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Abstract  

The paper introduces a new allocation game, related to Blotto games: each tennis coach 

assigns his four different skilled players to four positions, and then each team plays all other 

teams in the tournament.  

 The set of equilibria is characterized and experimental behavior in variants of the 

game is analyzed in light of an adapted level-k model. The results exhibit a systematic 

pattern- a majority of the subjects used a small number of strategies. However, although 

level-k thinking is naturally specified in this context, only a limited use of low level-k 

thinking was found. These findings differ from those obtained in previous studies, which 

found high frequencies of level-k reasoning among subjects in various games. Thus, the 

results illuminate some bounds of the level-k approach. 
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1. Introduction 

This paper introduces a new allocation game called the Tennis Coach problem, which 

captures the essence of some interesting strategic interactions observed in competitive 

environments. The game is analyzed both theoretically and experimentally and serves as a 

platform for studying iterated reasoning and non-equilibrium models based on this concept. 

 

The Tennis Coach problem 

Consider a tournament in which each participant plays the role of a tennis coach who is 

planning to send his team to the tournament. Each team consists of four players with four 

different skill levels: A+, A, B+ and B, where A+ is the highest level and B is the lowest. The 

coach's task is to assign his players to positions 1, 2, 3 and 4 (one player to each position). 

Each team plays against each of the other teams in the tournament.  

 A battle between two teams includes four matches: a player that was assigned by his 

coach to a particular position plays once against the player on the other team assigned to the 

same position. In any match between two players of different levels, the one with the higher 

level wins and scores one point for his team. When two players with the same level play 

against each other, the outcome is a tie and each team receives half a point. Thus, a battle 

between two teams ends with one of the teams winning 3:1 or 2.5:1.5, or in a tie of 2:2. The 

team's score at the end of the tournament is the total number of points it received in all the 

battles. The goal of the coaches is to win the tournament, i.e. to achieve the highest score 

among all the teams. 

 The strategic interaction between the coaches will be referred to as "the tennis game". 

 

Theoretical motivation  

The tennis game is of interest primarily because it is an intuitively appealing version of the 

popular Colonel Blotto game, introduced by Borel (1921). In the Colonel Blotto game, two 

players simultaneously allocate a fixed number of troops to N battlefields. A player wins a 

battle if the number of troops he assigns to a particular battlefield is higher than that assigned 

by his opponent and whoever wins more battles is the winner of the game.1 The game has 

                                                 
1 A number of papers have analyzed the game on a theoretical level though there is still no complete 

characterization of equilibrium in the continuous case. See some recent progress in Weinstein (2005) and 

Roberson (2006). Hart (2007) provides a complete characterization of equilibrium in the discrete case.  I am not 
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been widely interpreted as a competition between two players, in which each distributes his 

limited resources across N tasks and succeeds in a task if he assigns more resources to it than 

his opponent. A well-known application of the game involves the interaction between vote-

maximizing parties in an election campaign, in which the promises made by the parties are 

modeled as the various ways to divide a homogeneous good and are assumed to determine 

the outcome of the election. The basic idea is that an individual votes for party X if it has 

promised him more than party Y and the party that receives more votes wins the election. 

This scenario could also be interpreted as vote-buying.2 

 Whereas in the Blotto game all partitions (and in some versions only discrete 

partitions) of the total resources are possible, in the tennis game a player is restricted to a 

finite number of allocations. This does not make the tennis game a special case of the Blotto 

game, but rather a different and somewhat simpler version, yet one which captures much of 

its strategic spirit. Moreover, in many cases, the tennis game reflects more realistic 

assumptions than the Blotto game. For example, a general might not be able to assign any 

number of troops to a single battlefield and may be restricted by the internal organization of 

his army to assigning one division to each battlefield, where the divisions differ in ability and 

strength. More generally, the tennis game is better suited to competitive scenarios in which 

human resources are allocated among several tasks.   

 The tennis game is also able to capture the interaction in the campaign promises 

game, in which promises are made in the form of a list of priorities (an ordering of projects) 

that a candidate guarantees to adhere to after being elected. If different projects are associated 

with different groups (each with equal voting power) then declaring the list of priorities is 

equivalent to the problem of the tennis coach.  

 The tennis game is also related to the game discussed in Fershtman and Rubinstein 

(1997), in which a treasure is hidden in one of N locations. Each of two players tries to be the 

first to reach the location of the treasure. Each player i has resources to sequentially search Ni 

locations and must choose the order in which to conduct the search (to specify which location 

he searches in each date).  In the case of Ni=N, choosing the order of the search is equivalent 

                                                                                                                                                        
aware of experimental studies of the game, apart from a comment by Jonathan Partington (see 

http://www.geocities.com/j_r_partington/blotto.html) and an unpublished work by Ariel Rubinstein. 

2 See variants of the promises game in Myerson (1993), Laslier and Picard (2002) and Dekel, Jackson and 

Wolinsky (2008). 
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to allocating N players to N positions in the tennis game.3 When two players search according 

to their ordering, then the probability that a player will find the treasure is equivalent to the 

number of points earned by a team in the tennis game. Note that Fershtman and Rubinstein 

did not analyze the set of equilibria in this game.  The game with the pair (Ni, Nj) is used as a 

second stage once each player i has chosen Ni in the first stage.
 

 In the spirit of this analogy, the tennis game can be interpreted as an R&D race, in 

which each firm chooses the order of the routes it will follow in trying to solve a particular 

problem or the order of the projects it will undertake. This interpretation is appropriate for 

cases in which each of the various projects or routes is equally promising. 

 Calculating the value of the symmetric tennis game is straightforward. However, 

equilibrium payoffs tell us only part of the story and as in the game-theoretic analysis of other 

strategic scenarios, the interaction is explored by studying the set of equilibria. Characterizing 

the set of equilibria in the game is quite involved and relies on its special structure, in which 

any pure strategy has a unique "best response"4 and the best response function induces a 

partition of the game's 24 strategies into 6 cycles of 4 strategies each (within a cycle, each 

strategy is the best response to the preceding strategy in that cycle). The characterization 

yields some interesting results. For example, it will be shown that the simplest mixed strategy 

equilibrium (simple in terms of number of strategies in the support of the equilibrium 

strategies) involves the use of two pure strategies, with the property that each is the best 

response to the best response of the other strategy. 

 The game-theoretic analysis of the tennis game ignores the existence of a salient 

strategy, in which players are allocated according to their correct ranking, and the induced 

framing effect. Note that the tennis game can capture circumstances in which N different 

levels of resources need to be distributed across N labeled tasks. The labeling may result in 

task i being differentiated from task j psychologically. The theoretical analysis is not affected 

by labeling, as long as the labels do not affect players' payoffs. In the R&D race, for instance, 

the labels might reflect the perceived differences in the attractiveness of the various routes 

that can be taken. The framing of the case in which the probability to succeed in route i is 

presumed to be slightly higher than in route i+1 resembles the framing in the tennis game.  

 

                                                 
3 The players' skill levels are analogous to the search schedule. For example, assigning A+ to the second 

position in the tennis game is equivalent to searching first in location 2. 

4 A strategy S is the "best response" to the strategy T if S achieves the highest possible score (3 points) when 

playing against T. 
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Experimental motivation 

The tennis game's special structure and its psychological properties, which are a result of the 

existence of a salient strategy, call for addressing solution concepts other than equilibrium, 

which are based on iterative reasoning. In particular, I discuss the concept of level-k thinking 

which has recently become increasingly popular.5  

 Level-k non-equilibrium models assume that the population of players consists of 

several types, each of which follows a different decision rule. L0 is a non-strategic type who 

chooses his action naively by following a particular rule of behavior that depends on the 

context and is determined by the modeler. L1 best responds to the belief that all other players 

are L0, L2 best responds to the belief that all other players are L1, and so on. Thus, a type Lk, 

for k>0, is behaving rationally in the sense that he best responds to his belief regarding other 

players' actions. However, the belief held by Lk is not the "correct" belief as required by Nash 

equilibrium. Level-k models were first introduced by Stahl and Wilson (1994, 1995) and 

Nagel (1995). Since then, they have been developed extensively and used to explain 

experimental results in a variety of settings. For example, Crawford and Iriberri (2007b) 

apply the model to explain behavior in auctions.6  

  Papers that use level-k models to explain experimental results usually estimate the 

frequency of each type in a particular context. The appeal of this approach is due to a finding 

stated clearly in Crawford and Iriberri (2007b, page 1725): "The estimated distribution tends 

to be stable across games, with most of the weight on L1 and L2. Thus the anchoring L0 type 

exists mainly in the minds of higher types." 

 Applying the level-k approach to explain experimental results requires a reasonable 

specification of L0 and of the belief held by type Lk in that particular context. Often (though 

not always) L0 is taken to be a uniform randomization over the strategy space. In the tennis 

game, the specification of L0 is intuitively appealing due to the existence of a salient strategy 

(A+, A, B+, B), which is the natural starting point for iterated reasoning.7 Decision rules 

                                                 
5 The term "iterated reasoning" is usually associated with "iterated dominance", although the term is more 

general and describes a process in which a player applies arguments recursively. In this paper, I do not discuss 

iterated elimination of dominated strategies since there are no dominated strategies in the tennis game. Thus, 

throughout the paper I refer to level-k thinking as "iterated reasoning". 

6 Some other examples are: Ho, Camerer and Weigelt (1998), Costa-Gomes, Crawford, and Broseta (2001), 

Crawford (2003) and Costa-Gomes and Crawford (2006). A different model containing similar ideas is 

introduced in  Camerer, Ho, and Chong (2004). 

7 This specification has features in common with the specification in Crawford and Iriberri (2007a, 2007b). 
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based on level-k reasoning are expected to be reflected in subjects' choices also because, 

given this anchor (starting point), best responding to an Lk type is cognitively simple (as I 

confirmed experimentally). Furthermore, compared to many other level-k models, the 

adapted model in the tennis game assumes weaker and more plausible assumptions on 

subjects' beliefs. Thus, as will be shown in Section 2.4, the typical choice of Lk is not only 

optimal given the belief that all (or almost all) other subjects are Lk-1 types, but is also the 

best response to the belief that the majority of subjects are Lk-1, or to the belief that the most 

frequent type is Lk-1 and that the rest of the choices are uniformly distributed. 

 Since level-k types are naturally specified in the tennis game, the level-k approach 

appears to be suitable a priori. On the other hand, the strategy space in the game is large 

enough and the structure of the game rich enough to leave room for other kinds of decision 

rules which are not based on iterated reasoning (examples will be discussed at a later stage). 

Therefore, the tennis game is an ideal platform for testing the extent to which level-k models 

are capable of explaining behavior in novel settings.  

 As expected, experimental behavior in the one-shot game was not consistent with any 

equilibrium predictions. The adapted model of level-k reasoning explained only some of the 

behavior in the tennis game. Patterns based on iterated reasoning were indeed found, but most 

choices seemed to be driven by other kinds of deliberations. The distribution of strategies 

reflects a low level of reasoning – even the first step of iterated reasoning was not very 

common and the second and higher steps were almost totally absent. These frequencies are 

much lower than those reported in the literature for the parallel steps in other games. The 

findings are also supported by the results obtained using other experimental techniques, i.e. 

recording subjects' response time and requesting that subjects provide ex-post explanations of 

their decisions. Thus, the results illuminate some bounds of the level-k approach. For other 

examples of games in which this approach is not successful see Rey-Biel (2008) and the 

references there. 

 

 The rest of the paper is organized as follows: Section 2 presents a game-theoretic 

analysis of the tennis game and an adapted level-k model; Section 3 describes the 

experimental design; Section 4 reports and discusses the experimental results; and Section 5 

concludes. 
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2. Theoretical Analysis of the Tennis Game 

 

2.1 Formal Presentation of the Game  

 

Players and strategies 

The players in the game consist of N tennis coaches who participate in a single round-robin 

tournament. Coaches choose their strategies simultaneously at the beginning of the 

tournament. A pure strategy in this game is an assignment of the four players, with skill 

levels A+, A, B+ and B, respectively, to the four positions.  Denote A+ by 1, A by 2, B+ by 3 

and B by 4.  Formally, denote a pure strategy by a four-tuple, which is a permutation of (1, 2, 

3, 4), where the jth component is the level of the player assigned to position j. An abbreviation 

will often be used to represent a strategy, where, for example, 2134 will represent the strategy 

(2, 1, 3, 4). Since any order of the four players is permissible, there are 24 possible strategies 

in the game. 

 

Scoring  

When two teams play against each other, four points are divided between them. A team 

receives one point when it assigns a better player to a particular position and no points if the 

other team assigns a better player. Each team receives half a point when the two players 

assigned to a position are equally ranked.  

Let { } { }iiii yxiyxiyyyyxxxxscore =+>=><>< |5.0|),,,,,,,( 43214321  be the total 

number of points earned by a team that uses a strategy ),,,( 4321 xxxxS =  against a team 

using the strategy ),,,( 4321 yyyyT = . Thus, 4),(),( =+ STscoreTSscore  for all S and T. 

 Note that a team can never score less than one point in a battle against another team 

since the best tennis player is unbeatable and in the case that he ties, the second-best player 

cannot lose and at worst will tie. This implies that a team cannot earn more than 3 points in a 

battle and that there are five possible scores: 3, 2.5, 2, 1.5 and 1. 

 

Payoffs  

Each team will play all the other teams in the tournament. The total score of a team that 

chooses strategy S is the sum of points it scores in all battles. Each team wishes to score the 

highest number of points among all the teams in order to win the tournament but does not 

care about its total score per se. This is in fact characteristic of many real-life situations, in 
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which competitors only care about winning and the total points earned or the gap between the 

winner and runners-up is only of secondary importance. (This was also characteristic of the 

experiments reported on later in the paper.) Since the prize is shared between the winning 

teams in the tournament, a team prefers winning together with M other teams over winning 

with N>M other teams (this assumption prevents the game from having trivial equilibria in 

which all coaches win by choosing the same assignment). Thus, in a tournament between two 

players, the payoff structure is simple: unlike the score function which can receive five 

values, the payoff function can now receive only three (since each coach prefers winning the 

tournament over a draw and a draw over losing).  

 

2.2 The Score Function  

The possible scores in any battle between two strategies can be presented in a matrix. 

Presenting the score function in an illuminating way (see the appendix) requires an 

appropriate choice of the strategy order. This sub-section presents some properties of the 

score function that help direct us to it. 

   

Permutations  

Given a strategy S and a permutationσ , )(Sσ  is also a strategy. Note that 

))(),((),( TSscoreTSscore σσ=  since the score is determined by the matching of players 

from the two teams. The position of a matched pair does not matter. 

 

Partition of strategies into cycles 

We say that a strategy S wins a battle against strategy T, if 2),( >TSscore . A strategy S 

defeats strategy T if 3),( =TSscore . For any strategy S, let D(S) be the unique strategy that 

defeats S. Given a level  4}3,2,{1,∈x and an integer Ζ∈n , denote by x+n the level y 

satisfying y=x+n (mod 4). Then, )1,1,1,1(),,,()( 43214321 −−−−== xxxxxxxxDSD . The 

function D is reversible. Thus, for each strategy S, there is exactly one strategy D(S) that 

defeats S and exactly one strategy D-1(S) that is defeated by S. 

 If we perform D on S four times, we again obtain S. This implies that the function D 

induces a partition of the game's strategies into six disjoint cycles of four strategies each.  

  

 Following are the basic properties of the score function: 
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Property 1. ( , ) 2score S S = , 1))(,( =SDSscore , 2))(,( 2 =SDSscore  and 

3))(,( 3 =SDSscore . 

  

 The following property, which states that any strategy that confronts a pair of non-

sequential strategies in a cycle scores a total of 4 points, is of particular importance. 

 

Property 2.  For any T and S, 4))(,(),( 2 =+ SDTscoreSTscore . 

 

Cycles 1 and 2 

Although the score function is invariant to any permutation of the positions, some strategies 

are more salient than others.  For instance, the strategy 1234 immediately suggests itself and 

because of its special characteristics (levels and positions correlate perfectly). Moreover, it is 

a strategy that can be observed in numerous real-life situations. The cycle that contains 1234 

is of particular importance in the experimental part of the study.  Denote 1234 by L0, 

D(L0)=L1, D(L1)=L2, and D(L2)=L3. Cycle 1 is denoted as [L0, L1, L2, L3].  

 Different notations are used for the other cycles.  Thus, for any { }6,..,2∈i , denote 

Cycle i by [S0(i), S1(i), S2(i), S3(i)].  For Cycle 2, I choose S0(2)=4321, which is another 

possible salient strategy. Thus, Cycle 2 is denoted as [4321, 3214, 2143, 1432].8 

 

Property 3. If 1CycleS ∈  and 2CycleT ∈ , then 2),( =STscore  

 

 Thus, any strategy in Cycle 1 ties with each of the strategies in Cycle 2. A pair of 

cycles with this property will be called twin cycles. 

 

 Cycles 3, 4, 5 and 6 

Four other cycles will now be identified and the strategies ordered in a manner that will 

simplify the analysis. The first strategy in each of these cycles is chosen to be a permutation 

of 1234 that swaps two players at adjacent levels: x and x+1. Let S0(3)=1324, S0(4)=4231, 

S0(5)=1243 and S0(6)=2134. 

                                                 
8 In addition to the salient strategy property, Cycle 1 and 2 have the special property of being cognitively easy to 

construct relative to other cycles in the game. The reason is that in these cycles the strategy that defeats S is 

created by a technical "shift" to the right (left) of strategy S: each tennis player moves to the position to his right 

(left) and the last (first) tennis player moves to the first (last) position. 
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 Property 4. Cycles 3 and 4 are twin cycles, as are Cycles 5 and 6. 

 

Property 5.  For 30 ≤≤ k  and 63 ≤≤ i : 2))(,( =iSLscore kk
, 5.1))(,( 1 =+ iSLscore kk , 

,2))(,( 2 =+ iSLscore kk  and 5.2))(,( 3 =+ iSLscore kk .  

 

 We define Cycles 3, 4, 5 and 6 as being parallel to Cycle 1. This term is appropriate 

since for i=3,4,5,6 kL  ties with )(iSk  for any k and the score obtained by kL  when played 

against )(iSm  is close to that obtained by kL  when played against mL  

( 5.00))(,(),( oriSLscoreLLscore mkmk =− ).  

  

 Due to symmetry considerations, any Cycle i can serve as the starting point for 

identifying parallel cycles (by identifying the order of strategies in four other cycles, which 

makes these cycles parallel to Cycle i). In this way, the score can be determined for any two 

strategies. 

    

 quilibrium  E3.2  

This subsection characterizes the population equilibrium in the tennis game. The Nash 

equilibrium of a tournament with a large number of teams can be approximated using the 

following concept of population equilibrium: A distribution of strategies is a population 

equilibrium if the average score of a strategy in the support of the distribution is at least as 

high as any other strategy when playing against this distribution.   

Denote by P(S) the probability assigned by the distribution P to the strategy S. There 

is no equilibrium with P(S) =1 since any strategy T for which score(T,S)>2 earns a higher 

score than S. Thus, the support contains at least two pure strategies. 

 

Claim 1. A probability distribution P is a population equilibrium if and only if the average 

score for all 24 strategies is 2 points.  

Proof: 

� First, all strategies in the support yield the same average score only if the average is 2 

points. Second, the score of any strategy outside the support must be at most 2; however, if 

some strategy Sk receives strictly less than 2 points, property 2 implies that Sk+2 receives more 

than 2 points.  
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 If all the strategies in the game earn 2 points, then by definition P is an equilibrium. ■ 

  

 Before moving on to a complete characterization of equilibrium, I present several 

claims concerning simple forms of equilibrium that will clarify the intuition behind the 

characterization. 

 

Claim 2. If P satisfies  P(S)=P(D
2
(S)) for any strategy S, then P is an equilibrium. 

Proof:  

Each strategy T in the game receives an average score of 2 points when played against a pair 

of non-sequential strategies. Since for all S, P(S)=P(D2
(S)), the expected score for any T is 2 

points. ■ 

 

 Note that the only thing that matters in this class of equilibria is that P(D2
(S))-P(S)=0 

for any S. It does not matter what P(S) is per se. It can be shown that any equilibrium with a 

support contained in three cycles satisfies this condition. For simplicity, we prove that any 

equilibrium with a support contained in two cycles satisfies this condition. 

 

Claim 3. Any equilibrium P with a support contained in a single cycle satisfies 

 P(S)-P(D2(S))=0  for all S. 

Proof:  

If for some strategy S, P(D2(S))>P(S), then D3(S) earns more than 2 points. To see this, recall 

that D3(S) earns 2 points, on average, when played against D(S) and D3(S) and more than 2 

points, on average, when played against S and D2(S). ■ 

 

 The analysis of equilibrium remains unchanged if 2 points are subtracted from any 

possible score in the score matrix. Such a transformation implies that in equilibrium there is 

no strategy with an average score different from zero. For convenience, what follows is 

analyzed accordingly. 

 

Claim 4. Any equilibrium P with a support contained in two cycles satisfies 

 P(S)-P(D2(S))=0  for all S. 

Proof:  
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Assume the contrary. Consider iCycleS ∈  for which P(S)-P(D2
(S))=A is maximal. Since 

D(S) earns a positive score A when played against strategies in Cycle i, it must earn a 

negative payoff (-A) when played against strategies in Cycle j in order to reach the 

equilibrium score (0 points). This can occur only if P(D2
(T))-P(T)=2A for the strategy 

jCycleT ∈ , for which score(D(S),T)=0.5 (score(D(S),T)=2.5 in the original score function). 

However, A is the maximal difference between the probabilities of non-sequential strategies 

in a cycle, a contradiction. ■ 

  

 Claim 3 implies that a minimum of two pure strategies is used in equilibrium. Claim 4 

adds that these two strategies must be non-sequential in the same cycle. In other words, the 

simplest mixed strategy equilibrium involves the use of two strategies, with the property that 

each is the "best response" to the "best response" of the other strategy. 

 

 We now consider the full characterization of the game's equilibrium. Define: 

( ) ( )1 2 12 2 0 3 1 2 0 3 1, , , ( ) ( ), ( ) ( ), ( (2)) ( (2)) , ( (6)) ( (6))X x x x p L p L p L p L p S p S p S p S= ≡ − − − −L L

 

Proposition 1. A probability distribution P is an equilibrium if and only if: 
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Outline of the proof: In equilibrium, the score earned by any strategy must be zero. Using 

Property 2, it is sufficient to verify that in any cycle, two arbitrary adjacent strategies both 

earn 0 points (which implies that each of the other two adjacent strategies also earns 0 

points). The next step is to understand that the points earned by a strategy S are determined 

only by differences between the probabilities of two non-sequential strategies that do not tie 

with S. Solving the system of 12 linear equations (see the appendix) yields the solution given 

in the proposition. ■ 
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Comments 

(I) The only equilibria with a support contained in three cycles belong to the class suggested 

in Claim 3. This is because there are 6 degrees of freedom in the system. Therefore, if we 

substitute zero for the 6 variables, we obtain a single solution: X=0. This claim does not hold 

for equilibria with a support contained in four cycles. By Proposition 1, the following 

distributions are equilibria for which the condition in Claim 3 is not satisfied:  

1 1 1 1
(0,0, ,0, 0,0, ,0, ,0,0,0, ,0,0,0, 0,0,0,0, 0,0,0,0)

4 4 4 4
P =  

and 
1 1 1 1 1 1 1

( ,0, ,0, ,0, ,0, ,0,0,0, ,0, ,0, 0,0,0,0, 0,0,0,0)
12 6 12 6 12 4 6

P = .  

Note that these two examples induce different vectors of the 

type ( , , , , , , , ,0,0,0,0)X a b a b a b a b= − − − − , which reflects the structure of equilibria with a 

support contained in the first four cycles. 

(II) The analysis in this sub-section is equivalent to that of a symmetric mixed-strategy Nash 

equilibrium in a two-player game, in which the payoff matrix is the score matrix of the tennis 

game. In other words, the analysis also captures scenarios in which each of the two players 

aims at maximizing his objective score and not just to obtain a higher score than his 

opponent. In fact, P is a population equilibrium if and only if it is an equilibrium mixed 

strategy (possibly asymmetric) in this two-player game. 

(III) Consider the two-player tournament, in which the players' payoffs are 1 for winning 

the tournament, 0 for a draw and -1 for losing. It is straightforward to show that in this game, 

a probability distribution G is a Nash equilibrium mixed strategy if and only if 

G(S)=G(D
2
(S)) for any S.  

 

2.4 Best Response Function 

This sub-section focuses on finding the best responses to some interesting distributions of 

choices. In particular, I identify the best responses for distributions that I consider to be 

natural beliefs and which may be those actually held by coaches. Examples of natural beliefs 

include: "All other coaches will choose S", "Most of the coaches will choose S" and "The 

most frequent choice will be S".   

 As intuition suggests, the best response to the belief that "almost all other coaches 

will choose Sk(i)" is D(Sk(i)). However, given the belief that all other coaches will choose 

Sk(i), any D(Sk(j)) for a parallel Cycle j is also a best response (a coach who chooses D(Sk(j)) 

earns an average score of 2.5 points but wins the tournament since it is the highest score 
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among the coaches). The next proposition refers to the natural belief that "most of the 

coaches will choose S". The adapted level-k model that will be constructed in Section 2.6 

relies on this proposition. 

 

Proposition 2. If 1>P(S)>0.5 for some S, then D(S) is the unique best response to P.  

Outline of the proof:  Assume without loss of generality that 1>P(L0)>0.5. We need to show 

that no strategy earns as much as L1. It is enough to show that for any 1X L≠ , 

if )3(),( 0 tLXscore −= , then tYLscoreYXscore ≤− ),(),( 1  for any Y. In other words, X 

cannot compensate for its inferiority to L1 when played against L0 by its superiority when 

played against some other strategies. The proof covers all the possible strategies X and 

confirms that the condition on the score is satisfied (see the appendix). ■ 

 

 Now consider the belief that "all choices will be in Cycle i and the most frequent 

choice will be S". For such a belief, the optimal choice is not necessarily D(S). For example, 

if P(S0)=0, P(S1)=0.4, P(S2)=0.3 and P(S3)=0.3, then the optimal choice is S3, and not S2. The 

reason is that the optimal choice, when choices are in a single cycle, is determined by the 

differences between two non-sequential strategies. The optimal choice in this case is Sk+1, for 

k that maximize P(Sk)-P(Sk+2). 

  This last example also demonstrates why D(S) is not necessarily the optimal strategy 

given the belief that "the most frequent strategy is S". However, it is easy to see, as an 

implication of Property 2, that D(S) is the optimal strategy for the belief that the most popular 

choice is S and that the rest of the chosen strategies are uniformly distributed. Essentially, this 

claim states that D(S) is the best response to a belief that attributes high probability to the 

strategy S and takes into account some level of noise. 

 

2.5 A Variant of the Game 

In the experimental part of the paper, a second version of the game is discussed, which is 

denoted as Version 2. It differs from the first version only in the method of scoring. Thus, in 

Version 2, a team receives one point only if it wins three matches out of four against 

another team. At any other case, it does not receive any points.  

 In this version of the game, and given a probability distribution P, it is always optimal 

to choose D(S*), where S* is the strategy for which P(S) is maximal. Therefore, Proposition 2 

becomes trivial in this context and can be extended to the following proposition: If none of 
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the strategies are chosen more often than S, then D(S) is a best response. If, in addition, none 

of the strategies are chosen as often as S, D(S) is the only optimal strategy. Equilibrium 

analysis also becomes simpler in this version. Thus, the probability distribution P constitutes 

an equilibrium if and only if, for any S and T in the support, P(S)=P(T) and in any Cycle i, 

P(S0(i))= P(S1(i))= P(S2(i))= P(S3(i)).  

 

2.6 The Adapted Level-k Model 

In this sub-section, the equilibrium solution concept is abandoned and an alternative approach 

is considered in an attempt to account for the experimental behavior in the tennis game. The 

game's structure and its psychological properties call for applying the concept of level-k 

thinking, which is based on iterative reasoning.  

 Level-k non-equilibrium models assume that the population consists of several 

different types of decision makers and that each type uses a different level of iterated 

reasoning. L0 is a non-strategic type who chooses his action naively. L1 best responds to the 

belief that all other players are L0; L2 best responds to the belief that all other players are L1; 

and so on.9 In each game, the specification of L0 determines the definition of the other Lk 

types in that particular context. Type L0 is often assumed to choose a strategy by performing 

a uniform randomization over the strategy space, but there are cases in which L0 is specified 

differently. A relevant example is presented by Crawford and Iriberri (2007a) who construct 

an adapted level-k model to explain behavior in hide-and-seek games with non-neutral 

framing10. Their L0 type instinctively recognizes salient actions11 and his typical decision rule 

is taken to be a mixed strategy which puts greater weight on salient actions. Their 

specification of the naive L0 type accurately captures a psychological effect that is also 

relevant in the tennis game. Another related specification is that used by Crawford and 

Iriberri (2007b) in the context of auctions, in which the "truthful L0" bids the value that his 

own private signal suggests. 

 Note that any distribution of choices can be explained trivially by specifying L0 as a 

decision maker who chooses according to that particular distribution. A level-k model 

attempts to explain the data primarily through the behavior of L1, L2 or higher types and by 

                                                 
9   In some cases, Lk is assumed to best respond to a combination of lower types. See, for example, Camerer et 

al. (2004). 

10  Presented in Rubinstein, Tversky and Heller (1996). 
11  Bacharach and Stahl (1997) propose a general framework that captures this idea. 
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considering only a small number of natural non-strategic types. In other words, the 

explanatory power of level-k models is based on the typical behavior of the strategic types.  

 

Specification of L0 in the tennis game 

The main assumption I make in this subsection is that the natural starting point for iterated 

reasoning in the tennis game is the salient strategy 1234 (L0), which is associated with the 

non-strategic type L0. Since this naive strategy is a natural choice, a sophisticated coach 

might choose to best respond to such a strategy by choosing 4123 (L1). Forming a belief 

concerning the opponent's strategy and best responding to it is the first step of iterated 

reasoning and thus the type who chooses this strategy is denoted as L1. An iteration of this 

process involves best responding to the belief that other coaches will choose L1. Therefore, 

L2 will typically choose the strategy 3412 (L2) which reflects the second step of iterated 

reasoning. The highest level of iterated reasoning that this model takes into account is the 

third iteration12 which leads to type L3 choosing 2341 (L3). 

 Note that if a coach simply wants to win the tournament and believes that all other 

coaches will choose L0, then he actually has five possible best responses: L1, S1(3), S1(4), 

S1(5) and S1(6), though the score for S1(i) against L0 is less than that for L1 against L0. The 

justification for my definition of types is Proposition 2, which states that if "the majority of 

the coaches choose T" (rather than all the coaches), then the only optimal strategy is D(T). 

This kind of belief reflects a rough estimation of the opponents' choices and is likely to be 

more common than the belief that all other coaches will choose a specific strategy. Therefore, 

the assumption made here concerning coaches' beliefs is more plausible than those made in 

other level-k models.13 In fact, the typical choices of types defined in the model can be 

sustained even under a weaker assumption, according to which type Lk best responds to the 

belief that the most frequent choice is Lk-1 and that the rest of the choices are uniformly 

distributed. 

                                                 
12 This is because the fourth level of iterated reasoning and the choice of L0 cannot be distinguished. Tennis 

teams were defined as consisting of 4 rather than 3 players because in previous experimental studies of other 

games, the fourth level of iterated reasoning was rarely observed, whereas the third level was more commonly 

observed. This finding justifies the assumption that L3 is the highest type. 

13 In many other games appearing in the literature (for example, Costa-Gomes et al. 2001), the definition of 

level-k types would be affected dramatically by a transition to this assumption.  
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 Another strategy to be considered as an anchor for iterated reasoning is 4321 (S0(2)).  

Allocating the players in the reverse order can be viewed as a salient strategy, though a 

weaker one than 1234. It is likely that non-strategic types would choose this strategy while 

strategic types might treat it as an anchor for iterative reasoning. Thus, the choice of Sk(2) is 

considered as a possible outcome of another level-k decision rule, based on a different 

anchor. Clearly, allowing for another kind of level-0 type can only improve the fit of the 

level-k model. 

 The experimental results will be analyzed in light of the above specification, thus 

allowing for two possible anchors and two possible types that use each level of reasoning. In 

other words, all the strategies in Cycle 1 and Cycle 2 are associated with level-k reasoning. 

 

Comment: The notion of level-k reasoning does not necessarily contradict the concept of 

Nash equilibrium, although it may lead to outcomes that are essentially different from 

equilibrium outcomes. In this game, a subset of equilibria can be achieved if the population 

consists of various level-k types using different levels of iterated reasoning. For example, if 

the proportion of each Lk type is 0.125, then the resulting distribution of strategies will 

constitute an equilibrium. 

 

Alternative specifications of L0 

There are other intuitively appealing specifications of level-0 types. For example, consider a 

non-strategic type who chooses each strategy in the game randomly and equally often, 

excluding the strategy 1234 which he chooses more frequently. Given this alternative 

specification, L1, who best responds to L0, would choose 4123 as before and hence higher 

types would also behave as before. Note that from L1's point of view, the interpretation of 

this L0 is the same as in the original model, under the assumption that type Lk best responds 

to the belief that the most frequent choice is Lk-1 and that the rest of the choices are uniformly 

distributed. The non-strategic type could be specified in a similar manner under the 

assumption that the strategy 4321 is chosen more frequently than the rest or under the 

assumption that both 1234 and 4321 are chosen more frequently than other strategies. In this 

last case, as long as 1234 receives more weight than 4321, the best response to this type 

would be 4123. Allowing the existence of two non-strategic types, one who gives more 

weight to 1234 and another who gives more weight to 4321, implies that the two types who 

use the first step of iterated reasoning (based on the two possible anchors) choose L1 and 

S1(2), respectively. Note that the alternative specifications of L0 above would not change the 
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typical behavior of higher types and hence should not affect the explanatory power of the 

model.  The only possible change that could result is an increase or decrease in the proportion 

of behavior that can be explained by the level-0 types.  

Taking L0 to be a type who chooses a strategy randomly and uniformly is also 

intuitively appealing; however, it does not produce any constraint on the k-level types for any 

k>0.  In fact, all 24 strategies are best responses to this strategy and thus, for any strategy and 

for any k, one can say that the strategy is the choice of a level-k type (see Crawford and 

Iriberri (2007a) for an explanation of why they avoid specifying L0 as a type who practices 

uniform randomization). In addition, the best response to this L0 type theoretically guarantees 

a tie and thus differs fundamentally from best responses that guarantee winning the 

tournament (such as the best responses to the L0 types discussed above. Therefore, I do not 

treat the uniform randomization decision rule as an outcome of level-k thinking. 

 

3. Experimental Design 

Three experiments were designed with the following goals in mind: to test whether the 

adapted level-k model can explain behavior in the game, to ascertain the depth of iterated 

reasoning in this context and to explore the triggers of this kind of reasoning. The 

experiments were conducted through the website: http://gametheory.tau.ac.il, which was 

created by Ariel Rubinstein and provides tools for conducting choice and game theoretic 

experiments. The original text used for the questions in the experiments appears in the 

appendix. All the experiments are based on the Tennis Coach problem introduced in Section 

1. Each experiment was carried out in the form of a tournament in which subjects choose a 

strategy and then automatically play against their classmates. A total of 1,624 students 

participated in the experiments, most of them undergraduates in game theory and other 

economics courses. 

 

3.1 Study 1 

The subjects in this study consisted of 641 students in 14 different courses, originating from 7 

countries.14 The lecturers in these courses assigned the Tennis Coach problem as a homework 

task. The website's server recorded the time each subject spent on making the decision 

                                                 
14  The US, the UK, Colombia, the Slovak Republic, Argentina, Canada and Brazil. 
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(response time) together with the strategy that he chose.15 Following the decision, subjects 

were asked to explain why they had chosen the strategy they did. The subjects did not know 

in advance that they would be asked to explain their choice or that their response time would 

be recorded. Lecturers were not able to observe the individual decisions made by their 

students. They did have access to the distribution of choices made, the three winning 

strategies and the identities of the three winning students. The winners in the tournament did 

not receive a monetary prize. Nevertheless, they had an incentive to treat the tournament 

seriously in order to have the honor of being announced in class as one of the winners.   

 Some may consider the lack of monetary incentives to be a disadvantage of this 

study's method (see Camerer and Hogarth (1999) for a discussion of monetary incentives). 

Nonetheless, the experimental method used here has several advantages. In particular, the use 

of the didactic website is a convenient and inexpensive way to collect a large number of 

observations. It also facilitates the comparison of response times for different strategies and 

the analyses of the subjects' own explanations of their choices. Moreover, using this method 

makes it possible to collect data from undergraduate students in various countries. This 

results in a much more diverse sample than those used in conventional laboratory 

experiments.  

  

3.2 Study 2 

This study responds to the concern that subjects in Study 1 were not motivated by monetary 

incentives. In addition, it further investigates the subjects' understanding of the best response 

function by testing whether they can optimally respond to a concrete belief. 

 Students from three undergraduate economics courses in Israel (at Tel Aviv 

University, Haifa University and Ben-Gurion University) were invited by email to take part 

in the online experiment. 279 students responded and were randomly assigned to play either 

the original game denoted as Version 1 or a variant of the game denoted as Version 2. This 

study reports the choices of 131 subjects who were assigned to Version 1 (the results of 

Version 2 are reported in Study 3). The winner of the tournament in each class won NIS 200 

(around $60). After choosing a strategy subjects answered three questions that tested their 

understanding of the best response function. They were asked to provide an optimal response 

                                                 
15 Strategies were not presented in a list in order to avoid order effects. Subjects faced a matrix with four 

columns representing players' levels and four rows representing the different positions. They allocated the tennis 

players on their team by marking one box in each row.  
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to each of the following beliefs: "All other subjects will choose (A, B, A+, B+)", "All other 

subjects will choose (B+, B, A+, A)" and "Most of the subjects will choose (B, A+, A, B+)". 

Subjects were told that there is at least one correct answer to each question and that those 

who answered the questions correctly would win some CD’s.  

 Recall that in Study 1, lecturers asked their students to participate and hence some 

subjects may have treated it as a compulsory exercise. In this experiment, lecturers were not 

involved and did not have access to any of their students’ answers. Since the number of 

students who entered the website and only then decided not to participate was negligible, I 

conclude that a subject’s decision to participate in the experiment was no different in 

character than the decision to participate in a laboratory experiment. Therefore, there is no 

reason to think that the recruiting method used here attracted a subject pool different from 

that of any other experiment. 

 

3.3 Study 3 

Subjects in this study played a variant of the game denoted by Version 2, which is presented 

in Section 2.5. Recall that the only difference between the two versions is in the system of 

scoring. In Version 2, a team scores 1 point only if it wins three matches out of four against 

another team. This system of scoring makes Version 2 cognitively simpler than Version 1. 

 The data reported in this study were collected in two experiments. The first used the 

method described in Study 1 to collect data from 704 students in 14 countries16 who were 

studying in 22 different courses. The subjects in the second experiment consisted of 148 

undergraduate economics students in Israel who were assigned to Version 2 in the same 

online experiment that was reported in Study 2. 

According to the adapted level-k model presented in Section 2.6, the process of 

iterated reasoning in the tennis game is based on two ordered components: 

(I) Forming a concrete belief of the type "Most (or all) subjects will choose strategy S" or "S 

will be the most frequent choice" and (II) Best responding to that belief by choosing D(S). 

Since in Version 2, D(S) is the only best response to the belief that S is the most frequent 

choice, the adapted level-k model is even more appropriate in Version 2 than it is in Version 

1. In a sense, the scoring system in Version 2 provides some guidance in the second 

component of the process and may trigger the first component. Comparing behavior in the 

                                                 
16 The US, Mexico, Brazil, Chile, India, Switzerland, Moldova, Ecuador, France, Brunei Darussalam,    

Germany, Portugal, Spain and Israel. 
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two versions would determine whether the changes in the score function and the resulting 

guidance increase the use of iterated reasoning.  

 

3.4 Response Time and Explanations  

As the analysis in Costa-Gomes et al. (2001) suggests, it is possible to draw incorrect 

conclusions concerning the frequencies of types based on observed choice alone. They used 

subjects' patterns of information search to interpret their choices in normal-form games. The 

approach in this paper is to use subjects' response time and explanations to interpret their 

observed choices.  

A subject’s explanation of his choice may reveal the decision rule he used and in 

particular whether it was based on an iterated reasoning process. Recall that subjects were 

asked to explain their choices only after making the decision and therefore their choices could 

not have been affected.  

 Response time is defined as the number of seconds from the moment that the server 

receives the request for the problem until the moment that an answer is returned to the server. 

This additional information is used to classify strategies in the game as intuitive choices or as 

an outcome of cognitive deliberation. This method is discussed in Rubinstein (2007), whose 

main claim is that the response time of choices made using cognitive reasoning is longer than 

that of choices made instinctively, i.e. on the basis of emotional response.17 This is in line 

with dual-system theories, such as that in Kahneman and Frederick (2002). 

 

 

4. Experimental Results   

 

4.1 Study 1  

Table 1 presents the aggregate data for all 641 subjects. I focus on analyzing the aggregate 

data and comment only briefly on the distribution of choices for each of the classes.  

 

 

                                                 
17 Of particular relevance are Rubinstein's findings concerning the 2/3-beauty contest, which has been 

intensively studied in the level-k literature. He found that the median response time of the second step of 

iterative reasoning in this game was much longer than that of choices representing the first step of reasoning, 

which in turn was much longer than the response time of other (perhaps less strategic) choices. 
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Main results 

Each of the 24 strategies was chosen by at least 1.25% of the subjects. About 57% of 

subjects' choices were strategies in the first two cycles (see the table below), where 41% of 

the subjects chose one of the following three strategies: L0 (22%), L1 (10.1%) or S0(2) (8.7%). 

Strategies in other cycles were chosen far less frequently – almost always by less than 4% of 

the subjects.18  The main features of the distribution of choices are preserved in the four large 

classes (77, 80, 92 and 115 students) and even in the small classes L0 is relatively common 

and L1 is rarely absent. 

 

N=641 

 

Strategies L0 L1 L2 L3 S0(2) S1(2) S2(2) S3(2) Other 

Percentage 22% 10.1% 3.3% 3.6% 8.7% 3.6% 2.8% 2.7% 43% 

 

 As will be shown later, the distribution of strategies is far from equilibrium. 

Following are the main findings concerning level-k thinking, taking into account subjects’ 

response time and explanations:19  

1. 22% of the subjects chose the naive strategy L0, which confirms its salience and its role as 

a potential anchor for iterated reasoning. Its significantly lower response time (median=125s) 

relative to other strategies suggests that it is typically an instinctive choice or an outcome of a 

low level of sophistication.  

2. 10.1% of the subjects chose L1. Their explanations and significantly higher response time 

(median=194s) suggest that most of them actually used the first level of iterated reasoning 

with L0 as an anchor.  

3. 3.3% of the subjects chose L2 while 3.6% chose L3, strategies that are supposed to reflect 

the second and third steps of iterated reasoning, respectively. Subjects’ explanations suggest 

that many (though not all) of those who chose this category used alternative decision rules 

rather than high levels of iterated reasoning.  

4. 8.7% of the subjects chose S0(2), the reverse order strategy. The response time of this 

strategy (median=158.5s) was significantly higher than L0’s, suggesting that subjects who 

chose it were not confused and had not intended to choose L0.  

                                                 
18  The distribution of the strategies outside Cycle 1 and 2 is significantly different from the uniform distribution 
(chi-square=38.12  df=15  p=0.0009). 
19 See the appendix for a detailed discussion of subjects' response times and explanations.  
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5. S1(2) was chosen by 3.6%. Subjects' explanations suggest that only a small fraction of the 

choices were the result of an iterated reasoning process with S0(2) as the anchor. S2(2) and S-

3(2) were chosen even less often and, according to subjects' explanations, do not seem to have 

been the result of such a process. 

 

Explanations 

70% of the subjects (out of 526 who were asked) provided an explanation of their choices. 

Each of the explanations is classified according to one of the following categories and the 

proportion of each category is estimated: 

1. Intuitive choice (18%)  

This category includes explanations such as: "It was a guess"; "I don't know why"; "It felt 

right" and "Intuition".  45% of subjects who provided intuitive explanations chose L0.  

2. Random choice (18%)  

This category includes explanations that mentioned the word "random". Some of them 

explained the randomization as an attempt to choose a different strategy from that of other 

players or to surprise their opponent. The category also includes explanations such as: "It 

does not matter what I choose because the distribution of choices is practically uniform if I 

don't know it". Among subjects in this category, 10% chose L0 and explained that it did not 

matter what they chose. The other 90% said that they randomized and 19 strategies were 

chosen by them.20  

3. First step of iterated reasoning (10%)  

This category includes explanations that describe best responding to the belief that most of 

the choices will be X (primarily L0 or S0(2)). 80% of the subjects in this category chose L1 and 

8% chose S1(2).  

4. Second step of iterated reasoning (three subjects, less than 1%)   

This category includes explanations that describe best responding to the belief that most of 

the choices will be L1.  

5. Other strategic decision rules (53%) 

This category includes explanations such as: "I was trying to be original", "I am mixing good 

and bad players", "I am sacrificing the weak player in order to win in other positions", "My 

choice was based on my life experience", "The best players of my opponent were likely to be 

                                                 
20  Unchosen strategies: 4231, 2143, 1243, 1432 and 1342. Most frequently chosen strategies: 1234 (24%), 2413 

(14%), 4321 (13%) and 1324 (6%). 
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in the middle positions and therefore I put mine on the edges" and "The player in the first 

position should be the best one since my opponent will put A in the first position" (or 

something similar based on some other partial belief). It also includes explanations based on 

incorrect reasoning (such as “I am trying to achieve a tie”) or irrelevant considerations (such 

as taking into account order effects).  Each of the 24 strategies was chosen by subjects in this 

category.  

 

Comment: Only four subjects mentioned the concept of Nash equilibrium in their 

explanation, although many of the subjects had studied game theory.  

  

4.2 Study 2  

Table 2 presents the aggregate data for all 131 subjects who participated in Version 1. 

 

Main results 

All of the 24 strategies were chosen by at least some subjects. About 57% of the subjects 

chose strategies in the first two cycles (see the table below), with 30% of the subjects 

choosing either L0 (10.7%) or L1 (19.1%). The distribution of strategies was quite similar in 

all three classes. 

 

N=131 

 

Strategies L0 L1 L2 L3 S0(2) S1(2) S2(2) S3(2) Others 

Percentage 10.7% 19.1% 4.6% 2.3% 7.6% 5.3% 6.1% 0.8% 43.5% 

 

 This distribution of choices differs from that in Study 1 (chi-square=45.1 df=23 

p=0.004). The main difference is a "switch" of about 10% from the strategy L0 to the strategy 

L1. There was also a slight increase in level-2 strategies in both cycles (10% as compared to 

6%).21 

 However, the qualitative findings are similar to those of the first study. Thus: (1) The 

distribution of strategies is far-removed from equilibrium. (2) A significant proportion of 

                                                 
21  Applying the chi-square test with respect to eight categories - one for L0 and L1, one for any other strategy in 

cycles 1 and 2 and another for the rest, it was found that there is not significant difference between the 

frequencies of categories in studies 1 and 2 (chi-square=7.46  df=7  p=0.38). 
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choices (about 43%) are outside the first two cycles and thus cannot be attributed to level-k 

thinking. (3) High levels of iterated reasoning were uncommon. In particular, level-2 

strategies are chosen much less often than in other games reported in the literature and level-3 

strategies are almost totally absent. 

 

Best responding to a concrete belief 

In the second part of the experiment, subjects were asked to provide an optimal response to 

each of the following beliefs: 1. All other subjects will choose (A, B, A+, B+) 2. All other 

subjects will choose (B+, B, A+, A) and 3. Most of the subjects will choose (B, A+, A, B+). 

125 out of the 131 subjects participated in this part of the experiment. The following table 

summarizes the results. 

 

At least two out of three  1 & 2 & 3 3 2 1 Questions 

93% 81% 89% 90% 93% % that answered correctly: 

 

Comment: Among those who chose 1234 or 4321, only 12.5% (3 students out of 24) did not 

answer the three best response questions correctly. In other words, their possibly naive choice 

does not indicate that they did not understand the game or did not know how to best respond 

to a concrete belief.  

 

4.3 Discussion of Study 1 and Study 2 

 

Equilibrium 

In both studies, the distribution of strategies is not consistent with any equilibrium prediction. 

One way to see it is by examining the expected score of the strategies presented in Table 1 

and Table 2. In Study 1, the strategy L1 is the clear leader and the only strategy that comes 

close to it is S1(3). These strategies were chosen by only 14% of the subjects. Thus, the vast 

majority of the subjects could have significantly improved their chances of winning by 

deviating to L1. In Study 2, the best response to the distribution is clearly L2, which was 

chosen by less than 7% of the subjects.   

 In order to demonstrate that minor changes in subjects' choices would not turn the 

distribution into equilibrium, the following exercise was carried out: In each study, an equal 

number of subjects was subtracted from each pair of non-sequential strategies in a cycle, thus 
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leaving the choices of 283 subjects in Study 1 (44% of the population) and 51 subjects in 

Study 2 (39% of the population). As a consequence of Property 2, subtracting an equal 

number of subjects from the choices of both S and D2(S) leaves the best response to the 

distribution unchanged. Hence, in each of the studies, the resulting distribution is an 

equilibrium if and only if the original distribution is as well. 

In the resulting distribution in Study 1, P(L0)=0.42 and P(L2)=0 (see the distribution 

after normalization in Table 1). This implies that L1 would earn more than the equilibrium 

score even if all other choices were concentrated around S2(i), for i=3,4,5,6 since the weight 

on these strategies in equilibrium needs to be at least twice as much as the weight on L0. The 

argument is strengthened by the fact that P(S2(i))=0, for i=3,4,5,6. Similarly, in the resulting 

distribution in Study 2, P(L1)=0.43 and P(L3)=0 (see Table 2). This implies that L2 would 

earn more than the equilibrium score even if all other choices were concentrated around S3(i), 

for i=3,4,5,6 . However, P(S3(i))=0, for i=4,5,6 and P(S3(3)) is just 0.06. 

 

Level-k thinking 

As stated by Crawford and Iriberri (2007b): "The estimated distribution tends to be stable 

across games, with most of the weight on L1 and L2. Thus, the anchoring L0 type exists 

mainly in the minds of higher types." The results of studies 1 and 2 reflect a low level of 

sophistication in terms of level-k reasoning. Moreover, many choices do not reflect level-k 

reasoning at all and are the result of other types of deliberations.  

Generally speaking, the frequency of non-strategic types (level-0) is much higher and 

the frequency of level-1 types lower than in other related studies; higher types are in fact 

almost totally absent. The proportion of subjects that actually use a high level of iterated 

reasoning might be even smaller than that indicated by observed choice since subjects who 

chose randomly or used decision rules other than iterated reasoning also must have chosen L2, 

L3, S2(2) or S3(2). Note that I do not consider the choice of L0 to be an outcome of four steps 

of iterated reasoning since in previous studies this level of reasoning was not evident. This is 

also supported by L0's low response time and the fact that no one who made this choice 

explained it as being a best response to L3.  

 Response times and explanations provide support not only for the interpretation that 

the observed choices reflect a low level of iterated reasoning, but also for the specification of 

level-k reasoning in this context. The subjects' explanations indicate that the only common 

starting point for iterated reasoning in players' minds was L0. A secondary and much less 

common anchor for iterated reasoning was S0(2). Furthermore, strategies outside Cycle 1 or 
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Cycle 2 have shorter response times than L1, suggesting that there are no other pure strategies 

with the same role as L1. 

   Note that despite the somewhat different experimental design, the frequency of 

higher levels of iterated reasoning is not dramatically higher in Study 2 than in Study 1 and 

not as high as in other games reported in the literature. More importantly, the proportion of 

level-k choices remains relatively small.  

Constructing the hierarchy of types using alternative assumptions on the belief held 

by type Lk does not help in explaining the data. One alternative assumption is that Lk believes 

that all other subjects are lower types than he is, but not necessarily Lk-1. This is the 

assumption made in the cognitive hierarchy model suggested by Camerer, Ho and Chong 

(2004). In the context of the tennis game, it may be possible to interpret the choice of 4123 

(L1) as a best response to the belief of L2 that the population consists of L1 and L0 types 

(rather than just L1) and that L0 is more frequent than L1. However, if L2's belief is assumed 

to even roughly describe the observed distribution of lower types in the experiment, then L2 

would typically choose 3412 (L2) since L1 is more frequent than L0. 22  

 

 In the second part of Study 2, 81% of the subjects answered all three questions 

correctly and 93% answered correctly at least two questions out of three. This indicates that 

subjects understood the game and are cognitively able to best respond to a concrete belief, 

such as the belief that all other choices will be S. The high percentage of correct answers to 

Question 3 implies that subjects also have the correct intuition regarding the optimal response 

to the belief that most of the subjects (rather than all) will choose S. This result is important 

since the belief that most of the subjects will choose S sounds more plausible than the belief 

that all of them will choose S.  

 In answering Question 1 and 2, almost all subjects chose the best response that 

defeats the strategy (i.e. wins 3 out of 4 matches) assumed to be chosen by other coaches. 

Only a few chose one of the four pure strategies that earn 2.5 points. These findings provide 

support for the definition of iterated reasoning used in this game (i.e. that the typical choice 

                                                 
22 In order to apply the cognitive hierarchy model, we also need to assume that the distribution of types follows 

a one-parameter Poisson distribution. A parameter that would produce a distribution with 10% L0 choices and 

20% L1 choices would imply an even larger percentage of L2 choices (more than 20%). Even if we consider Lk 

types in both Cycle 1 and 2, a Poisson distribution does not provide a good fit to the distribution obtained in the 

experiment.   
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of Lk defeats the strategy chosen by Lk-1). It also suggests that the first component of the 

process of iterated reasoning is lacking in this context. In other words, most of the subjects do 

not hold a concrete belief, such as the belief that most of the subjects will choose Lk.  

 The conventional definition of strategic thinking requires forming a belief on the 

opponent's strategy and best responding to it. The choices and explanations of subjects in 

these studies suggest that this kind of thinking is not prevalent. However, the results do reveal 

partial strategic thinking. Many of the decisions are apparently based on a partial belief over 

the opponents' choices and thus exhibit an attempt to forecast features of other players’ 

choices.  

 

 To conclude, the data from these two studies confirm that the specification of level-k 

types was appropriate in this setting. Iterated reasoning was not triggered as often in the 

tennis game as in other games reported in the literature. Nevertheless, the level-k concept 

may have important roles in this context. Thus: (1) Although the level-k approach can explain 

only a small portion of the data, understanding the empirical features of level-k reasoning in 

this game makes it possible to predict the optimal strategy. For example, the finding in Study 

2 that L1 is more common than L0 and that L2 and L3 are not as frequent allows predicting that 

L2 is the winning strategy. This prediction does not rely on the exact frequencies of level-k 

and other choices.  

 (2) Even these low frequencies of level-k choices may affect dramatically the long run 

play of the game. Although the distributions of strategies in both studies was far from 

equilibrium, if subjects were to play the game repeatedly and in each round would internalize 

the distribution of strategies in the previous round, they might converge to one of the 

equilibria of the one-shot game. Since subjects may notice the patterns based on iterated 

reasoning in earlier rounds, they might modify their choices in later rounds accordingly. In 

particular, I conjecture that in later rounds subjects’ choices would be concentrated in the first 

cycle. Thus, level-k reasoning may turn out to influence not only outcomes of one-shot 

games, but also the selection of equilibrium in the long run. 

 

4.4 Study 3  

Recall that this study reports the data from the two experiments in which subjects played 

Version 2. Table 3 presents the distribution of strategies in the experiments. It is 

straightforward to see that neither distribution of chosen strategies is consistent with any of 

the game's equilibria. Roughly speaking, the distribution of strategies in this version 
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resembles the distribution in Version 1. In fact, there are no significant differences between 

the distribution of choices in the two versions (chi-square=25.85 df=23 and p=0.31 were 

obtained in a test comparing the data collected through the didactic website, and chi-

square=31.75 df=23 and p=0.11 were obtained in a test comparing the data from the 

experiment that used monetary incentives). As to the explanations, the proportions of the 

various categories were similar to those in Study 1. To conclude, the "guidance" provided by 

the scoring system and the relative cognitive simplicity of this version of the game did not 

significantly increase the use of iterated reasoning. 

 

5. Concluding Remarks 

The tennis game captures various strategic real-life interactions. Examples include:  

allocating troops among a number of battlefields, choosing the order of R&D projects to be 

undertaken, promises in election campaigns, assigning workers to projects in a competitive 

environment and, of course, assigning players in sports games. The paper's theoretical 

analysis provides a complete characterization of equilibria in the tennis game. In an attempt 

to explain the experimental behavior in the game, the equilibrium solution concept is replaced 

by an adapted level-k model, which is based on a natural specification of iterated reasoning in 

this setting.  

 Although level-k thinking seems to be highly appropriate in the tennis game, the 

adapted model explains only part of the experimental results and many of the choices seem to 

be the result of other decision rules not based on level-k thinking. Perhaps the most striking 

result is the low frequency of types that use high levels of iterated reasoning. Even the first 

step of iterated reasoning is not very common in the two versions of the game and higher 

steps of reasoning are almost totally absent. These findings are supported by the subjects' 

explanations. Furthermore, their explanations hint that many of them do not hold a concrete 

belief over other subjects' choices and certainly do not best respond to the belief that most of 

the subjects are level-k types.    

 The results in this paper differ from those obtained in previous studies, which found 

high frequencies of level-k reasoning among subjects in various games. I suggest two reasons 

for this: First, the pure strategies attributed to level-k reasoning in the tennis game are only a 

small fraction of the possible choices in the game. Second, there is a natural tendency in the 

tennis game to form partial beliefs over the opponents' strategies. In other words, the rich 

structure of the game triggers other kinds of strategic thinking. Further research is needed in 
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order to more clearly identify the circumstances in which the level-k approach is successful at 

explaining the data.  

 Having said this, the suggested level-k specification, which is based on attraction to 

salience, provides some hints regarding the deviation of choices from the uniform distribution 

prediction. As was demonstrated in this paper, neither Nash equilibrium nor the classic level-

k specification of random L0 could predict the features of the experimental distribution and 

the winning strategy. Therefore, there is considerable benefit from the construction of an 

adapted level-k model that takes framing into account and makes it possible to explain 

behavior that is not consistent with the uniform distribution.   
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Appendix  

 

The score matrix 

 

 

Cycle 1               Cycle 2              Cycle 3               Cycle 4                 Cycle 5                Cycle 6  
3 4 1 2 2 3 4 1 1 2 3 4 2 3 4 1 1 2 3 4 2 3 4 1 

2 3 4 1 3 4 1 2 3 4 1 2 4 1 2 3 4 1 2 3 3 4 1 2 

4 1 2 3 1 2 3 4 4 1 2 3 3 4 1 2 3 4 1 2 4 1 2 3 

1 2 3 4 4 1 2 3 2 3 4  1 1 2 3 4 2 3 4 1 1 2 3 4 

Strategies 
by cycles 
(score of 
the row 
player) 

2.5 2 1.5 2 2.5 2 1.5 2 2.5 2 1.5 2 2.5 2 1.5 2 2 2 2 2 3 2 1 2 1234 

2 1.5 2 2.5 2 1.5 2 2.5 2 1.5 2 2.5 2 1.5 2 2.5 2 2 2 2 2 1 2 3 4123 

1.5 2 2.5 2 1.5 2 2.5 2 1.5 2 2.5 2 1.5 2 2.5 2 2 2 2 2 1 2 3 2 3412 

2 2.5 2 1.5 2 2.5 2 1.5 2 2.5 2 1.5 2 2.5 2 1.5 2 2 2 2 2 3 2 1 2341 

1.5 2 2.5 2 1.5 2 2.5 2 2.5 2  1.5 2 2.5 2 1.5 2 3 2 1 2 2 2 2 2 4321 

2 2.5 2 1.5 2 2.5 2 1.5 2 1.5 2 2.5 2 1.5 2 2.5 2 1 2 3 2 2 2 2 3214 

2.5 2 1.5 2 2.5 2 1.5 2 1.5 2 2.5 2 1.5 2 2.5 2 1 2 3 2 2 2 2 2 2143 

2 1.5 2 2.5 2 1.5 2 2.5 2 2.5 2 1.5 2 2.5 2 1.5 2 3 2 1 2 2 2 2 1432 

2 1.5 2 2.5 2 2.5 2 1.5 2 2 2 2 3 2 1 2 2.5 2 1.5 2 2.5 2 1.5 2 1324 

1.5 2 2.5 2 2.5 2 1.5 2 2 2 2 2 2 1 2 3 2 1.5 2 2.5 2 1.5 2 2.5 4213 

2 2.5 2 1.5 2 1.5 2 2.5 2 2 2 2 1 2 3 2 1.5 2 2.5 2 1.5 2 2.5 2 3142 

2.5 2 1.5 2 1.5 2 2.5 2 2 2 2 2 2 3 2 1 2 2.5 2 1.5 2 2.5 2 1.5 2431 

2 2.5 2 1.5 2 1.5 2 2.5 3 2 1 2 2 2 2 2 2.5 2 1.5 2 2.5 2 1.5 2 4231 

2.5 2 1.5 2 1.5 2 2.5 2 2 1 2 3 2 2 2 2 2 1.5 2 2.5 2 1.5 2 2.5 3124 

2 1.5 2 2.5 2 2.5 2 1.5 1 2 3 2 2 2 2 2 1.5 2 2.5 2 1.5 2 2.5 2 2413 

1.5 2 2.5 2 2.5 2 1.5 2 2 3 2 1 2 2 2 2 2 2.5 2 1.5 2 2.5 2 1.5 1342 

2 2 2 2 3 2 1 2 2 2.5 2 1.5 2 1.5 2 2.5 1.5 2 2.5 2 2.5 2 1.5 2 1243 

2 2 2 2 2 1 2 3 2.5 2 1.5 2 1.5 2 2.5 2 2 2.5 2 1.5 2 1.5 2 2.5 4132 

2 2 2 2 1 2 3 2 2 1.5 2 2.5 2 2.5 2 1.5 2.5 2 1.5 2 1.5 2 2.5 2 3421 

2 2 2 2 2 3 2 1 1.5 2 2.5 2 2.5 2 1.5 2 2 1.5 2 2.5 2 2.5 2 1.5 2314 

3 2 1 2 2 2 2 2 2 1.5 2 2.5 2 2.5 2 1.5 1.5 2 2.5 2 2.5 2 1.5 2 2134 

2 1 2 3 2 2 2 2 1.5 2 2.5 2 2.5 2 1.5 2 2 2.5 2 1.5 2 1.5 2 2.5 1423 

1 2 3 2 2 2 2 2 2 2.5 2 1.5 2 1.5 2 2.5 2.5 2 1.5 2 1.5 2 2.5 2 4312 

2 3 2 1 2 2 2 2 2.5 2 1.5 2 1.5 2 2.5 2 2 1.5 2 2.5 2 2.5 2 1.5 3241 

 

 

 

 

 

 

 

 

 

 



 33

Proofs 

 

 

Proposition 1: A probability distribution P constitutes an equilibrium if and only if:  
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Proof: The following system of 12 linear equations characterizes the game’s set of equilibria: 
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and its solution is the 6-dimension space that appears in the proposition. ■  
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Proposition 2. If 1>P(S)>0.5 for some S, then D(S) is the best response to P.  

 

Proof:   

Assume without loss of generality that 1>P(L0)>0.5. We need to show that no strategy earns 

as high a score as L1. It is sufficient to show that for any 1X L≠ , )3(),( 0 tLXscore −=  implies 

that tYLscoreYXscore ≤− ),(),( 1  for any Y. In other words, X cannot compensate for its 

inferiority to L1 against L0 by its superiority when playing against some other strategies. The 

proof continues by considering all the possible strategies X and confirms that the condition on 

the payoffs is satisfied for all of them: 

(I) The case of X=L3 is straightforward: 1),( 03 =LLscore , and 2),(),( 13 ≤− YLscoreYLscore  

since the lowest possible score is 1 point and the highest is 3 points. 

(II) If 2),( 0 =LXscore , assume to the contrary that 1),(),( 1 >− YLscoreYXscore . This 

implies that 1),( 1 =YLscore or 1.5 and thus Y can only be L2 or S2(i), for i=3,4,5,6. However, 

the only strategies that score 2.5 or 3 points against L2 or S2(i) are S3(i) and L3, which do not 

tie with L0, a contradiction. 

(III) In the case of X=S1(i), for i=3,4,5,6, 5.2),( 0 =LXscore . Since S1(i) is parallel to L1, it 

scores at most half a point more than L1 against iCycleY ∈  or Cycle 1. S1(i) can score at most 

2.5 points against 1cycleoricycleY ∉ , while L1 scores at least 1.5 points. 

5.1),( 1 =YLScore  only if Y=S2(j) for j=3,4,5,6, and 5.2))(),(( 21 <jSiSscore . 

(IV) In the case of X=S3(i), for i=3,4,5,6, 5.1),( 0 =LXscore . S3(i) cannot score 2 points more 

than L1 against some other strategy Y: 3)),(( 3 =YiSscore  only for Y=S2(i), and 

5.1))(,( 21 =iSLscore  and not 1. ■ 



 35

Experimental results 

Table 1 and 2 below present the aggregate quantitative data for studies 1 and 2. The columns 

from left to right are: row number; all 24 possible strategies in the game; median response 

time (RT) of each strategy; the number and then proportion of subjects who chose the 

strategy; the average score of that strategy in the general tournament; the notation used for 

each strategy; and an additional column presents the distribution following the normalization 

discussed on pages 25-26. 

 

Table 1 

 

Version 1 

N=641 
 

Normalization Notation Score % # RT Strategies  

        

42.40% L0 1.94 22% 141 125s 1234 1 

14.84% L1 2.22 10.14% 65 194s 4123 2 

0% L2 2.06 3.28% 21 165s 3412 3 

0% L3 1.78 3.59% 23 196s 2341 4 

        

13.43% S0(2) 1.96 8.74% 56 158.5s 4321 5 

2.12% S1(2) 2.06 3.59% 23 172s 3214 6 

0% S2(2) 2.04 2.81% 18 167s 2143 7 

0% S3(2) 1.94 2.65% 17 221s 1432 8 

        

7.77% S0(3) 1.94 5.15% 33 80s 1324 9 

5.30% S1(3) 2.16 3.9% 25 146s 4213 10 

0%  S2(3) 2.06 1.72% 11 109s 3142 11 

0% S3(3) 1.84 1.56% 10 165s 2431 12 

        

0% S0(4) 1.95 3.59% 23 96s 4231 13 

1.41% S1(4) 2.12 2.81% 18 181.5s 3124 14 

0% S2(4) 2.05 3.59% 23 102s 2413 15 

0% S3(4) 1.88 2.18% 14 120s 1342 16 

        

2.47% S0(5) 2.01 2.34% 15 106s 1243 19 

0% S1(5) 2.08 2.03% 13 140s 4132 20 

0% S2(5) 1.99 1.25% 8 126.5s 3421 17 

4.95% S3(5)  1.92 4.21% 27 128s 2314 18 

        

3.18% S0(6) 1.96 2.96% 19 96s 2134 21 

0% S1(6) 2.07 1.72% 11 101s 1423 22 

0% S2(6) 2.04 1.56% 10 112.5s 4312 23 

2.12% S3(6)  1.93 2.65% 17 141s 3241 24 
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Table 2 

 

Version 1 

N=131 
 

Normalization  Notation Score % # Strategies  

        

15.7% L0 1.87 10.7% 14 1234 1 

43.1% L1 2.1 19.1% 25 4123 2 

0% L2 2.23 4.6% 6 3412 3 

0% L3 2 2.3% 3 2341 4 

       

3.9% S0(2) 2.02 7.6% 10 4321 5 

11.8% S1(2) 2.06 5.3% 7 3214 6 

0% S2(2) 2.07 6.1% 8 2143 7 

0% S3(2) 2.04 0.8% 1 1432 8 

       

0% S0(3) 1.98 1.5% 2 1324 9 

0% S1(3) 2.06 1.5% 2 4213 10 

3.9%  S2(3) 2.12 3.1% 4 3142 11 

5.9% S3(3) 2.04 3.8% 5 2431 12 

       

0% S0(4) 1.91 2.3% 3 4231 13 

0% S1(4) 2.1 3.1% 4 3124 14 

0%  S2(4) 2.18 2.3% 3 2413 15 

0% S3(4) 2 3.1% 4 1342 16 

       

0% S0(5) ---- 0% 0 1243 19 

5.9% S1(5) 2.04 3.8% 5 4132 20 

5.9% S2(5) 2.14 2.3% 3 3421 17 

0% S3(5)  2.06 1.5% 2 2314 18 

       

3.9% S0(6) 1.99 5.3% 7 2134 21 

0% S1(6) 2.1 3.1% 4 1423 22 

0% S2(6) 2.11 3.8% 5 4312 23 

0% S3(6)  2 3.1% 4 3241 24 
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Table 3 

The following table presents the data from the two experiments of Version 2 (without 

monetary incentives and with monetary incentives respectively).  

 

 

Version 2 

 

Notation %  Second exp. N=148 % first exp. N=704 Strategies  

     

L0 10.1% 18.61% 1234 1 

L1 18.9% 12.93% 4123 2 

L2 6.8% 5.26% 3412 3 

L3 2.0% 2.84% 2341 4 

     

S0(2) 4.1% 5.82% 4321 5 

S1(2) 10.8% 5.40% 3214 6 

S2(2) 2.7% 2.41% 2143 7 

S3(2) 1.4% 1.70% 1432 8 

     

S0(3) 1.4% 3.41% 1324 9 

S1(3) 6.8% 4.69% 4213 10 

S2(3) 2.0% 2.13% 3142 11 

S3(3) 2.7% 1.56% 2431 12 

     

S0(4) 3.4% 4.26% 4231 13 

S1(4) 5.4% 2.41% 3124 14 

S2(4) 8.1% 3.12% 2413 15 

S3(4) 2.0% 1.14% 1342 16 

     

S0(5) 0.7% 2.56% 1243 19 

S1(5) 0.7% 2.41% 4132 20 

S2(5) 0% 1.14% 3421 17 

S3(5)  2.7% 4.69% 2314 18 

     

S0(6) 3.4% 3.98% 2134 21 

S1(6) 0% 2.98% 1423 22 

S2(6) 2.0% 1.56% 4312 23 

S3(6)  2.0% 2.98% 3241 24 
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Details on response time and explanations in Experiment 1 

 

Subjects’ explanations and response times are used to support the interpretation of the main 

strategy choices in Experiment 1 (Version 1). 

The response time of L0 suggests that it is typically an instinctive choice. Its response 

time is lower than that of each of the strategies in cycle 1 and lower than that of the rest of the 

strategies taken as a whole, even when L1 is excluded. Furthermore, its response time is lower 

in comparison to all strategies that are not in the first cycle taken as a whole.23 28% of those 

who chose L0 did not explain their choice. Of those who did (83): 39% belong to the intuitive 

category, 26% belong to the random choice category and 35% belong to the category of other 

strategic rules. 

 The choice of L1 is clearly an outcome of cognitive reasoning: It has higher response 

time than the rest of the strategies taken as a whole, even when L0 is excluded. Only 11% of 

those who chose this strategy did not provide an explanation. Among those who did provide 

an explanation (41), 75% of the explanations belong to the category of iterated reasoning. 

 The response time of L1 is not significantly different from those of L2 or L3, or the 

class that includes both. Among the subjects who chose L3, none of their explanations 

included a process of iterated reasoning. Only three explanations (out of 15) for the choice of 

L2 explicitly described the use of two levels of iterated reasoning. No one chose a strategy 

other than L1 and L2 while explaining that he had used two levels of iterated reasoning or 

higher. Considering the low frequencies of L2, L3, S2(2) and S3(2), and taking into account 

that various decision rules can lead to these choices, I conclude that level-2 and level-3 types 

are negligible in this game. 

 The response time of S0(2) is higher than that of  L0 and not significantly lower  than 

that of L1, or the response time of all other strategies taken as a whole. This finding suggests 

that the strategy S0(2) is not as instinctive as L0 and does not play the same role as L0. 27% of 

the subjects who chose it did not explain their choice. Among those who did provide an 

explanation (32), 25% of the explanations belong to the random choice category, around 60% 

are based on other strategic rules and around 15% are intuitive. 

                                                 
23  The Mann-Whitney U test, also known as the Wilcoxon Two-Sample Test, was used to test the differences 

in response time. The significance level for all the results was at least 5%. 52 observations with response times 

higher than 600 seconds were omitted (the RT was higher than 1000 in 50% of these observations). It is likely 

that these observations do not reflect real response times and omitting them reduces the noise. 
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Version 1 and 2 as they appear on the didactic website  

 

 

Games and Behavior - The Problems 
 

The Problem     

You are a tennis team coach, planning to send your team to a tournament. Each team in 
the tournament has four players: one of level A+ (the highest level), one of level A, one 
of level B+, and one of level B (the lowest level). 

 
The coach's task is to assign his players to "position 1", "position 2", "position 3" 
and "position 4" (one player in each position).  
Each team will play against each of the other teams in the tournament. A game between 

two teams includes four matches: a player that was assigned by his coach to "position 
X" will play once against the player in "position X" of the other team. You don't know 
how the other coaches assign their players. 
 

In any match between two players of different levels, the one with the higher level wins. 
When two players with the same level play, the outcome is a tie. 
 

[In version 1 - A winner in a match brings his team 1 point, and a player who ends the 
match with a tie brings his team ½ a point. A loss yields 0 points.] 
 
[In version 2 - At the end of any game between two teams, a team gets 1 point 

only if it won three matches out of four. In such a case, the other team gets 0 
points. In case of any other result, none of the teams gets points.] 
 

The team's score at the end of the tournament is the number of points it gained in all 
the games against other teams. 
The winning team is the one with the highest score, and the prize is $10,000. [In case 
of several winning teams, the prize is divided between them.] 

The only goal of players and coaches (including you) is to have their team getting the 
highest score among the teams. 
 
How will you allocate your players in order to achieve this goal?** 

 
** Note that other students in your class play the role of other coaches in the 
tournament, so your total score in this game will be your team's total score, after 

playing against each of the other students' teams.  

       

  A+ A B+ B  

       pos 1 
    

  

       pos 2 
    

  

       pos 3 
    

  

       pos 4 
    

  


