinion, to the Phoenician kd and the Judahite bath.

Contra these arguments the following points must be stressed:

1. The Bible describes the nēḇel as a vessel for carrying/storing liquids and not as a tool for measuring. In the Book of Samuel the nēḇel is described as a supply vessel to be used on journeys, and in the prophecies it is a pottery vessel for storing liquids. Unlike the bath, the hîn, or the lōḡ, the nēḇel is never mentioned in analogy to other vessels or measurements, making it even more difficult to place it within a system of units, as some scholars have attempted to do in reconstructions.

2. St. Jerome and Epiphanius were church fathers who lived and wrote a thousand years after the destruction of the First Temple. Their texts describe the reality of the Byzantine period and not the Iron Age. Using the measurement system they reconstructed in order to understand the First Temple reality suffers from anachronism and is riddled with inaccuracy.

3. The find of the jars from the sunken ship near Ashkelon, important as it may be, is not evidence of the liquid volume measurement system in Phoenicia. Heltzer (2008, 72*–73*) pointed out that the volume of the jars is not uniform and therefore one may wonder about the selection of a single jar, just because it is closest to the speculated Phoenician kd. Is it the exception that testifies to the rule? And what of the dozens of other jars? Do they fit the “Standard liquid volume measurement system” of Phoenicia?

In light of the above, we suggest abandoning the assumption that the nēḇel was a liquid volume measurement and accept the previous, common, view of it described in the Bible: a vessel for storing and transferring liquids.
The *kad* is mentioned 18 times in the Bible, in several connections: in Genesis 24 (14, 15, 16, 17, 18, 20, 43, 45, 46) and in 1 Kings 18:23, it is used for drawing water from a well and to transfer it from place to place; in 1 Kings 17 (12, 14, 16) it is used for storing flour; while in Judges 7 (16, 19, 20) it is described as a pottery vessel used to hide the torches of Gideon’s warriors, and in Ecclesiastes (12:6) it is just a vessel. In parallels from the ancient Near East, the Ugaritic *kd* is kind of a jug (Koehler/Baumgartner, 1995, 460), and in Akkadian the west-Semitic loanword *kandu* had the same meaning (CAD K, *kandu*).

Unlike other scholars (cf. Heltzer, 2008, 72*), there is no evidence that the biblical *kad* was used as a fixed liquid volume measurement. There is no evidence for the assumption that the *kad* had any connection whatsoever to a liquid volume measurement system. We may speculate that it was used by individuals and families, and that its shape was fixed (including a spout for pouring), and that its size was related to the distance from the water source, the size of the family using it, and the physical ability of the one who would carry it.

Summary

The study of ancient periods has always carried the potential risk of anachronism, means reflecting backwards the reality of late, and even modern, periods. The anachronism may create a historical reconstruction, that its “characters” and “background” are from the Iron Age, but their relationship, nature and description are based on more recent periods. Thus, for many years, scholars tended to reconstruct the ancient liquid volume measurement system according to the characters of modern systems. Furthermore, by doing so they used all the possible vague terms in biblical literature with no distinction between early and late vessels for cult purposes and for daily life or administration, and they projected their interpretations on the archaeological and epigraphic finds.

A system of liquid volume measurements, which includes the *bath, hîn, lôg, ’iṣṣârôn, and hesy, kad* and *nêbel* is a *shatnez*, that is foreign to the First Temple period. The *hîn* and the *lôg* were used for the Second Temple cult; the *’iṣṣârôn* and the *hesy* were used for dry capacity and never for liquid; the *bath, the kad* and the *nêbel* are mentioned separately, never together or with any other vessels, and always by units. Therefore, the connection of these three vessels, or any other vessel, to one system, does not reflect the reality of the First Temple period.

Another projection of the modern mind backwards, and the imposing of it on the ancient reality, is the use of mathematical formulae as a response to the “need for accuracy” of the central administration jar capacity. This reconstruction is based on the assumption that the accuracy was necessary to the administration system, but this concept is difficult to accept. The hundreds of jars manufactured and used by the administrative system cancel the variation of 10% between the individual jars. Furthermore, there is no evidence, in the Bible or the epigraphic finds that teaches about this accuracy, while it is on this assump-
tion that the entire hypothesis of the liquid volume measurement system is based.

Scholarship should focus on the evidence of the biblical text and the epigraphic finds. Bath appears as a storage vessel for liquids in both these sources. This vessel, which held wine and oil, is identical to the common Judahite storage jar, and support for this can be found in the two Lachish jars that have their names inscribed on them.

Acknowledgment

We would like to thank Prof. Nadav Na’aman for his useful notes and for helping us to improve the manuscript. Arie Shaus is grateful to the Azrieli Foundation for the award of an Azrieli Fellowship.

References

Aharoni, Y., 1975: Excavations at Tel Beer-Sheba. Tel Aviv 2, 146–68.
Barrois, A., 1931: La Métrologie dans la bible. RB 40, 185–213.

Gitin, S., 2006: The ‘ilmk Jar-Form Redefined: A New Class of Iron Age II Oval Shaped Storage Jar. In A. M. Maeir / P. Miroschedji (eds.): I Will Speak the

Lipschits, O. / Sergi, O. / Koch, I., 2010: Royal Judahite Jar Handles: Considering the Chronology of the lmlk Stamp Impressions. Tel Aviv 37, 3–32.

Maisler (Mazar), B., 1951: The Hebrew Ostraca from Tell Qasile. JNES 10, 265–267.

Segrè, A., 1945: A Documentary Analysis of Ancient Palestinian Units of Measure. JBL 64, 357–75.

